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Abstract
Titanium dioxide  (TiO2) is a versatile and inexpensive material for extended applicability in several scientific and tech-
nological fields including photo-catalysis for industrial waste treatment, energy harvesting, and hydrogen production. 
In this work, we report the synthesis of  TiO2 thin film using hydrothermal method and investigations on the influence of 
reaction time and annealing temperature on growth mechanism of the  TiO2 nanorods. The synthesized  TiO2 films were 
studied by using UV–visible spectroscopy, Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscope 
and energy-dispersive X-ray spectroscopy (EDS). The XRD and Raman measurements revealed the formation of defect 
free and pure tetragonal  TiO2 rutile phase. The  TiO2 thin films show absorption band edge at around 420 nm in the UV–
visible spectrum and exhibit direct band gap value of 2.9 eV. The  TiO2 nanorods are demonstrated to grow randomly on 
the FTO substrate with changing reaction times but grow uniformly in a flower-like pattern with increasing annealing 
temperature. Investigation of the field emission properties of  TiO2 thin films (tested as field-emitter array) estimates the 
turn-on and threshold field at 4.06 and 7.06 V/µm at 10 and 100 µA/cm2, respectively.
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1 Introduction

Nanocrystalline semiconductor materials have been 
attracting significant attention recently because of their 
unique physical and chemical properties that makes them 
attractive for application in industrial waste treatment 
(photocatalysis) and solar energy conversion (photovol-
taics). Titanium dioxide  (TiO2) a wide bandgap material 
(3.4 eV) has emerged as the most studied of these pho-
tocatalysts owing to its high degradation efficiency with 
almost any organic molecule and many other attractive 
properties, including physical and chemical stability, low 
cost, good thin film transparency [1–5]. These germane 
properties make  TiO2 attractive materials for several appli-
cations including solar cell (DSSCs, QDSSCs, ETA Solar 
Cell) [6–10], photocatalysis [11], heterogeneous catalysis, 
environmental hazards removal [12], ceramics and paint 

industries [13–15], gas sensors [16, 17], and supercapaci-
tors [18–20]. Besides, owing to its non-toxicity and bio-
compatibility,  TiO2 is found appropriate for application 
in cosmetics, food products, pharmaceuticals, and in the 
biomedical applications [13]. These applications of  TiO2 are 
mainly dependent on their crystalline structure, particle 
size, optical properties, and morphology [4, 21–23]. Thus, 
one of the important aspects of the development of  TiO2 
nanoscience is our ability to control it size and morphology 
for specific applications such as e.g. photoconversion in 
solar cell and field emission arrays [24, 25]. Crystallographi-
cally,  TiO2 is naturally present in three phases, i.e. anatase, 
rutile, and brookite, with the rutile phase been the ther-
modynamically most stable phase. The anatase and rutile 
phase exhibit tetragonal crystalline structure, whereas the 
brookite phase has an orthorhombic structure [26, 27]. A 
variety of methods have been developed for the synthesis 
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of  TiO2 nanoparticles with tailorable material properties 
like sol–gel [28–31], electrodeposition [32, 33], chemical 
vapor deposition [34], electrochemical anodic oxidation 
[35], spray pyrolysis [36], template-assisted [33], chemical 
bath deposition [37], hydrothermal methods [38, 39], and 
many others. Among these methods, the hydrothermal 
method is commonly used for synthesis of nanocrystal-
line  TiO2 as it offers the flexibility to attain different particle 
sizes and morphologies. Large-scale synthesis of  TiO2 nan-
oparticles with large surface area is also achievable with 
the hydrothermal method, hence its utilization in indus-
trial-scale synthesis  TiO2 powders and thin films. Anderson 
et al. [40] reported the preparation of nanosize anatase 
and rutile  TiO2 by hydrothermal treatment of micro emul-
sions and investigated their activity for photocatalytic wet 
oxidation of phenol. Well-dispersed  TiO2 nano-crystals 
were synthesized by Yang et al. [41] using the hydrother-
mal methods. Rutile  TiO2 nanorods synthesized on a glass 
substrate at low temperature under hydrothermal condi-
tion was reported by Kakiuchi et al. [42]. Maurya et al. [43]. 
investigated the effect of temperature on rutile  TiO2 using 
the hydrolysis method and observed that the crystallin-
ity and density of rutile  TiO2 nanocrystals increases by 
increasing annealing temperature. The effect of repeated 
annealing temperature on the  TiO2 thin film and their 
structural, optical and electrical properties synthesized by 
dip coating sol–gel method was reported by Pakama et al. 
[44]. The hydrothermal synthesis of  TiO2 nanocrystals in 

