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TITLE RUNNING HEAD: thiophene535carboxamide and polyamido derivatives with anti5influenza 

activity.   

ABSTRACT 

Influenza virus infections represent a serious concern to public health, being characterized by high 

morbidity and significant mortality. To date, compounds targeting the viral ion5channel M2 or the 

viral neuraminidase are the drugs available for treatment of influenza, but the emergence of drug 

resistant viral mutants renders the search for novel targets and their possible inhibitors a major 

priority. Recently, we demonstrated that the viral RNA5dependent RNA polymerase (RdRP) 

complex can be an optimal target of protein5protein disruption by small molecules, with thiophene5 

35carboxamide derivatives emerging as promising candidates for the development of new anti5 

influenza drugs with broad5spectrum activity. Here, we report a further dissection of the thiophene5 

35carboxamide structure. By using a GRID MIF5based scaffold5hopping approach, more potent and 

non5toxic polyamido derivatives were identified, highlighting a new space in the chemical 
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variability of RdRP inhibitors. Finally, a possible pharmacophoric model highlighting the key 

features required for RdRP inhibition is proposed. 

INTRODUCTION 
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Influenza A (FluA) and B (FluB) viruses are responsible for hundreds of thousands of deaths each 

year, especially among high5risk population groups (infants, elderly, people with immune 

deficiency).1 The prophylactic, yearly reformulated vaccine and two classes of drugs are currently 

the only available anti5influenza therapeutic options.2 The first class is represented by the M2 viral 

ion5channel inhibitors and includes the adamantanes (i.e., amantadine and rimantadine). The M2 

inhibitors are only effective against FluA, and a significant increase of virus resistance to this class 

of compounds has been observed in recent years. Currently, all circulating FluA virus strains appear 

to be resistant to M2 inhibitors.3,4 The second class of antiviral compounds targets the viral 

neuraminidase (NA). NA inhibitors block the release of virions after budding from the host cell.5,6 

zanamivir was the first NA inhibitor commercially developed.7 It was discovered in 1989 using a 

target5guided design and exemplifies one of the first successful uses of this approach in drug 

discovery. The computational approach was based on the GRID force field, developed at the 

University of Oxford by Peter Goodford.8 The discovery of zanamivir was published in 1993 with 

more than a thousand citations to date. Although limited by poor bioavailability, zanamivir is still 

on the market, even though the orally active oseltamivir is usually preferred. Nowadays, NA 

inhibitors represent the only class of antiviral drugs to treat both FluA and FluB infections. 

However, resistance episodes were recently observed for oseltamivir in several Flu strains.3,9 For 

these reasons, increasing efforts have been devoted to the identification of novel antiviral 

strategies.10
 Recently, the viral polymerase attracted attention as a new target for the development 

of novel anti5influenza compounds.11518 This protein is a heterotrimeric complex formed by the 
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PB1, PB2, and PA subunits. The correct non5covalent assembly of the three subunits is essential for 

viral RNA synthesis.19 It is known that all three subunits, PB1, PB2, and PA, are necessary for both 

transcription and replication of the viral genome.20,21 PB1 possesses polymerase activity, PB2 is 

responsible for cap5binding of host cell pre5mRNAs, whereas PA contains the endonuclease domain 

and is implicated in RNA replication by cleaving capped host pre5�RNAs. The main advantage in 

exploiting the viral RNA polymerase as a target for drug design is that, in contrast to the viral 

glycoproteins, it is highly conserved among different viral strains,19 and thus RNA polymerase 

inhibitors are expected to possess a broad antiviral activity.22 

Just as the rational design of NA inhibitors became possible once the neuraminidase X5ray structure 

became available, today, the design of potential inhibitors of the influenza virus RNA polymerase is 

facilitated by the recent elucidation of its structure at atomic level.23525 In particular, two recently 

published X5ray structures of a C5terminal domain of PA bound to an N5terminal peptide of 

PB123,24
 have clarified the molecular details of the PA5PB1 interaction: an N5terminal 310 helix from 

PB1 binds into a hydrophobic groove in the C5terminus of PA, with relatively few residues driving 

the PA5PB1 binding. More recently, the PB15PB2 interaction domain was also explored by X5ray 

crystallography.25 Although the use of PB15PB2 interface as a target for the design of possible 

RdRP inhibitors is still under investigation,26 the tailored design of small molecules that inhibit the 

formation of the PA5PB1 complex formation has already been demonstrated to be a promising 

strategy towards a new class of anti5influenza drugs.11518 Attempts to inhibit the formation of the 

PA5PB1 complex using peptides have also been reported.27,28 However, whether it is better to use 

peptides or small molecules to inhibit protein5protein interaction is still a topic of much debate. On 

the one hand, peptides can better mimic the protein interaction showing high target selectivity and 

affinity.29 On the other hand, small molecules usually possess better pharmacokinetic properties. 

Furthermore, there are only very few examples of unmodified peptides that have reached the market 

as drugs, due to their proteolytic instability or lack of cell permeation. 
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Recently, we reported an ��� ������ screening of 3 million small molecule structures to search for 

inhibitors of the PA5PB1 interaction, using the X5ray structure of the PA subunit reported by He 	
�

��.24 as a template.13 As a result, the �5(35carbamoyl55,65dihydro545cyclopenta[b]thiophen525yl)5

75(difluoromethyl)555phenylpyrazolo[1,55a]pyrimidine535carboxamide, named as 1 in the present 

study (Figure 1, compound � in ref 12), was shown to inhibit the PA5PB1 complex formation ���

��
�� (with an IC50 of 25.4 ± 3.9 GM) and to reduce the catalytic activity of the viral polymerase 

(with an IC50 of 31.4 ± 4.2 GM). In addition, compound 1 exhibited antiviral activity against FluA 

in infected cells at EC50 values around 100 GM, without showing significant cytotoxicity (CC50 > 

250 GM, evaluated in MDCK and 293T cell lines).13 

Due to its promising potency and lack of cytotoxicity, we decided to give compound 1 further 

consideration. 

In the present study, the optimization of compound 1 by using two different approaches is reported. 

A number of analogues of compound 1 were first synthesized to study the structure5antiviral 

activity relationship using a classical medicinal chemistry approach. In particular, the thiophene535

carboxamide moiety was maintained, recently emerged as a promising scaffold for the design of 

RdRP inhibitors.16 Secondly, using compound 1 as a template, we applied a scaffold hopping 

approach to identify novel scaffolds for PA5PB1 complex inhibitors. The biological evaluation of 

the novel candidates is reported in terms of cytotoxicity, PA5PB1 binding disruption, and activity 

against Flu virus replication. Finally, a possible pharmacophore for PA5PB1 complex inhibitors is 

reported here for the first time. 

RESULTS AND DISCUSSION 

DESIGN OF COMPOUND 1 DERIVATIVES 
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Chemically, compound 1 is a pyrazolo[1,55a]pyrimidine carrying a �5cyclopentathiophene 

carboxamide moiety at the C53′ position, a phenyl substituent at the C55′ position and a 

difluoromethyl group at the C57′ position (Figure 1). In this study, the thiophenecarboxamide 

moiety was preserved since it was recently identified to be a promising scaffold for anti5Flu 

compounds.16
 As a first attempt, the pyrazolo[1,55a]pyrimidine (scaffold I, Table 1) was also 

maintained, while the difluoromethyl group, the cyclopentathiophene amide moiety, and the phenyl 

substituent at the C55′ position were modified (compounds 2�6, Table 1). The selective 

incorporation of fluorine atom(s) or fluoroalkyl group(s) (such as CF3, CHF2, and CH2F) into 

organic molecules has become a trend in life5sciences5related applications.30,31 Many studies have 

shown that a fluorine atom(s) or fluoroalkyl group(s) can bring several beneficial effects in 

bioactive molecules, such as the enhancement of metabolic stability, lipophilicity, bioavailability 

and binding affinity.32539 Among the fluoroalkyl groups, the difluoromethyl (CHF2) group in 

compound 1 is of particular interest, because it is known to be isosteric and isopolar to a carbinol 

(CH2OH) unit and, despite its lipophilic nature, can also act as a hydrogen bond donor.40 By 

replacing the difluoromethyl group with the trifluoromethyl group (compounds 2, 4�6, Table 1) we 

wanted to investigate whether or not the hydrogen5bond donor capability of the CHF2 group could 

be crucial in the interaction of compound 1 with PA. 

Recent studies on new RdRP inhibitors bearing a cycloheptathiophene moiety revealed that the size 

of the aliphatic ring fused with thiophene was critical for the inhibitory effect.16 Therefore, we also 

tried to increase the size of the ring by replacing the cyclopentane with a cyclohexane ring 

(compounds 3�6, Table 1). 

The last modification for scaffold I was the introduction of a hydrophobic or a hydrophilic 

substituent at the para5position of the phenyl ring (compounds 5 and 6 in Table 1, respectively). 

The major structural modifications were performed by replacement of the pyrazolo[1,55

a]pyrimidine (scaffold I, Table 1) with a triazolopyrimidine or pyridine (scaffolds II and III in Table
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1, respectively). The replacement of the carbon atom in the 35position of the pyrazolo[1,55

a]pyrimidine with a nitrogen atom (as in scaffold II) forces the amidic bond to move from C53’ to

C52’, leading to a more linear compound (7, Table 1).

Compound 8 was synthesized from scaffold III (Table 1). Its chemical structure shares some 

common features with a good inhibitor recently published,16
 in which a 25pyridyl5amide is bound to 

a cycloheptathiophene moiety at the C52 position. 

SCAFFOLD HOPPING APPROACH 

A second strategy for the hit optimization was the use of compound 1 as a template for scaffold 

hopping, i.e., to search for new molecules endowed with similar chemical features but characterized 

by a different scaffold. This approach complements the classical structure5activity relationship 

(SAR) study reported in the previous section. Indeed, while structural modification on the same 

scaffold provides information on possible critical interactions for activity within a chemical series, 

the aim of a scaffold hopping approach is to move from a hit compound towards different scaffolds 

in the chemical space. Thus, if new active compounds with a different structure emerge, their 
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common features can be related to activity. 

