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Abstract
Shell structures are some of the most widely used in engineering applications. Flat plates, stiffened panels, and wing ribs
are each examples of components for which the design features may be dictated by the critical buckling load. Despite
this practical significance, there exists only a handful of studies in the literature documenting applications of topology
optimization which consider buckling performance. This is due to several issues innate to this domain, including mode
switching, spurious behavior in void regions, and the presence of repeated eigenvalues. Herein, we propose a level set method
capable of effectively optimizing structures despite these challenges in the context of linear buckling. We demonstrate the
usefulness of such in the design of several common shell structures and explore the trade-off between stiffness and buckling
load performance.
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Nomenclature

β = Heaviside function shift parameter
C = Compliance
cp = Regularization parameter
cb = Buckling Pareto factor
� = Width of Heaviside transition zone
δ(.) = Delta function
Ei = Young’s modulus of domain i

f = Force vector
γ = Boundary point move limit
H(.) = Heaviside function
hi = Thickness of domain i

Responsible Editor: YoonYoung Kim

� Scott Townsend
townsends3@cf.ac.uk

H. Alicia Kim
alicia@ucsd.edu

1 School of Engineering, Cardiff University, Cardiff,
CF24 3AA, UK

2 Department of Structural Engineering,
University of California, San Diego, CA, 92093, USA

J = Objective
K = Stiffness matrix
Ks(u) = Stress stiffness matrix
M = Mass matrix
λ = Buckling eigenvalue
λaux = Auxiliary variable
m = Mass
ng = Acceleration due to gravity
νi = Poisson’s ratio of domain i

P = Perimeter
φ = Level set function
φ = Vector of φ values at level set grid points
ψ = Vector of φ values at finite element nodes
�φ = Change in φ values at level set grid points
�φb = Change in φ values at the boundary points
pj = Vector to integrate element j nodal values
ρi = Mass density of domain i

T = Linear map between φ and ψ

u = Displacement vector
ua = Ddjoint vector
v = Buckling eigenvector
wj = Volume fraction of finite element j
wj = Vector to integrate element j nodal values
z = Vector used to identify deflection along z-axis
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1 Introduction

There is recent and renewed interest in topology opti-
mization methods that include consideration of buckling
behavior. This results from the combination of two factors:
(1) Topology optimization is beginning to find application
in more complicated structures such as aircraft compo-
nents (Aage et al. 2017; Townsend et al. 2018) which are
often buckling-driven, and (2) There is a documented ten-
dency for structural optimization methods considering only
weight and stiffness to produce designs with poor stability
(Rozvany 1996; Rahmatalla and Swan 2003).

Numerous efforts have centered on buckling-driven
optimization of frame and truss structures, where the design
variables typically comprise the cross-sectional features
of members in a fixed ground structure (Zhou 1996;
Rozvany 1996; Guo et al. 2001). Relatively few works
appear in the literature concerning buckling-driven topology
optimization of continua, though such structures stand to
benefit substantially from these algorithms. In continuous
structures, tension and compression paths become more
difficult to discern, increasing the difficulty of intuitive
design. A recent note by Ferrari and Sigmund (2018)
exposes the issues hampering routine consideration of
buckling behavior in this context, and those relevant to
the present study will be detailed here, along with the
works on buckling-driven topology optimization to date. It
is noted that we herein deal only with the linear buckling
response of structures. While consideration of non-linear
effects can be important in estimating realistic failure
loads (Pedersen and Pedersen 2018), the authors consider
the simplicity and computational efficiency afforded by
linear analysis retains its relevance in, at least, preliminary
design stages. Furthermore, development of topology
optimization algorithms which circumvent issues related to
linear buckling may make non-linear buckling design more
tractable in future works.

The first issue encountered in buckling-driven optimiza-
tion pertains to the multi-mode nature of the linear buckling
equations (Cook et al. 2007):

Ku = f (1a)

(K + λKs(u)) v = 0 (1b)

where K, f, and u denote the structural stiffness matrix,
applied load, and stationary deflection respectively. Ks
denotes the stress stiffness (also called geometric stiffness)
matrix. λ and v represent the eigenvalue/eigenvector pair
for a given buckling mode; there are as many pairs as there
are degrees of freedom in the system. Eigenvectors are
orthonormalized such that

vT
i Ksvj = δji (2)

The first positive buckling load factor λ1 is typically
the only of practical interest, since it signifies the onset
of instability (λ1 > 1 implies stability for a given f);
the simplest optimization formulations thus aim to either
minimize weight subject to a lower bound on λ1 (the
constrained λ1 formulations), or maximize λ1 subject to
an upper bound on weight (the max. λ1 formulations).
Both forms are problematic, since numerous modes may
be grouped closely, and the critical mode may switch
between design iterations. Thus, in order to avoid erratic
convergence in constrained formulations, a large number of
modes must be computed during the analysis stage, along
with the associated derivatives. Such provides the optimizer
with sufficient information to constrain all modes which
are currently active, and would become so on the next
iteration. For example, Bruyneel et al. (2008) minimized
the weight of a stiffened panel subject to buckling load
constraints using 42 discrete design variables; for such, 100
buckling modes were required to be computed in order to
stabilize convergence. The work by Dunning et al. (2016)
showed a similar trend in the topology optimization of
continua. In that work, a level set method (details of such
methods are the subject of Section 2) was applied to the
weight minimization of a 3D bracket structure, wherein
5 mode constraints failed to achieve convergence due to
mode switching, and a significant reduction in the number
of iterations was observed by increasing the number of
modes computed from 10 to 25. It is worth noting that
for such 3D continuum structures, computing eigenmodes
is computationally expensive, and eigensolvers other than
the commonly used ARPACK (Lehoucq et al. 1998) may
become preferable (Dunning et al. 2016).