different basic pHs and their applications in dye sensitized 
solar cells was reported by Anajafi et al. [45].

In the present work, synthesis of nano-structured  TiO2 
thin films was carried out by hydrothermal technique, 
wherein the influence of different deposition parameters 
such as growth time, reaction temperature, and the film 
annealing temperature on the optical, structural and mor-
phological properties have been investigated. The opti-
cal, morphological and structural characteristics of the 
synthesized  TiO2 thin films are studied by using various 
characterization methods such as X-ray diffraction (XRD), 
Raman spectroscopy, scanning electron microscopy (SEM) 
and UV–visible spectroscopy. The goal of the present work 
is to understand the correlation between the deposi-
tion parameters (reaction time and annealing tempera-
ture) and the growth mechanism of  TiO2 thin films. The 

Fig. 1  Experimental setup of 
 TiO2 thin film formation using 
hydrothermal method

Table 1  Process parameters employed during the deposition of 
 TiO2 thin films

The boldface text indicates the parameters varied in the set I and 
set II of experiments

Deposition parameter Set-I Set-II

Concentration 50 mM Ti source 50 mM Ti source
Deposition time 6–24 h 20 h
Reaction temperature 150 °C 150 °C
Annealing temperature 500 °C 300–600 °C
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field-emission properties of the synthesized  TiO2 thin films 
are investigated and the results corroborated with first-
principles density functional theory (DFT) calculations.

2  Experimental and computational details

2.1  Synthesis

All chemicals used in this work were analytical grade and 
used without further purification and treatment. For the 
synthesis of  TiO2 thin film, titanium (IV) butoxide (Sigma-
Aldrich), hydrochloric acid (HCl), ethanol and distilled 
water were subjected to hydrothermal treatment. Com-
mercially available FTO glass substrate was used for the 
growth of  TiO2 thin film. Titanium (IV) butoxide (5 g) was 
added to 10 ml HCl followed by the addition of 15 ml 
double distilled water. The resulting complex was then 
stirred at room temperature for half an hour using mag-
netic stirrer. The solution then transferred into locally 
fabricated cylindrical autoclave having dimensions 
8 cm × 9 cm × 1 cm (height × diameter × thickness). The 
detailed structure of autoclave is schematically shown in 
Fig. 1. The FTO glass substrates were initially cleaned ultra-
sonically with double distilled water and followed by an 
acetone wash. Then substrates were put in ethanol solu-
tion for about 5 min. The substrates were again cleaned 
with double distilled water and finally given a nitrogen 
flush for drying. This cleaning procedure permits good 
adhesion of film to substrates. Then cleaned glass sub-
strate was immersed in the solution in autoclave. After 
the addition of the reaction complexes and substrates, 
the autoclave was sealed tightly and placed in an oven at 
150 °C for different reaction times ranging from 6 to 24 h 
for the set-I samples. The autoclave was allowed to cool 
naturally to room temperature. After cooling the film was 
taken out from autoclave and annealed at different tem-
perature as shown in Table 1 for an hour. Two sets of films 
were deposited: in the first set, the  TiO2 thin films were 

deposited at different reaction times i.e. from 6 to 24 h 
by keeping other parameters (concentration of the solu-
tion, deposition temperature, and annealing temperature) 
constant, whereas in set-II samples, the depositions was 
carried out with reaction time of 20 h for all the samples, 
with the annealing temperature varied from 300 to 600 °C 
and other deposition parameters were kept constant as 
listed in Table 1.  