As mentioned above, a structure based virtual screening on 3 million compounds using the X5ray 

structure of the PA subunit as a template was previously used to identify 293 possible PA5PB1 

complex inhibitors. Of the 293 hits, only 32 compounds (including our hit compound) were 

acquired and tested.13 In this study, starting with compound 1 as a template, we screened the 293 

compounds using the FLAP algorithm41 to evaluate their similarity based on the GRID Molecular 

Interaction Fields (MIFs).8,42 The subset of 293 compounds were thus ranked by their similarity to 

the template. Based on this similarity scoring and taking into consideration their availability, cost, 

and druggability, four commercially available compounds (9�12 in Figure 2) were acquired and 

tested. Interestingly none of them possess a thiophene535carboxamide scaffold. 
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CHEMISTRY 

Synthesis of 2�aminotiophene�3�[substituted]carboxamide compounds 
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The synthesis of compound 1 and its analogues 2�8 is illustrated in Scheme 1. Knoevenagel 

condensation of cyanoacetamide with cyclopentanone or cyclohexanone, followed by sulfur5

promoted cyclization gave the suitable thiophene carboxamide derivatives 13a�b, respectively.43 

The final amidopyrazoles 1�8 were obtained by oxalyl chloride5promoted condensation of amino5 

thiophenes 13a�b with the appropriate carboxylic acid, obtained by alkaline hydrolysis of the 

respective ethyl esters. The esters for the synthesis of products 5�8 were acquired from SPECS 

(www.specs.net), whereas the esters 14a�b were prepared by condensing the commercial available 

ethyl 35amino515pyrazole545carboxylate with fluorinated 1,35diones44 (Scheme 2). The triazole 

derivative 7 and the nicotinamide 8 were analogously prepared by coupling amino5thiophene 13b 

either with the chloride of the commercially available 55phenyl575(trifluoromethyl)5 

[1,2,4]triazolo[1,55a]pyrimidine525carboxylic acid or with nicotinoyl chloride, respectively. 

Synthesis of polyamido derivatives. 

A number of derivatives of compound 10 were also synthesized. The polyamido5sulfonamides 18� 

22 were prepared according to literature procedures or their modification (Scheme 3). Thus, the 

nucleophilic attack of either �	�5butylamine or aniline at C54 of isatoic anhydride, followed by the 

elimination of carbon dioxide from the carbamic acid intermediate, gave the anthranilamides 16a�b, 

respectively, in excellent yield.45,46 

The condensation of the anthranilamides 16a�b with 45substituted 35bromobenzoyl chloride in 

refluxing toluene, in the presence of triethylamine, afforded the bisamide 17a�c. Butyllithium5 

promoted bromine5lithium exchange in THF at –78 °C, followed by addition of sulfur dioxide at –

60 °C, converted the bromo derivatives 17a�c in the corresponding lithium sulfinate.46 The latter 

were treated with �5chlorosuccinimide to give the expected sulfonyl chlorides, which were 
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smoothly converted into the target sulfonamide 10 and 18�22 in 20–25% overall yield by reaction 

with the suitable amine in acetone at 50 °C.48 

BIOLOGICAL EVALUATION 

Our hit compound 1, previously tested as provided from the vendor,13 was synthesized and retested, 

giving comparable results (Table 1). 

The synthesized compounds 2�8 and the acquired compounds 9�12 were tested in ELISA to 

determine their inhibitory activity on PA5PB1 interaction. The PB1(1–15)–Tat peptide13 was used 

as a positive control. In addition, we evaluated the ability of the compounds to inhibit the activity of 

FluA RNA polymerase by a minireplicon assay in transfected HEK 293T cells,49 while the antiviral 

activity in FluA virus5infected MDCK cells was evaluated by plaque reduction assays (PRA) using 

the A/PR/8/34 (PR8) strain. In these assays, Ribavirin (RBV), a known inhibitor of RNA viruses 

polymerase,50 was used as a positive control. Moreover, MTT cytotoxicity assays in MDCK and 

HEK293T cell lines using RBV as a reference compound were also performed to exclude cytotoxic 

compounds. Antiviral activity and toxicity data for all the tested compounds are reported in Table 1. 

Modifications made using scaffold I (compounds 2�6) did not give any significant improvement in 

the antiviral activity. However, a comparison of the results for 1 and 2, differing in the fluorinated 

substituent only, reveals that the H5bond donor capability of the CHF2 moiety seems not to be 

critical for inhibition. On the other hand, the replacement of the cyclopentathiophene moiety of 

compound 1 with the cyclohexathiophene moiety to give compound 3 induced a three5fold increase 

of the IC50 value in the ELISA and of the EC50 value in the FluA minireplicon assay, although the 

activity of compound 3 against FluA replication is very similar to those of compounds 1 and 2. 

Surprisingly, the additional substitution of CHF2 with CF3 (compound 4) led to a decreased activity 

in all the tests performed. When a methyl group was added in the para5position of the phenyl ring of 

compound 4 to give compound 5, a decrease of the IC50 value in the ELISA and the EC50 value in 
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the FluA minireplicon assay was observed. The inhibitory efficacy in PRA was also slightly 

improved, even though compound 5 resulted to be a weaker inhibitor with respect to the hit 

compound. This finding is in agreement with our previous results,13,16 indicating that hydrophobic 

interactions are favorable in designing RdRP inhibitors. When a polar substituent such as a methoxy 

group was introduced instead of a methyl group to give compound 6, a less active compound in the 

ELISA assay was obtained. This compound also resulted to be toxic in cell5based assays. 

Compound 6 appeared to be the only cytotoxic compound in the scaffold I series. 

Even though the optimization of the scaffold I did not bring successful results, the replacement of 

the pyrazolo[1,55a]pyrimidine with a triazolopyrimidine (scaffold II) to give compound 7 in Table 1 

proved to be very effective. Indeed, compound 7, which bears the CF3 substituent and cyclohexane, 

resulted to be about 35fold more efficient than compound 1 in inhibiting both PA5PB1 complex 

formation and viral replication. Purification difficulties were encountered during the synthesis of 

the cyclopentane analogue, and thus further investigation of this scaffold would require an 

optimization of the reaction conditions. The replacement of the pyrazolo[1,55a]pyrimidine with a 

pyridine to give scaffold III in Table 1 led to a cytotoxic compound (compound 8) with no activity 

according to the ELISA. 

Concerning the four compounds acquired following the scaffold hopping approach, the polyamido 

derivative 10 was found to be a good RdRP inhibitor. Indeed, compound 10 not only exhibited an 

inhibitory activity against the PA5PB1 interaction comparable to that of the hit compound, but also 

proved to be 45fold more potent than compound 1 in blocking FluA replication. Of the other three 

acquired compounds (9, 11, 12), compounds 9 and 11 resulted to be cytotoxic, although an IC50 of 

35.1 ± 4.3 GM was obtained for compound 9 in the ELISA assays. Thus, these compounds were not 

further investigated. Compound 12 was found to be not cytotoxic, but also inactive. To further 

investigate the new polyamido scaffold, compound 10 and five analogues were synthesized. Tests 

on the resynthesized compound 10 gave comparable inhibitory effects to those obtained using the 
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commercial sample both in ELISA (IC50 values of 28.7 SM and 30.5 SM, respectively) and in PRA 

(EC50 values of 19.3 SM and 18.7 SM, respectively). 

The derivatives of compound 10 were aimed at tuning the hydrophobicity and their size. 

Compounds 18 and 19, which differ from the reference compound for the lack of one or all methyl 

substituents, respectively, were synthesized first. Methyl groups are not likely to be involved in 

specific interaction with protein residues but, enhancing the overall hydrophobicity, could play a 

role in RdRP inhibitory efficacy, since it is known that the PA cavity is mainly hydrophobic.13,16, 51 

Compounds 20 and 21 were then synthesized by adding an additional aromatic ring to the two edges 

of compound 10. These compounds served to preliminary investigate whether larger and more 

hydrophobic compounds could display a similar inhibitory activity. To mimic a “peptide5like” 

feature, an amide linkage was used, which was typical of the polyamido scaffold of compound 10. 

Finally, compound 22 was synthesized as an attempt to explore the effect of the introduction of 

polar substituents. The structures and biological data for the five polyamido derivatives are reported 

in Table 2.  

Removal of one (18) or all (19) methyl groups gave results comparable to the lead 10, so we 

assumed that their role was not crucial for preservation of antiviral activity. However, compound 19 

resulted the most efficient in inhibiting the PA5PB1 interaction, giving an IC50 value of 9.2 ± 1.5 

GM in the ELISA.  

Addition of a further hydrophobic moiety on the sulfonamide part, as in compound 20, did not 

affect cytotoxicity, but had a detrimental effect on the antiviral activity. On the other hand, 

replacement of the �	�5butyl group in the terminal amido moiety with a phenyl ring, as in 

compound 21, resulted in toxicity in MCDK cells. This compound is only modestly active in 

ELISA, thus its good antiviral activity in PRA could be due to its toxicity profile. Finally, 

compound 22, which held a hydroxyl group in para5position of sulfonamide portion, showed a 

dramatic decrease in activity. 
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To test the specificity of the inhibitory activity, the four most active compounds (compounds 7, 10, 
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18, and 19) and hit compound 1 as a reference were tested by ELISA for inhibition of an unrelated 

protein5protein interaction, i.e. the interaction between the UL54 and UL44 subunits of human 

cytomegalovirus (HCMV) DNA polymerase complex as previously described.52,53 None of the 

tested compounds exhibited a dose5dependent inhibitory activity up to a concentration of 200 SM. 

In contrast, compound AL5, previously shown to inhibit the interactions between the HCMV DNA 

polymerase subunits,53 did interfere with UL545UL44 binding (see Figure S1 in the Supporting 

Material). 

The antiviral effect of the four most active compounds 7, 10, 18, and 19 was finally investigated 

against a number of clinical isolates of FluA other than PR8, of both H1N1 and H3N2 subtypes, 

including a swine5derived pandemic strain and an oseltamivir5resistant virus. In addition, the same 

compounds were also tested for their ability to inhibit the replication of two FluB strains (B/Lee/40 

and B/Malaysia/2506/04). The hit compound 1 was also included as a reference compound. The 

biological data for the evaluation of broad5spectrum activity are reported in Table 3. 

