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Abstract 

Pavlovian conditioning procedures produce marked individual differences in the form of 

conditioned behavior.  For example, when rats are given conditioning trials in which the 

temporary insertion of a lever into an operant chamber (the conditioned stimulus, CS) is paired 

with the delivery of food (the unconditioned stimulus, US), they exhibit knowledge of the lever-

food relationship in different ways.  For some rats (known as sign-trackers) interactions with the 

lever dominate, while for others (goal-trackers) approaching the food well dominates.  A formal 

model of Pavlovian conditioning (HeiDI) attributes such individual differences in behavior to 

variations in the perceived salience of the CS and US.  An application of the model in which the 

perceived salience of the CS declines (i.e., adapts) across its duration, predicts changes in these 

individual differences within the presentation of the CS: The sign-tracking bias is predicted to 

decline and goal-tracking bias is predicted to increase across the presentation of a lever.  The 

accuracy of these predictions was confirmed though analysis of archival data from female and 

male rats.  

Keywords: Rat, sign-tracking, goal-tracking, HeiDI, inhibition of delay  
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Formal models of Pavlovian conditioning in non-human animals have traditionally given no 

consideration to individual differences in conditioned behavior (e.g., Rescorla & Wagner, 1972; 

Mackintosh, 1975; Pearce & Hall, 1980; Stout & Miller, 2007; Wagner, 1981).  This is remiss: 

Even simple conditioning procedures, which remain the principal test bed for such models, 

produce marked individual differences in the strength and nature of conditioned behavior.  For 

example, consider a rat that has been placed in a chamber and every now and then a retractable 

lever is inserted into the chamber (the conditioned stimulus, CS) and upon its retraction a food 

pellet is delivered to an adjacent food well (the unconditioned stimulus, US).   One conditioned 

behavior that develops in such a procedure is called goal-tracking (e.g., Boakes, 1977), where the 

rat approaches the food well during presentations of the CS, and another is called sign-tracking 

(e.g., Hearst & Jenkins, 1974), where the rat interacts with the lever.  It transpires that if a group 

of rats is given such training, then different rats will exhibit knowledge about the lever-food 

relationship in distinct ways: Some predominantly interact with the lever, others predominantly 

approach the food well, and the remainder exhibit more similar levels of the two behaviors (e.g., 

Iliescu, Hall, Wilkinson, Dwyer & Honey, 2018; Flagel, Akil & Robinson, 2009; Patitucci, 

Nelson, Dwyer & Honey, 2016; cf. Matzel et al., 2003).  This variation in conditioned behavior 

across rats is remarkably stable from one day of training to the next, and is thus appropriately 

described as an individual difference.  Most formal models of Pavlovian conditioning are not 

well placed to explain such qualitative differences in performance.  They assume that the 

relationship between the strength of a CS-US association (VCS-US) and performance is monotonic 

(e.g., Rescorla & Wagner, 1972).  This assumption does not allow a single acquired property 

(like associative strength, V) to be manifest in quite different ways across a group of rats.  We 

have recently described a theoretical model (HeiDI), which attempts to address this issue, 

alongside other challenging theoretical issues (Honey, Dwyer & Iliescu, 2020ab). 



              5 

 HeiDI uses trial-based learning rules to describe the formation of reciprocal associations 

between the representations of the CS and US; and a detailed description of its relationship with 

the model described by Rescorla and Wagner (1972; Wagner & Rescorla, 1972) can be found in 

Honey et al. (2020ab).  However, the principal differences between HeiDI and the Rescorla-

Wagner model are: HeiDI specifies rules governing the formation of the reciprocal (CS-US and 

US-CS) associations (Equations 1 and 2) and their combination (Equation 3) whereas the 

Rescorla-Wagner model did not; and HeiDI specifies how this combined associative strength is 

distributed into two components that affect CS-oriented behavior (e.g., sign-tracking) and US-

oriented behavior (e.g., goal tracking; Equations 4 and 5), whereas the Rescorla-Wagner model 

assumed a simple ordinal relationship between the strength of the CS-US association and 

conditioned responding on all behavioral measures. In Equation 1, the maximum strength of the 

CS-US association is 1 in units of V (denoted c), which is modulated by the value of the 

parameter US that is aligned to the perceived salience of the US (i.e., c.US).  In Equation 2, the 

maximum strength of the US-CS association is also 1 in units of V (denoted c), which is 

modulated by the value of the parameter CS that is aligned to the perceived salience of the CS 

(i.e., c.CS).  Changes in the strength of the CS-US association (VCS-US) and US-CS association 

(VUS-CS) are held to be determined by the value of the learning rate parameters for the CS (CS) 

and US (US) multiplied by the respective pooled error terms: (c.US – VTOTAL US) and (c.CS – 

VTOTAL CS).  VTOTAL US and VTOTAL CS represent the combined associative strengths of the 

stimuli that are present on a given trial with respect to the subscripted stimulus (i.e., US and CS, 

respectively).  In both equations, the learning rate parameters (CS and US) are confined to the 

unit interval: 0 ≤ CS, US ≤ 1; and both are dimensionless scalars roughly aligned to the 

(perceived) salience of the stimuli.  The model assumes that the perceived salience of a given 

stimulus (CS and US) can vary between different animals, but is fixed for a given animal.  This 

assumption provides grounds for individual differences in both the strength and nature of 
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conditioned responding once associative strength is coupled with suitable performance rules, 

which we shall come to shortly (Equations 4 and 5).  Returning to Equations 1 and 2, learning 

ceases when the aggregated associative strengths (e.g., VTOTAL US) equals the asymptote 

determined by the target of the association (e.g., c.US). 