To avoid mode switching in max. λ1 formulations,
one may convert the problem to a bound formulation,
whereby the objective becomes to maximize an auxiliary
variable, with constraints added such that said variable
remains less than all of the computed eigenvalues (Bendøse
and Sigmund 2003). Others have advocated an eigenvalue
separation approach, whereby additional constraints are
added to the problem such that adjacent modes remain
sufficiently separated (Stanford et al. 2014; Ferrari and
Sigmund 2018). It should be noted that this technique
prevents the identity of the critical buckling mode changing
throughout the optimization, as modes cannot switch
from their baseline ordering, which in theory could lead
to sub-optimal results. When applied to the topology
optimization of panel stiffeners (Stanford et al. 2014), the
eigenvalue separation technique was found to result in faster
convergence without loss in performance when compared
with the aforementioned auxiliary approach. The use of
an aggregation function, such as the popular KS function
(Kreisselmeier and Steinhauser 1980), also alleviates the
issue, since when aggregated, the order of eigenvalues is
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unimportant. Such aggregation techniques are common in
stress-based topology optimization (Verbart et al. 2017;
Picelli et al. 2018) and have begun to find application in
buckling load control (Ferrari and Sigmund 2018; Chin
and Kennedy 2016; Stanford 2017). Judicious choice of
the aggregation function parameters allows one to obtain a
smooth lower bound to λ1, provided an adequate number of
buckling modes are computed.

Compounding the many modes issue, standard practice
in topology optimization is to approximate voids via ersatz
material on a fixed finite element mesh. The presence of
such weak material can cause additional, spurious buckling
modes to appear, whereby the weak material dominates the
deflection response. An arbitrary number of such modes can
be grouped with a near-zero buckling load, and since a finite
number of modes is computed, this can cause the real modes
to be lost from the analysis. For the SIMP method, whereby
each finite element is assigned a density variable which
dictates Young’s modulus, a modified interpolation scheme
has been proposed (Bendøse and Sigmund 2003; Thomsen
et al. 2018; Gao and Ma 2015; Stanford and Beran 2013),
which advocates using different Young’s modulus values in
computingK andKs. The aforementioned level set study by
Dunning et al. (2016) utilized a similar approach, whereby
a penalization function was applied to reduce the stress
measured in void elements, thus increasing the associated
eigenvalues, making them non-critical.

The presence of repeated eigenvalues (λi = λi+1)
may also hamper optimization, since at such a point, the
standard eigenvalue derivative formula breaks down (such
will be shown by example in Section 2). Additionally,
the eigenvalues are no longer Fréchet-differentiable; this is
due to the re-ordering of buckling modes that may occur
from one iteration to the next. This typically presents as
oscillations in convergence when two eigenvalues become
close (Manickarajah et al. 1998). Fortunately, these issues
are well-documented (Seyranian et al. 1994): as will be
detailed in Section 2, an alternative derivative formula
can be used when repeated eigenvalues are detected, and
should the order of eigenvalues be important to the chosen
optimization method, the concept of generalized gradients
may be adopted (Rong et al. 2001; Seyranian et al. 1994;
Thomsen et al. 2018).

Summarizing the above, the importance of including
buckling performance in topology optimization methods
is well-recognized, and the literature documents a number
of approaches for circumventing mode-switching, spurious
buckling, and eigenvalue multiplicity, thus making the
endeavor possible. The authors are aware of only one
study to date which implements buckling constraints in
level set topology optimization, namely that by Dunning
et al. (2016), which demonstrated use on a bracket-like
component. The aim of the present work is to apply the

level set method to the buckling behavior of shell structures,
for which design tends to be strongly buckling-driven
when under compression. We utilize a sequential level set
topology optimization method which is shown to naturally
avoid the issues related to mode ordering and is capable
of simultaneously increasing several buckling loads at once
if required. We apply the method to two-thickness shell
structures (where each point on the structure is assigned one
of two thicknesses), as well as those with voids/cut-outs.
Inclusion of such topological features is shown to introduce
a trade-off between buckling load and structural stiffness;
such a relationship has been noted recently by others using
SIMP methods for 2D solid structures (Gao and Ma 2015;
Gao et al. 2017). The method is shown to be effective in
several design applications, including flat plates, stiffened
panels, and ribs in an aircraft wingbox.

2Methods

2.1 Level set and analysis methods

Level set methods (LSM) provide a way to define the
position and track the movement of geometric boundaries.
Though first applied to the motion of fluid interfaces
(Sethian 1999; Osher and Fedkiw 2003), this approach
is more recently gaining popularity in structural design,
specifically for topology optimization (Wang et al. 2003;
Allaire et al. 2004; Dunning and Kim 2015). In contrast
to the SIMP methods, LSM can avoid having to analyze
designs with significant regions of intermediate material
properties (gray elements), generally at the expense of
increasing the number of design iterations required, since
change is limited to the existing boundaries. We utilize a
scalar level set field φ, which is defined everywhere in
a given design space, and through which the location of
domain boundaries is implicitly defined:

φ (x) < 0 → x is inside domain 1

φ (x) > 0 → x is inside domain 2

φ (x) = 0 → x is on domain boundary

In the above, domains 1 and 2 can refer to solid
and void respectively, which represents a typical topology
optimization scenario. However, as will be shown below,
domain 2 can just as easily represent another material, the
same material at a different thickness, etc. The relationship
between φ and the resulting structure is depicted in Fig. 1a
and b. In this work, we discretize the level set function on a
two dimensional mesh comprising regular square elements,
with bilinear interpolation within a given element.

Herein, we assess the behavior of structures using the
finite element (FE) method.Wemake use of 4 node flat shell
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Fig. 1 The fixed grid level set method. Physical and material
properties are assigned to finite elements via the w variables, which
are mapped through φ and (3)

elements, comprised of a Mindlin-Reissner plate element
(Bathe and Dvorkin 1985) combined with a plane stress
element, using code developed in-house. In order to avoid
re-meshing, we employ a fixed grid analysis, whereby the
entire design domain is meshed once prior to optimization,
and the physical (plate thickness) and material (Young’s
modulus, Poisson’s ratio, and mass density) properties of
the elements are assigned in order to approximate the
behavior of an arbitrarily shaped structure. We achieve this
by first assigning a variable w to each finite element, in
the same fashion as density variables are assigned in the
SIMP method (note that we avoid using ρ in order to avoid
confusion with material density). This idea is shown in
Fig. 1c.