Compounds 7, 10, 18, and 19 displayed a similar antiviral activity against all FluA and FluB strains, 

with EC50 values ranging from 10.8 to 43.0 GM and significantly higher than those of compound 1, 

confirming the successful optimization of the hit compound. 

Preliminary ADME studies (water solubility, permeability and metabolic stability) were performed 

for compounds 7 and 19, being the most promising compounds. Methods for these studies are 

reported in the Supporting Material. Concerning water solubility, compounds 7 and 19 showed a 

solubility of 2.4 and 1.0 Gg/ml, respectively, measured by NMR as previously reported.54 

A preliminary PAMPA permeability assay55 was also performed, with compound 19 resulting to be 

in the range of medium/high permeability, while compound 7 resulted to fall in the “low 

permeability” class. Finally, metabolic stability was evaluated in HLM after 30 minutes incubation. 

Compound 7 was metabolically stable in HLM, while compound 19 underwent  through  aromatic 
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hydroxylation at the benzenesulfonamide moiety, to give the monohydroxylated metabolite. After 

30 minutes, substrate was at 50% abundance. The metabolic stability of compound 1 was also 

measured and the aliphatic hydroxylation at the cyclopentane ring was observed,  with compound 1 

reduced to 37%, highlighting the better stability of compounds 19 and 7 with respect to the hit 

compound.  Although the reported ADME profile is still very preliminary, it suggests that both 

compounds are too lipophilic, and further lead optimization will be aimed at finding the best 

compromise between lipophilicity (which is important for activity) and solubility. 

PHARMACOPHORE GENERATION 

Our recent studies, aimed at discovering new small5molecule antiviral compounds targeting the PA5 

PB1 subunit interaction of the viral RdRP, led to the identification of five compounds that possess 

very different chemical structures but similar inhibitory activity against the replication of FluA and 

FluB. Compounds 7 and 19 were found to be the most potent RdRP inhibitors. Three other 

compounds were previously reported by some of us to be active against the influenza polymerase 

complex.13,16 The chemical structures of the five compounds are reported in Figure 3. When a 

number of active compounds with different scaffolds are identified, the most natural step to advance 

their improvement is to attempt to generate a possible pharmacophore. A pharmacophoric model 

was therefore generated by alignment of the five compounds using the FLAPpharm algorithm.56 

The pharmacophoric model is reported in Figure 4A, while the structures of the five compounds 

aligned to the pharmacophore are reported in Figure 4B5F. As shown in Figure 4A, a 

pharmacophore generated by FLAP is composed of three entities: a shape (the wireframe surface), a 

number of common atomic features indicating pharmacophoric points (the spheres), and a number 

of regions (the solid surfaces) indicating the most conserved GRID MIFs. The latter point is very 

important since GRID MIFs provide information on the possible interaction of a ligand with a 

target. Conserved GRID MIFs among aligned active compounds are therefore likely to be related to 
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the activity. In Figure 4, the green MIFs are related to hydrophobic interactions, while blue and red 

MIFs refer to H5bond donor and H5bond acceptor interactions, respectively. The same color5code is 

also used for the pharmacophoric points. 

According to the pharmacophore GRID MIFs, extended and quite planar hydrophobic moieties 

represent a common feature among the RdRP inhibitors (green solid surface in Figure 4A). In 

addition, one H5bond donor and one H5bond acceptor MIF emerged upon alignment of the five 

compounds (blue and red solid surfaces in Figure 4A, respectively). By observing the 

correspondence of the GRID MIFs, the pharmacophoric points (spheres) and the chemical 

structures of the aligned compounds, it becomes clear that in all compounds a carbonyl moiety is 

responsible for the H5bond donor MIF, acting as a H5bond acceptor group, while the red MIFs are 

generated by a NH group acting as H5bond donor. In this case, the nature of the NH moiety seems 

to be variable, ranging from amines, anilines, amides, and sulfonamides. To further validate our 

pharmacophoric hypothesis, other five recently published RdRP inhibitors targeting the PA5PB1 

complex were selected and aligned on the pharmacophore. Among them, three inhibitors were 

benzofurazan derivatives (compounds �� and ��� in ref. 17 and compound �� in ref. 15), and the 

remaining two compounds were 35cyano54,65diphenyl pyiridine derivatives (compounds �� and �� 

in ref. 18). Compounds ��, �� and �� were able to fit all the pharmacophoric regions previously 

described, while compounds ��� and �� only lack of the H5bond donor group to match the GRID 

acceptor field (see Figure S2 in the Supporting Material). This result, in addition to the variability of 

the NH groups previously discussed, suggests that the H5bond acceptor GRID MIF region could be 

less critical for binding. 

CONCLUSIONS 

In recent years, the viral RdRP has proved to be an attractive target in the design of small molecules 

capable of inhibiting influenza virus replication. A few RdRP inhibitors have been published so far 
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compound 7, a 35fold more potent PA5PB1 inhibitor was obtained with respect to compound 1, 

inhibiting the physical interaction between the two viral subunits with an IC50 value of 7.5 ± 0.7 

SM. This finding suggests that the synthesis of new derivatives having a more linear shape might be 

helpful to improve the inhibitory effect. As a result of the scaffold hopping approach, we identified 

the sulphonamide compound 10, which was acquired and assayed. Despite the significantly 

different polyamido scaffold, compound 10 produced a good RdRP inhibitory effect targeting the 

PA5PB1 complex. The synthesis of the slightly different compound 19 led to an inhibitory activity 

comparable to that of compound 7. Both compounds 7 and 19 were found to be not cytotoxic in the 

two cell lines used for testing and they were also able to inhibit a number of FluA and FluB strains. 

The discovery of two very different scaffolds with similar activities prompted us to generate a 

pharmacophoric model by also taking into consideration three other recently published RdRP 

inhibitors that have been proven to be active against FluA and FluB. Based on this model, all the 

selected active compounds were shown to possess an extended and quite planar hydrophobic 

moiety. In addition, the alignment of the molecular structures revealed that they have a common 

carbonyl group which is able to act as a H5bond acceptor, and in the opposite site an NH group of 

varying chemical nature which is able to act as a H5bond donating group. The proposed 
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and their antiviral activity is sometimes associated to cytotoxic effects.15,17 The aim of this study 

was to further dissect the chemical space of the RdRP inhibitors targeting the PA5PB1 complex. 

The previously published compound 1 was selected as a hit compound for further optimization by 

two complementary approaches: 1) the design and the synthesis of derivatives of compound 1, to 

investigate the structural features that might be responsible for PA5PB1 complex disruption; 2) a 

scaffold hopping approach to identify novel scaffolds for PA5PB1 complex inhibitors. In the 

modulation of the chemical structure of compound 1, the thiophene535carboxamide moiety, which 

emerged as a favorable scaffold in the design of RdRP inhibitors,16 was always preserved. 

However, when the pyrazolo[1,55a]pyrimidine was replaced with a triazolopyrimidine to give 
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pharmacophore could be useful to design novel RdRP inhibitors, focusing the attention on similar 

interaction capabilities rather than on similar scaffolds. 
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EXPERIMENTAL SECTION 

Computational methods. The search for novel scaffolds for RdRP inhibitors and pharmacophore 

generation were performed using the FLAP algorithm.41,56 The FLAP software is developed and 

licensed by Molecular Discovery Ltd. (www.moldiscovery.com). In the scaffold hopping study, a 

database containing the best 293 hits previously selected as possible PA5PB1 interaction inhibitors13 

was prepared. All protomeric forms in at least 20% abundance at pH 7.4 were generated for each 

compound using the MoKa algorithm.57,58 A number of 50 conformers for each protomer was also 

generated to mimic flexibility. Then a ligand5based virtual screening was performed using 

compound 1 as a template. Thus, in this study FLAP algorithm was not used to perform �	����� 

virtual screening, but only to re5score the best hits found by a structure5based approach13 for their 

similarity to our hit compound. The 293 candidates were ranked by the GloB5Sum descriptor, and 

four compounds having a similarity score >1.5 and different scaffolds were selected. Their 

availability, cost, and druggability were also taken into consideration. Chemical structures for the 

293 compounds and their FLAP similarity scores are available as supporting material. During 

pharmacophore generation, the FLAPpharm algorithm56 in the FLAP package was used. The five 

selected compounds 7, 19, 23, 24 and 25 modeled generating a number of 30 conformers were 

automatically aligned by the software. The same procedure was used to align the five RdRP 

inhibitors used to validate the model. 

Purities of the acquired compounds.� Compounds 9512 were purchased from Ambinter 

(www.ambinter.com, codes: Amb1938148, Amb10767907, Amb6474013, Amb1646026, 

respectively). Purity of the acquired compounds was determined by UHPLC on Agilent 

Technologies 6540 UHD Accurate Mass Q5TOF LC/MS, HPLC 1290 Infinity with DAD detector 
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and evaluated to be higher than 95%. UHPLC conditions to assess the purity of acquired or final 

compounds were as follows: column, Phenomenex AERIS Peptide 1.2 mm × 1000 mm (1.7 Sm); 

flow rate, 0.8 mL/min; acquisition time, 20 min; DAD 1905650 nm; oven temperature, 45 °C; 

gradient of acetonitrile in water containing 0.1% of formic acid (05100% in  20  minutes). 

Chemistry 

Nuclear magnetic resonance (NMR) spectra were recorded on Bruker Advance II 400 MHz 

spectrometer at room temperature with tetramethylsilane and trichlorofluoromethane as internal 

standard. Chemical shifts (δ) are reported in parts per million (ppm), and peak multiplicity are 

reported as s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), hept (heptet), m (multiplet), or 

br s (broad singlet). HRMS spectra were registered on Agilent Technologies 6540 UHD Accurate 

Mass Q5TOF LC/MS, HPLC 1290 Infinity. Purities of the final compounds were determined by 

UHPLC as described above for acquired compounds and were ≥98% pure. Methyl 55(�5tolyl)575

(trifluoromethyl)pyrazolo[1,55a]pyrimidine535carboxylate, 55(45methoxyphenyl)575

(trifluoromethyl)pyrazolo[1,55a]pyrimidine535carboxylic acid, 55phenyl575(trifluoromethyl)5

[1,2,4]triazolo[1,55a]pyrimidine525carboxylic acid were acquired from Specs and used without 

further purification. All other commercial products were acquired from Sigma Aldrich; aniline and 

2,55dimethylaniline were freshly distilled before use. 