(1) 

(2) 

 The strengths of the reciprocal associations are combined according to Equation 3, and the 

resulting VCOMB is distributed into CS-oriented responding (RCS; e.g., sign-tracking) and US-

oriented responding (RUS; e.g., goal-tracking) according to Equations 4 and 5, respectively.  In 

Equation 3, VCOMB combines VCS-US with the product of VCS-US and VUS-CS; the reciprocal of c is 

used to convert VCS-US into a dimensionless scalar.  The multiplicative term in Equation 3 means 

that the link directly activated by the presentation of the CS will constrain the impact of the 

indirectly activated reciprocal link.  According to Equations 4 and 5, the distribution of VCOMB 

into RCS and RUS is determined by the value of CS relative to VCS-US.  That is, this distribution is 

determined by the perceived salience of the CS (CS) relative to its capacity to activate the US 

representation (VCS-US); with the absolute value being used to ensure that the proportions take 

values ≤ 1 even when VCS-US takes a negative value.  As before, |VCS-US| is transformed into a 

dimensionless value by multiplying it by 1/c, which means that RCS and RUS are in units of V. 

                    (3) 

                             (4) 

                             (5) 
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 The analysis offered by HeiDI for individual variation in the form of conditioned 

responding rests on the assumption that there are individual differences in CS, which directly 

affect the values returned by Equations 4 and 5, and differences in US, which indirectly affect 

the values returned by Equations 4 and 5 through their impact on VCS-US.  Because VCS-US is 

influenced both by the asymptote that c.US sets, and through the values returned by Equation 1, 

then RCS and RUS can be said to be related to the perceived salience of the associatively activated 

US representation (determined by VCS-US).  In any case, as CS increases relative to VCS-US, RCS 

increases relative to RUS, and as VCS-US increases relative to CS, RUS increases relative to RCS. 

 As already noted in passing, HeiDI is currently formulated as a trial-based model: The 

associative changes (VCS-US and VUS-CS) described by Equations 1 and 2 ignore both the 

temporal order of the components of the trial, and the fact that the components are extended in 

time (see also, Lesaint, Sigaud, Flagel, Robinson, & Khamassi, 2014).  For this reason, the 

model does not capture variation in the tendency of a CS to elicit different forms of behavior 

(RCS and RUS) across its temporal extent.  The limited evidence regarding such variation is 

inconsistent.  In one study, there was a brief spike in goal-tracking within the first two seconds of 

lever onset, which was evident when the intertrial interval was 60s, but not when it was 120s; 

and sign-tracking increased progressively across the duration of the CS irrespective of the 

intertrial interval (Lee et al., 2018).  These results are rather surprising: Previous reports have 

shown that goal-tracking increases across the duration of a CS (see Holland, 1977; Nasser, Chen, 

Fiscella & Calu, 2015; see for further discussion and analysis, Cinotti, Marchand, Roesch, Girard 

& Khamassi, 2019).  Indeed, it is well established that as training progresses, conditioned 

responding becomes increasingly evident towards the end of a CS (an effect dubbed inhibition of 

delay by Pavlov, 1927; see pp. 61-62, Mackintosh, 1974).  In the only other study of this kind, 

the small subset of rats that engaged in both goal-tracking and sign-tracking showed an increase 

in goal-tracking and a decrease in sign-tracking across the lever presentations (Derman, 
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Schneider, Juarez, & Delamater, 2018; see Figures 1b and 3c, noting the corrigendum 

confirming that the legend for Figure 1b was reversed for the right-hand panel).  In the majority 

of the rats, who were sign-trackers, lever presses initially increased and then decreased across the 

presentation of the lever.  While any increase in responding over the first few seconds of a CS is 

likely to reflect, at least in part, the time taken to move to the manipulandum (e.g., the lever), the 

decline in this response towards the end of the lever presentation matches that seen the subset of 

rats that engaged in some goal-tracking.  The pattern of results observed in the small subset of 

the rats is of theoretical interest, as is the decline in conditioned lever presses that was observed 

in the majority of rats.  

 There are several interpretations of inhibition of delay.  For example, some models 

attribute such temporal control of conditioned behaviors to a process of timing (e.g., Gallistel & 

Gibbon, 2000; see also Savastano & Miller, 1998), while others assume that a CS can be broken 

down into a succession of overlapping elements that gain and lose associative strength according 

to standard associative rules (e.g., Vogel, Brandon & Wagner 2003).  But, these models do not 

address either how different forms of conditioned responding might change across a CS 

presentation, or how such responses might vary across individuals.  In the same way that 

individual differences in sign-tracking and goal-tracking are not accommodated by models in 

which a single process (timing or association) maps onto conditioned performance, differential 

changes in these conditioned behaviors across the duration of a CS are also problematic:  How 

could a single process (e.g., associative strength) affect two conditioned behaviors in different 

ways across the duration of the CS? 

 The aims of the current analyses were twofold:  To assess how sign-tracking and goal-

tracking vary across the duration of a CS (cf. Derman et al., 2018; Lee et al., 2018); and to 

determine whether a simple modification to HeiDI allows it to provide an account of such 

variation, which is routinely taken to reflect a process of timing (e.g., Gallistel & Gibbon, 2000; 
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see also Savastano & Miller, 1998) or the discrimination of successive parts of a CS (e.g., Vogel 

et al., 2003).  We examined the empirical issue using archival data from Iliescu et al. (2018).  

The simple modification to HeiDI that we considered was to allow the perceived salience of the 

CS (i.e., CS) to decline across its duration (e.g., according to an exponential decay function).  

