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Towards extending the SWITCH platform for

time-critical, cloud-based CUDA applications: job

scheduling parameters influencing performance
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Abstract

SWITCH (Software Workbench for Interactive, Time Critical and Highly
self-adaptive cloud applications) allows for the development and deploy-
ment of real-time applications in the cloud, but it does not yet support
instances backed by Graphics Processing Units (GPUs). Wanting to explore
how SWITCH might support CUDA (a GPU architecture) in the future, we
have undertaken a review of time-critical CUDA applications, discovering
that run-time requirements (which we call ‘wall time’) are in many cases
regarded as the most important. We have performed experiments to investi-
gate which parameters have the greatest impact on wall time when running
multiple Amazon Web Services GPU-backed instances. Although a maxi-
mum of 8 single-GPU instances can be launched in a single Amazon Region,
launching just 2 instances rather than 1 gives a 42% decrease in wall time.
Also, instances are often wasted doing nothing, and there is a moderately-
strong relationship between how problems are distributed across instances
and wall time. These findings can be used to enhance the SWITCH pro-
vision for specifying Non-Functional Requirements (NFRs); in the future,
GPU-backed instances could be supported. These findings can also be used
more generally, to optimise the balance between the computational resources
needed and the resulting wall time to obtain results.
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1. Introduction

SWITCH (Software Workbench for Interactive, Time-critical and Highly
self-adaptive applications) is a workbench for developing and deploying time-
critical applications in the cloud1. SWITCH consists of three main subsys-
tems: SIDE, DRIP, and ASAP. SIDE (SWITCH Interactive Development
Environment) is the component that the software developer interacts with;
it allows the developer to use a GUI to create an application’s workflow
and deploy the application, as well as manage applications once they are
running. If an application has dependencies such that one node or service
needs to be started before another, these can be specified graphically, and
are then included in the deployment plan. DRIP (Dynamic Real-time Infras-
tructure Planner) is part of the back-end of the system; it takes all of the
requirements specified by the developer, and uses them to plan the cloud-
based infrastructure on which the application will run (further information
is provided by Wang et al. [1]). ASAP (Autonomous System Adaptation
Platform) is another subsystem of the back-end; it adapts the running ap-
plication according to changes in the environment, with the aim of keeping
the application’s Quality of Service (QoS) at an acceptable level. ASAP has
a load balancer, and allows for horizontal scaling.

As part of the SWITCH system, Qualitative Metadata Markers (QMMs)
are generated and used to maximise the quality of an application. These
QMMs allow us to see which constraints and Non-Functional Requirements
(NFRs) have the most impact on the application’s quality. In order to gen-
erate QMMs, an investigation (e.g. monitoring) must be done on the multi-
cloud infrastructure we wish to deploy our application on, to discover which
constraints, etc. have the most impact on an application’s QoS. For more in-
formation on QMMs, see [2]. The investigation that is reported in the present
paper provides information relevant to QMMs in the context of applications
which make use of Graphics Processing Unit (GPU)-backed instances. For
more detailed information about the various components within SWITCH,
the reader is directed to [3].

1The SWITCH code repository can be found at https://github.com/switch-
project/SWITCH-version-2
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CUDA (Compute Unified Device Architecture) is an example of an archi-
tecture where GPUs can be used for general purposes. NVIDIA GPUs are
programmed using the CUDA language, which is based on C with extensions
for moving data to and from the GPU, running programs (kernels) on the
GPU, etc. CUDA has a Single Instruction Multiple Data (SIMD) architec-
ture. There are particular applications which suit the SIMD architecture;
these are applications which run the same instruction on large quantities of
data at the same time, before moving on to the next instruction. For exam-
ple, the BEIA use case2 of SWITCH performs many simulations at once in
order to forecast possible natural disasters; as such, it would suit the SIMD
architecture. SWITCH currently supports Amazon EC2 instances, but does
not yet support EC2 GPU-backed instances.

Considering the multitude of time-critical applications already imple-
mented in CUDA [4], it would be logical for SWITCH to support CUDA.
CUDA is particularly well-suited for time-critical applications in that it is an
architecture that can be utilised for High-Performance Computing (HPC),
and therefore applications which suit its Single Instruction Multiple Data
(SIMD) architecture can process more data, faster than using individual
CPUs. The context of the present paper is to explore the implications of
extending SWITCH to support CUDA (and GPU-backed instances). To un-
derstand how the SWITCH system, extended in this way, would be used
in practice, we need to first investigate the constraints that impact on the
performance of an application. Within this paper, we present an investiga-
tion of a representative CUDA application with a view to producing insights
into how CUDA applications could be supported by SWITCH. Although ev-
ery application is different, the insights generated are intended to be general
enough to be applied (perhaps with some modification) to other applications.

The remaining sections of this paper are organised as follows: in Section
2 we present the related work, and in Section 3, we present an enhanced
literature review, examining the QoS metrics which appear to be the most
important to time-critical CUDA applications. In Section 4, we explain the
experimental set-up and methods used to investigate how different param-
eters influence the QoS of an application, and in Section 5 we present the
results of this investigation. Finally, in Section 6, we conclude the paper and
in Section 7 discuss future work which could be undertaken.