55(�5Tolyl)575(trifluoromethyl)pyrazolo[1,55a]pyrimidine535carboxylic acid was obtained by 

ordinary hydrolysis of the corresponding methyl ester with potassium hydroxide in methanol. 

25(�	�5Butylamino)5 and 25(phenylamino)benzoic acid 16a�b were prepared by heating anthranilic 

anhydride (20.0 mmol) with �	�5butylamine and aniline respectively, in DMF at 100 °C for 14 

h.45,46 35Bromo545methylbenzoyl chloride was obtained by refluxing the corresponding acid in

SOCl2 for 4 h. After evaporation of the reagent excess at reduced pressure, the crude product was 

used without further purification. �5(35aminophenyl)benzamide was prepared by reacting benzoyl 
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chloride with 
	�
5butyl 35aminophenylcarbamate followed by amino group deprotection upon 

heating at 140 °C. Tetrahydrofuran was distilled from sodium wire after the characteristic blue color 

of �����
� generated sodium biphenyl ketyl (benzophenone5sodium "radical anion") had been found 
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to persist. Air and moisture sensitive compounds were stored in Schlenk tubes or Schlenk burettes. 

They were handled under an atmosphere of 99.995% pure nitrogen, using appropriate glassware. 

2�Amino�5,6�dihydro�4	�cyclopenta[b]thiophene�3�carboxamide (13a) .43 Cyclopentanone (8.57

g, 0.11 mol) and morpholine (9.74 g, 0.11 mol) were added dropwise to a stirred suspension of 

sulfur (3.27 g, 0.10 mol, 1.0 eq) and cyanoacetamide (8.60 g, 0.10 mol) in ethanol (100 mL) and the 

mixture was stirred at 60 °C overnight. After cooling, the solid was filtered off, washed with MeOH 

and dried under vacuum to afford a pale yellow solid (14% yield): mp 1705172 °C (lit.59 mp 1695 

171 °C); 1H NMR (DMSO5d�) δ 7.15 (s, 2H), 6.47 (s, 2H), 2.78 (t, � = 7.2 Hz, 2H), 2.63 (t, � = 7.2 

Hz, 2H), 2.26 (p, � = 7.1 Hz, 2H); 13C NMR (DMSO5d�) δ 168.2, 166.1, 140.4, 119.8, 103.5, 30.4, 

28.8, 27.6; HRMS: calcd for C8H10N2OS 183.0592 (M+H+), found 183.0590 (M+H+).

2�Amino�4,5,6,7�tetrahydro�1�benzothiophene�3�carboxamide (13b) .
43 The title compound was

synthesized according to the procedure used for 13a from cyclohexanone, to give a pale pink solid 

in 81% yield; mp 1875190 °C (lit.60 mp 190 °C); 1H NMR (CDCl3) δ 6.16 (s, 2H), 5.52 (s, 2H), 2.69 

– 2.60 (m, 2H), 2.59 – 2.42 (m, 2H), 1.92 – 1.68 (m, 4H); 13C NMR (CDCl3) δ 168.4, 160.6, 129.0, 

118.5, 107.4, 27.0, 24.4, 22.8 (2C); HRMS: calcd for C9H12N2OS 197.0749 (M+H+), found 

197.0749 (M+H+).

Ethyl 7�(difluoromethyl) �5�phenylpyrazolo[1,5�a]pyrimidine�3�carboxylate (14a) .
44 A mixture 

of 4,45difluoro515phenyl51,35butanedione (1.50 g, 7.6 mmol) and ethyl 35amino515pyrazole545 

carboxylate (1.17 g, 7.6 mmol) was refluxed in glacial acetic acid (3 mL) overnight. After cooling 

to room temperature, the resulting precipitate was filtered off, washed with water and dried. 

Trituration with petroleum ether gave a white solid (1.71 g, 71% yield) which was characterized as 

follows: mp 130–132 °C (lit.44 mp 137 °C); 1H NMR (CDCl3) δ 8.60 (s, 1H), 8.34 – 8.19 (m, 2H), 
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7.74 (s, 1H), 7.63 – 7.54 (m, 3H), 7.40 (t, � = 53 Hz, 1H), 4.45 (q, � = 7.1 Hz, 2H), 1.47 (t, � = 7.2 

Hz, 3H); 13C NMR (CDCl3) δ 162.3, 159.2, 148.3, 148.0, 139.7 (t, � = 28 Hz), 135.8, 131.8, 129.2 

(2C), 127.8 (2C), 108.0 (t, � = 242 Hz), 104.0, 103.3 (t, � = 4.9 Hz), 60.5, 14.5; 19F NMR (CDCl3) δ 

–125.00 (d, � = 54 Hz, 2F); HRMS: calcd for C16H13F2N3O2 318.1054 (M+H+), found 318.1055 

(M+H+).

Ethyl 7�(trifluoromethyl) �5�phenylpyrazolo[1,5�a]pyrimidine�3�carboxylate (14b) .
44 The title 

compound was synthesized according to the procedure used for ester 14a, but starting from 4,4,45 

trifluoro515phenyl51,35butanedione instead of 4,45difluoro515phenyl51,35butanedione, to give 

compound 14b in 77% yield. Yellow solid, mp 110–112 °C (lit.44 mp 1115113 °C); 1H NMR 

(CDCl3) δ 8.74 (s, 1H), 8.42 – 8.37 (m, 2H), 8.31 (s, 1H), 7.69 – 7.55 (m, 3H), 4.35 (q, � = 7.0 Hz, 

2H), 1.38 (t, � = 7.0 Hz, 3H); 13C NMR (CDCl3) δ 161.8, 158.8, 148.4, 148.3, 135.6, 134.3 (q, � = 

37 Hz), 132.4, 129.6 (2C), 128.3 (2C), 119.2 (q, � = 275 Hz), 106.7 (q, � = 3.4 Hz), 103.7, 60.5, 

14.4; 19F NMR (CDCl3) δ –68.64 (3F); HRMS: calcd for C16H12F3N3O2 336.0960 (M+H+), found 

336.0960 (M+H+).

7�(Difluoromethyl) �5�phenylpyrazolo[1,5�a]pyrimidine�3�carboxylic acid (15a) .
44 Ester 14a 

(0.50 g, 1.6 mmol) was added to a KOH (0.50 g) dissolved in ethanol/water (10:1, 16.5 mL) and the 

resulting mixture was refluxed 3 h. Upon cooling at room temperature, 5 N hydrochloric acid was 

added till complete precipitation of the product, which was filtered off and washed with water. 

After drying under vacuum, a white solid in 78% yield was obtained; mp 225–230 °C; 1H NMR 

(DMSO5�6) δ 12.61 (s, 1H), 8.68 (s, 1H), 8.49 – 8.37 (m, 2H), 8.12 (s, 1H), 7.66 (t, � = 53 Hz, 1H), 

7.66 – 7.56 (m, 3H); 13C NMR (DMSO5�6) δ 168.2, 163.5, 152.5, 145.0 (t, � = 27 Hz), 140.8, 136.9 

(2C), 134.3 (2C), 133.1, 133.0 (t, � = 9.9 Hz), 109.2 (t, � = 254 Hz), 109.1, 108.8; 19F NMR 

(DMSO5�6) δ –67.50 (2F); HRMS: calcd for C14H9F2N3O2 290.0741 (M+H+), found 290.0744 

(M+H+).
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7�(Trifluoromethyl) �5�phenylpyrazolo[1,5�a]pyrimidine�3�carboxylic acid (15b) .
44 The title 

compound was prepared following the same procedure as for acid 17a but using ester 14b. A white 

solid in 55% yield was obtained; mp 252–253 °C (lit.44 mp 2505251 °C); 1H NMR (DMSO5�6) δ 

12.65 (s, 1H), 8.74 (s, 1H), 8.45 – 8.39 (m, 2H), 8.35 (s, 1H), 7.68 – 7.53 (m, 3H); 13C NMR 

(DMSO5�6) δ 163.3, 158.6, 148.9 (2C), 148.3 (2C), 135.7, 134.3 (q, � = 37 Hz), 132.4, 129.6, 

128.4, 120.0 (q, � = 279 Hz), 106.7 (q, � = 3.3 Hz), 104.5; 19F NMR (DMSO5�6) δ –67.50 (3F); 

HRMS: calcd for C14H8F3N3O2 308.0647 (M+H+), found 308.0649 (M+H+).

General procedure to prepare amides 1�8. 

Oxalyl chloride (1.5 mmol) was added to a solution of the suitable carboxylic acid 15a�b (1.0 

mmol) and DMF (0.1 mmol) in dry DCM (3 mL) and the mixture was kept 2 h at 25 °C while 

stirring. After the solvent was evaporated at reduced pressure, the residue was dissolved in dry 

dichloromethane (4 mL), the appropriate 25amino5thiophene535carboxamide (1.0 mmol) and 

pyridine (2.0 mmol) were added and the mixture was made to react at room temperature for 16 h. 

The solvent was evaporated at reduced pressure and the residue was washed in sequence with 

diethyl ether (2 × 5 mL), 2 M sodium hydroxide, 2 M hydrochloric acid, and water. Finally, the 

residue was dried under vacuum and chromatographed on silica gel (eluent, 9:1 

dichloromethane/methanol mixture). 

