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ABSTRACT: To improve the constraints of kesterite Cu2ZnSnS4 (CZTS) solar cell,
such as undesirable band alignment at p−n interfaces, bandgap tuning, and fast carrier
recombination, cadmium (Cd) is introduced into CZTS nanocrystals forming
Cu2Zn1−xCdxSnS4 through cost-effective solution-based method without postannealing
or sulfurization treatments. A synergetic experimental−theoretical approach was
employed to characterize and assess the optoelectronic properties of Cu2Zn1−xCdxSnS4
materials. Tunable direct band gap energy ranging from 1.51 to 1.03 eV with high
absorption coefficient was demonstrated for the Cu2Zn1−xCdxSnS4 nanocrystals with
changing Zn/Cd ratio. Such bandgap engineering in Cu2Zn1−xCdxSnS4 helps in effective
carrier separation at interface. Ultrafast spectroscopy reveals a longer lifetime and
efficient separation of photoexcited charge carriers in Cu2CdSnS4 (CCTS) nanocrystals
compared to that of CZTS. We found that there exists a type-II staggered band
alignment at the CZTS (CCTS)/CdS interface, from cyclic voltammetric (CV)
measurements, corroborated by first-principles density functional theory (DFT)
calculations, predicting smaller conduction band offset (CBO) at the CCTS/CdS interface as compared to the CZTS/CdS
interface. These results point toward efficient separation of photoexcited carriers across the p−n junction in the ultrafast time scale
and highlight a route to improve device performances.

KEYWORDS: earth-abundant material, cation substitution, interfacial engineering, grain boundary, band offset, ultrafast carrier dynamics,
photovoltaic

■ INTRODUCTION

The advancement of safe, renewable, and low-cost clean energy
technologies to substitute the environmentally unfriendly
provider of fossil fuels have attracted significant scientific
interest in recent years. Solar cell technology, which harnesses
the enormous amount of the Sun’s energy to directly produce
electricity, is a viable option with obvious socioeconomic and
environmental benefits. However, solar devices must be made
of inexpensive and earth-abundant materials before photo-
voltaic (PV) technology can readily provide a significant
fraction of the world’s energy demands at reduced cost.1,2

Earth-abundant, nontoxic, and low-cost Cu-based materials
Cu2MSnX4 (M = Zn, Ni, Fe, Co, Cd and x = S, Se) are
attractive potential alternatives to silicon-based PV technology,
due to their wide tunable direct bandgap (1.5−1.0 eV) across
the visible region, high absorption coefficient (∼104 cm−1),
and high carrier mobility (0.1−35 cm2V−1s−1).3 Besides, the
outstanding theoretical efficiency of 31% (according to
Schockley Queisser limit) makes Cu2MSnX4 materials
competitive candidates for environmentally friendly, low-cost,
and scalable thin-film PV applications.4 Cu2MSnX4-based

materials are also interesting candidates for a wide variety of
other applications, including photodetectors,5 photocatalysis,6