In our method, wj is computed in such a way as to
represent the volume fraction of finite element j which lies
in domain 1, namely:

wj = 1 −
∫∫∫


j
H (φ) .dV

∫∫∫

j

1 .dV
≡ 1 − wT

j H
(
ψj

)
(3)

where the above represent volume integrals over element
j , and H (·) denotes the Heaviside operator. The discrete
integration is done as for the finite element analysis, such
that the ψj vector contains the value of φ at the finite
element nodes, and wj is a vector formed by Gaussian
quadrature and used to integrate nodal values over the
element volume. It should be noted that finite element nodes

need not coincide with the nodes of the level set grid. In this
case, a linear map is obtained such that

ψ = Tφ (4)

where φ and ψ denote φ values on the level set grid
and finite element mesh nodes, respectively. We node that
multiple level sets can be utilized on a given structure, as
will be shown in Section 3. In order to maintain smoothness
in regard to design derivatives, the analytical Heaviside
operator is substituted for a polynomial approximation:

H (φ) ≈ 6 (z (φ))5 − 15 (z (φ))4 + 10 (z (φ))3 (5a)

z (φ) = φ + β + �

2�
(5b)

In the above, � represents the width of the smooth
transition zone, and a non-zero β acts to shift the curve on
the φ axis, which we will discuss uses for below. Once wj

has been computed, the stiffness matrix for element j is
found as follows:

Kj = wjK1
j + (

1 − wj

)
K2

j (6a)

Ki
j = Kj (Ei, ρi, νi, hi) (6b)

In the above, Ki
j represents the stiffness matrix of

element j computed using the physical and material
properties of domain i; E, ρ, ν, and h represent the Young’s
modulus, mass density, Poisson’s ratio, and thickness,
respectively. By observation, elements within the Heaviside
transition zone (closest to the structural boundary) will have
0 < wj < 1 and will thus retain intermediate properties
between domains 1 and 2. As such, this method produces
a region of gray elements and is not truly binary; such is a
consequence of using a fixed grid analysis method in lieu
of a fitted mesh. The same calculation is performed with
the element mass matrices, which are needed for structural
mass calculations. The stress stiffness matrices, however,
require special treatment. In the case where domains 1 and 2
both represent non-void structures, such as in the design of
two-thickness plates, the stress stiffness matrix is computed
in the same manner as (6a, b). If domain 2 represents a
void, such that E2 → 0, h2 → 0 or both, computing
Ks in the manner of (6a, b) is known to produce spurious
buckling modes. In these cases, we use the concept of stress
relaxation (Bendøse and Sigmund 2003), whereby

Ks,j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

If domain 2 is void:

wj

(
wjKs

1
,j + (

1 − wj

)
Ks

2
,j

)

Otherwise:
wjKs

1
,j + (

1 − wj

)
Ks

2
,j

(7a)

Ks
i
,j = Ks,j (Ei, ρi, νi, hi) (7b)
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It is noted that the above strategy is conceptually
equivalent to using the modified interpolation scheme
proposed for the SIMP buckling methods (Bendøse and
Sigmund 2003; Thomsen et al. 2018; Gao and Ma 2015).
The effect of using the relaxed formulation is depicted
in Fig. 2. For the structure shown, E1 = 200 GPa,
E2 = 10−6 GPa, ν1 = ν2 = 0.3, h1 = 30 mm,
h2 = 0.1 mm. That is, domain 2 was given properties
to approximate a void region. Simply supported conditions
were enforced on all boundaries and a uniformly distributed
compressive load was applied to the vertical edges. As for
all subsequent analyses, the static problem (1a) was solved
using the HSL MA57 solver (HSL 2002), and (1b) with
ARPACK (Lehoucq et al. 1998). Without stress relaxation,
the first several buckling modes are spurious, dominated
by deformation in the void region. Including relaxation
confines the behavior to that of the solid structure.

As noted above, it is possible to shift the soft Heaviside
function on the φ axis using the parameter β in (5a, b), and
Fig. 3 demonstrates the motivation for doing so. Namely, as
the width of a structural member (d1 in the inset of Fig. 3)
reduces towards zero, the non-shifted Heaviside function
with β = 0.0 produces a structural discontinuity, since
H

(
φ → 0−) = 0.5. Shifting the curve with β = � means

H
(
φ → 0−) = 1.0, and a resulting smooth reduction in

buckling load as structural members vanish. As the width of
structural members increases, the buckling load computed
using either formulations converges. The effect of this on
optimization convergence will be shown in Section 3.

Fig. 2 First buckling mode computed by using the original (6a, b) and
relaxed (7a) formula in the calculation of Ks. The relaxed formulation
removes spurious buckling modes, governed by structural deformation
in the void region. The structure shown comprised a 2m × 2m plate
discretized using 100 × 100 shell elements

Fig. 3 Shifting the smooth Heaviside function (5a, b) with β = �

removes the discontinuity in buckling load as structural members
vanish. The structure shown comprised a 2m × 2m plate discretized
using 100 × 100 shell elements

2.2 Problem formulation and derivatives

In each of the numerical examples given in Section 3,
we will aim to maximize the first buckling mode λ1.
As noted in Section 1, several modes are expected to
change order or become simultaneously-active during the
optimization; as such, objectives based solely on λ1 are
non-smooth. Also noted above, strategies to circumvent
this issue include the use of aggregation functions and
eigenvalue separation techniques. A third option, which we
adopt here, is to employ a bound problem formulation,
whereby maximization of λ1 is replaced by that of an
auxiliary variable λaux, with constraints added such that said
variable remains less than all of the computed eigenvalues
(Bendøse and Sigmund 2003):

max
φ, λaux

J = λaux − cp · P

subject to

{
λaux ≤ λi, i = 1, 2, . . .
m ≤ m∗ (mass constraint)

(8)

In the above, m and m∗ represent actual and target mass
values, respectively; P represents a perimeter measure,
added for regularization. The constant cp controls the
strength of the regularization. For all the numerical
examples presented in Section 3, we found that computing
the first 10 buckling modes was sufficient to ensure
optimization stability. That is, less than 10 modes were
active during the optimization of all structures depicted
in Section 3. Such a formulation retains the information
related to all computed eigenvalues, though mode switching
can still affect convergence if the order of eigenvalues is
relevant to the chosen optimization algorithm (such as when
performing line search, etc.). In such cases, mode tracking
can be employed, which allows modes to cross without
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being re-ordered (Eldred et al. 1995). As will be explained
in Section 2.3, we herein utilize a sequential algorithm for
which the order of eigenvalues is unimportant. In order to
solve problem (8), we require the derivatives of m, P and
λi with respect to the topology, implicitly defined via φ. For
m and λi , we do this via the chain rule, first deriving with
respect to w, then converting to φ via (3). The mass m is
defined via the mass matrix:

m = zT Mz (9)

where the vector z contains 1 for deflection degrees of
freedom along the z-axis direction and zero elsewhere (note
that any translational direction could be used). For element
j, we thus have the following:

∂m

∂wj

= zT
j

∂Mj

∂wj

zj

= zT
j

(
M1

j − M2
j

)
zj (10)

The derivative of λi can be computed by pre-multiplying
(1b) by the eigenvector vi , then differentiating the
following:

vT
i (K + λKs(u)) vi = 0 (11)

vT
i

(
∂K
∂wj

+ ∂λ

∂wj

Ks + λi

∂Ks

∂wj

)

vi

+λi

(
vT
i [∇uKs] vi

)T ∂u
∂wj

= 0 (12)

Note that [∇uKs] represents the gradient of the stress
stiffness matrix with respect to the displacement vector. In
order to avoid computing the expensive ∂u

∂wj
term in (12), we

use the adjoint method. Pre-multiplying (1a) by an adjoint
vector ua, then differentiating the following:

uaT (Ku − f) = 0 (13)

uaT

(
∂K
∂wj

u + K
∂u
∂wj

− ∂f
∂wj

)

= 0 (14)

Since (14) is zero, we can add it to (12) without changing
the result. Doing this, and setting the terms in ∂u

∂wj
to zero,

we retrieve the standard eigenvalue sensitivity formula:

∂λi

∂wj

= −vT
i

(
∂K
∂wj

+ λi

∂Ks

∂wj

)

vi +uaT

(
∂K
∂wj

u − ∂f
∂wj

)

(15)

where

Kua = λivT
i [∇uKs] vi (16)

where we have made use of (2). The term ∂f
∂wj

is present
when the structure is subjected to design-dependent loading.
Herein, some of our examples include both static and self-
weight loading, such that f = fs + fw; the latter can be
computed as follows:

fw = ng zT M (17)

where ng accounts for gravity (for example, ng = −9.81
m/s2 for 1g loading at sea level). As such, the force
derivative is as follows:

∂f
∂wj

= ng zT
(
M1

j − M2
j

)
(18)

When repeated eigenvalues are present (λi = λi+1, etc.),
(15) does not give a unique value for ∂λi

∂wj
, since more

than one eigenvector becomes associated with it. That is,
one could choose to substitute either of the vi in (11) for
vi+1, and ultimately conclude a different value for ∂λi

∂wj
.

In such cases, it has been shown that in place of (15),
one should solve the following sub-eigenvalue problem
(Seyranian et al. 1994):

det

[

A + ∂λi

∂wj

B
]

= 0 (19)

where A and B are n×n matrices, where n is the eigenvalue
multiplicity, with element values as follows:

Aik = vT
i

(
∂K
∂wj

+λi

∂Ks

∂wj

)

vk−uaT

(
∂K
∂wj

u− ∂f
∂wj

)

(20)

Bik = vT
i Ksvk (21)

where

Kua = vT
k [∇uKs] vi (22)

In practice, retrieved eigenvalues are unlikely to be
exactly equal, and the switch from (15) to (19) can be made
according to a pre-specified tolerance, for example, when λi

and λi+1 differ by less than 1%, and are considered close.
To demonstrate the behavior of (15) and (19), consider

the following simple test problem:

K =
[

2w2 1 − w

1 − w 2

]

; Ks =
[

wu1 5 − 10u2
5 − 10u2 2w2u2

]

f =
[
2
w

]

; u =
[

u1
u2

]

(23)

System (23) has a repeated eigenvalue at w = 1, as
shown in Fig. 4a. Note that mode tracking has been applied
in order to color the lines. The solid and dashed lines in
Fig. 4b depict the values of ∂λi

∂w
computed using (15) and

(19) respectively; also shown are values obtained via central
finite difference. As shown, (15) is appropriate for all values
of w other than the exact point of multiplicity, where a
discontinuity occurs. In fact, for this system ,w = 1±10−16

was far enough from the multiplicity that (15) agreed with
the finite difference. The value obtained from (19) remains
smooth through the multiplicity, though quickly diverges
from (15), and the finite difference result, away from this
point.
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Fig. 4 Comparison of eigenvalue derivatives produced using (15),
(19), and central finite difference (FD) on the simple system (23).
Equation (19) retains smoothness through the point of eigenvalue
multiplicity, whereas (15) produces a discontinuity

We note that while this simple system demonstrates a
clear difference in the value of ∂λi

∂wj
using (15) and (19) in

the presence of repeated eigenvalues, we were unable to
produce such a difference using actual finite element models
of structures. For reference, each of the numerical examples
presented in Section 3 was run using both derivative
formulations (15) and (19), and found to produce the same
results to numerical precision. Based on the simple example
given above, this is most likely due to eigenvalues differing
by at least numerical precision at all times, which is enough
to validate (15). It has been noted that many results and
algorithms can be found in the literature which ignore the
possibility of repeated eigenvalues altogether for this reason
(Bendøse and Sigmund 2003).

Derivatives with respect to wj are mapped to the level set
field via (3), for example

∂m

∂φk

= − ∂m

∂wj

wT
j

dH
(
ψj

)

dφk

(24)

where φk is the φ value at level set mesh node k. The
perimeter P is estimated for element j as follows:

Pj =
∫∫∫


j

δ (φ) .dV ≡ pT
j δ

(
ψj

)
(25)

where, as in the calculation of wj , the discrete integration
is done as for the finite element analysis, such that the
ψj vector contains the value of φ at the finite element
nodes, and pj is a vector formed by Gaussian quadrature
and used to integrate nodal values over the element volume.
We note that this is not the true perimeter—for an exact
measure, the integrand should read (δ (φ) |∇φ|)—though
the amendment greatly simplifies the computations. As for
the wj calculation, we use a smooth Delta function defined
as the derivative of (5a). The perimeter derivative is then
simply

∂Pj

∂φk

= pT
j

dδ
(
ψj

)

dφk

(26)

Lastly, for all the numerical examples given in Section 3,
the compliance of the structure will be measured, and as
we will show, in some cases must also be incorporated into
the optimization method. Compliance and its derivative are
given as follows (Bendøse and Sigmund 2003):

C = uT Ku (27)
∂C

∂wj

= −uT ∂K
∂wj

u + 2uT ∂f
∂wj

(28)

2.3 Optimization algorithm

It is common practice to maintain φ as a signed-
distance function, such that |∇φ| = 1 is everywhere
in the computational domain; this ensures a well-behaved
boundary, both in terms of the percentage of finite elements
with intermediate w values and merging/splitting behavior
of boundaries. In order to convert an arbitrary φ field to a
signed distance function with the same boundary locations,
we use a combination of the marching squares and fast
marching algorithms (Osher and Fedkiw 2003); the former
locates a discrete set of boundary points xb, defined such
that φ (xb) = 0, while the latter propagates the |∇φ| = 1
property outwards to the remainder of the field.