2http://www.agile.ro/beia/
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2. Related work

Most papers considered in this section compared specific applications’
performances on different architectures. For example, Jackson et al. [5]
ran seven different applications, as well as the High Performance Computing
Challenge (HPCC) benchmark suite, on Amazon EC2, as well as two clus-
ters and a supercomputer located in the Lawrence Berkeley National Lab.
They used the m1.large instance type, which is a now-retired instance type
for general-purpose computation [6]. Lenk et al. [7] developed a method to
create a custom benchmark suite depending on the application that is need-
ing to be deployed, and showed how this method could be used to compare
Amazon EC2 to Flexiscale and Rackspace. There was a focus on CPU per-
formance and monetary cost. Iosup et al. [8] compared Amazon EC2 with
GoGrid, ElasticHosts, and Mosso on benchmarks which take into account re-
source and CPU usage, and communication time. The AWS instances used
were of the general-purpose m1.* type, and the c1.* compute-optimised type.
Mehrotra et al. [9] compared Cluster Compute instances on Amazon EC2
with a supercomputer, and a cluster, on several applications and benchmarks.
Vöckler et al. [10] compared a scientific workflow on Amazon EC2 (without
specifying the instance type), NERSC’s Magellan cloud, and FutureGrid’s
sierra cloud. Other papers in this realm include those by Marathe et al. and
by Berriman et al. [11, 12].

Bermudez et al. [13] passively gathered information on various AWS
centres, and analysed this according to measurements such as response time,
flow goodput, and network cost. Gohil et al. [14] inspected the performance
of MapReduce applications on m1 (general-purpose) AWS instances, and
recorded the execution time to finish each job (this is the most similar paper
to ours, however it did use a different instance type).

Schad et al. [15] analysed the variance of wall clock times on Amazon
EC2 general-purpose instances.

To the best of our knowledge, none of the previous papers considered
AWS GPU-backed instances. Accordingly, the present paper investigates
how such instances perform while varying certain job scheduling parameters.

3. Review

In this section, we present a literature review of the Quality of Service
(QoS) metrics most important to time-critical CUDA applications. This
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leads us on to the subsequent section, in which we describe the experimental
set-up for an investigation into the constraints that impact the most on the
QoS metrics that we deem most important in the present section.

In a previous paper [4], we performed a survey of time-critical CUDA
applications with the aim of investigating which QoS parameters are most
referred to in the papers describing these applications. Those parameters
which are referred to most often are likely to be the most important to those
specific applications. Four main fields of time-critical CUDA applications
were investigated:

• Environment-related
• People/face detection

• Medical applications
• Materials-related

as well as a miscellaneous category for applications which did not fit into any
of the above four categories. We now present an enhanced literature review
by assessing more recent papers in these identified areas.

In the previous review, we searched for time-critical CUDA applications
generally, and placed the papers found into categories based on what was
discovered. For this paper, we inspected the papers within each category,
and found newer papers which cite these ones, as some of the papers in
the previous review were not very recent. We did not consider all papers
found however; we would only consider those relevant to the category we
were considering, e.g. environment-related applications.

In the current paper, we do not consider the miscellaneous category, but
the terms referred to by papers in this category can be found in the previ-
ous review. For us to ‘dig deeper’ into a category with no defined theme
would mean investigating the papers to the point where we would make new
categories besides the four presented here.

3.1. Environment-related

First, we consider image processing-related applications within this field;
following this we consider other environment-related applications which do
not use image processing.

For those applications which involved image processing, we found several
groups of methods concerning hyperspectral images. Wu et al. [16] andWu et
al. [17] both used algorithms for hyperspectral image classification. Sanchez
et al. [18] examined the ‘unmixing’ of hyperspectral images. Ciznicki et
al. [19] implemented hyperspectral image compression using the JPEG2000
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algorithm. Goodman et al. [20] analysed marine imaging spectroscopy data
using a method derived from that of Lee et al. [21, 22, 23]. A few papers
concerned the implementation of methods for processing satellite images,
namely Kurte and Durbha [24], Bhangale and Durbha [25], and Scott et al.
[26]. Relating to non-image processing applications, Christgau et al. [27]
implemented the tsunami simulation algorithm EasyWave [28] in parallel.
Huang et al. [29] and Xu et al. [30] both used the Kalman filter method
[31] to estimate hidden states in linear dynamic systems. Jiang et al. [32]
implemented Multi-Scale Retinex with Colour Restoration (MSRCR) on the
GPU with the aim of eventually developing a video processing system for
NASA’s Vision Enhancement for General Aviation (VEGA) project, which
is meant to enhance pilot safety during times of poor visibility.

3.2. People/face detection

All of the applications within this category, unsurprisingly, use image
processing. The Viola-Jones algorithm [33] (used in Adaboost [34]), or part
thereof, was implemented in a large subset of the papers we collected in
the field of people/face detection, specifically those of Sharma et al. [35],
Chouchene et al. [36], Sun et al. [37], and Herout et al. [38]. Zhi et al.
[39] used an ORB (Oriented FAST and Rotated BRIEF)-based algorithm
for real-time image registration and target localisation. Iakovidou et al. [40]
implemented a Colour and Edge Directivity Descriptor (CEDD) method for
Content Based Image Retrieval (CBIR). Fauske et al. [41] and Weimer et al.
[42] both implemented methods for background subtraction in video streams.