hydrogen production,7 photoelectrochemical cell,8 and bat-
teries.9

The first Cu2ZnSnS4 (CZTS) solar cell was made-up of
vacuum technique and generated a conversion efficiency of
0.66%.10 So far the kesterite CZTSSe-based PV cells show the
highest conversion efficiency of 12.6% as reported by the group
of Mitzi.11 Currently, many research efforts are focused on
cation and anion exchange for the enhancement of the
conversion efficiencies of CZTS materials. Wong and co-
workers have reported conversion efficiencies of 9%12 for
single cation substitution (Cd for Zn) and 10% for double
cation substitution (Cd for Zn and Ag for Cu) in CZTS thin
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film based solar cells.13 Despite the recent improvements in
Cd-substituted CZTS materials, information regarding the
influence of thin film grains, the nature of interfaces between
the absorber and buffer layers, and charge carrier dynamics in
the Cd-substituted CZTS nanocrystals remained unresolved.
The performance of polycrystalline PV cells can be significantly
influenced by charge carrier dynamics and grain boundary
engineering,14−17 hence their deep understanding in Cu-based
quaternary chalcogenides will assist future optimization of PV
devices to achieve improved performance. In earlier inves-
tigations,18−22 we have reported a direct correlation between
efficiency and carrier dynamics in solar cells. Solar device
performance can be significantly enhanced with elongated
charge-carrier lifetimes when the grain size is increased from a
few hundred nanometers to the micrometer level.11 The work
of Seto et al. explained how larger grain boundaries can reduce
the quantity of defects due to partial atomic bonding.23 A
reduction in the trapping states can thus lead to an increase in
the number of free carriers available for electrical conduction.
Cation and anion substitution have been employed to tune the
bandgap of CZTS materials in progression toward CZTS thin-
film solar cells.12,13,24 Low efficiencies of CZTS-based PV cells
have been attributed to several factors including defects, poor
interface chemistry, inefficient charge separation due to poor
band offsets, and carrier trapping. However, until now there
has been no systematic study dedicated to providing detailed
insight into the carrier dynamics and interface chemistry in
Cu2Zn1−xCdxSnS4 thin films, which makes this investigation
timely.

In this communication, we present a synergetic experimental
and computational evidence of the beneficial role of cation
exchange (Cd for Zn) in Cu2Zn1−xCdxSnS4. High quality and
crystalline thin films (RMS roughness below 20 nm) with large
grain boundaries were obtained from a unique cost-effective,
benchtop solution-processed method, at room temperature
without postannealing or sulfurization, which is important in
reducing cost of device fabrication. X-ray diffraction and
Raman spectroscopy confirmed the nanocrystals without
impurity phases. We expect that there is a huge opportunity
to improve the device performance with band alignment
optimization and monitoring of charge transfer dynamics.
Bandgap modulation from 1.51 to 1.03 eV was achieved with
growing Cd content in Cu2Zn1−xCdxSnS4 from UV−visible−
NIR spectroscopy. The photoexcited charge carrier dynamics,
which dictates the photovoltaic performance of
Cu2Zn1−xCdxSnS4, was demonstrated with the help of transient
absorption spectroscopy where we observed longer charge
carrier lifetime in CCTS compared to the CZTS nanocrystals.
A type-II band alignment was demonstrated at the CZTS/CdS
and CCTS/CdS heterointerfaces through CV measurements
and validated by first-principles DFT calculations. Smaller
conduction offsets of 0.15 eV (0.11 from DFT) were observed
at CCTS/CdS compared to 0.23 eV (0.21 from DFT) at
CZTS/CdS interface, suggesting lesser resistance to electron
transport across the CCTS/CdS interface. Our results
highlight a route to improved solar cell efficiencies through
cation substitution and interface band offset optimization.

Figure 1. (a) X-ray pattern and (b) Raman spectra (excitation wavelength, 532 nm) for the Cu2Zn1−xCdxSnS4 nanocrystals (x = 0.0−1.0). (c) (i,iv)
Low-resolution TEM images recorded for CZTS and CCTS nanocrystals, respectively. (ii,v) HR-TEM image of CZTS and CCTS nanocrystals
with clear lattice resolution. An interplanar spacing of 0.312 and 0.319 nm for CZTS and CCTS nanocrystals respectively is clearly visible. (iii,vi)
SAED pattern of a single nanocrystal corresponds to the polycrystalline nature of CZTS and CCTS nanocrystals, respectively. (d) The UV−vis-
NIR absorbance spectra for Cu2Zn1−xCdxSnS4 nanocrystals with the inset showing the tauc plot. (e) The variation in crystallite size and optical
bandgap as a function of cation substitution.
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■ EXPERIMENTAL SECTION
Synthesis. Herein, the colloidal synthesis of Cu2Zn1−xCdxSnS4 (x