2.2  Material characterization

The average crystallite size, lattice parameter, inter plan-
ner distance, and phase identification of the deposited 
 TiO2 thin films were carried out using X-ray diffrac-
tion (XRD) pattern recorded using (Bruker D8 Advance 
machine, Germany) diffractometer with Cu Kα (λ = 1.5418 
Å) radiation at a grazing angle of 1° and diffraction 
angle (2θ) ranging from 20° to 80°. Raman spectra were 
recorded with Raman spectroscope (Jobin–Yvon Horibra 
LABRAM-HR) in the range of 200–1800 cm−1. The spec-
trometer has backscattering geometry for detection of 
Raman spectrum with a resolution of 1 cm−1. The excita-
tion source was 632.8 nm line of He–Ne laser. The possibil-
ity of laser induced crystallization in the film was avoided 
by keeping the power of laser beam at < 5 mW. The optical 
bandgap of the  TiO2 films was estimated from transmit-
tance and reflectance spectra of the films deposited on 
commercially available FTO glass substrates and were 
measured using a JASCO, V-670 UV–visible spectropho-
tometer in the range of 200–1100 nm. The morphological 
characteristics of the synthesized thin films are studied by 
a JEOL JSM-6360-LA and Philips XL-30 scanning electron 
microscope.

2.3  Computational details

The density functional theory (DFT) calculations were 
performed using the Vienna Ab initio Simulation Pack-
age (VASP) [46, 47], a periodic plane wave DFT code 

Fig. 2  X-ray diffraction pat-
terns of  TiO2 thin films depos-
ited at a different reaction 
times (6 h, 8 h, 12 h, 16 h, 20 h, 
24 h) and b different annealing 
temperatures. The asterisk (*) 
indicate the peaks of the FTO
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which includes the interactions between the core and 
valence elections using the Project Augmented Wave 
(PAW) method [48]. The calculations were performed 
using the screened hybrid functional as proposed by 
Heyd–Scuseria–Ernzerhof (HSE06) [49]. A percentage of 
the exact non-local Fock exchange (α = 0.25) was added 
to the Perdew, Burke, and Ernzerhof (PBE) functional [50] 
with a screening of ω = 0.11  bohr−1 applied in order to 
partition the Coulomb potential into long range (LR) and 
short range (SR) terms. An energy cut-off of 600 eV, and 
9 × 9×3 and 9 × 9×1 Monkhorst–Pack k-point mesh [51], 
was used to sample the sample the Brillouin zone of  TiO2 
bulk and (110) surface, respectively. All calculations were 
deemed to be converged when the forces on all atoms 
were less than 0.001 eV/Å. Rutile  TiO2 was modelled in the 
simple-tetragonal structure (Fig. 4a) with space group 
(P42/mnm) [52]. The optimized lattice constants were 
obtained at a  =  b  =  4.598Å, c  = 2.953Å, in close agree-
ment with experimental lattice constants (a  =  b = 4.594 Å 
and c = 2.959Å) [52]. The r-TiO2(110) surface was created 
from the optimized bulk material using the METADISE 
code [53], which ensures the creation of surfaces with zero 
dipole moment perpendicular to the surface plane [54]. In 
order to align the energies to the vacuum level, a slab-gap 
model (slab thickness of 20 Å and vacuum size of 15 Å) was 

constructed and the corresponding electrostatic poten-
tial was averaged along the c-direction, using the Macro 
Density package [55–57], as displayed in Fig. 4(c). The 
work function ( Φ ), which is the minimum energy needed 
to remove an electron from the bulk of a material through 
a surface to a point outside the material was calculated as 
Φ = Vvacuum − EF.

3  Results and discussion

The XRD pattern of the set-I and set-II of  TiO2 thin films 
as described under the synthesis section are depicted 
in Fig. 2a, b, respectively. The peak position and relative 
intensity of the  TiO2 phases were confirmed by compari-
son with standard JCPDS database. The diffraction peaks 
located at 2θ = 27.4°, 36.1°, 41.3°, 54.4°, 62.9° and 69.9° cor-
responds to the (110), (101), (111), (211), (002) and (301) 
[58–61] planes of rutile  TiO2 phases (JCPDS no. 076-1939), 
respectively. No peaks of other phase were detected, thus 
confirming the successful synthesis of high-purity rutile 
 TiO2 using hydrothermal method.