��(3�Carbamoyl�5,6�dihydro�4	�cyclopenta[b]thiophen�2�yl) �7�(difluoromethyl) �5�

phenylpyrazolo[1,5�a]pyrimidine�3�carboxamide (1) . Yield, 69%. Yellow crystals, mp > 270 °C; 

1H NMR (DMSO5�6) δ 12.82 (s, 1H), 8.95 – 8.67 (m, 3H), 8.17 (s, 1H), 7.67 (t, � = 53 Hz, 1H), 

7.87 – 7.42 (m, 3H), 7.54 (bs, 1H), 6.77 (s, 1H), 2.97 (t, � = 7.2 Hz, 2H), 2.84 (t, � = 7.4 Hz, 2H), 

2.39 (p, � = 7.5 Hz, 2H); 13C NMR (DMSO5�6) δ 167.2, 159.6, 158.2, 148.3, 148.2, 145.8, 140.4 (t, 

� = 27 Hz), 139.6, 135.4, 132.8, 132.3, 129.6 (2C), 129.4 (2C), 112.3, 109.6 (t, � = 253 Hz), 105.2, 

104.7 (t, � = 5.0 Hz), 29.7, 28.8, 28.2; 19F NMR (DMSO5�6) δ –124.47 (d, � = 52 Hz, 2F); HRMS: 

calcd for C22H17F2N5O2S 454.1149 (M+H+), found 454.11496 (M+H+).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



Page 20 of 46

��(3�Carbamoyl�5,6�dihydro�4	�cyclopenta[b]thiophen�2�yl)�5�phenyl�7 

(trifluoromethyl)pyrazolo[1,5�a]pyrimidine�3�carboxamide (2). Yield, 49%. Yellow crystals, 

mp >270 °C; 1H NMR (DMSO5��) δ 12.84 (s, 1H), 9.00 – 8.78 (m, 3H), 8.38 (s, 1H), 7.96 – 7.40 

(m, 4H), 6.79 (bs, 1H), 2.97 (t, � = 7.0 Hz, 2H), 2.83 (t, � = 7.1 Hz, 2H), 2.44 – 2.27 (m, 2H); 13C 

NMR (DMSO5��) δ 167.4, 159.4, 158.0, 148.5, 148.3, 146.4, 139.0, 135.1, 134.6 (q, � = 37 Hz), 

132.8, 132.5, 129.7 (2C), 129.6 (2C), 119.8 (q, � = 273 Hz), 112.6, 106.9, 105.7, 29.6, 28.2, 28.0; 

19F NMR (DMSO5��) δ –67.50 (3F); HRMS: calcd for C22H16F3N5O2S 472.1055 (M+H+), found 

472.1051 (M+H+).

2�({[5�Phenyl�7�(difluoromethyl)pyrazolo[1,5�a]pyrimidin�3�yl]carbonyl}amino)�4,5,6,7�

tetrahydrobenzo[b]thiophene�3�carboxamide (3). Yield, 59% Yellow crystals, mp >270 °C; 1H 

NMR (DMSO5��) δ 12.37 (s, 1H), 8.84 – 8.77 (m, 3H), 8.18 (s, 1H), 7.68 (t, � = 52 Hz, 1H), 7.74 – 

7.58 (m, 3H), 7.54 (s, 1H), 7.04 (s, 1H), 3.02 – 2.70 (m, 2H), 2.70 – 2.61 (m, 2H), 1.94 – 1.64 (m, 

4H); 13C NMR (DMSO5��) δ 167.4, 159.5, 158.1, 148.2, 145.8, 142.0, 140.5 (t, � = 27 Hz), 135.4, 

132.3, 129.7 (2C), 129.4 (2C), 129.3, 126.9, 117.6, 108.9 (t, � = 257 Hz), 105.3 , 104.7 (t, � = 4.9 

Hz), 25.6, 24.2, 23.0, 22.9; 19F NMR (DMSO5��) δ –124.95 (d, � = 52 Hz, 2F); HRMS: calcd for 

C23H19F2N5O2S 468.1306 (M+H+), found 468.1309 (M+H+). 

2�({[5�Phenyl�7�(trifluoromethyl)pyrazolo[1,5�a]pyrimidin�3�yl]carbonyl}amino)�4,5,6,7�

tetrahydrobenzo[b]thiophene�3�carboxamide (4). Yield, 59%. Orange crystals, mp >270 °C; 1H 

NMR (DMSO5��) δ 12.42 (s, 1H), 8.85 (s, 3H), 8.40 (s, 1H), 7.67 (m, 4H), 7.08 (bs, 1H), 2.78 (bs, 

2H), 2.68 (bs, 2H), 1.77 (s, 4H). 13C NMR (DMSO5��) δ 167.4, 159.4, 158.0, 148.5, 146.4, 142.0, 

135.1, 134.6 (q, � = 37 Hz), 132.5, 129.7 (2C), 129.6 (2C), 129.4, 127.0, 119.8 (q, � = 273 Hz), 

117.6, 106.9, 105.7, 25.7, 24.2, 23.0, 22.9; 19F NMR (DMSO5��) δ –67.48 (s, 3F). HRMS: calcd for 

C23H18F3N5O2S 486.1206 (M+H+), found 486.1215 (M+H+).

2�({[5�(��Tolyl)�7�(trifluoromethyl)pyrazolo[1,5�a]pyrimidin�3�yl]carbonyl}amino)�4,5,6,7�

tetrahydrobenzo[b]thiophene�3�carboxamide (5). Yield, 47%. Yellow crystals, mp >270 °C; 1H 
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NMR (DMSO5��) δ 12.36 (s, 1H), 8.81 (s, 1H), 8.75 (d, � = 8.2 Hz, 2H), 8.36 (s, 1H), 7.59 (bs, 1H), 

7.51 (d, � = 8.2 Hz, 2H), 7.07 (bs, 1H), 2.72 (bs, 2H), 2.67 (bs, 2H), 2.42 (s, 3H), 1.73 (bs, 4H); 13C 

NMR (DMSO5��) δ 167.4, 159.3, 158.0, 148.4, 146.4, 142.9, 142.0, 134.5 (q, � = 38 Hz), 132.4, 

130.3 (2C), 129.6 (2C), 129.3, 126.9, 119.8 (q, � = 275 Hz), 117.6, 106.7, 105.5, 25.6, 24.2, 23.1, 

23.0, 21.6; 19F NMR (DMSO5��) δ –67.46 (s, 3F). HRMS: calcd for C24H20F3N5O2S 500.1363 

(M+H+), found 500.1371 (M+H+). 

2�({[5�(4�Methoxyphenyl) �7�(trifluoromethyl) pyrazolo�[1,5�a]pyrimidin�3�

yl]carbonyl}amino) �4,5,6,7�tetrahydrobenzo[b]thiophene�3�carboxamide (6) . Yield, 85%. 

Orange crystals, mp >270 °C; 1H NMR (DMSO5��) δ 12.37 (s, 1H), 8.58 (d, � = 9.0 Hz, 2H), 8.79 

(s, 1H), 8.32 (s, 1H), 7.62 (bs, 1H), 7.25 (d, � = 9.0 Hz, 2H), 7.07 (bs, 1H), 3.92 (s, 3H), 2.78 (bs, 

2H), 2.68 (bs, 2H), 1.78 (bs, 4H). 13C NMR (DMSO5��) δ 167.4, 163.3, 159.0, 158.0, 148.3, 146.4, 

142.1, 134.3 (q, � = 37 Hz), 131.7 (2C), 129.3, 127.6, 126.9, 119.8 (q, � = 369 Hz), 117.5, 115.1 

(2C), 106.4, 105.2, 56.1, 25.6, 24.2, 23.1, 23.0; 19F NMR (DMSO5��) δ –67.42 (s, 3F); HRMS: 

calcd for C24H20F3N5O3S 516.1312 (M+H+), found 516.1318 (M+H+). 

2�({[5�Phenyl�7�(trifluoromethyl) �[1,2,4]triazolo[1,5�a]pyrimidin�2�yl]carbonyl}amino) �

4,5,6,7�tetrahydrobenzo[b]thiophene�3�carboxamide (7) . Yield, 75%. Yellow crystals, mp >270 

°C; 1H NMR (DMSO5��) δ 13.3 (s, 1H), 8.6 (s, 1H), 8.5 – 8.4 (m, 2H), 7.7 (m, 4H), 7.0 (s, 1H), 2.7 

(dt, � = 32 and 6.0 Hz, 4H), 2.0 – 1.5 (m, 4H); 13C NMR (DMSO5��) δ 167.7, 163.1, 158.9, 156.3, 

155.1, 141.7, 135.3, 135.3 (q, � = 38 Hz), 133.1, 129.9, 129.8 (2C), 128.8 (2C), 128.0, 119.5 (q, � = 

250 Hz), 118.0, 109.1, 25.7, 24.4, 22.9, 22.8; 19F NMR (DMSO5��): δ –67.48 (s, 3F). HRMS: calcd 

for C22H17F3N6O2S 487.1164 (M+H+), found 487.1161 (M+H+).

2�(3�Pyridinecarbonylamino) �4,5,6,7�tetrahydrobenzo[b]thiophene�3�carboxamide (8) : Yield, 

71%. Yellow crystals, mp 233 – 235 °C; 1H NMR (DMSO5��) δ 13.06 (s, 1H), 9.05 (s, 1H), 8.81 (d, 

� = 3.9 Hz, 1H), 8.22 (d, � = 8.0 Hz, 1H), 7.75 (bs, 1H), 7.63 (dd, � = 7.5 and 5.0 Hz, 1H), 7.15 (bs, 

1H), 2.74 (bs, 2H), 2.66 (bs, 2H), 1.75 (bs, 4H); 13C NMR (DMSO5��) δ 168.2, 161.5, 153.4, 148.6, 
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142.9, 135.4, 129.8, 128.7, 127.3, 124.6, 117.2, 25.6, 24.4, 22.9, 22.8; HRMS: calcd for 

C15H15N3O2S 302.0963 (M+H+), found 302.0965 (M+H+).