3.3. Medical applications

As in our previous review, because of the varied nature of medical appli-
cations, and the fact that there are many more than we would have the time
and space to list, we have focused on the small number of specific applications
that we could find. Most of these are image processing-related applications.
Although there does not seem to be a great amount of variation in the meth-
ods/applications in this category, this is because, when we collected papers
for our first review [4], there were simply so many papers which fit into this
small number of applications; there is a lot of research being done on a small
number of Medicine-related problems.

Several papers present algorithms to perform image registration, which
involves aligning two images and is used in image-guided surgery: Muyan-
Özçelik et al. [43], Ang Li et al. [44], Min Li et al. [45], Modat et al. [46],
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Bhosale et al. [47], and Ikeda et al. [48]. In addition, we found several
applications concerning image reconstruction: Keck et al. [49], Yu et al.
[50], Sun et al. [51], Pang et al. [52], Zhao et al. [53], Riabkov et al. [54],
Ziner and Keck [55], and Park et al. [56]. Regarding non-image processing
applications within this field, there were several papers that we found, that
of Wilson and Williams [57], Tam and Yang [58], and Juhasz [59], which all
performed biological signal processing.

3.4. Materials-related

The first sub-category of materials-related applications covers ultrasonic
imaging, namely those of Sutcliffe et al. [60] and Romero-Laorden et al.
[61]. The second sub-category of materials-related applications was the use
of Finite Element methods for the analysis of soft tissues; papers were from
Strbac et al. [62] and Strbac et al. [63].

3.5. CUDA Metrics Analysis

In Table 1, we present an overview of the terms, synonyms, and units of
measurement, found during our literature survey.

Table 1: QoS Parameters, Units Used, and Alternative Terms

Parameter Units Other names Sources Percentage

of total

Time

Runtime Time units Calculation speed, calcu-
lation time, computation
burden, computational
cost, computation time,
computational time, com-
puting time, convergence
time, detection speed,
detection time, elapsed
time, execution speed,
execution time, image
reconstruction time, kernel
execution time, kernel
time, performance time,
processing speed, process-
ing time, reconstruction
time, registration time,
running time, scene time,
simulation time, solution
speed, solution time, time,
time consumption, time
cost

[25] [47]
[36] [27]
[19] [20]
[38] [29]
[48] [32]
[59] [49]
[24] [44]
[45] [46]
[43] [52]
[56] [54]
[61] [18]
[26] [62]
[63] [51]
[37] [60]
[58] [42]
[57] [16]
[17] [30]
[50] [53]
[55]

90
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Runtime Frames per second
(fps)

[41] [60] 5

Per time-step
runtime

Time units [62] 2

Ratio of runtime
to something else

Percentage Performance ratio [62] 2

Processing speed Frames per second
(fps), projections per
second (pps), pixels
per second, number
of indexed images
per second, Giga-
(voxel)-updates per
second (GUPS), vox-
els/s

Detection speed, frame
rate, reconstruction speed,
registration throughput,
tracking rate

[41] [40]
[32] [52]
[61] [35]
[55]

17

Processing rate ms/pixel, ms/frame Computation time [20] [39] 5

Overall delay Time units [44] 2

Data transfer
time

Time units Memory transfer time [48] [43]
[54] [53]

10

Proportion of
computational
cost due to data
transfer

Percentage [61] 2

Pre-processing
cost

Time units Pre-processing time [56] [50] 5

Time variation
from recon-
struction to
reconstruction

Time units [56] 2

Quality of results

Accuracy Percentage Classification accuracy, de-
tection accuracy, overall ac-
curacy (OA)

[35] [16]
[17]

7

Correlation coeffi-
cient (accuracy)

[20] 2

Average absolute
difference (accu-
racy)

No units, percentage Average absolute pixel
value difference

[20] [56] 5

Average accuracy
(AA)

Percentage [16] 2

Sensitivity Percentage Correct detection rate, de-
tection rate, true positive
rate

[37] [58]
[42]

7

False positives Count, rate [35] [58] 5

False detection
rate

Percentage [37] 2

Peak signal-to-
noise ratio

dB [52] 2
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Mean-square-
error

mm Intensity standard devi-
ation, root mean-square-
error (RMSE)

[52] [62]
[50] [39]
[55]

12

Residual error mm Registration error, spatial
error, target registration er-
ror (TRE)

[47] [44]
[45]

7

Maximum abso-
lute error

mm [62] 2

Structural Simi-
larity (SSIM) in-
dex

[50] 2

Contrast-to-noise
ratio (CNR)

[56] 2

Spectral angle degrees [19] [18] 5

Standard devia-
tion for different
experimental
runs

[40] 2

Maximum error
of deformation
vector

Voxels [48] 2

Data

Throughput GB/s, GiB/s, voxels
per time unit

Registration throughput [47] [48]
[44]

7

Throughput Gflops/s, Gflops [30] 2

Memory require-
ments

KB, MB, GB Data size, memory foot-
print of compressed data
format, space needed

[61] [50]
[53]

7

Efficiency of
memory through-
put

Percentage [48] 2

Costs (mentioned
only briefly)

Performance-per-
watt

[54] 2

Performance-per-
dollar

[54] 2

Implementation
cost

Dollars Development cost [60] 2

Power

Energy consump-
tion

Watts, Joules [36] 2

One interesting finding relating to the distinction between image process-
ing and non-image processing applications (within the four categories above)
was that the accuracy of results is referred to more in image processing ap-
plications than non-image processing applications. This may be due to the
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exact nature of some specific image processing applications. For example,
if the application is relating to safety, such as in applications which anal-
yse video streams of street crossings, or in intra-operative applications, then
having accurate results is obviously important to ensure people’s safety.