This idea was briefly noted by Mackintosh (p. 62, 1974; see also, Pavlov, 1927, p. 104; Staddon, 

2005; Staddon & Higga, 1999; Wagner, 1981), who argued that such a decay process might 

enable the early and later parts of a CS to be discriminated, and thereby provide a basis for 

inhibition of delay.  However, within HeiDI, the effects of introducing a reduction in the 

perceived salience across a CS on learning and performance are more straightforward.  First, 

such a reduction would result in poorer learning to a CS that is extended in time, to the extent 

that the CS value at the point of US delivery is lower than at CS onset (in Equations 1 and 2).  

Second, the dynamic changes in CS across successive epochs of the CS could affect 

performance through application of Equations 4 and 5.  In fact, as we will confirm, this simple 

change results in a decline in sign-tracking and an increase in goal-tracking across a CS; with 

these changes interacting with the initial levels of CS relative to US.  It will be remembered that 

this was the pattern of results consistently observed in a small subset of the rats reported by 

Derman et al. (2018), but not that observed by Lee et al. (2018).  We will present formal 

simulations of the pattern of results predicted by HeiDI once the re-analysis of our empirical 

results has been presented.      

Experiments 1 and 2 

 Our analysis of the distribution of sign-tracking and goal-tracking across the duration of a 

CS was based on an analysis of archival data from two groups of rats given similar training, and 

taken from Experiment 1 (female rats) and Experiment 2 (male rats) in Iliescu et al. (2018).  Rats 

in Experiment 1 received 10-s presentations of one lever (L1; e.g., the lever positioned to the left 

of a food well) paired with the delivery of a single food pellet, and 10-s presentations of a second 
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lever (L2; e.g., the lever positioned to the right of a food well) that were not followed by food.  

For those in Experiment 2, both levers were paired with food.  Automated recordings of the 

interactions of rats with the levers (i.e., sign-tracking) and the food-well (i.e., goal-tracking) were 

used to classify the rats as sign-trackers (ST) and goal-trackers (GT).  Here, the rats were 

classified in the same way as in Iliescu et al. (2018).  This classification was based on whether 

their behavior was predominantly oriented towards the lever (group ST) or food well (group 

GT).  This bias is relatively continuous across our rats (see Figures 2 and 4, Iliescu et al., 2018). 

Dividing the rats into two relatively large groups on the basis of this bias has the advantage of 

including all of the rats in the analysis, but it inevitably means that the distinction between sign-

trackers and goal-trackers is not all-or-none.  Thus, both groups ST and GT will include rats that 

would be classified as ‘intermediates’ (e.g., Derman et al., 2018).  Our primary interest was to 

assess the distribution of the two forms of behavior across the 10-s lever presentations in groups 

ST and GT.  This assessment was conducted by dividing the 10-s presentations into successive 

2.5-s epochs, balancing the need for temporal granularity with securing a representative sample 

of behavior. 

     Method 

 Subjects.  The procedures for Experiments 1 and 2 were described in Iliescu et al. (2018).  

Sixteen female Sprague Dawley rats (mean ad lib weight = 321g; range: 280-366g; supplied by 

Charles River, UK) were used in Experiment 1.  They were naïve with respect to the apparatus 

and procedures, but had served in a behavioral task involving drinking different concentrations 

of sucrose.  Sixteen naïve male (outbred) Lister Hooded rats (mean ad lib weight = 317g; range: 

284-340g; these are a subset that received food pellets as in Experiment 1; supplied by Envigo, 

UK) were used in Experiment 2.1  In both experiments, rats were housed in groups ranging from 

 

1 The rats given sucrose as the US were excluded in this analysis, because their levels of 
responding were lower, making it difficult to detect changes in responding across the duration 
of the CS.   
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two to four in standard cages and maintained on 12-hr/12-hr light/dark cycle (lights on at 7 a.m.).  

The rats were maintained at between 85% and 95% of their ad lib weights by giving them 

restricted access to food at the end of each day in their home cages, where they had continuous 

access to water.  The research was conducted in accordance with Home Office regulations under 

the Animal (Scientific Procedures) Act 1986. 

 Apparatus.  Eight identical conditioning boxes (30×24×21 cm: H×W×D; Med Associates, 

Georgia, VT) were each placed in a sound-attenuating shell that incorporated a ventilation fan, 

which maintained the background noise at 68 dB(A).  The side walls of the boxes were 

constructed from aluminum; the front, back and ceiling were made from clear acrylic; and the 

floor was formed from 19 steel rods (4.8 mm diameter, 16 mm apart) placed above a stainless-

steel tray.  Food pellets (45 mg: supplied by MLab: Richmond, IN) were delivered to a recessed 

food well (aperture: 5.3×5.3 cm) in the center of the left wall at floor level.  The food well was 

equipped with infrared detectors that allowed the presence of the rat in the well to be 

automatically recorded.  When the detector was interrupted (e.g., when a rat’s snout entered the 

food well) a single response was registered.  Two retractable levers (4.5×1.8×0.2 cm) were 

located 3 cm to the left and right of the food well.  They were positioned at a height of 4.6 cm 

and 1.5 cm from the edge of the wall.  Depression of the lever by 4mm from its usual horizontal 

resting position was recorded as a response.  MED-PC software was employed to control the 

insertion of levers, delivery of food pellets, and to record food well entries and lever presses. 

 Procedure. The procedures for Experiments 1 and 2 were described in Iliescu et al. (2018).  