2�(3�Bromobenzamido)���(���butyl)benzamide (17a). A mixture of 35bromobenzoyl chloride 

(700 mg, 3.1 mmol), 25amino5�5(�	�5butyl)benzamide (16a) (600 mg, 3.1 mmol) and triethylamine 

(0.56 mL, 4.0 mmol) in toluene (40 mL) was kept at 110 °C for 14 h. After solvent evaporation at 

reduced pressure, the crude product was crystallized from methanol to obtain a white solid (81% 

yield) exhibiting the following properties: mp 133 – 134 °C; 1H NMR (CDCl3) δ 12.16 (s, 1H), 8.71 

(d, � = 8.8 Hz, 1H), 8.19 (s, 1H), 7.90 (d, � = 8.3 Hz, 1H), 7.67 (d, � = 7.7 Hz, 1H), 7.59 – 7.45 (m, 

2H), 7.38 (t, � = 7.9 Hz, 1H), 7.08 (t, � = 7.6 Hz, 1H), 6.30 (bd, � = 8.5 Hz, 1H), 4.13 (hept, � = 6.9 

Hz, 1H), 1.61 (q, � = 7.2 Hz, 2H), 1.27 (d, � = 6.6 Hz, 3H), 0.99 (t, � = 7.4 Hz, 3H). 13C NMR 

(CDCl3) δ 168.6, 164.1, 139.4, 136.9, 134.8, 132.6, 131.1, 130.3, 126.6, 125.4, 123.2, 123.1, 121.6, 

121.0, 47.3, 29.7,  20.4, 10.5; HRMS calcd for C18H19
79BrN2O2 375.0703 (M+H+), found 375.0715 

(M+H+). 

2�(3�Bromo�4�methylbenzamido)���(���butyl)benzamide (17b). The title compound was 

prepared from 35bromo545methylbenzoyl chloride and 25amino5�5(�	�5butyl)benzamide (16a), 

analogously to 17a, to give a white solid in 80% yield; mp 136 – 137 °C. 1H NMR (CDCl3) δ 12.07 

(s, 1H), 8.72 (d, � = 8.2 Hz, 1H), 8.21 (d, � = 2.0 Hz, 1H), 7.81 (dd, � = 7.8 and 2.1 Hz, 1H), 7.57 – 

7.29 (m, 3H), 7.08 (t, � = 6.5 and 5.5 Hz, 1H), 6.15 (bd, � = 9.5 Hz, 1H), 4.13 (hept, � = 7.0 Hz, 

1H), 2.46 (d, � = 4.0 Hz, 3H), 1.60 (p, � = 7.3 Hz, 2H), 1.25 (d, � = 6.6 Hz, 3H), 0.98 (t, � = 7.4 Hz, 

3H). 13C NMR (CDCl3) δ 168.6, 164.1, 142.0, 139.6, 134.2, 132.6, 132.0, 131.0, 126.4, 125.6, 

125.4, 123.0, 121.6, 121.0, 47.3, 29.7, 23.1, 20.4, 10.5; HRMS calcd for C19H21
79BrN2O2 389.0859 

(M+H+), found 389.0854 (M+H+). 

2�(3�Bromo�4�methylbenzamido)���(phenyl)benzamide (17c). The title compound was prepared 

according to the procedure used for 17b, from 35bromo545methylbenzoyl chloride and 25amino5�5

(phenyl)benzamide (16b), to give a pale pink solid product in 88% yield; mp 215 °C (dec.); 1H 
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NMR (DMSO5��) δ 11.55 (s, 1H), 10.53 (s, 1H), 8.33 (d, � = 8.5 Hz, 1H), 8.08 (s, 1H), 7.90 (d, � = 

7.9, 1H), 7.79 (d, � = 7.9 Hz, 1H), 7.72 (d, � = 8.5 Hz, 2H), 7.61 (t, � = 7.9 Hz, 1H), 7.55 (d, � = 7.8 

Hz, 1H), 7.44 – 7.27 (m, 3H), 7.20 – 7.05 (m, 1H), 2.41 (s, 3H); 13C NMR (DMSO5��) δ 167.7, 

163.6, 142.1, 139.1, 138.6, 134.5, 132.5, 131.9, 131.4, 129.5, 129.1 (2C), 126.5, 124.9, 124.6, 

124.4, 124.1, 122.3, 121.4 (2C), 23.0; HRMS: calcd for C21H17
79BrN2O2 409.0546 (M+H+), found 

409.0550 (M+H+).

General procedure to prepare polyamido products 10, 18�22.
47,48 

Butyllithium (20.3 mL, 1.48 M in hexanes, 30 mmol) was added drop5wise at – 75 °C to a solution 

of the appropriate bromo derivative (17a�c) (10 mmol) in tetrahydrofuran (100 mL) and the mixture 

was made to react for 10 min, under stirring, before the bath temperature was allowed to rise to – 60 

°C. Sulfur dioxide was bubbled into the mixture until its pH value reached 657. The cold bath was 

removed and the temperature was allowed to rise to 25 °C. Hexane (20 mL) was added and the 

formed white precipitate was filtered, washed with hexane and dried at 50 °C. The dry solid was 

suspended in dichloromethane (20 mL), the mixture was cooled at 0 °C and �5chlorosuccinimide 

(1.9 g, 14 mmol, 1.4 eq) was added in portions. The mixture was made to react for 15 min at 0 °C, 

while stirring, and then it was kept at room temperature for further 25 min. The resulting suspension 

was filtered off on celite, the solvent was evaporated at reduced pressure and the solid residue was 

solved in acetone (20 mL). Triethylamine (1.4 mL, 10 mmol) and the suitable amine (10 mmol) 

were added and the mixture was kept at room temperature for 12 h while stirring. After solvent 

evaporation at reduced pressure, chromatography of the residue on silica gel allowed to collect the 

pure product. 

3�[2�(���Butylcarbamoyl)phenylcarbamoyl]�2�methyl���(2,5�

dimethylphenyl)benzenesulfonamide (10). Yield, 19%. White rhombic crystals, mp 186 – 188 °C: 

1H NMR (DMSO5��) δ 12.61 (s, 1H), 9.71 (s, 1H), 8.70 – 8.39 (m, 2H), 8.27 (s, 1H), 8.01 (d, � = 

7.5, 1H), 7.85 – 7.70 (m, 1H), 7.65 (d, � = 7.9 Hz, 1H), 7.55 (t, � = 7.9 Hz, 1H), 7.21 (t, � = 7.8 Hz, 
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1H), 6.95 (d, � = 7.7 Hz, 1H), 6.90 (d, � = 8.1 Hz, 1H), 6.75 (s, 1H), 3.97 (hept, � = 7.2 Hz, 1H), 

2.58 (s, 3H), 2.12 (s, 3H), 1.98 (s, 3H), 1.61– 1.53 (m, 2H), 1.13 (d, � = 6.2 Hz, 3H), 0.86 (t, � = 7.2 

Hz, 3H); 13C NMR (DMSO5��) δ 168.3, 163.4, 142.1, 139.2, 135.9, 135.8, 134.7, 132.5, 131.5, 

131.0, 130.6, 130.5, 130.2, 128.8, 127.8, 127.7, 126.2, 123.8, 121.8, 121.2, 47.0, 29.1, 23.1, 20.9, 

20.4, 17.6, 11.1; HRMS: calcd for C27H31N3O4S 494.2114 (M+H+), found 494.2111 (M+H+).

3�[2�(���Butylcarbamoyl)phenylcarbamoyl]���(2,5�dimethylphenyl)benzene�sulfonamide 

(18). Yield, 18%. White rhombic crystals, mp 183 – 184 °C. 1H NMR (DMSO5��) δ 12.61 (s, 1H), 

9.67 (s, 1H), 8.70 – 8.39 (m, 2H), 8.25 (s, 1H), 8.11 (dt, � = 7.5 and 1.6 Hz, 1H), 7.89 – 7.73 (m, 

3H), 7.56 (t, � = 7.9 Hz, 1H), 7.22 (t, � = 7.8 Hz, 1H), 6.99 (d, � = 7.7 Hz, 1H), 6.90 (d, � = 8.1 Hz, 

1H), 6.76 (d, � = 2.3 Hz, 1H), 3.97 (hept, � = 7.4 Hz, 1H), 2.13 (s, 3H), 1.91 (s, 3H), 1.61– 1.53 (m, 

2H), 1.13 (d, � = 6.6 Hz, 3H), 0.85 (t, � = 7.5 Hz, 3H); 13C NMR (DMSO5��) δ 168.3, 163.4, 142.1, 

139.2, 135.9, 135.8, 134.7, 132.5, 131.5, 131.0, 130.6, 130.5, 130.2, 128.8, 127.8, 127.7, 126.2, 

123.8, 121.8, 121.2, 47.0, 29.1, 20.9, 20.4, 17.6, 11.1; HRMS: calcd for C26H29N3O4S 480.5986 

(M+H+), found 480.1956 (M+H+).

3�[2�(���Butylcarbamoyl)phenylcarbamoyl]���phenylbenzenesulfonamide (19). Yield, 21%. 

White crystals, mp 207 – 208 °C. 1H NMR (DMSO5��) δ 12.64 (s, 1H), 10.46 (s, 1H), 8.62 – 8.48 

(m, 2H), 8.35 (t, � = 1.8 Hz, 1H), 8.08 (d, � = 8.0 Hz, 1H), 8.00 – 7.90 (m, 1H), 7.85 (dd, � = 7.9 

and 1.5 Hz, 1H), 7.77 (t, � = 7.8 Hz, 1H), 7.56 (ddd, � = 8.6, 7.4 and 1.5 Hz, 1H), 7.26 – 7.16 (m, 

3H), 7.16 – 7.07 (m, 2H), 7.01 (tt, � = 7.1 and 1.2 Hz, 1H), 3.97 (hept, � = 6.8 Hz, 1H), 1.60 – 1.45 

(m, 2H), 1.13 (d, � = 6.6 Hz, 3H), 0.85 (t, � = 7.4 Hz, 3H); 13C NMR (DMSO5��) δ 168.3, 163.2, 

140.9, 139.2, 137.8, 135.9, 132.5, 131.0, 130.7, 130.3, 129.7 (2C), 128.8, 126.3, 124.8, 123.8, 

121.7, 121.1, 120.7 (2C), 47.1, 29.1, 20.4, 11.2; HRMS: calcd for C24H25N3O4S 452.5454 (M+H+), 

found 452.1651 (M+H+). 