In order to preserve the signed distance property through
design changes, it is apparent that the entire φ field is
not free to change arbitrarily; φ should only change in
ways that maintain the signed distance property. The fast
velocity extension algorithm proposed by Adalsteinsson and
Sethian (1999) details a method to propagate changes at
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the boundary �φb to changes in the rest of the field �φ

which achieves this preservation. The method detailed by
Adalsteinsson and Sethian (1999) assumes that the values of
change at the boundary nodes are known a priori; however,
since all the operations required by the method are linear on
the level set grid, one simply needs to track which boundary
nodes would contribute changes to the value of φ at each
of the level set nodes; then a linear operator can be formed
which allows the result of arbitrary changes to be computed.

That is to say, the operator
[

∂φ
∂φb

]
can be computed in the

following relation:

�φ =
[

∂φ

∂φb

]

�φb (29)

such that |∇ (φ + �φ)| = 1. Computationally, both fast
marching and fast velocity extension can be undertaken
simultaneously. Equation (29) allows the formulation of
optimization problems in terms of changes at the boundary
points only, which are subsequently propagated to the
entire field. We note that since the fast velocity extension
algorithm is only first-order accurate, we also re-initialize
the φ field using fast marching after each design update. It
is noted that the above procedure differs from other reported
level set topology optimization methods, which formulate
equations in terms of a velocity normal to the boundary,
which is propagated to the remainder of the field via the
Hamilton-Jacobi equation. The difference arises due to the
use of the smooth Heaviside to map structural properties,
which makes it possible to work with changes in φ directly.

In order to solve problem (8), our optimization method
proceeds by solving sequential linear approximations to the
objective and constraints, where the variables comprise the
changes in φ value at the boundary points, �φb: At each
iteration, we utilize IPOPT (Wächter and Biegler 2006) to
solve the following sub-problem:

max
�φb, λaux

J = J0 +
{

∂J

∂φb

}T

�φb

subject to

⎧
⎪⎪⎨

⎪⎪⎩

λaux ≤ λ0,i +
{

∂λi

∂φb

}T

�φb, i = 1, 2, . . .

m0 +
{

∂m
∂φb

}T

�φb ≤ m∗

−γ ≤ �φb,k ≤ γ

(30)

where J0, m0, and λ0,i denote values at the current iteration.
The value of γ denotes the move limit for a given boundary
point φ value and can be understood in the same way as
a trust region in other SLP algorithms. In this work, we
initially set γ to be half the width of a typical finite element
in the given mesh and update the value as follows: If the

projected objective value—J0 +
{

∂J
∂φb

}T

�φb—differs by

the real objective value by more than 1% for 10 sequential
iterations, γ is halved; such facilitates convergence for
SLP algorithms. Although not done here, logic could be

employed such that the move limit increases under certain
conditions to facilitate faster convergence.

By inspection of sub-problem (30), mode tracking need
not be employed, since the optimizer is required to maintain
all of the computed eigenvalues above a given value at the
next iteration, regardless of their ordering. Instability could
be encountered in cases where all of the computed modes
are being actively constrained; in such cases, modes which
are not computed at a given iteration could switch places
with one of the computed modes. In order to avoid this,
a sufficient number of modes must be computed during
the buckling analysis, such that not all are simultaneously
active. As noted above, we found 10 modes to be sufficient
for all numerical examples presented in Section 3.

The optimization procedure can be summarized as
follows: We begin by choosing an initial design and the
accompanying φ field. A set of boundary points are then
extracted using the marching squares algorithm, followed
by the fast marching method to re-initialize φ as a signed
distance function. At the same time, the relational matrix in
(29) is computed. Thewj is then assigned to all elements via
(3), followed by finite element analysis (1a) using the HSL
MA57 and ARPACK solvers. Once complete, the objective
function, constraint values, and the associated derivatives
are computed first with respect to w, then to φ as described
above, and finally to the boundary points via (29). We
then formulate the linearized sub-problem (30) and employ
IPOPT (Wächter and Biegler 2006) to select the optimal
design change �φb. Such is repeated until convergence,
which herein is deemed to occur when all constraints are
satisfied and the improvement in objective value is less
than 0.1% for 10 sequential design iterations. This is shown
diagrammatically in Fig. 5.

Fig. 5 Optimization method
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3 Numerical examples

We begin this section by studying two-thickness flat plates,
for which there are several benchmark designs available
in the literature. We then proceed to study the topology
optimization analogue; that is, plates with voids/cut-outs.
Panel stiffeners are then explored, for which the SIMP
method has been applied previously. Finally, we apply the
method to the ribs in an aircraft wingbox.

3.1 Flat plates

The first model comprises a 2 × 2 m flat steel plate (E =
200 GPa, ν = 0.3, ρ = 7850 kg/m3), which is edge-
loaded uniformly in the x−direction, with either simply
supported or clamped conditions on all edges as shown in
Fig. 6a. The finite element mesh comprised 100 × 100
square shell elements. Manickarajah et al. (1998) applied
the ESO topology optimization method to the buckling load
maximization of such a model, whereby each point on the
structure could take one of two pre-defined thicknesses hmin

or hmax > 0. The authors also compared their results with
theoretical optima identified previously in the literature, and
this problem is thus considered to serve as an appropriate
benchmark for the present work. Figure 6b and c depict the
first buckling modes for a uniform 15-mm thick steel plate
with simply supported and clamped boundary conditions,
respectively. Note that subsequent optimized designs will be
compared with these reference performance values.

Figure 7 depicts optimization results for the simply
supported plate with hmin = 10 mm, hmax = 20 mm

Fig. 6 Flat plate model; (b) and (c) depict the first buckling mode
computed for a uniform 15-mm thick steel plate, which serve as
reference values

Fig. 7 Simply supported, two-thickness flat plate optimization. Black
and gray regions represent plate thicknesses of 20 and 10 mm,
respectively

using problem formulation (8), with the target mass m∗
set equal to that of the uniform 15-mm thick reference
design, and regularization parameter cp = 0.01. This
small value for cp was found to have negligible effects on
the optimization progression, though produced qualitatively
smoother designs than were retrieved without its inclusion.
As mentioned above, the first 10 buckling modes were
computed during the finite element analysis (1b). As shown
in Fig. 7d, all performance metrics were scaled by the
constant reference values throughout the optimization in
order to have magnitudes on the order of 1. The compliance
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C and the second buckling load λ2 are also included in the
plot, though were not actively constrained in this case.