The analysis of XRD patterns confirms tetragonal rutile 
phase of  TiO2 for both the sets. The comparatively broad 
shoulder located at 2θ ~ 27.4° is observed in all the films, 

Fig. 3  Raman spectra of  TiO2 
films synthesized by hydro-
thermal technique process a 
at different reaction times b at 
different annealing tempera-
ture

Fig. 4  Optical absorption 
spectra of  TiO2 thin films syn-
thesized a at various reaction 
times b at different annealing 
temperatures
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which is due to the x-ray diffraction occurring from parallel 
planar layers [62]. The inter planner distance for first order 
diffraction is 3.26 Å, which is very well matched with the 
reported values (3.06 Å) in literature [63]. The increased 
value of inter-planer distance in the present study is attrib-
uted to the presence of residual molecules intercalated 
between the material layers. The estimated lattice con-
stants for the tetragonal structure is a = b=4.6038 Å and 
c = 2.957  Å, which are in good agreement with the 
reported values in the literature [50]. The average crystal-
lite size of  TiO2 is calculated by measuring FWHM in radian 
corresponding to (110) peaks by using the Scherer equa-
tion dx-ray =

0.9�

� cos(�)
 where, λ is the wavelength of diffracted 

radiation, θ is the Bragg angle and β is the line width 
(FWHM) in radians. The crystallite size of  TiO2 was found to 
be in the range of 23 nm to 34 nm for the film deposited 
at different deposition time in set I; whereas the maximum 
crystallite size of 26 nm was observed at 600 °C annealing 
temperature in set II. In hydrothermal processes, the depo-
sition time and annealing temperature promote the crys-
tallization process. The observed variation in the crystallite 
size may be due to the non-uniform lattice strain.

The Raman spectroscopy is a resourceful technique 
used for a fast and non-destructive investigation of a 
wide-range of Raman active modes of material. Shown 
in Fig. 3(a, b) are the Raman spectra for both sets of syn-
thesized  TiO2 thin films. Four prominent peaks located at 
143.2 cm−1, 235.6 cm−1, 447.1 cm−1 and 607.9 cm−1 are evi-
dent and can be assigned to Raman active mode with the 
symmetry of  Eg for rutile  TiO2 characterized by the tetrag-
onal space group of I41/amd and  A1g,  B1g, and  Eg which 
is illustrated by the tetragonal space group of P42/mnm 
for rutile  TiO2 [64–69]. The two prominent maxima peaks 
located at 447.1 cm−1  (Eg) and 607.9 cm−1  (A1g) correspond 
to O–Ti–O bending vibrations and Ti–O stretching vibra-
tions of monocrystalline rutile  TiO2 phase, respectively [37, 
67]. The observed prominent Raman shift at 235.6 cm−1, 
443 cm−1, 610 cm−1, corresponds to  B1g,  Eg,  A1g active 

mode of bulk rutile  TiO2, as reported by Begun et al. [70]. 
Raman shift peak positions shown in the Fig. 3 are in good 
agreement with those reported in the literature, indicat-
ing that synthesized  TiO2 is in the rutile phase. The Raman 
shift peak at 235 cm−1 is attributed to compound vibration 
peak arising due to multiple phonons scattering process, 
which is also considered a Raman peak of rutile [71]. There 
is no observation of Raman active mode for brookite and 
other organic species impurity phases, which lead us to 
conclude that the hydrothermal method is the suitable 
for the synthesis of high-quality rutile  TiO2 thin films for 
device fabrication.