Another finding of this literature review is that there are many differ-
ent terms for runtime, and runtime is, unsurprisingly, the most-referred to
QoS measure overall. Because of this, we focus on measuring the impact of
different parameters on runtime in our experiments.

4. Experimental background and set-up

In the previous section, it was found that runtime is the QoS metric most
referenced in the time-critical CUDA applications in our literature review.
In this section, we describe the experimental set-up used, and the constraints
varied, in order to find out which constraints have the most impact on runtime
(which we call ‘wall time’; the time taken to return the results for all problems
set, in contrast to the ‘runtime’ to solve one problem). In the next section,
we present the results of these experiments.

The focus of this experimentation is to provide a methodology and blue-
print for time-critical CUDA applications. While many different types of
CUDA applications exist, the results presented here do not depend on any
specific application. We did not intend to generate all of the “rules” (e.g.
“do not use more than x instances to run y problems”) for all applications,
or categories of application, because it is not practical, and somewhat redun-
dant, to do so. Consequently, we hope that these results will provide insight
and a blueprint for those who wish to perform experiments using varying
constraints, and measuring results for any type of time-critical CUDA appli-
cation. Our insights are presented in Section 5.

4.1. Instances

Amazon Web Services (AWS) has an Elastic Compute Cloud (EC2)3

which provides users with many different kinds of instance types to deploy
and use. For general purposes (i.e. not specifically graphics processing), there
are two classes of GPU-backed instances available: P2 and P3 instances. The
main difference between these is that the P3 instances use more recent graph-
ics cards. For this paper, we performed experiments using P2 instances, so

3https://aws.amazon.com/ec2/

10



our description here focuses on those, although the description can easily be
mapped to P3 instances. p2.xlarge, p2.8xlarge, and p2.16xlarge contain 1, 8,
and 16 GPUs respectively. We chose to use p2.xlarge instances, i.e. single-
GPU instances, as we could then vary the number of GPUs and show how
applications can scale as this is changed.

The number of instances of the type p2.xlarge launched in any one AWS
Region is limited to 8, so we varied the number of instances between 1 and
8 (1, 2, 3, 4, 5, 6, 7, 8 instances).

4.2. Application

Even though many different time-critical CUDA applications were de-
scribed in the previous section, in the case of varying constraints and mea-
suring results, the exact application does not matter; the results can be
relevant to most applications. As such, we used a CUDA implementation
of a method for solving a Bioinformatics problem [64, 65, 66]. We chose
this specifically as the sizes of the problems, and the number of concurrent
problems given to the application can be scaled up or down quite easily.

Although the specific application chosen does not seem to have QoS re-
quirements in the traditional sense, the results from experiments conducted
using this application can be related to other CUDA applications in that, in
certain contexts, some loss of quality can be acceptable if the system cannot
maintain a particular QoS. A user could specify that they want their re-
sults to be accurate to within 0.01%, or they may wish to trade-off between
accuracy and resource utilisation. The Bioinformatics application chosen is
related to similar applications where a preference needs to be made between
the quality of results and the resources available. Accordingly, we have a
means of varying the number of concurrent tasks, the resource requirements
of each task, and the deadlines within which the tasks must be performed.
This allows us to derive results which are of interest in the deployment of
other time-critical applications. Also, with reference to CUDA, the choice
of experimenting with a single application is sensible, since the underlying
architecture of applications based on CUDA is fairly homogeneous since the
CUDA hardware is quite specific. This means that most problems differen-
tiate themselves by the type of input they receive, which we simulated with
the chosen application (see below).
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4.3. Number of problems

We decided to double the number of problems given to the instances to
compute, starting from 10, to yield 10, 20, 40, 80, and 160 problems. As a
note, each problem is simply a different input file into our CUDA program,
so when we give a set of instances 10 problems to work on, say, what we are
really doing is giving them a list of 10 filenames, and telling them to compute
the output for each of those files.

4.4. Problem size

The problem size was varied to be either constant or random (without
varying the size within the “constant” category) because if the problems are
all the same size, then theoretically the time to perform one problem on
one instance should be the same as the time to perform another problem
on another instance, as all the instances in our experiments have identical
architectures, etc.

4.5. Scheduling

We varied the order the problems were scheduled in because the order
can have an impact on how long it takes for the problems to be solved (i.e.
for all the results to be returned). We chose to first schedule by randomly
ordering the problems in a list, and then ordering them in increasing size
from smallest to largest (using file size as a measure of this) (this is commonly
called Shortest Job First (SJF) scheduling [67]).