5�[2�(���Butylcarbamoyl)phenylcarbamoyl]�2�methyl���[(3�benzamido)�

phenyl]benzenesulfonamide (20). Yield, 22%. White crystalline, mp 155 – 157 °C. 1H NMR 
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Yield, 26%. White solid, mp 202 °C (dec.). 1H NMR (DMSO5��) δ 12.61 (s, 1H), 9.88 (s, 1H), 9.28 

(s, 1H), 8.59 – 8.49 (m, 2H), 8.28 (s, 1H), 8.07 (d, � = 8.0 Hz, 1H), 7.89 – 7.70 (m, 3H), 7.56 (t, � = 

7.6 Hz, 1H), 7.22 (t, � = 7.6 Hz, 1H), 6.85 (d, � = 8.7 Hz, 2H), 6.59 (d, � = 8.7 Hz, 2H), 3.98 (hept, 

� = 6.5 Hz, 1H), 1.59 – 1.44 (m, 2H), 1.14 (d, � = 6.7 Hz, 3H), 0.86 (t, � = 7.4 Hz, 3H). 13C NMR 

(DMSO5��) δ 167.8, 162.9, 155.0, 140.5, 138.8, 135.3, 132.1, 130.1, 130.0, 129.9, 128.3, 128.0, 

125.9, 124.3 (2C), 123.2, 121.2, 120.6, 115.6 (2C), 46.6, 28.6, 19.9, 10.7; HRMS: calcd for 

C24H25N3O5S 468.5986 (M+H+), found 468.1599 (M+H+). 

(DMSO5��) δ 12.57 (s, 1H), 10.63 (s, 1H), 10.20 (s, 1H), 8.66 – 8.48 (m, 3H), 7.97 (dd, � = 7.9 and 

1.9 Hz, 1H), 7.89 – 7.80 (m, 3H), 7.69 (t, � = 2.0 Hz, 1H), 7.66 – 7.50 (m, 3H), 7.47 – 7.40 (m, 2H), 

7.40 – 7.35 (m, 1H), 7.26 – 7.13 (m, 2H), 6.87 (ddd, � = 8.2, 2.1 and 1.0 Hz, 1H), 3.96 (hept, � = 7.2 

Hz, 1H), 2.68 (s, 3H), 1.62 – 1.41 (m, 2H), 1.12 (d, � = 6.6 Hz, 3H), 0.85 (t, � = 7.4 Hz, 3H). 13C 

NMR (DMSO5��) δ 168.4, 166.0, 163.5, 141.3, 140.4, 139.4, 138.8, 138.1, 135.2, 133.8, 133.2, 

132.5, 132.0, 131.1, 129.7, 129.4, 128.8, 128.7 (2C), 128.1 (2C), 123.5, 121.7, 121.0, 116.1, 114.6, 

111.5, 47.1, 29.1, 20.4, 20.3, 11.1; HRMS: calcd for C32H32N4O5S 585.6927 (M+H+), found 

585.2173 (M+H+). 

3�(��(2,5�Dimethylphenyl)sulfamoyl)�4�methyl���(2�(phenylcarbamoyl)phenyl)benzamide 

(21). Yield, 24%. White rhombic crystals, mp 235 °C (dec.); 1H NMR (DMSO5��) δ 11.70 (s, 1H), 

10.53 (s, 1H), 9.70 (s, 1H), 8.35 (dd, � = 8.3 and 1.3 Hz, 1H), 8.29 (d, � = 1.9 Hz, 1H), 8.01 (dd, � = 

8.0 and 2.0 Hz, 1H), 7.94 – 7.88 (m, 1H), 7.72 (d, � = 7.6 Hz, 2H), 7.61 (dd, � = 7.8 and 6.0 Hz, 

2H), 7.36 (t, � = 7.9 Hz, 2H), 7.31 (t, � = 7.5 Hz, 1H), 7.14 (t, � = 7.3 Hz, 1H), 7.00 (d, � = 7.7 Hz, 

1H), 6.89 (d, � = 7.9 Hz, 1H), 6.75 (s, 1H), 2.57 (s, 3H), 2.09 (s, 3H), 1.97 (s, 3H); 13C NMR 

(DMSO5��) δ 167.7, 163.6, 141.4, 140.3, 139.0, 138.6, 136.0, 134.6, 133.7, 132.8, 132.6, 131.8, 

131.0, 130.8, 129.4, 129.1 (2C), 128.6, 128.0, 127.9, 124.7, 124.1, 124.0, 122.2, 121.5 (2C), 20.8, 

20.6, 17.6; HRMS: calcd for C29H27N3O4S 514.1801 (M+H+), found 514.1797 (M+H+). 
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Biology 

Compounds and peptide. Each test compound was dissolved in DMSO 100%. RBV (15D5 

ribofuranosyl51,2,45triazole535carboxamide) was obtained from Roche. The PB1(1–15)–Tat peptide 

was synthesized and purified by the Peptide Facility of CRIBI Biotechnology Center (University of 

Padua, Padua, Italy). This peptide contains the first 15 N5terminal amino acids of PB1 protein 

conjugated to the C5terminal sequence of HIV Tat protein (amino acids 47–59), which allows 

intracellular delivery. 

Plasmids. Plasmids pcDNA5PB1, pcDNA5PB2, pcDNA5PA, and pcDNA5NP, containing cDNA 

copies of the influenza A/PR/8/34 virus ���, ���, ��, and �� genes, respectively, were created as 

described elsewhere49 and kindly provided by P. Digard (Roslin Institute, University of Edinburgh, 

United Kingdom). Plasmid pPolI5Flu5ffLuc, which contains an influenza virus5based luciferase 

minireplicon vRNA under the control of the human RNA polymerase I promoter, was provided by 

L. Tiley (University of Cambridge, United Kingdom). Plasmid pRL5SV40 expressing the �	����� 

luciferase was purchased from Promega. 

Cells and Virus. Mardin5Darby Canine Kidney (MDCK) and Human Embryonic Kidney (HEK) 

293T cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM, Life Biotechnologies) 

supplemented with 10% (v/v) fetal bovine serum (FBS, Life Technologies) and antibiotics (100 

U/ml penicillin and 100 Gg/ml streptomycin, Life Technologies) at 37 °C in a humidified 

atmosphere with 5% CO2. Influenza A/PR/8/34 virus (H1N1, Cambridge lineage) was obtained 

from P. Digard (Roslin Institute, University of Edinburgh, United Kingdom). The FluA viruses 

A/Wisconsin/67/05 and A/Solomon Island/3/06, and the influenza B/Malaysia/2506/4 virus were 

provided by R. Cusinato (Clinical Microbiology and Virology Unit, Padua University Hospital, 

Padua, Italy). Influenza B/Lee/40 virus was obtained from W. S. Barclay (Imperial College, 

London, United Kingdom). The clinical isolate A/Parma/24/09 was kindly provided by I. Donatelli 
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(Istituto Superiore di Sanità, Rome, Italy); the local strain A/Padova/30/2011 of the pandemic FluA 

H1N1 virus was donated by C. Salata and A. Calistri (University of Padua, Padua, Italy). All 
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influenza viruses were propagated in MDCK cells. 

Protein expression and purification. ��� �����	���	��	�, purified GST and GST5PB1(1525) proteins 

were obtained as previously described.13,61,62 The 6His5PA(2395716) protein was expressed in �� ���� 

strain BL21(DE3)pLysS and purified as described.13,16

PA�PB1 interaction enzyme�linked immunosorbent assay (ELISA). To analyze the ability of 

each test compound to dissociate the PA5PB1 interaction ��� ��
��, a procedure already described13 

was followed. Briefly, microtiter plates (Nuova Aptca) were coated with 400 ng of purified 6His5 

PA(2395716) for 3 h at 37 °C and then blocked with 2% BSA (Sigma) in PBS for 1 h at 37 °C. After 

washing with PBS plus 0.3% Tween 20, 200 ng of GST5PB1(1525), or of GST alone as a control, in 

the absence or the presence of test compounds at various concentrations (10, 50, 100, 200 GM) were 

added and incubated O/N at room temperature. After washing, the interaction between 6His5PA(2395 

716) and GST5PB1(1525) was detected by an with anti5GST monoclonal antibody conjugated to 

horseradish peroxidase (HRP) (GenScript; diluted 1:3000 in PBS plus 2% FBS). Following washes 

with PBS plus 0.3% Tween 20, the chromogenic substrate 3,3’,5,5’ tetramethylbenzidine (TMB, 

KPL) was added and the consequent color development was measured at 450 nm by an ELISA plate 

reader (Tecan Sunrise™). Values obtained from the samples treated with only DMSO were used to 

set as 100% of PA5PB1 interaction. 

Cytotoxicity assays. Cytotoxicity of compounds was tested in MDCK and HEK 293T cells by the 

35(4,55dimethylthiazol525yl)52,55diphenyl tetrazolium bromide (MTT) method, as previously 

reported.12 Briefly, HEK 293T or MDCK cells (2×104 per well) were cultured in 965well plates at 

37 °C for 24 or 48 h, respectively, in DMEM containing serially diluted compounds (from 250 to 

1.9 GM). Then, MTT solution (5 mg/ml in PBS) was added to each well and plates were incubated 

for 4 h at 37 °C. Successively, a solubilization solution was added to lyse cells. After 3 h of further 
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incubation at 37 °C, absorbance was read at 620 nm using an ELISA plate reader (Tecan 

Sunrise™). 

Plaque reduction assays (PRA). The experiments were carried out as previously described.13 

Briefly, in a 125well plates format, a confluent monolayer of MDCK cells were infected with all 

FluA or FluB virus assessed at approximately 40 PFU/well in DMEM supplemented with 1 Gg/ml 

of TPCK5treated trypsin (Worthington Biochemical Corporation) and 0.14% BSA and incubated for 

1 h at 37 °C. The influenza viruses infection was performed in the presence of different 

concentrations of test compounds or solvent (DMSO) as a control. Serum5free medium containing 1 

Gg/ml of TPCK5treated trypsin, 0.14% BSA, 1.2% Avicel, and DMSO or test compounds at the 

indicated concentrations was added after 1 h of virus adsorption. After 48 h of incubation, cells 

were fixed with 4% formaldehyde and stained with 0.1% toluidine blue. Viral plaques were 

counted, and the mean plaque number in the DMSO5treated control was set at 100%. 