Rats had two 24-min pre-training sessions in which food pellets were delivered on a variable-

time (VT) 60-s schedule (range: 40–80s).  On each of the next 12 days, they received a single 

training session, which occurred at the same time of day for a given rat.  There were 40 trials in 

each session, 20 on which the left lever was inserted for 10s and then retracted, and 20 trials on 

which the right lever was inserted for 10s and was then withdrawn.  In Experiment 1, for half of 
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the rats, the retraction of the left lever was immediately followed by the delivery of one food 

pellet and presentations of the right lever were not reinforced; and for the other half this 

arrangement was reversed.  In Experiment 2, both levers were followed by the delivery of a food 

pellet.  The order in which the two levers were presented was random with the constraint that 

there were no more than three presentations of the same lever in succession.  The trials were 

delivered on a variable-time (VT) 60-s schedule (range: 40–80s).  There were additional 

manipulations in Iliescu et al. (2018; e.g., a change in the reinforcement contingencies after the 

12 training sessions), but these are not described further because we only analyzed the first 12 

training sessions.  

 Data analysis.  Successive training sessions were combined into 6,2-day blocks (T1-T6).  

At the end of the training phase, the rats were split into sign-trackers (group ST, ns=8) and goal-

trackers (group GT, ns=8), based on their tendency to engage with the lever and the food well.  A 

bias score was calculated using the number of lever presses and food-well entries for the 

reinforced lever, L1: (Goal-tracking - Sign-tracking) / (Goal-tracking + Sign-tracking).  A 

median split was used to divide rats into those with higher scores (group GT) and those with 

lower scores (group ST).  One key aim of the current re-analysis of the data it to directly 

compare goal- and sign-tracking tendencies.  However, using “raw” scores for both magazine 

entries and lever presses for this purpose is potentially problematic, because it requires the 

assumption that each lever press or magazine entry is equivalent in terms of reflecting sign- or 

goal-tracking strength.  This assumption is questionable because there is little reason to think the 

mapping between associative strength and responses is the same for all response types (indeed, 

the full HeiDI model specifies separate equations for transforming RCS and RUS into observable 

responses, see Honey et al., 2020ab) and the raw results indicate that overall there are higher 

levels of food well entries than lever presses.  Thus, in order to place lever-press and food-well 
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entry on the same scale, they were z-transformed prior to analysis2.  z-scores were calculated 

separately for each response (lever-press and food-well entries).  For lever presses this was equal 

to Value (a response level on a trial for a given rat) – Mean value of lever presses (across the 12 

days and all rats), all divided by the standard deviation for lever presses (across all 12 days and 

rats). Similarly, for food-well entries this was equal Value (a response level on a trial for a given 

rat) – Mean value of food-well entries (across the 12 days and rats), all divided by the standard 

deviation for food-well entries (across all 12 days and rats).  

 An R script was used to clean the data provided by the MedPC. The script extracted the 

responses (lever presses and food-well entries) only during the CS period. The script for the data 

cleaning is available on the OSF 

(https://osf.io/ka9w3/?view_only=753ea3b06ecd4ccf89550035bb60a6dc). The 10-s CS period 

was divided into four 2.5-s intervals: epoch 1, epoch 2, epoch 3 and epoch 4 and averaged across 

the experimental day.  For Experiment 1 this was calculated based on the response on the 

reinforced lever; and for Experiment 2 it was calculated as an average across both reinforced 

levers. 

 For manipulating the data, data cleaning, statistical analysis and data visualization, we used 

open source software R (RStudio, 2015). For data cleaning and manipulation, we used the 

“tidyr” (Wickham & Henry, 2018) and “dplyr” R packages (Wickham, Henry, & Muller, 2019).  

For hypothesis testing, we used the ’ez’ R package (Lawrence, 2016).  For data visualization and 

representation, we used the “ggplot2” (Wickham et al., 2018) R package, “cowplot” and 

“gridExtra” R packages (Auguie & Anotonov, 2017). The analyses were automatically reported 

in text in APA format style using the “apa” R package (Gromer, 2019). For analysis of variance 

 

2 Although only the transformed data are presented here, they key inferential results are the 
same for the raw and transformed data.  The analysis of the untransformed data can be found 
in the supplementary materials. 

https://osf.io/ka9w3/?view_only=753ea3b06ecd4ccf89550035bb60a6dc
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(ANOVA) when the sphericity assumption was violated, the analysis was reported with 

Greenhouse-Geisser correction. 

Results 

 The distribution of sign-tracking and goal-tracking across the four successive (2.5-s) 

epochs of the 10-s reinforced lever presentations was assessed over the 6 blocks of training.  

These results are summarized in Figures 1 and 2.  The six upper panels of Figure 1 (Experiment 

1) and Figure 2 (Experiment 2) depict how the distribution of the two forms of response change 

across training in Group ST.  The lower panels show the corresponding scores in Group GT.  

Lever press responses are indicative of sign-tracking behavior, while food-well entries reflect 

goal-tracking behavior.  The results were similar in Experiments 1 and 2, with the exception that 

the levels of sign-tracking in group ST were lower in Experiment 1 (when one lever was 

reinforced and the other nonreinforced) than in Experiment 2 (when both levers were 

reinforced).  This difference might reflect differences in the tendency to remain in the vicinity of 

the response panel as a consequence of the differing reinforcement contingencies.   Inspection of 

both figures reveals that by the end of training, both ST and GT groups displayed a pattern of 

responding whereby food-well entries (i.e. goal-tracking behavior) increased relative to lever 

press responses (i.e. sign-tracking behavior) across the period of the lever CS presentation.  

However, by definition, ST groups displayed generally higher levels of lever press responses, 

and fewer food-well entries, than the GT groups, and so the expression of this general trend 

differed between them.  Namely, as training proceeded in the ST groups, lever press responding 

was more evident than food-well entries early in the stimulus period, and that this difference was 

greatly reduced later in the stimulus primarily due to increases in food-well entries across the 

duration of the lever CS presentation (and indeed, the difference between lever press and food-

well entries was absent or even reversed in Experiment 2).  In contrast in the GT groups, as 

training progressed while lever press and food-well entries were similar early in the stimulus 



              15 

period (with lever press numerically higher than food-well entries in the first epoch during the 

latter blocks), goal-tracking dominated sign-tracking during the latter part of the stimulus: with 

the levels of sign-tracking decreasing and the levels of goal-tracking increased. 