= 0 corresponds to CZTS and x = 1 corresponds to CCTS)
nanocrystals was carried out as per our previous report using a
homemade hot injection setup.25 In a typical synthesis of CZTS
nanocrystals, all three metal (copper, zinc, and tin) acetylacetonate
precursors with 2:1:1 ratio are dissolved in 15 mL of oleylamine under
high purity nitrogen in a three neck flask. The CCTS nanocrystals
were similarly synthesized as mentioned above where instead of zinc,
cadmium acetate is used in a separate three neck flask. The solutions
for both CZTS and CCTS were heated under nitrogen with constant
stirring and degassed for 1 h at ∼135 °C. The temperature was set at
240 °C for the injection of sulfur precursor. Fresh 3 mL of sulfur-
oleylamine (1 M) solution was injected in the three neck flask and
maintained at 260 °C for 1 h for nanocrystal growth. The reaction was
quenched by injecting toluene and propanol mixture (1:8), followed
by purification of the nanocrystals from unreacted precursors by
centrifugation.25 The intermediate compositions of Cu2Zn1−xCdxSnS4
nanocrystals with x = 0.2, 0.4, 0.6, and 0.8 mmol of Zn/Cd were
carried out by similar method discussed in earlier section.
Characterization. Different properties of Cu2Zn1−xCdxSnS4 were

characterized using various experimental techniques. X-ray diffraction
(XRD) spectra were recorded by X-ray diffractometer (Bruker D8
Advance, Germany). The phase characterization of the as-synthesized
samples was obtained by Raman spectroscopy with “Renishaw Raman
Microscope” using a wavelength of 532 nm of Nd:YAG laser, in the
backscattering geometry. High-resolution transmission electron
microscopy (HR-TEM) (TECNAI G2-20-TWIN) was used to obtain
high-resolution micrographs and selected area electron diffraction
(SAED) patterns. Atomic force microscopy (NC-AFM; JEOL, JSPM-
5200) provided micrographs for the investigation of the surface
topology in noncontact mode. The compositional details of
Cu2Zn1−xCdxSnS4 nanocrystals were obtained from energy dispersive
X-ray spectroscopy (EDS) measurements done using a Hitachi, S-
4800. The optical band gap was determined using a JASCO, V-670
UV−visible−NIR spectrophotometer. The cyclic voltammetric (CV)
measurements for determining the band structure parameters were
carried out using Metrohm potentiostat/galvanostat, Autolab
PGSTAT 100 as per our recent studies.3,25 The femtosecond
transient absorption spectroscopy was carried out using HELIOS
ultrafast setup.26

■ RESULTS AND DISCUSSION

XRD spectra of the Cu2Zn1−xCdxSnS4 nanocrystals as shown in
Figure 1a, reveal clear intense diffraction peaks, confirming
their crystalline nature. The CZTS (x = 0) nanocrystals
present in the kesterite (JCPDS No. 26-0575) shows
diffraction peaks at 28.53°, 32.98°, 47.32°, and 56.17° which
correspond to (112), (103), (200), and (220) plane
orientations, respectively. We observe a transition from
kesterite Cu2Zn1−xCdxSnS4 to stannite (cernyite) phase after
x = 0.6 of Cd exchange with Zn. The assigned stannite
(cernyite) phase is confirmed by comparing our data to the
standard JCPDS file (No. 26-0506). The CCTS (x = 1.0)
nanocrystal shows diffraction peaks at 27.92°, 32.04°, 33.03°,
45.91°, 46.92°, 54.61°, and 55.99° which correspond to the
(112), (200), (004), (220), (204), (312), and (116) crystal
orientations.12,13,24 Substitution of Zn2+ cation with Cd2+

resulted in a monotonic shift of the diffraction peaks toward
small 2θ values, which indicate increasing lattice constants and
unit cell volume with increasing Cd content. The increased
unit cell parameters can be rationalized by considering the
larger Cd2+ covalent radius (1.48 Å) compared to that of Zn2+

(1.25 Å). Bragg’s equation was used to calculate the structural
parameters, including the lattice parameters (a, b, c) and the
interplanar spacing (dhkl) (Table S1, Supporting Information).