The optical properties of  TiO2 thin films grown by 
hydrothermal on FTO glass were investigated from UV–vis-
ible spectroscopy. Figure 4 shows the optical absorption 
spectra of the  TiO2 thin films synthesized using hydrother-
mal technique at different reaction times and at different 
annealing temperatures. All the samples synthesized at 
different reaction times and at different annealing temper-
atures show sharp absorption edge at 423–430 nm. It also 
evident from Fig. 4 that the absorption edge shifts towards 
lower wavelength with increasing reaction times. The 
shift in the absorption edge towards lower wavelength 
is attributed to change in the  TiO2 particle size. All the 
synthesized  TiO2 thin films exhibit very strong and broad 
UV–visible absorption, similar to the observation by Xie 
et al. [38, 72] This characteristic is in agreement with the 
photo-protection function of the  TiO2 films thus formed, 
making them potential candidates for solar photon cap-
ture for photo electrochemical applications. The samples 
however, show a low absorption above 423 nm, which 
can be attributed to oxygen vacancy defect formation at 
the surface boundaries of  TiO2 [73] induced by the higher 
annealing temperatures. It leads to change of shape of 
the fundamental absorption edge of the material. As can 
be seen from Fig. 4, the absorption increases exponen-
tially towards shorter wavelengths, similar to previously 
reported absorption spectra in the literature [74–76].

Fig. 5  The (αhν)2 versus hν 
plots (Tauc’s plots) of  TiO2 
films synthesized a at reaction 
times between 6 and 24 h b at 
process temperature of 150 °C 
and duration of 20 h, (with 
annealing at 300 °C, 400 °C, 
500 °C, 600 °C)
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The optical band gap of the thin films was calcu-
lated from the dependence of the absorption coeffi-
cient (α) on the photon energy (hν) using Tauc relation: 
(αh�) = B(h� − ETauc)

2 , where B is Tauc’s constant which is 
a characteristic parameter independent of photon energy, 
α is the absorption coefficient, h is the Planck’s constant, ʋ 
is photon frequency, and  ETauc is the bandgap of the mate-
rial. The  ETauc estimate can be deduced by plotting (αE)2 
versus E and extrapolating the linear portion of the plot 
to the energy axis. Figure 5 shows the (αhν)2 versus (hν) 
photon energy plots for the  TiO2 thin films prepared at 
different reaction times and annealing temperatures. The 
intercept of the plotted tangent gives a good approxima-
tion of the band gap energy for this material. The band 
gap decreases from 2.9 to 2.8 eV when deposition time 
increases from 6 to 24 h. It is interesting to note that these 
values are smaller than the reported values of synthetic 
 TiO2 thin films [77–79]. From the absorption graph, it is 
confirmed that  TiO2 thin film responds the UV–visible 
region. The optical absorption of the synthesized sample 
was found between 423 and 430 nm which corresponds 
to the band gap of  TiO2 (2.9 eV).

We have employed first-principles DFT calculations 
to gain insight into the electronic structure and work 
function of rutile  TiO2 as the field emission properties 
are strongly dependent on the work function ( Φ ) of the 
emitter. Shown in Fig. 6 is the crystal structure of r-TiO2 
with the corresponding electronic partial density of state 
(PDOS). The badgap is predicted at 3.01 eV, which is good 

agreement with our experimental measurements and 
previous DFT calculations [80–82]. An analysis of PDOS 
reveals that valence band edge is composed mainly of the 
O-p whereas the and conduction band edge is composed 
mainly of Ti-d states, indicating that r-TiO2 is a O-p–Ti-d 
charge transfer semiconductor, which agrees with earlier 
theoretical predictions [80–82]. The work function was 
obtained for the most stable (110) surface of r-TiO2, which 
was cleaved from the geometrically optimized bulk. A vac-
uum region of length 15 Å was used in the perpendicular 
direction to the r-TiO2 (110) plane to avoid spurious inter-
actions with its own periodic image. Figure 6c shows the 
structure of the r-TiO2(110) surface and the correspond-
ing electrostatic potential as a function of coordinate Z 
(along the c-axis). The work function ( Φ ) is calculated as 
the difference between the potential energy of one elec-
tron between the Fermi level  (Ef) and the vacuum level  (Ev). 
The vacuum level is the potential energy, approaching a 
nearly constant value in the energy distributions in the 
vacuum region, which is obtained at 6.00 eV in the present 
study. The work function of the r-TiO2(110) surface is pre-
dicted at 5.23 eV, in excellent agreement with the values 
of 5.2–5.5 eV estimated from ultraviolet photoelectron 
spectroscopy measurements [83–87].