 

Figure 1.  Experiment 1.  Mean (+SEM) z-transformed lever presses (black symbols) and food-
well entries (grey symbols) during reinforced lever presentations in groups ST (upper panels) 
and GT (lower panels).  The results from the 10-s lever presentations are broken down into 4 
successive 2.5-s epochs for each of the 6 blocks of training (T1-T6).  
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Figure 2.  Experiment 2.  Mean (+SEM) z-transformed lever presses (black symbols) and food-
well entries (grey symbols) during reinforced lever presentations in groups ST (upper panels) 
and GT (lower panels).  The results from the 10-s lever presentations are broken down into 4 
successive 2.5-s epochs for each of the 6 blocks of training (T1-T6).  
 

 This description of the results was confirmed through mixed ANOVA analyses with 

training block (T1-T6), epoch (1-4), and response type (lever press or food-well entry) as within-

subjects factors, and classification (group ST or GT) as the between-subjects factor.  For 

Experiment 1, the fact that the distribution of lever presses and food-well entries changed across 

the duration of the lever presentation was reflected in an interaction between response type and 

epoch, F(1.135, 15.883) = 5.57, p < .001, ηp
2 = .28, MSE = 0.96; a pattern that evolved across 

training blocks, as indicated by a block by response type by epoch interaction, F(15, 210) = 9.03, 

p < .001, ηp
2 = .39, MSE = 0.22.  In turn, the change in the distribution of responses across the 

period of lever presentation differed between groups ST and GT as indicated by a classification 
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by response type by epoch interaction, F(1.13, 15.85) = 4.91, p = .038, ηp
2 = .26, MSE = 0.96; 

which also evolved across training blocks, as indicated by a classification by block by response 

type by epoch interaction, F(15, 210) = 3.24, p < .001, ηp
2 = .19, MSE = 0.22.   

 The remainder of the ANOVA revealed main effects of block, F(2.84, 39.74) = 8.80, p < 

.001, ηp
2 = .39, MSE = 6.23 and epoch, F(1.26, 17.59) = 14.54, p < .001, ηp

2 = .51, MSE = 0.33, 

but not of classification, F(1, 14) = 0.07, p = .792 ηp
2 < .01, MSE = 6.23, or response type, F(1, 

14) = 0, p >.999, ηp
2 < .01, MSE = 8.8.  There were two-way interactions between block and 

classification, F(2.84, 39.74) = 3.53, p = .025, ηp
2 = .20, MSE = 0.5, response type and 

classification, F(1, 14) = 15.04, p = .002, ηp
2 = .52, MSE = 8.8 (reflecting the overall bias to 

lever press or food-well entry in ST and GT groups respectively), block and response type, 

F(2.52, 35.27) = 7.90, p < .001, ηp
2 = .36, MSE = 0.92, block and epoch, F(5.46, 76.45) = 7.47, p 

< .001, ηp
2 = .35, MSE = 0.1, but not between epoch and classification, F(1.26, 17.59) = 0.32, p 

= .627, ηp
2 = .02, MSE = 0.33.  There was also a significant 3-way interaction between block, 

response type and classification, F(2.52, 35.27) = 7.47, p < .001, ηp
2 = .35, MSE = 0.92, but no 

block by epoch by classification interaction, F(5.46, 76.45) = 2.15, p = .062, ηp
2 = .13, MSE = 

0.1.  

 The most theoretically important result here is the fact that food-well entries (i.e. goal-

tracking behavior) increased relative to lever presses (i.e. sign-tracking behavior) across the 

duration of the lever CS as training progressed.  However, the 4-way interaction indicates that 

the distribution of responses across the period of lever presentation differed between ST and GT 

groups, and this difference evolved across blocks.  Despite this, the general pattern of changes 

appears to be present in both ST and GT groups.  This interpretation was supported by simple 

main effect analyses (performed as within-subjects t-tests).   For block 1, food-well entries were 

significantly higher than lever presses in all epochs for group GT (smallest t(7) = 4.43, p = .003, 

d = 1.57), while for group ST food-well entries were significantly higher than lever presses in the 
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first two epochs (smallest t(7) = 3.59, p = .009, d = 1.27), but this difference was not significant 

in the last two epochs (largest t(7) = 2.08, p = .076, d = 0.74).  In contrast, the same analysis for 

block 6 revealed that for group ST, lever pressing was significantly higher than food-well entries 

in the first three epochs (smallest t(7) = -2.92, p = .022, d = -1.03), but not in the fourth epoch 

(t(7) = -2.14, p = .070, d = -0.76); whereas for group GT there was no significant difference 

between lever presses and food-well entries in the first or second epochs (largest t(7) = -1.38, p = 

.209, d = -0.49), while food-well entries were significantly higher than lever presses in the third 

and fourth epochs (smallest t(7) = 4.57, p = .003, d = 1.62).3  That is, by the end of training, both 

ST and GT groups displayed an increase in goal-tracking relative to sign-tracking across the 

duration of the lever that was not present at the start of training. For the ST group this was 

displayed as sign-tracking dominating goal-tracking early but not late in the stimulus period, 

while for the GT group is was displayed as goal-tracking dominating sign-tracking late but not 

early in the stimulus period. 