4.6. Summary of constraints varied

To summarise, the constraints varied were:

• Number of instances (1 – 8)
• Number of problems (10, 20, 40, 80, 160)
• Problem size (constant, random)
• Order that problems are scheduled (randomly, by size increasing)

While we varied these constraints, we collected information on the amount
of time each instance took to complete, and how the problems were dis-
tributed amongst instances (which depends on the order that problems are
scheduled in, as well as the size of the problems, as this will influence when
certain results will be ready relative to others).
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4.7. Technical details

Only a subset of Amazon Regions supports the P2 GPU-backed instances
(which have NVIDIA K80 GPUs); we chose to use Ohio (us-east-2). The
Amazon Machine Image (AMI) used was Ubuntu Server 16.04 LTS (HVM),
SSD Volume Type (ami-916f59f4). The version of CUDA installed on these
instances was 9.0. The instances were connected to a single (shared) Elastic
File System (EFS) storage volume, on which the input files and results were
stored. A Simple Queue Service (SQS) First-In-First-Out (FIFO) queue was
used to store the list of input files; each instance was running a program such
that once an instance had finished working on one problem, it would access
the queue and retrieve (and delete) the next filename from the queue. Using
a FIFO queue guarantees that each message (filename) is delivered exactly
once, and preserves the ordering of the messages.

5. Results

In this section, we shall investigate the impact that different constraints
have on wall time as our main measure of performance.

5.1. Relationship between the number of instances and wall time

It is intuitive to assume that as we increase the number of instances
working on a set of problems, the wall time to retrieve the results for this
set of problems should decrease. Indeed, plotting the number of instances
against the wall time for all experiments run on that number of instances (see
Figure 1), we find such a relationship. What does this mean when setting up
a cloud-based architecture for time-critical applications? Depending on the
nature of the applications and the necessary QoS, it may not be necessary
to use the maximum allowed number of instances; indeed, averaging over
all experiments, one can find that the biggest benefit comes from increasing
the number of instances working on a set of problems from 1 to 2 (this
corresponds to a (average time for 1 instance 88.11 - average time for 2
instances 51.46)/88.11 = 42% decrease in average wall time. Increasing the
number of instances further results in smaller and smaller benefits, although
going from 1 to 8 instances (the maximum number of p2.xlarge instances one
can run in any one Amazon Region) results in an overall (average time for 1
instance 88.11 - average time for 8 instances 32.93)/88.11 = 63% decrease in
wall time.
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Figure 1: Graph showing the number of instances plotted against wall time for all exper-
iments.

Considering each set number of problems individually, we find that the
relationship looks slightly different each time. Unsurprisingly, overall, the
wall time increases as the number of problems being worked on increases
(this can be seen looking at the scales on the graphs in Figure 2).

Looking at all of the different numbers of problems collectively, it can be
plainly seen that the benefit to wall time is greater the bigger the number of
problems, which is intuitive; depending on just how ‘time-critical’ an appli-
cation is and also how many resources (money) there is available, it may or
may not be worth increasing the number of instances working on a problem
depending on the number of problems that need results.

5.2. Relationship between problem size and wall time

We now consider the impact of having different-sized problems. We varied
the problem size by having all problems be either a constant problem size,
or varied in size. Overall, the wall time increases as the number of problems
being worked on increases (this can be seen looking at the scales on the
graphs in Figure 3). As the number of problems goes up, we can see that
more and more often, varying the problem size gives on average, higher wall
times than keeping the problem size constant. This does make some sense
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Figure 2: Graphs showing the number of instances plotted against wall time for experi-
ments with 10, 20, 40, 80, and 160 problems, respectively.
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Figure 3: Graphs showing the number of instances plotted against wall time for exper-
iments with 10, 20, 40, 80, and 160 problems, respectively. Red points show constant
problem size, while blue points show varying problem size.
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Number of problems Variance Minimum Maximum

10 386388 972 3160
20 982801 972 4752
40 4288649 621 10182
80 4239192 274 10182
160 6694622 267 19390

Table 2: The variance of problem sizes for each number of problems, as well as the min-
imum and maximum values (in terms of number of amino acids). See text for further
explanation.

intuitively, as the constant-sized problem can be viewed as being of ‘medium’
size, whereas when varying the size, we can have much larger problem sizes
included (the variances and ranges in problem size for different numbers of
problems can be seen in Table 2). (The problem size is measured in total
number of amino acids, as each ‘problem’ can be represented as a matrix of
amino acids, with an associated length and width.) However, in some cases,
constant problem size gives higher wall times than varying the problem size.
It is uncertain why this could be, but it is worth noting that with the varied
problem size experiments, we also varied the ordering of the problems in the
queue (if the problem sizes are constant, we cannot vary the ordering in any
meaningful way). The size of the problems we are working on is not really
something we can control (past the fact we could decide to use a different
architecture), but investigating this parameter is interesting nonetheless.