As per Fig. 7a, the initial design chosen comprised a
regular 2 × 2 array of holes, with radii chosen in order
to exactly satisfy the mass constraint. Figure 7b and c
depict the design progression through to the optimized
design shown in Fig. 7e, which possesses a buckling load
39% higher than the reference, uniform thickness design in
Fig. 6b. The optimized design bears a close resemblance
to the analogous design obtained by Manickarajah et al.
(1998), which reported a 37% increase in buckling load.
Those authors also compared the performance of such
two-thickness plates with results reported in the literature
for continuous thickness distributions; that is, where every
point in the plate can take on h ∈ [hmin, hmax], in
contrast to the binary distributions depicted herein. The
optima given by Levy (1996) and Pandey and Sherbourne
(1992) perform only 29% and 24% better, respectively,
than our reference design; it is thus apparent that binary
thickness distributions may be advantageous compared with
continuous distributions in regard to flat plate buckling
loads. It is worth noting that this design problem was
observed to be remarkably independent to the choice of
initial design. Figure 8 depicts the design progression for the
above design problem when using different initial designs.

Figure 9 depicts the optimization for the same plate
model with clamped boundary conditions on all sides. In
contrast to the simply supported counterpart, this design
becomes bimodal, with λ1 ≈ λ2 after iteration 10. As noted
in Section 2, the eigenvalues are not exactly equal, and in
this case differed by approximately 0.01% from iteration
10 until convergence. As mentioned previously, this was
enough separation to validate the use of (15) in computing
∂λi/∂w, and indeed the results in Fig. 9 were obtained
using (15) for the entire optimization loop. The smooth
convergence history depicted in Fig. 9d suggests that
derivatives remained accurate throughout. This is in contrast

Fig. 8 Design progression for the two-thickness simply supported
plate with alternate initial designs

z

x

y

0 max.

Fig. 9 Clamped, two-thickness flat plate optimization. Black and gray
regions represent plate thicknesses of 20 and 10 mm, respectively

to the convergence history reported by Manickarajah et al.
(1998), which underwent marked oscillation once the
buckling loads coalesced. The final designs obtained in
that work, however, are again very similar when compared
visually and performance-wise with that in Fig. 9e, which
achieved a buckling load increase of 63% with respect to the
reference, Fig. 6c.

As noted above, the convergence histories shown in
Figs. 7d and 9d included compliance, which was measured
though not constrained as part of the optimization. By
inspection, the value of compliance varied by only 1–2%
throughout the optimizations, even though the buckling load
varied by as much as 63%. This trend does not continue,
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however, when topological change is introduced; that is,
when the plates contain voids. Figure 10 presents the static
deflection and first buckling modes for two plates: The first
is the uniform 15-mm thick plate from earlier; the second
is a 30-mm thick plate with a single central hole, with
radius chosen to give the same mass as the uniform plate.
The void region was effected in this example, and all those
subsequent, via ersatz material with a Young’s modulus
Evoid/Esolid = 10−6. As shown, a vast (431%) increase in
buckling load is easily obtained by introducing the circular
void, though this accompanies a much higher (1561%)
increase in compliance and would most likely render the
structure unusable. Such a trade-off relationship has been
identified previously for 2D solid structures (Gao and Ma
2015; Gao et al. 2017). For this reason, for the remainder of
this section, we adopt a modified version of formulation (8),
which includes the compliance measure in the optimization
objective:

max
φ, λaux

J = cb · λaux − (1 − cb) · C − cp · P

subject to

{
λaux ≤ λi, i = 1, 2, . . .
m ≤ m∗ (mass constraint)

(31)

where cb ∈ [0, 1]. Formulation (31) facilitates the study
of Pareto trade-offs between compliance and buckling load.
Prior to doing so, we note that numerical experiments
indicated a much greater dependence of optimization on
the initial design choice when topology is included. For
example, Fig. 11 shows the performance and topology of
optima obtained using formulation (31) with cb = 0.00,
cp = 0.01; that is, minimum compliance designs, using
different initial designs and simply supported boundary
conditions. In general, the size of the features in the initial
design dictates those in the final design, and smaller features

Fig. 10 When topology is introduced into shell structures, increases in
buckling load can accompany disproportionate losses in stiffness

Fig. 11 Topology optimization of shell structures showed significant
dependence on the choice of initial design: (b), (c), and (d) show
minimum compliance designs and first buckling mode using initial
2 × 2, 4 × 4, and 8 × 8 hole arrays

facilitate stiffer optima. However, there are diminishing
returns on the performance increase, and also likely a
reduction in simulation accuracy, since for the designs with
small features, only a few finite elements are present across
the width of each structural member. In light of this, we
undertook subsequent investigation of these plates using an
initial 4×4 hole array, which strikes a compromise between
performance and feature size.

Figure 12 depicts a Pareto front using formulation (31)
with a fixed cp = 0.01 and a 30-mm thick plate. As
per Fig. 12a, the trend for both simply supported and
clamped boundary conditions is similar: compliance rises
modestly at lower buckling loads and exponentially at
higher buckling loads. The minimum compliance designs
for both boundary conditions (obtained with cb = 0.0) are
unimodal, with the first two modes coalescing at higher
buckling loads. Figure 12b–d and e–g depict a selection
of simply supported and clamped optima, respectively.
Topologically, the minimum compliance designs (with cb =
0.0) comprise stiffening elements almost entirely in the
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Fig. 12 Trade-off relationship between buckling load and compliance
for flat plate. b–d are simply supported designs, while e–g are
clamped. h–j depict the buckling modes for designs e–g. Note that the
y-axis in (a) has been truncated for clarity; for reference, the maximum
buckling load designs shown in d and g recordedC/Cref values of 12.3
and 14.0 respectively

load direction; cross-bracing members become prominent as
cb > 0 and designs with higher buckling loads are favored
by the optimizer. The maximum buckling load designs (with
cb = 1.0) vastly reduce the volume of stiffening elements
in the load direction, thus reducing the stress in the center
of the plate, where buckling occurs; such increases the
buckling load at the expense of stiffness. Note that the

y-axis of Fig. 12a has been truncated for clarity; for
reference, the maximum buckling load designs shown in
Fig. 12d and g recorded C/Cref values of 12.3 and 14.0
respectively. Also shown in Fig. 12h–j are the mode shapes
for the clamped optima. The minimum compliance design is
unimodal, and the mode shape takes the form of a half-sine
wave. The design with cb = 0.3 is bimodal, whereby the
half and full-sine waves coalesce. The maximum buckling
load design has shed the half-sine mode entirely, and instead
matches the full and one-and-a-half sine waves.

