

ORCA - Online Research @ Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional repository:https://orca.cardiff.ac.uk/id/eprint/117693/

This is the author's version of a work that was submitted to / accepted for publication.

Citation for final published version:

McVicker, Rebecca, Agarwal, Nishtha, Freakley, Simon J., He, Qian, Althahban, Sultan, Taylor, Stuart H., Kiely, Christopher. J. and Hutchings, Graham J. 2020. Low temperature selective oxidation of methane using gold-palladium colloids. Catalysis Today 342, pp. 32-38. 10.1016/j.cattod.2018.12.017

Publishers page: http://dx.doi.org/10.1016/j.cattod.2018.12.017

Please note:

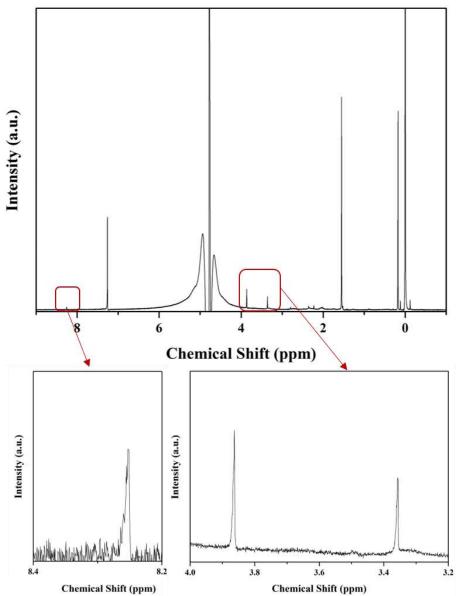
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.

Supplementary Information

Low Temperature Selective Oxidation of Methane using Gold-Palladium Colloids

Rebecca McVicker¹, Nishtha Agarwal¹, Simon J. Freakley^{1,2}, Qian He¹, Sultan Althahban³, Stuart H. Taylor¹, Christopher. J. Kiely^{1,3} and Graham J. Hutchings^{1*}

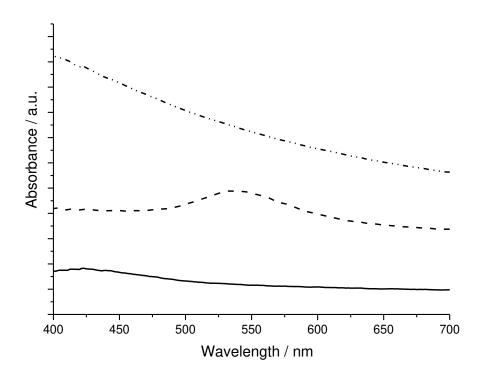

¹ Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.

³ Department of Chemistry, University of Bath, 1 South, Claverton Down, Bath, BA2 7AY, UK.

³ Department of Materials Science and Engineering, Lehigh University, 5 East Packer Avenue, Bethlehem, Pennsylvania, 18015, USA.

^{*} To whom correspondence should be addressed. E-mail: hutch@cardiff.ac.uk

Figure $S1 - {}^{1}H$ -NMR spectrum obtained from a typical reaction mixture.



The oxygenated species identified were methylhydroperoxide (s, δ = 3.9) and methanol (s, δ = 3.4) shown in the zoomed inset along with formic acid (s, δ = 8.4). The relative intensities in insets are arbitrarily shown. The other signals present corresponds to tetramethylsilane (s, δ = 0), CHCl₃ (s, δ = 7.3), H₂O in CDCl₃ (s, δ = 1.5) and dissolved CH₄ (s, δ = 0.2).

 $\textbf{Table S1} \ \text{Liquid phase oxygenated products analysed by 1H-NMR for methane oxidation.}$

Species	Abbreviation	δ/ppm		
Methanol	СН₃ОН	3.35, s		
Methyl hydroxyperoxide	СН ₃ ООН	3.9, s		
Formic acid	НСООН	8.4, s		

Figure S2 – UV-vis spectrometry of Au-only, Pd-only and Au-Pd colloids

Key: Solid line – palladium-only colloid, dashed line – gold-only colloid, dashed/dotted line – gold/palladium colloid.