 A parallel ANOVA was conducted on the results from Experiment 2.  Again, the fact that 

the distribution of lever-press and food-well entries changed across the duration of the lever was 

reflected in an interaction between response type and epoch, F(1.63, 22.88) = 22.19, p < .001, ηp
2 

= .61, MSE = 1.18; a pattern that evolved across training blocks, as indicated by a block by 

 

3Further statistical analyses conducted on Blocks 2-5 revealed the following patterns of 
statistical significance.  Block 2: In group ST, the levels of the two responses did not differ 
during any epoch; whereas in group GT, there were more food well entries than lever presses 
during epoch 1 but not in other epochs.  Blocks 3 and 4:  In group ST, the levels of the two 
responses in block 3 did not differ during any epoch, whereas in block 4 there were more 
lever presses than food well entries during epochs 1 and 2, but no differences between the two 
responses during epochs 3 and 4.  In group GT, during both blocks there was no difference 
between the two types of response during epoch 1 (or in epoch 2 of Block 3), but on the 
remaining epochs there were more food well entries than lever presses. Block 5: In group ST, 
there were more lever presses than food well entries during epochs 1-3, but no difference in 
the two responses during epoch 4; whereas in group GT the levels of the two responses did 
not differ during epochs 1 and 2, but differed thereafter.  
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response type by epoch interaction, F(3.28, 45.94) = 17.82, p < .001, ηp
2 = .56, MSE = 0.26.  In 

Experiment 2, there was no classification by response type by epoch interaction, F(1.63, 22.88) = 

1.66, p = .214, ηp
2 = .11, MSE = 1.18; and no four-way interaction, F(3.28, 45.94) = 0.77, p = 

.528, ηp
2 = .05 MSE = 0.26.   

 The remainder of the ANOVA revealed main effects of block, F(2.58, 36.13) = 34.20, p < 

.001, ηp
2 = .71, MSE = 0.43, and epoch, F(1.83, 25.66) = 16.05, p < .001, ηp

2 = .53, MSE = 0.39, 

but not of classification, F(1, 14) = 0.20, p = .665, ηp
2 = .01, MSE = 5.17, or response type, F(1, 

14) = 0, p >.999, ηp
2 < .01, MSE = 6.6.  There were two-way interactions between classification 

and response type, F(1, 14) = 14.16, p = .002, ηp
2 = .50, MSE = 6.6 (reflecting the overall bias to 

lever press or food-well entry in ST and GT groups respectively), block and response type, F(5, 

70) = 2.72, p = .027, ηp
2 = .16, MSE = 0.55, block and epoch, F(4.91, 68.70) = 2.65, p = .031, ηp

2 

= .16, MSE = 0.1, but not between epoch and classification, F(1.83, 25.66) = 2.05, p = .152, ηp
2 

= .13, MSE = 0.39, or between block and classification, F(2.58, 36.13) = 0.97, p = .408, ηp
2 = 

.06, MSE = 0.43.  There were, however, significant 3-way interactions between block, response 

type and classification, F(5, 70) = 8.78, p < .001, ηp
2 = .39, MSE = 0.55, and between block, 

epoch and classification, F(4.91, 68.70) = 2.40, p = .047, ηp
2 = .15, MSE = 0.1.  

 To understand the nature the 3-way interactions just reported for the results of Experiment 

2, we conducted the same simple main effect analyses that were conducted for Experiment 1.   

During block 1, for group GT food-well entries were significantly higher than lever presses in 

epochs 1, 2, and 4 (smallest t(7) = 2.77, p = .028, d = 0.98) and no difference in epoch 3 (t(7) = 

2.04, p = .080, d = 0.72); whereas for group ST, food-well entries did not differ significantly 

from lever presses in any epoch (largest t(7) = 1.59, p = .156, d = 0.56).  In contrast, the same 

analysis for block 6 revealed that for group ST lever presses were significantly higher than food-

well entries in the first two epochs (smallest t(7) = -5.27, p = .001, d = -1.86), but not in the third 

or fourth epochs (largest t(7) = 0.99, p = .353, d = 0.35); whereas for group GT, lever presses 
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were higher than food-well entries in the first epoch (t(7) = -2.64, p = .033, d = -0.93), there was 

no significant difference in the second epoch (t(7) = -0.23, p = .823, d = -0.08), and there were 

more food-well entries than lever press rates in the third and fourth epochs (smallest t(7) = 4.79, 

p = .002, d = 1.69).4  

 The results from Experiments 1 and 2 show that the distribution of sign-tracking and goal-

tracking changes across a CS, and does so in a way that differs depending on whether a groups of 

rats has a propensity to sign-track (i.e., group ST) or to goal-track (i.e., group GT).  At the start 

of a CS, rats in group ST were more likely to sign-track than to goal-track and this pattern 

became less evident by the end of the CS.  Whereas for rats in group GT, there was little 

difference in their tendency to engage in sign-tracking or goal-tracking at the start of the CS, and 

their tendency to goal-track rather than sign-track emerged over the duration of the CS.  One 

simple formal analysis for this intriguing pattern of results in presented in the immediately 

following discussion.  

General Discussion 

 Individual differences in Pavlovian conditioning have been ignored by formal models of 

associative learning (e.g., Mackintosh, 1975; Pearce & Hall, 1980; Rescorla & Wagner, 1972; 

Stout & Miller, 2007; Wagner, 1981): Treated as little more than a nuisance variable, their nature 

 