Figure 13 presents detailed optimization results for one
of the simply supported optima, with cb = 0.2. Figure 13e
shows the convergence history, both with and without
implementation of the soft Heaviside shift discussed in
Section 2. Without the Heaviside shift, the cross members
are prone to snapping (see Fig. 13g and h), since as per the
discussion on Fig. 3, this represents a discontinuity in the
buckling load: The optimizer is unaware that buckling load
will sharply decrease. Thus, two sharp drops in buckling
load are observed in Fig. 13e, which ultimately leads to
reduced buckling performance compared with the case
where the shift is present.

3.2 Panel stiffeners

We next present examples for the topology optimization
of stiffening members on a blade-stiffened panel. Bedair
(2009) reviews the importance of stiffened plates and
shells in a vast array of engineering applications, including
aircraft fuselages and wings, ship hulls, bridges, and off-
shore structures. The structural system comprises a face
sheet/skin, reinforced by a series of stiffeners attached
longitudinally (sometimes also orthogonally) with respect
to the applied load, as shown in Fig. 14. Dimensions of
the model studied herein were chosen to match those used
by Stanford et al. (2014), who undertook buckling load
maximization using a SIMP method. The model comprised
a 0.3 × 0.3 m skin, with three equally spaced longitudinal
stiffeners, each with a depth of 0.03 m. Both the stiffeners
and face sheet were assigned 1.27-mm thick aluminum
(E = 70 GPa, ν = 0.3, ρ = 2800 kg/m3). Simply
supported conditions were applied on all edges, and a load
was applied uniformly to the skin in the x−direction. The
mesh comprised 200 × 200 shell elements on the skin,
with 20 elements through the depth of the stiffeners. In
contrast to the flat plate examples above, we made use of
two level set fields: One to characterize the topology of
the central stiffener, and the other for the outside stiffeners,
which were made identical due to the symmetric loading.
As noted by Stanford et al. (2014), while many papers and
commercial software packages address parametric stiffened
panel design, whereby design variables comprise stiffener
dimensions, spacing, etc. Bhatia et al. (2011), few are able
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Fig. 13 Topology optimization of simply supported flat plate, with
cb = 0.2. Black and white regions represent 30-mm thick steel plate
and void, respectively. Shifting the Heaviside function with β = �

removes buckling load discontinuities and ultimately produces higher
performing designs

to further relax assumptions about structural form and allow
for topological changes, as we show herein.

For this example, we adopted problem formulation (8),
as numerical experiments revealed only minor dependence
of compliance on a given stiffener topology. Like Stanford
et al. (2014), we set the mass constraint to bem ≤ 0.85mref,
where mref = 0.42 kg is the mass of the uniform reference
design shown in Fig. 14. As mentioned above, the first 10
buckling modes were computed during the finite element
analysis (1b). Figure 15 presents the results of one such
optimization. The initial design was chosen such that the
level set boundary traced the rectangular perimeter of the
stiffeners. As such, the height and width of the stiffeners
are free to vary, and topological features can form on the
lower edge, where the stiffeners meet the face sheet. This
is observed as the optimization progresses in Fig. 15a–c.
The motivation for this initial design choice, rather than
introducing numerous holes in the body of the stiffeners, is

Fig. 14 Stiffened panel model; (c) depicts the first buckling mode
computed for a uniform 1.27-mm thick aluminum structure, which
serves as a reference value

that only 20 shell elements are present across the stiffener
height, which is considered too few to support complicated
topologies. The chosen initial design prevents the formation
of small structural features and is considered more likely to
accurately model the stiffener behavior.

The convergence history Fig. 15d documents an initial
reduction in buckling load which is caused by the optimizer
satisfying the mass constraint. Once m = m∗, the buckling
load increases and becomes trimodal (with λ1 = λ2 =
λ3). These three active modes are depicted alongside the
optimized design in Fig. 15e. Topologically, the final
design comprises two solid outside stiffeners with reduced
height compared with the reference, with the central
stiffener becoming arched. Although 15% lighter than the
uniform reference design, 93% of the buckling load is
maintained. The topology reported by Stanford et al. (2014)
is markedly different to that shown here, with far more
structural features present and resembling a truss. This
notwithstanding, the same 93% buckling load performance
was also reported by those authors. Such results reinforce
our previous observations regarding the strong dependence
of the optimization on the initial design choice and
demonstrate the non-convex nature of this problem.

To further explore this notion, we include optimization
results of the stiffened panel using two alternative initial
designs. The first is using the same FE mesh from above,
with an initial level set boundary at the ends and top of
the stiffeners, but not on the lower edge. Thus, the width
and height of the stiffeners are free to change, though the
arch-like features noted above are not able to form. The
second is using an FE mesh with seven stiffeners instead of
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Fig. 15 Topology optimization of stiffened panel. Black and transpar-
ent regions in the stiffeners represent 1.27-mm thick aluminum and
void, respectively

three. The results for both cases are presented in Fig. 16.
As shown in Fig. 16a–c and d–f, both cases progress to
the same final design, shown in Fig. 16h, and comprising
three stiffeners, the central being slightly higher than those
outer and all tapering noticeably at the load edges of the
face sheet. Such demonstrates the ability of the proposed
method to remove stiffening elements entirely, a feat not
easily achieved using parametric formulations. In this case,
the optimized design is bimodal and performs significantly
worse than the earlier design, this time retaining only 71%
of the reference buckling load.