All colloids: PVP (10kDa): Metal = 1.2:1, Au: Pd = 1:1 molar, [metal] = 7.57×10^{-4} M.

Figure S3 – XPS spectra of monometallic (A) Au(4f) for Au colloid, (B) Pd(3d) for Pd colloid,

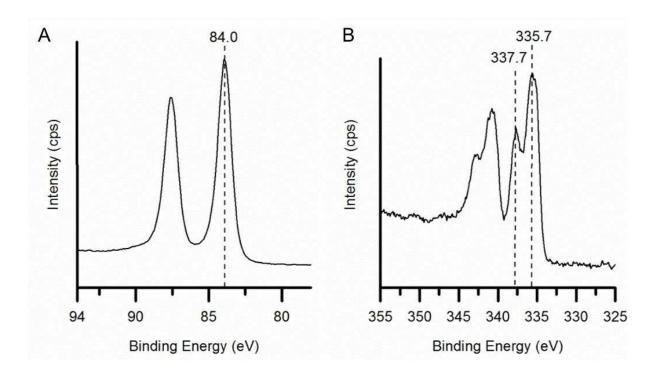


Table S2 - Re-usability of the Au-Pd -PVP colloid over multiple reaction cycles

Entry	Amount of Product (µmol) Time Gy Oy Gy Ooy (1900)				Oxygenate Selectivity	MeOH Selectivity	Productivity (mol kg ⁻¹ cat	TOF (h-1)	H ₂ O ₂ used/ products	
	Time	CH ₃ OH	CH ₃ OOH	НСООН	CO_2	(%)	(%)	h ¹)	(11)	generated
1	1 x 10	2.14	4.43	2.14	1.31	87	21.4	52.6	7.8	80
2	2 x 10	2.86	4.00	9.29	3.65	82	14.4	51.9	7.6	100

Reaction Conditions; 1000 μ mol H₂O₂, 50 °C, total volume 10 ml, 30 bar, 1500 rpm, 7.57 μ mol metal per reaction.

Colloid; Au: Pd = 1:1 molar, [metal] = 7.57×10^{-4} M.

Table S3 – Methane oxidation under optimized conditions with Au-Pd colloids with H₂O₂

Entry	Catalyst	Amount of Product (µmol)			Oxygenate	МеОН	Productivity	TOE	H ₂ O ₂	
		CH ₃ OH	CH ₃ OOH	НСООН	CO_2	Selectivity (%)	Selectivity (%)	$(\text{mol kg}^{-1}_{\text{cat}} \\ \text{h}^{1})$	TOF (h ⁻¹)	used/ products generated
1	Au-Pd colloid – PVP ^a	2.29	10.86	2.57	1.09	94	14	29.4	4.2	40
2	Au-Pd colloid – PVP ^b	11.00	13.86	9.57	8.11	81	26	74.4	11	110
3	Au-Pd colloid – PVP ^c	0.00	0.00	0.00	0.17	-	-	-	0.06	46

 $[^]a$ Reaction condition: 1000 $\mu mol\ H_2O_2,\ 50\ ^\circ C,\ total\ volume\ 10\ ml,\ 30\ bar,\ 0.5\ h,\ 1500\ rpm,\ 7.57\ \mu mol\ metal\ per\ reaction.$

Colloid; PVP: metal = 1.2:1, Au: Pd = 1:1 molar, [metal] = 7.57×10^{-4} M

 $[^]b$ Optimum Condition: 5000 $\mu mol\ H_2O_2,\,60$ °C, total volume 10 ml, 40 bar, 0.5 h, 1000 rpm, 7.57 $\mu mol\ metal\ per\ reaction.$

 $[^]c$ Blank Reaction: 1000 $\mu mol\ H_2O_2,\ 50\ ^oC,\ total\ volume\ 10\ ml,\ 30\ bar\ N_2,\ 0.5\ h,\ 1500\ rpm,\ 7.57\ \mu mol\ metal\ per\ reaction.$