5.3. Relationship between problem ordering and wall time

To see what effect the ordering of the problems in the queue has on wall
time, we look to the graphs in Figure 4. We order the problems randomly,
and by size (from smallest problem size to largest). We can first see that
for the smaller numbers of problems, there is less of a pattern in which kind
of ordering gives better wall time performance, which is to be expected as
with such a small number of problems, it is inevitable that we shall see more
variation. For larger numbers of problems, we often see that ordering by size
gives greater wall times than ordering the problems randomly. This may be
because when ordering by size, adjacent problems in the queue will be close
in size, and so instances taking problems from the queue may finish their
work (and attempt to access the queue again) around the same time, which
may cause some blocking for queue access. From this, we can see that we
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Figure 4: Graphs showing the number of instances plotted against wall time for different
numbers of problems. Red points show experiments where the problems are randomly
ordered, blue where the problems are ordered from smallest problem size to largest.
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Table 3: Instances which are wasting time doing nothing. We only list numbers of instances
where at least one experiment has at least 1 instance which did not process any problems.
No instances were wasted for 80 or 160 problems for any of the numbers of instances,
so these columns have been omitted for brevity. The percentage of experiments for that
number of instances where at least one instance wasted time is given in brackets in the
column ‘No. of experiments with at least one wasted instance’. The following columns
show the counts of how many problems were in those experiments (the maximum in any
of the cells in these three columns is 30).

No. of

instances

No. of ex-

periments

with at least

one wasted

instance

10 prob-

lems

20 prob-

lems

40 prob-

lems

4 1 (0.7%) 1 0 0
5 17 (11%) 16 1 0
6 27 (18%) 20 6 1
7 42 (28%) 30 12 0
8 46 (31%) 30 15 1

should order the problems in the queue randomly when using larger numbers
of instances, but that it does not make as much of a difference for smaller
numbers of instances.

5.4. Are there instances which are doing nothing?

Table 3 shows how often instances waste time doing nothing, i.e. how
often an instance is launched to solve some problems, and ends up doing no
work at all. We can see that as the number of instances increases, we have
more cases where at least one instance is wasting time doing nothing, and
more often than not, it happens for smaller numbers of problems. This is
unsurprising; we would not expect all instances to do work if we have 10
problems spread across 8 instances (if each instance picks the next problem
to work on from a queue, it may happen that some instances are not able to
obtain access to the queue, and if some instances have more success accessing
the queue than others, those instances will inevitably do more work than
others).

In Table 4, we can see exactly how many instances are being wasted. As
the number of instances increases, the number of instances being wasted also
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Table 4: The number of experiments for each number of instances, where we are wasting
a particular number of instances.

Number of instances 1 instance

wasted

2 instances

wasted

3 instances

wasted

4 1 0 0
5 16 1 0
6 22 5 0
7 23 13 6
8 21 15 10

increases. This could result in a non-trivial amount of money/resources being
wasted as sometimes we are not using almost half of the launched instances.

From what we have found, we can derive the following rules:

• Do not use more then 4 instances to run 10 problems
• Do not use more than 5 instances to run 20 problems

If we could run more than 8 instances at once within a Region, we may find
that we should not use more than 8 to run 40 problems. This is intuitive but
important to bear in mind. Considering what we found earlier concerning
the potential benefit to average wall time from increasing our number of
instances from 1 to a certain number, we can say that depending on how the
workload may change over time, we could get by with only 2 or 3 instances
if we know for certain that we will never have to process more than 10 or 20
problems at once. Launching more instances than this is only worthwhile if
we have enough work to do.

5.5. Relationship between workload distribution across instances and wall
time

Next we consider whether there is a correlation between how the prob-
lems (files) are distributed across instances (represented by the standard
deviation of the number of files per instance), and the wall time. We did
not consider the results for 1 instance only here, as the standard deviation
will always be 0 for the file distribution. Figure 5 shows these two variables
plotted. The simple correlation between the two variables is 0.63, suggest-
ing a moderately-strong relationship. This makes sense intuitively, since if
the standard deviation of the files is high, this means some instances will be
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Figure 5: Graph showing the standard deviation of the number of files per instance against
the wall time, for all experiments except those for 1 instance only.

doing more work than others (since there is overhead in starting a CUDA
program), and this will take longer than if the problems were distributed
evenly.

Inspecting each possible number of instances (except 1) individually, we
can see that this relationship (and correlation) changes slightly depending
on the number of instances (see Figure 6 a and b). The correlation between
the standard deviation of the number of files per instance and the associated
wall times is 0.46 for 2 instances, 0.77 for 3, 0.71 for 4, 0.82 for 5, 0.81 for 6,
0.81 for 7, and 0.81 for 8 instances. As the number of instances is increased,
the possible ways one could spread problems across instances increases (with
the possibility for larger standard deviations), so this makes sense. All of
this contributes to the overall message that one should only launch as many
instances as one can feasibly provide enough work for.

This relationship cannot be seen when breaking down the results accord-
ing to number of problems only.

We can see some correlation between the standard deviation of the file
counts across instances and the wall time when considering the two file size
options individually (Figure 7). Also worth noting is that the correlation
is larger for randomly-sized files than for constant file sizes (0.68 and 0.48
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Figure 6: (a) Graphs showing the standard deviation of the number of files per instance
against the wall time, for different numbers of instances (2 – 5).
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Figure 6: (b) Graphs showing the standard deviation of the number of files per instance
against the wall time, for different numbers of instances (6 – 8).
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Figure 7: Graphs showing the standard deviation of the number of files per instance
against the wall time, for experiments with constant sized problems and randomly-sized
problems.

respectively). We believe this is due simply to the fact that we can obtain
more variation in wall time for individual randomly-sized problems.

Considering the two possible orderings of randomly-sized problems, or-
dering the problems randomly gives a higher correlation to wall time than
ordering by size (correlations are 0.71 and 0.66), although not by much (see
Figure 8).