4Further statistical analyses conducted on Blocks 2-5 revealed the following patterns of 
statistical significance.  Block 2: In group ST, the levels of the two responses did not differ 
during any epoch; whereas in group GT, there were more food-well entries than lever presses 
during epoch 2 but not in other epochs.  Blocks 3 and 4:  In group ST, there were more lever 
presses than food-well entries during epoch 1 (and epoch 2 of block 3), but no differences 
between the two responses elsewhere.  In group GT, during both blocks there was no 
difference between the two types of response during epochs 1 or 2, but on the remaining 
epochs there were more food-well entries than lever presses. Block 5: In group ST, there were 
more lever presses than food-well entries during epochs 1 or 2, but no difference in the two 
responses during epoch 3 or 4; whereas in group GT the levels lever press were higher than 
food-well entries in epoch 1, the levels of the two responses did not differ during epoch 2, and 
food-well entries were higher than lever press in epochs 3 and 4.  
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has been left unconsidered.  However, the fact that different measures of conditioned 

performance (e.g., sign-tracking and goal-tracking) can provide the basis for drawing opposing 

inferences about V is something that any theory of associative learning should be concerned 

with:  Is V greater in rats designated as sign-trackers or those designated as goal-trackers?  This 

question is clearly not sensible (cf. Akins, Domjan & Guttierez, 1994).  One needs a model in 

which the relationship between V and different forms of conditioned behavior is both specified 

and provides an analysis of the basis for individual differences in those behaviors. 

 We have developed a model of Pavlovian conditioning, HeiDI, which addresses how 

associative strength is distributed between different forms of conditioned responding (CS-

oriented or US-oriented; Honey et al., 2020ab).  The critical assumption, which enables HeiDI to 

provide an analysis of individual differences in the form of conditioned responding, is that the 

perceived salience of the CS (i.e., CS) and US (US) differs between animals.  Once these 

differences are coupled with appropriate learning and performance rules (Equations 1-5), a 

coherent analysis can be developed for variation in the strength and form of conditioned 

behavior across different animals.  Briefly, if CS is high relative to US (and VCS-US) then CS-

oriented behavior dominates US-oriented behavior, and if US (and VCS-US) is high relative to CS 

then US-oriented behavior dominates CS-oriented behavior; and when the two parameters are 

relatively similar then the levels of CS-oriented and US-oriented behavior reflect this similarity.  

However, because HeiDI is a trial-based model it does not capture the temporal control of 

behavior across the duration of a CS: if one measures conditioned responding across a CS one 

finds that conditioned responding increases over its duration.  This effect is known as inhibition 

of delay (Pavlov, 1927).  Here, we analyzed how sign-tracking and goal-tracking change across 

the duration of a CS. 

 The pattern of results was clear: Rats designated as sign-trackers were more likely to 

exhibit their bias to sign-track at the start of the CS, while rats designated as goal-trackers were 
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more likely to exhibit their bias to goal-track toward the end of the CS.  At no point during the 6 

blocks of training did the pattern of results observed in the groups designated as sign-trackers 

and goal-trackers match that reported in Lee et al. (2018).  However, they did match closely 

those reported by Derman et al. (2018), especially in the small subset of rats that engaged in both 

sign-tracking and goal-tracking.  The basis for these differing patterns of results is not clear, and 

any analysis would be necessarily speculative.  For example, there is certainly between-strain 

variability in the extent to which sign-tracking and goal-tracking are evident (for a review, see 

Fitzpatrick et al., 2013); and unlike our rats, those from the Lee et al. (2018) study showed more 

sign-tracking than goal-tracking.  However, the majority of rats from Derman et al. (2018) 

showed more sign-tracking than goal-tracking and yet the pattern of results that they observed 

was similar to that observed here.  Similarly, while Experiments 1 and 2 used 2.5-second epochs, 

both Lee et al. (2018) and Derman et al. (2018) used 1-second epochs, and yet the results of 

Experiments 1 and 2 were similar to the latter, and both differed from the former.  Perhaps the 

most obvious procedural difference between Lee et al. (2018), on the one hand, and the studies 

reported here and by Derman et al (2018), on the other hand, is that only in Lee et al. (2018) did 

rats wear headpieces necessary to assess dopamine using fast scan cyclic voltammetry.  This 

addition might have interacted with their willingness to place their heads into a small aperture 

during the CS.  There are, after all, other demonstrations that standard inhibition of delay effects 

can be observed using food-well entries (e.g., Delamater & Holland, 2008; Kirkpatrick & 

Church, 2004). 

 Before demonstrating how a simple adaptation of HeiDI enabled it to simulate the patterns 

of sign- and goal-tracking observed in sign-trackers and goal-trackers in Experiments 1 and 2, 

we will first briefly consider alternative accounts.  One seductive account for the results of 

Experiments 1 and 2 rests on the idea that the two responses (lever pressing and food-well 

entries) simply compete with one another at the level of behavioral output: The rats cannot 
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readily interact with the lever and food well at the same time (e.g., Dwyer, Starns & Honey, 

2009).  A moment’s reflection, however, reveals the inadequacy of such an analysis: Why does 

sign-tracking compete more effectively with goal-tracking at the onset of the presentation of the 

lever, but less effectively at the end?  One could make some additional assumptions. For 

example, one might assume that the early parts of the lever presentation have lower associative 

strength than the later parts (e.g., Vogel et al., 2003), and that lower associative strength gives 

rise to sign-tracking and higher levels of associative strength to goal-tracking.  However, one 

would still need to specify why it is that lower levels of associative strength are evident as sign-

tracking and higher levels as goal-tracking.  Indeed one would also need to explain the fact that 

over the course of training, when associative strength is increasing, sign-tracking increases.  This 

form of explanation for the results of Experiments 1 and 2 is superficially seductive: It appears 

simple but it is in fact difficult to develop in a way that is consistent with the results (for further 

discussion of this issue, see Honey, Dwyer & Iliescu, 2020c). 

 Another potential account aligns different behaviors (sign-tracking and goal-tracking) to 

different learnt content.  For example, Timberlake (1993) has advocated a behavior systems 

approach in which “Learning is assumed to occur at many points in a behavior system, in varied 

forms, and as a function of conditions ranging from simple stimulus exposure to explicit 

response contingencies.” (p. 118-119); and proceeded to argue that “it would not be surprising to 

find “causality detectors” (one or more mechanisms for indexing contingencies between stimuli) 

in most systems and species, although it would be surprising if they were identical in operation.” 