Scanning electron microscopy (SEM) is a convenient 
method for studying morphology and growth mecha-
nism of the  TiO2 nanorod on the FTO substrates. In the 
first part, we have investigated the effect of deposition 
time on growth mechanism of  TiO2 nanorods whiles 

Fig. 6  a Crystal structure of the 
rutile  TiO2; b the partial density 
of states (PDOS) and c the 
electrostatic potential of the 
(110) surface along coordinate 
Z considering vacuum as refer-
ence energy.  Ef,  Ev and Φ cor-
respond to the Fermi, vacuum 
energy and work function of 
the defined surface. The light 
blue and red balls correspond 
to Ti and O atoms, respectively
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keeping other deposition parameters constant. Shown in 
Fig. 7 are the SEM images of  TiO2 films at different reaction 
time. It is clear from the SEM images that an increase in 
the reaction time leads to enhancement in the growth of 
 TiO2 nanorods. The  TiO2 nanorods started to grow on FTO 
substrate at the initial reaction time (6 h), which increased 
in density after 12 h and at 24 h reaction time, the growth 
of the  TiO2 nanorods covers almost the entire surface areas 
of the FTO substrate. Shown below each SEM image is the 
schematic of the nature of the growth process, revealing 
the growth initiation at 6 h, increased density and ran-
dom growth after 12 h, and nearly full coverage of  TiO2 
nanorods on the FTO substrate at 24 h. Although there 
is clear evidence of enhanced growth of  TiO2 nanorods 

with increasing reaction times, we could not control pref-
erential growth orientations of  TiO2 nanorods on FTO sub-
strate in hydrothermal synthesis. In the second part, we 
have focused on the annealing temperature after synthesis 
of  TiO2 nanorods in the hydrothermal method. The Fig. 8 
shows images of  TiO2 nanorods at different annealing 
temperatures. We observed clear difference in the growth 
process of the  TiO2 nanorods at annealing temperature as 
300 °C, 500 °C, and 600 °C. At 300 °C, the  TiO2 nanorod 
started growing in FTO substrate in spherical microstruc-
tures. The initial stage of the growth process was limited 
by the premature termination of the growth surface, 
but with increased annealing temperature, the regularly 
shaped particles were transformed to onset of nano-rod 

Fig. 7  Scanning electron microscopy (SEM) micrographs of  TiO2 thin films at different reaction times (6, 12, and 24 h) 

Fig. 8  Scanning electron microscopy (SEM) micrographs of  TiO2 thin films at different annealing temperatures (300 °C, 500 °C, and 600 °C)
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bunch morphology and further to bunch of nanorods with 
anchoring on the ITO substrate. Compared to the random 
growth nature observed with different reaction times as in 
set I, the growth of the  TiO2 nanorod is pronounced in its 
random nature with changing annealing temperatures as 
in set II. The growth of the  TiO2 nanorod on the FTO sub-
strate resembles the growth of a flower in all directions. 
In schematic diagrams below the SEM images in Fig. 8, 
we demonstrate how  theTiO2 nanorods grow in uniform 
shape in a control manner. After the annealing tempera-
ture was increased to 500 °C, the  TiO2 nanorod density 
increased thereby showing the growth of nanorods from 
a point on the substrate and at 600 °C, the  TiO2 nanorods 
clearly look like a bunch of flowers. This demonstrates that 

by varying the annealing temperature we can grow  TiO2 
nanorod in a control manner with flower like morphol-
ogy. The  TiO2 thin films prepared by the hydrothermal 
technique are without pinholes and provided continuous 
coverage on the substrate. The uniformly formed rod-like 
structures of  TiO2 material makes the synthesized thin 
films better candidates for solar cell (DSSCs) and field emit-
ter arrays applications.