Fig. 16 Topology optimization of stiffened panel, with alternate initial
designs. Black and transparent regions in the stiffeners represent 1.27-
mm thick aluminum and void, respectively. The solid and dashed lines
in g relate to the designs in (a)–(c) and (d)–(f) respectively. Note that
(a)–(c) and (d)–(f) depict intermediate designs; both starting designs
(a) and (d) progressed to the same final design shown in (h)

3.3Wingbox ribs

The last example we provide is for the topology optimiza-
tion of ribs in an aircraft wingbox. The model, shown in

1796



A level set topology optimization method for the buckling of shell structures

Fig. 17, consists of an internal leading and trailing edge spar
and ten ribs. Skin, in the shape of a NACA 0012 airfoil,
is fixed atop the ribs and spars, and four stringers span the
length of the wing on both the upper and lower skins. The
wing has a root chord of 1.0 m, aspect ratio of 3.0, taper ratio
of 0.5, and leading edge sweep angle of 18.4 ◦. The stringer
height is 10 mm. We note that this model was chosen quite
arbitrarily; this was due to the lack of a true benchmark
in the literature, as could be found for the flat plates and
stiffened panels above. While wingbox ribs have been sub-
jected to topology optimization methods by others Stanford
and Dunning (2014) and Krog et al. (2002), we are unaware
of an example which was buckling driven. Recently, Stan-
ford (2017) applied a SIMP method to wingbox stringers
and included several constraints including buckling loads,
though in that work, ribs were not optimized.

The finite element mesh for our chosen model comprised
69600 shell elements and for simplicity, the entire structure

Fig. 17 Aircraft wingbox model. c and d depict the static deflection
of the structure (magnified 1000 times) under the applied elliptical
loading with and without ribs present. e and f show the corresponding
first buckling mode

was assigned 2.0-mm thick aluminum (E = 70 GPa, ν =
0.3, ρ = 2800 kg/m3). The root edge was fixed, and a static
elliptic load was applied in the z−direction to every node in
the skin elements as follows:

fz = f root
z ·

√
1 − (y/3)2 (32)

where y is the y−coordinate of the node and f root
z is

the load value at the root; since all optima are compared
with reference values, this was set as 1.0 for simplicity.
While the above is a coarse approximation of aerodynamic
wing loading, it is considered sufficient to demonstrate the
method herein. It is noted that higher fidelity aerodynamic
loads induce twisting behavior and may significantly alter
the optimized designs reported herein. Self-weight was also
present in this example, with ng = −9.81 in (17). We
note that numerical experiments revealed the presence of
self-weight to be largely inconsequential for this structure.
In higher fidelity wing models, where engines, fuel tanks,
etc. are present, as well as consideration given to vibration
behavior and ground loads (e.g., a taxi bump), self-weight
is expected to carry more significance. We retain it here for
completeness. To undertake topology optimization on the
ribs of this structure, we require ten level set functions; the
grid aligned with rib 5 is present in Fig. 17a.

Figure 17c depicts the deflection of the reference
design—where all ribs are present and uniform—under the
applied elliptic and self-weight loading. Figure 17e depicts
the corresponding first buckling mode, which presents on
the upper skin towards the root, where compressive stress
is highest. Out of interest, we present in Fig. 17d and f
the behavior of the structure when all ribs are removed.
The static stiffness has increased by only 5%; however,
the absence of ribs results in a larger part of the upper
skin buckling (a larger buckling wavelength), since it is no
longer being broken into shorter panels; the buckling load
consequently reduced by a significant 23%.

We note that in the detailed design stage, the individual
panels, including the skin thickness and stringer geometry,
would need to be optimized considering numerous loading
conditions and many closely spaced buckling modes
are likely to be encountered; as will be shown below,
our examples demonstrate well-spaced buckling modes.
While this may be considered non-representative of real
structures, we include this example in order to demonstrate
simultaneous optimization of numerous level sets (one per
rib), as well as the potential to smoothly change the number
of ribs while respecting the active buckling constraints.

Figure 18 presents the results of topology optimization
using problem formulation (31) with both cb = 1.0 and
cb = 0.0. As earlier, the regularization was constant at
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Fig. 18 Topology optimization of wingbox. Black and transparent
regions in the ribs represent 2.0-mm thick aluminum and void,
respectively. Spars, skins, and stringers, shown semi-transparent, were
not subject to optimization

cp = 0.01. The mass constraint was set as m ≤ 0.96 mref,
where mref = 30.8 kg was the weight of the reference
design; such was chosen to force the optimizer to remove
a significant portion of rib structure. As mentioned above,
the first 10 buckling modes were computed during the finite
element analysis (1b). The initial design was chosen such
that level set boundaries were present at the leading and
trailing edges of each rib. As for the stiffened panel results
above, complicated topologies could not be supported on
the reasonably coarse rib mesh, and the initial design was

chosen to induce rib width changes instead of small-featured
structures which were found, via numerical experiment,
prone to form from initial designs with internal holes.

Topologically, the optimized design for cb = 1.0 in
Fig. 18b (maximum buckling load) retains most of the rib
structure near the root—enough to act as panel breakers,
and increase the buckling load by 1% with respect to the
reference design. Ribs 4–7 have been completely removed,
with structure returning in ribs 8–10 at the wing tip. As
for the stiffened panel example above, the convergence
history Fig. 18a documents smooth performance changes,
even when entire structural components disappear. The
compliance of this design increased by 2% with respect to
the reference. In contrast, the optimized design for cb = 0.0
in Fig. 18c (minimize compliance) retains part of each rib
(none were removed entirely). The buckling load dropped
by only 5% with respect to the reference, due to ribs 1–
3 closest to the root remaining largely present, forcing a
similar mode shape to the maximum buckling load design.
Compliance increased by 1%, half the increase of the
maximum buckling load design.

4 Conclusion

We herein documented and applied a level set topology
optimization method to the buckling of shell structures.
The method is equally applicable to structures with binary
thickness distributions, such as two-thickness plates, as well
as those with void regions such as cut-outs. In the latter
case, consideration of static stiffness should be made, as
a significant trade-off between buckling and compliance
becomes evident. Stress relaxation was employed to effec-
tively remove spurious buckling modes from void regions,
allowing entire members to be removed entirely during
optimization; such was demonstrated on panel stiffeners
and wingbox ribs. A smooth, shifted Heaviside function
was used in the definition of material properties, which
was shown to avoid singularities associated with vanish-
ing structural features, and facilities smooth optimization
convergence. The sequential optimization method adopted
avoids the need for mode-tracking, while allowing several
buckling modes to be increased simultaneously.

5 Replication of results

The finite element meshes, as well as the w distributions
for the optima reported, will be made available via
the Cardiff University data catalogue at http://doi.org/10.
17035/d.2019.0082440161. In addition, the open source
M2DO code, available at http://m2do.ucsd.edu/software, is
currently being extended to include buckling loads.
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