(p. 122).  This approach is clearly well equipped to deal with multiple forms of learnt behaviors 

originating from different parts of a behavior system.  Similarly, one might align sign-tracking to 

preparatory conditioning, insofar as it is more marked at the start of a CS than the end, and goal-

tacking to consummatory conditioning (Konorski, 1967).  However, neither the behavior systems 

approach nor the appeal to the distinction between consummatory and preparatory conditioning 
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provides an obvious analysis for individual differences in sign-tracking and goal-tracking.  We 

now return to a model that does provide such an analysis: HeiDI. 

 In the introduction we noted that one way in which HeiDI could be modified is to let the 

perceived salience of the CS (CS) decline across its duration, and then to re-set at the start of the 

next trial (p. 62, Mackintosh, 1974; see also, Pavlov, 1927, p. 104; Staddon, 2005; Staddon & 

Higga, 1999; Wagner, 1981).  For the sake of simplicity and for the time being, we will assume 

that re-setting is complete and the degree of salience decline consistent, while acknowledging it 

might interact with details of the conditioning procedure (e.g., the intertrial interval or the length 

of the CS).  We will now demonstrate how simply allowing the perceived salience of a CS to 

decline across its duration enables HeiDI to capture – to a first approximation – the results of 

Experiments 1 and 2.  In doing so, we show how a phenomenon that seems to reflect a process of 

timing (i.e., inhibition of delay) can be explained more economically.  The upper panels of 

Figure 3 show the results of simulations in which the initial CS value (i.e., at the start of the CS) 

was set at either 0.30 (left panel) or 0.70 (right panel), while US was fixed at 0.50; and the lower 

panels show the results of simulations in which CS was set at 0.50 (i.e., at the start of the CS) 

and US was set at either 0.30 (left panel) or 0.70 (right panel).  The CS value in the fourth epoch 

was used to calculate the change in associative strength in Equations 1 and 2.   If we ignore, for 

the time being, variations in RCS and RUS across the epochs within a trial, then the patterns of 

changes in RCS and RUS matches those observed when there is no CS decay function.  Thus, if 

CS is set at a higher value than US (panels B and C), then the values returned for RCS tend to be 

larger than those returned for RUS; but if US is set at a higher value than CS (panels A and D), 

then the values returned for RUS tend to be larger than those returned for RCS (cf. Honey et al., 

2020a).  One interesting (supplementary) observation is that in each case while the values 

returned for RCS increase according to a negatively accelerated function, those returned for RUS 

increase according to a sigmoidal function.  This observation reflects the fact while the value of 
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CS is substituted into Equations 4 and 5, the influence of varying US is through |VCS-US|, which 

increases across training trials.  This has the consequence that the distribution of VCOMB, which 

itself rises according to a negatively accelerating function reflecting VCS-US and VUS-CS, is biased 

towards RCS at the start of training. 

 

Figure 3.  Simulations of performance across conditioning trials.  The VCOMB outputs used in 
Equations 4 and 5 to calculate RCS (black symbols) and RUS (grey symbols) were generated using 
Equations 1-3.  In panels A and B, at the start of a CS presentation CS was either .3 (A) or .7 (B) 
and US was fixed at .5; and in panels C and D, at the start of the CS presentation CS was fixed 
at .5 and US was either .3 (C) or .7 (D).  Across the 4 epochs of a trial, the value of CS was 
subject to exponential decay: CS(1 – 0.10)2

.  The terminal values of CS were used in Equations 
1 and 2, while the (within-trial) decaying values were used in Equations 4 and 5. 
  

 Of most interest here, however, is the way in which allowing the initial CS values to be 

subject to a process of adaptation or decay affects the pattern of performance across the duration 



              26 

of a CS.  In the simulations shown in Figure 3 the exponential decay function was: CS(1 – 

0.10)2.  When the starting values of CS were less than those of US (panels A and D), then as 

training progressed the tendency for the values returned for RUS to exceed those for RCS increases 

over the duration of the CS.  In contrast, when the starting values of US were less than CS 

(panels B and C), then as training progressed the tendency for the values returned for RCS to 

exceed those for RUS decreases over the duration of the CS.  To summarize: While a bias towards 

RCS (reflected in sign-tracking) is predicted to decrease across the duration of a CS, a bias 

towards RUS (reflected in goal-tacking) is predicted to become more evident over the duration of 

a CS.  This is the pattern of results that we observed towards the end of training in Experiments 1 

and 2 (see Figures 1 and 2; see Derman et al., 2018; but see Lee et al., 2018).5,6  
 

 Our new results show that individual variation in sign-tracking and goal-tracking change in 

orderly ways across the duration of the CS:  A sign-tracking bias becomes less apparent and 

goal-tracking bias becomes more evident across a CS.  HeiDI provides an account of these biases 

within a general process associative framework through assuming that the perceived salience of 

the CS and US affect performance as well as learning.  If one adopts the plausible assumption 

that the perceived salience of a stimulus decreases across its duration, then HeiDI also provides a 

simple analysis for how these biases change across the presentation of the CS.   

 

5The fact that all rats tend to begin training with a bias to enter the food well, which probably 
reflects the influence of their pre-training to retrieve food pellets from the food well, makes it 
difficult to evaluate whether the simulations for the early part of training are accurate or not. 

6Further simulations revealed that increasing the steepness of the exponential function 
reduced VCOMB, because of its influence on the value of CS used in Equations 1 and 2, and 
increased the bias towards RUS in general and across CS duration. 
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