The  TiO2 thin films were characterized using AFM tech-
nique and shown in Fig. 9 are the 2-dimensional (2D) and 
3-dimensional (3D) AFM images of the  TiO2 thin film at 
24 h reaction time. The average roughness and root mean 
square (RMS) roughness for  TiO2 thin film estimated at 
418 nm and 518 nm, respectively.

Fig. 9  Atomic force micros-
copy (AFM) images of  TiO2 thin 
films at 24 h reaction time, a 
2-dimensional (2D) AFM image 
and b 3-dimensional (3D) AFM 
image

Fig. 10  The field emission 
properties from  TiO2 nanorods 
a current density (J) versus 
applied field (E), b Fowler–
Nordheim (F–N) plot showing 
non-linear behavior, c current 
stability at 10 µA and d photo-
graph of field emission pattern
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The pointed nanorod-likeTiO2 structures are fascinat-
ing structures and may be suitable for several applications 
including as field emitter arrays. We have thus investi-
gated the field emission properties of the  TiO2 nanorods 
as shown in Fig. 10: (a) current density (J) versus applied 
field (E), (b) F–N plot, (c) current stability at 10 µA, and (d) 
photograph of field emission pattern. The current density 
(J) is defined J = I/A, where I is the emission current and 
A is the area of emitter. The applied field (E) is defined 
as E = V/d, where V is the applied voltage, and d is the 
separation between the anode and cathode. According 
Fowler–Nordheim (F–N) theory, in J–E plot, the emission 
current from surface of emitter varies as exponentially 
[88].  TiO2 nanorods J–E plot showing exponential func-
tion. The electron emission quantum tunneling turn on 
and threshold field were found to be 4.06 and 7.06 V/µm 
at emission current densities of 10 and 100 µA/cm2 respec-
tively of  TiO2 nanorods. These values suggest that better 
turn on field of  TiO2 nanorods are recorded as compared to 
the ones reported in literature [89–91]. We have obtained 
the maximum current density of the  TiO2 nanorods to be 
168 µA/cm2 at an applied field of 7.35 V/µm. The F–N plot 
of  TiO2 nanorods defined by ln(J/E2) versus 1/E (Fig. 10(b)) 
shows a non-linear behavior, which is consistent with the 
semiconductors nature of the  TiO2 emitter. The emission 
current stability is very important for practical applications 
as cold cathode. The emission current (I) versus time (t) 
plot of the  TiO2 nanorods at 10 µA remained fairly stable 
for more than 3 h as shown Fig. 10c. The observed fluctua-
tions and spikes in emission current may be due to the 
adsorption or desorption of residual gas atoms/molecules 
on the surface of  TiO2 nanorod emitter in the presence of 
applied field. The field emission of  TiO2 nanorods patterns 
is shown Fig. 10d with the tiny bright spots representing 
electron emission from protruding sites of  TiO2 nanorods 
on the fluorescent screen as electron collector.

4  Conclusion

Large-area, very dense, and pin-hole free  TiO2 nanorod 
thin films were successfully synthesized by a simple and 
cost effective hydrothermal method. The effect of reac-
tion times and annealing temperatures on the growth 
mechanisms (size and shape) of the  TiO2 nanorods was sys-
tematically studied. The  TiO2 nanorods are demonstrated 
to grow randomly on the FTO substrate with changing 
reaction times but grow uniformly in a flower-like pattern 
with increasing annealing temperature. Recorded X-ray 
diffraction patterns, UV–VIS spectra, and Atomic force 
microscope images showed that the crystallinity in  TiO2 
thin films is significantly affected by increasing anneal-
ing temperature. The optical properties investigated 

experimentally and further corroborated with first-princi-
ples density functional theory calculations show the  TiO2 
thin films have high absorption coefficient and a direct 
bandgap in the range 2.8–3.0 eV, which is slightly smaller 
than the bandgap of bulk rutile  TiO2. The  TiO2 nanorods 
exhibit moderate field emission properties and have turn 
on field of 7.35 V/μm and good field emission stability. 
These results indicate that  TiO2 nanorods thin films may be 
promising candidates for applications in electron-emitting 
nano devices.
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