Minireplicon assays. HEK 293T cells were seeded at 105 per well on 245well plates. After 24 h, 

cells were transiently transfected, in the presence of the test compounds at different concentrations 

or DMSO, with pcDNA5PB1, pcDNA5PB2, pcDNA5PA, pcDNA5NP plasmids (100 ng/well of 

each) along with pPolI5Flu5ffLuc plasmid (50 ng/well) as described elsewhere.13 In addition, a 

plasmid constitutively expressing �	������ luciferase, pRL5SV40 (50 ng/well), was included in the 

transfection mixture to normalize variations in transfection efficiency. After 4 h, the medium was 

replaced with fresh DMEM containing DMSO or test compounds. At 24 h post5transfection, cells 

were lysed and the relative firefly and �	����� luciferase activities were determined using the Dual 

Luciferase Assay Kit from Promega and a luminescence counter (Victor™ X2, PerkinElmer). The 

luciferase activities of the samples treated with DMSO (no test compound) were set as 100%. 

UL54�UL44 interaction ELISA. This assay was conducted as previously described,53 with minor 

modifications. Briefly, microtiter plates were coated with 0.2 mg of purified baculovirus5expressed 

HCMV UL54 and blocked with 2% BSA (Sigma) in PBS for 1 hr. After washing, 0.5 mg of 
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purified baculovirus5expressed UL44, mixed with each compound at different concentrations or 
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with DMSO alone at a final 1% concentration (no compound), was added and incubated for 1 hr at 

37 ºC. Following further washes, the wells were incubated with monoclonal antibody (MAb) 

YL1/2, which recognizes the EEF epitope inserted at the C terminus of UL44,52 for 1 hr at 37 ºC. 

Plates were then washed and incubated with horseradish peroxidase (HRP)5conjugated anti5rat 

antibody (Sigma). Following washes with PBS plus 0.3% Tween 20, the chromogenic substrate 

3,3’,5,5’ tetramethylbenzidine (TMB) (KPL) was added and absorbance was read at 450 nm on an 

ELISA plate reader (Tecan Sunrise). 
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Table 1. Summary of activities of synthesized analogues of compound 1 against FluA. 

Comp. Structure 

ELISA 

PA�PB1 

Interaction 

Assay 

FluA 

Minireplicon 

Assay 

FluA Plaque 

Reduction 

Assay 

Cytotoxicity 

(MTT) Assay 

Scaffold n Rf R IC50 (DM)
a

EC50 (DM)
b

EC50 (DM)
c CC50  (DM)

d

293T cells 
MDCK 

cells 

1 I 1 CHF2 H 27.2 ± 3.6 29.5 ± 5.4 75.5 ± 8.8 >250 >250

2 I 1 CF3 H 44.8 ± 3.3 27.5 ± 3.5 57.0 ± 15.5 >250 >250

3 I 2 CHF2 H 91.2 ± 7.4 94.2 ± 8.5 66.0 ± 8.5 >250 >250

4 I 2 CF3 H 120.4 ± 15.6 70.5 ± 6.6 >100 >250 >250

5 I 2 CF3 Me 43.0 ± 9.9 63.0 ± 9.9 100.7 ± 14.0 >250 >250

6 I 2 CF3 OMe 135.3 ± 14.2 ND ND 40.4 ± 3.3 51.3 ± 3.1 

7 II 2 CF3 H 7.5 ± 0.7 9.2 ± 2.3 23.7 ± 9.1 >250 >250

8 III 2 - - >200 ND ND >250 45.2±3.1 

9 35.1 ± 4.3 ND ND 12.4 ± 2.3 18.3 ± 2.5 

10 30.5 ± 6.2 45.9 ± 4.4 18.7 ± 3.8 >250 >250

11 >200 ND ND 30.1 ± 4.1 20.2 ± 3.3 

12 >200 >100 >100 >250 >250

PB11�15�Tat 

peptide 
37.2 ± 5.6 20.9 ± 6.7 50.5 ± 13.8 >250 >250

RBV ND 24.9 ± 5.1 15.6 ± 6.3 >250 >250
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�� Activity of the compounds in ELISA PA5PB1 interaction assays. The IC50 value represents the compound 
concentration that reduces by 50% the interaction between PA and PB1. )�Activity of the compounds in minireplicon 
assays. The EC50 value represents the compound concentration that reduces by 50% the catalytic activity of FluA 
polymerase. �� Activity of the compounds in plaque reduction assays with the FluA PR8 strain. The EC50 value 
represents the compound concentration that inhibits 50% of plaque formation. �� Activity of the compounds in MTT 
assays. The CC50 value represents the compound concentration that causes a decrease of cell viability of 50%. All the 
reported values represent the means ± SD of data derived from at least three independent experiments in duplicate. ND: 
not determined. 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



Table 2. Summary of activities of analogues of compound 10 against FluA virus.

Comp. Structure 

ELISA 

PA�PB1 

Interaction 

Assay 

IC50 (DM) 
�

FluA 

Minireplicon 

Assay 
EC50 (DM)

�)

FluA Plaque 

Reduction 

Assay 
EC50 (DM)

��

Cytotoxicity 

(MTT) Assay 

CC50 (DM) 
�

R R’ Ar 
293T 

cells 

MCDK 

cells 

10� �	�5Bu Me 30.5 ± 6.2 45.9 ± 4.4 18.7 ± 3.8 >250 >250

18� �	�5Bu H 84.0 ± 5.6 25.7 ± 6.2 35.2 ± 10.3 >250 >250

19� �	�5Bu H 9.2 ± 1.5 17.2 ± 1.3 30.5 ± 4.4 >250 >250

20� �	�5Bu Me >200 >100 >100 >250 >250

21 Ph Me 91.9 ± 16.7 >100 24.7 ± 7.8 >250 70.3 ± 5.5 

22� �	�5Bu H >200 82.6 ± 5.7 >100 >250 >250

PB11�15�Tat 

peptide 
37.2 ± 5.6 20.9 ± 6.7 50.5 ± 13.8 >250 >250

RBV ND 24.9 ± 5.1 15.6 ± 6.3 >250 >250

� Activity of the compounds in ELISA PA5PB1 interaction assays. The IC50 value represents the compound 
concentration that reduces the interaction between PA and PB1 by 50%. b Activity of the compounds in minireplicon 
assays. The EC50 value represents the compound concentration that reduces the catalytic activity of FluA polymerase by 
50%. c Activity of the compounds in plaque reduction assays with the FluA PR8 strain. The EC50 value represents the 
compound concentration that inhibits 50% of plaque formation. d Activity of the compounds in MTT assays. The CC50 
value represents the compound concentration that causes a decrease of cell viability of 50%. All the reported values 
represent the means ± SD of data derived from at least three independent experiments in duplicate. 
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Table 3. Evaluation of broad�spectrum activities of most active compounds. 

Compound PRA vs IAV (EC50, DM) 
�

PRA vs IBV (EC50, DM) 
�

H1N1 H3N2 

A/Solomon 

Island/3/06 
A/Padova/30/11 

A/Parma/24/09 

(Oseltamivir�

resistant) 

A/WSN/67/05 B/Lee/40 
B/Malaysia/ 

2506/04 

1 >100 >100 95.5 ± 5.6 >100 >100 >100

7 23.3 ± 3.0 20.6 ± 2.8 22.9 ± 1.5 20.0 ± 2.3 33.5 ± 4.2 25.9 ± 1.8 

10 17.5 ± 2.6 22.6 ± 5.3 25.0 ± 2.6 15.9 ± 3.2 21.8 ± 1.4 29.6 ± 4.0 

18 16.5 ± 1.7 16.7 ± 4.2 22.1 ± 2.1 10.8 ± 2.1 15.5 ± 2.1 19.8 ± 4.2 

19 22.5 ± 3.5 37.6 ± 6.6 43.0 ± 3.6 23.5 ± 2.8 25.5 ± 3.7 26.3 ± 5.5
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� Activity of the compounds in plaque reduction assays with the different FluA and FluB strains. The EC50 value 
represents the compound concentration that inhibits 50% of plaque formation. All the reported values represent the 

means ± SD of data derived from at least three independent experiments in duplicate. 

Figure legends 

Figure 1. Chemical structure of compound 1, an inhibitor of the PA5PB1 interaction. 

Figure 2. Structures of four analogues of compound 1, according to the FLAP similarity score. 

Figure 3. Structure of the five RdRP inhibitors used for pharmacophore generation. a) Compound � 

in ref 13; b) Compound �� in ref 16; c) Compound � in ref 16.

Figure 4. Pharmacophore for RdRP inhibitors targeting the PA5PB1 complex generated by FLAP. 

A) Structure of the pharmacophore. The shape is reported as a wireframe surface, while the 

pharmacophoric points and GRID MIFs are reported as solid spheres and surfaces, respectively. 

Color5code: green= hydrophobic; red= H5bond acceptor; blue= H5bond donor. B5F) compounds 7, 

19, 23, 24, 25 aligned to the pharmacophore, respectively. 

Scheme Footnotes 

Scheme 1.

a Reagents and conditions: (�) S8, Morpholine, EtOH, 60 °C;43 (��) �. Suitable carboxylic acid (see 

Experimental Section), Oxalyl chloride, DCM, DMF cat.; �. Pyridine, DCM. For R and Rf 

definition see Table 1. 
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Scheme 2. 

a Reagents and conditions: (�) AcOH reflux;44 (��) NaOH, EtOH, H2O.

Scheme 3. 

a Reagents and conditions: (�) �	�5butylamine (for 16a) or aniline (for 16b), DMF, 100 °C;45 (��) 35 

bromobenzoyl chloride (for 17a) or 35bromo545methyl5benzoyl chloride (for 17b�c) Et3N, toluene, 

reflux; (���) �. �5BuLi, –78 °C, THF; �� SO2, –60 °C, THF;47 *. NCS, DCM; #. ArNH2, Et3N, 

acetone, 50 °C.48 For Ar see Table 2.
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