Because a lot of results have been presented in this section, here we
synthesise these comments and show which of the results were exactly as
expected, which were not as expected but that we can explain, and what we
were unable to explain (as they may be due to factors beyond the average
AWS customer’s knowledge or ability to influence):

• Exactly as expected:

– As the number of instances working on a set of problems is in-
creased, the wall time to return results for all problems decreases

– As the number of problems being worked on increases, the wall
time increases
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Figure 8: Graphs showing the standard deviation of the number of files per instance against
the wall time, for experiments where the problems are ordered in the queue randomly, and
by size from smallest to largest.

– The benefit to wall time (from increasing the number of instances)
is greater the bigger the number of problems that are being pro-
cessed

– As the number of problems increases, varying the problem size
gives higher wall times than keeping a constant problem size

– As the number of instances increases, we have more cases where
at least one instance is wasting time doing nothing; more often
than not, this happens for smaller numbers of problems. Also, as
the number of instances increases, the number of instances being
wasted increases

– There is a moderately-strong correlation relationship between work-
load distribution across instances and wall time. This relationship
is stronger for larger numbers of instances, when we inspect these
individually

• Not as expected but can be explained:

– In some cases, constant problem size gives higher wall times than
varied problem size; possibly due to the fact that if we vary the
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problem size, we can also vary the ordering that the problems are
completed in (in the queue)

– For larger numbers of problems, ordering by size gives greater
wall times than ordering the problems randomly; when ordering
by size, adjacent problems in the queue will be close in size, and
so instances taking problems from the queue may finish their work
(and attempt to access the queue again) around the same time,
which may cause some blocking for queue access

– Correlation between SD of file counts across instances and the
wall time is larger for randomly-sized files than for constant file
sizes, possibly because we can obtain more variation in wall time
for individual randomly-sized problems

• Unable to explain:

– The relationship between workload distribution across instances
and wall time cannot be seen when breaking down the results
according to number of problems

In this section, we investigated the impact of different parameters on the
overall wall time, and used the results of this investigation to derive some
recommendations that could be used to ensure a good balance between wall
time achieved for a problem set and the amount of resources needed to achieve
that performance.

6. Conclusions

In this paper, we extended our previous review of time-critical CUDA
applications [4], finding that unsurprisingly, runtime is the most important
QoS metric for these applications. With this in mind, we conducted experi-
ments on Amazon Web Services GPU-backed instances, varying the number
of problems, number of instances, the ordering and size of the problems, to in-
vestigate the effect these variables have on the wall time to retrieve results for
the set problems. From these experiments, we found that it is not necessary
to use the maximum allowed number of instances in order to see a benefit to
wall time; indeed, increasing the number of P2 single-GPU instances work-
ing on a set of problems from one instance to two gives a 42% decrease in
average wall time. We also found that as the number of problems increases,
varying the problem size tends to give higher wall times than keeping the
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problem size constant. For larger numbers of instances, ordering the prob-
lems in the queue by size (from smallest to largest) gives greater wall times
than ordering problems randomly. There are also times where instances can
be wasted doing nothing, and there is a moderately-strong relationship be-
tween how problems are distributed among instances and the resulting wall
time. Taking all of these findings into account, it is imperative that we think
about how many resources are actually needed, given the problem size we
have, in order to not waste time and money. This information will be useful
to develop SWITCH in the future to support GPU-based instances.

Even though we only performed experiments on one application, the in-
sights listed in Section 5 are generally-applicable to all applications, as the
insights are not coupled to the application used. However, it should be em-
phasised that the rules derived, also in the previous section, are strongly
dependent on the application being run; it is recommended that developers
profile their applications on sufficiently large test configurations in order to
determine what the parameter values would be (x and y for “Do not use
more than x instances to run y problems”, for example) for their scenarios.

7. Future work

Relating to the fact that the rules generated are linked to the application
being run, a useful area of future work would be to derive a set of application-
independent rules, such as those rules defined in Section 5, but which are more
generally-applicable. This would possibly require using machine learning, or
a similar approach.

In this paper, we did not consider network factors, such as latency, and
the start-up time when loading a problem onto a GPU. In the case of AWS,
there is the ability to use the Elastic Network Adapter to provide enhanced
networking to multiple instances. We did not consider this, as this was
not related to the other parameters we wished to vary; in this paper, we
primarily focused on the problems set, and numbers of instances. We also
did not consider the start-up time when loading a problem onto a GPU,
because each P2 instance used is architecturally the same, and the start-up
time would be more to do with the GPU on that instance than anything
we could control. Clearly another possible area of future work would be to
consider these factors too.

In the enhanced literature review, we found that runtime was the most-
referred to QoS measure, and measured different parameters’ impacts on this
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accordingly. Accuracy was also found to be important to image processing-
related applications specifically, so we could investigate this in the future.
Given certain time constraints, we could find out the most accurate results
we can obtain. Bearing in mind that the application we used for our experi-
ments was non-image processing-related, we could either find an appropriate
image processing CUDA application to use as an example, or find some other
application where, given more and more time, we can obtain better and bet-
ter results. In the application we used, if we were to stop the application at
some point, we would not obtain results at all; the program needs to run to
completion in order for us to obtain results.

In addition, in the future, the impact of placing instances in different
Amazon Regions could be investigated. At the time of writing, the number
of P2 single-GPU instances one can launch in a single Amazon Region is
set at 8, and so if more computing power were necessary, using different
Regions would also be necessary. One would need to research how to connect
different instances together across Regions, which would require a different
experimental set-up than that used in this paper.
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ments in the cloud: observing, analyzing, and reducing variance,
Proceedings of the VLDB Endowment 3 (1) (2010) 460–471.
doi:10.14778/1920841.1920902.
URL http://portal.acm.org/citation.cfm?id=

1920841.1920902{%}5Cnhttp://citeseerx.ist.psu.edu/viewdoc/

download;jsessionid=5810EC7C84DF87718CDFE563503DCB92?doi=

10.1.1.174.5672{&}rep=rep1{&}type=pdf{%}5Cnhttp://

portal.acm.org/citation.cfm?id=1920902

[16] Z. Wu, Q. Wang, A. Plaza, J. Li, L. Sun, Z. Wei, Real-Time Implemen-
tation of the Sparse Multinomial Logistic Regression for Hyperspectral
Image Classification on GPUs, IEEE Geoscience and Remote Sensing
Letters 12 (7) (2015) 1456–1460.

[17] Z. Wu, Q. Wang, A. Plaza, J. Li, J. Wei, Z. Wei, GPU Imple-
mentation of Hyperspectral Image Classification based on Weighted
Markov Random Fields, in: Proceedings of the 2016 8th Workshop

30



on Hyperspectral Image and Signal Processing: Evolution in Re-
mote Sensing (WHISPERS), Los Angeles, CA, USA, 2016, pp. 1–4.
doi:10.1109/WHISPERS.2016.8071791.
URL http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=

{&}arnumber=8071791{&}isnumber=8071655

[18] S. Sánchez, R. Ramalho, L. Sousa, A. Plaza, Real-time implementation
of remotely sensed hyperspectral image unmixing on GPUs, Journal
of Real-Time Image Processing 10 (3) (2015) 469–483. doi:10.1007/

s11554-012-0269-2.

[19] M. Ciznicki, K. Kurowski, A. Plaza, Graphics processing unit
implementation of JPEG2000 for hyperspectral image compres-
sion, Journal of Applied Remote Sensing 6 (1) (2012) 061507.
doi:10.1117/1.JRS.6.061507.
URL http://remotesensing.spiedigitallibrary.org/

article.aspx?doi=10.1117/1.JRS.6.061507

[20] J. A. Goodman, D. Kaeli, D. Schaa, Accelerating an imaging spec-
troscopy algorithm for submerged marine environments using graphics
processing units, IEEE Journal of Selected Topics in Applied Earth Ob-
servations and Remote Sensing 4 (3) (2011) 669–676. doi:10.1109/

JSTARS.2011.2108269.

[21] Z. P. Lee, K. L. Carder, T. G. Peacock, C. O. Davis, J. L. Mueller,
Method to derive ocean absorption coefficients from remote-sensing re-
flectance, Applied Optics 35 (3) (1996) 453. doi:10.1364/AO.35.000453.
URL https://www.osapublishing.org/abstract.cfm?URI=ao-35-3-

453

[22] Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, J. S. Patch, Hyper-
spectral remote sensing for shallow waters. I. A semianalytical model.,
Applied optics 37 (27) (1998) 6329–38. doi:10.1364/AO.37.006329.
URL http://www.ncbi.nlm.nih.gov/pubmed/18286131

[23] Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, J. S. Patch,
Hyperspectral remote sensing for shallow waters: 2 Deriving bottom
depths and water properties by optimization, Applied Optics 38 (18)
(1999) 3831. doi:10.1364/AO.38.003831.

31



URL https://www.osapublishing.org/abstract.cfm?URI=

ao-38-18-3831

[24] K. R. Kurte, S. S. Durbha, High resolution disaster data clustering us-
ing Graphics Processing Units, 2013 IEEE International Geoscience and
Remote Sensing Symposium - IGARSS (2013) 1696–1699doi:10.1109/
IGARSS.2013.6723121.
URL http://ieeexplore.ieee.org/document/6723121/

[25] U. M. Bhangale, S. S. Durbha, High performance SIFT feature
classification of VHR satellite imagery for disaster management,
ACM International Conference Proceeding Series (2015) 324–
329doi:10.1145/2791405.2791460.
URL https://www.scopus.com/inward/record.uri?eid=

2-s2.0-84960962995{&}partnerID=40{&}md5=

3cc624143217dd61823799f976d0beee{%}5Cnhttps:

//www.scopus.com/inward/record.uri?eid=2-s2.0-

84960962995{%}7B{&}{%}7DpartnerID=40{%}7B{&}{%}7Dmd5=

3cc624143217dd61823799f976d0beee

[26] G. J. Scott, G. A. Angelov, M. L. J. Reinig, E. C. Gaudiello, M. R.
England, cvTile: Multilevel parallel geospatial data processing with
OpenCV and CUDA, in: Proceedings of the 2015 IEEE International
Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy,
2015, pp. 139–142.

[27] S. Christgau, J. Spazier, B. Schnor, M. Hammitzsch, A. Babeyko,
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