The average crystallite size (Dhkl) is calculated using the
Scherrer equation (Dhkl = kλ/β cos θ),27 where k is the shape
factor, λ is the X-ray wavelength, β is the line broadening at
half-maximum intensity, and θ is the Bragg’s angle. The
crystallite size of Cu2Zn1−xCdxSnS4 is found to increase from
13.01 to 19.5 nm (Figure 1c) and the strain during cation
substitution (Table S1, Supporting Information) decreases
from 2.66 × 10−3 to 1.78 × 10−3. Raman spectra (Figure 1b)
confirm the phase purity of the Cu2Zn1−xCdxSnS4 nanocrystals
as no secondary phase was present. We have observed a linear
shift in the Raman spectra (Figure 1b) with increasing Cd
content toward lower wavenumbers, which confirms a gradual
structural change from kesterite to stannite phase. Trans-
mission electron microscopy pictures and the corresponding
selected area electron diffraction (SAED) patterns recorded for
CZTS and CCTS nanocrystals are shown in Figure 1c(i−vi).
The TEM images (Figure 1c(i,iv)) show that the CZTS and
CCTS nanocrystals are spherical in shape with diameter
ranging from 15 to 25 nm. The HRTEM images (Figure
1c(ii,v)) specify CZTS and CCTS nanocrystals have lattice
fringes with interplanar distance (d) of 0.312 and 0.319 nm,
respectively, which are in good agreement with those
determined from the diffraction peak in the XRD pattern
(Table S1, Supporting Information). The SAED analysis of the
CZTS and CCTS nanocrystals in Figure 1c(iii,vi) show
concentric rings reflecting the polycrystalline nature of these
materials. The room-temperature absorption spectra of the
Cu2Zn1−xCdxSnS4 nanocrystals (Figure 1d) disclose absorp-
tion in the entire visible area with a tail extending to the near-
IR (NIR) region, giving rise to the black color of the samples.
The inset in Figure 1d shows the subplot of (αhν)2 versus (hν)
for the Cu2Zn1−xCdxSnS4 nanocrystals. We have observed a
systematic decrease in the band gap from 1.51 to 1.03 eV for x
= 0.0 to x = 1.0, as shown in Figure 1e and Table S2,
Supporting Information. These results are consistent with a
number of previous reports.28−30 Ito et al. estimated the direct
band gap of the (112) oriented polycrystalline films of CCTS
and CZTS to be 1.06 and 1.46 eV, respectively.31 From
external quantum efficiency (EQE), Su et al. observed that
when Cd content increases from 0 to 1.0, the band gaps of
CZCTS thin films decrease first from 1.54 eV (CZTS) to 1.36
eV (CZCTS) and then increase to 1.41 eV (CCTS).12 CCTS
films prepared by Zhang et al. showed an estimated band gap
in the range of 1.31−1.14 eV.32 The differences reported in
bandgaps by the various authors suggest that the bandgap of
Cu2Zn1−xCdxSnS4 is influenced by several factors including but
not limited to film thickness, grain size, elemental composition,
and defects.3,10,15−17,25 The compositional analysis of the
Cu2Zn1−xCdxSnS4 nanocrystals was carried out using energy
dispersive X-ray (EDS) analysis technique. The EDS data
recorded in binding energy regions of 0−10 keV for the
Cu2Zn1−xCdxSnS4 nanocrystals (Table S3, Supporting In-
formation) reveal that the Cu:Zn/Cd−Sn−S is close to the
desired 2:1:1:4 ratio, hence our synthesis technique presents
an accurate approach to carry out a controlled composition
dependent synthesis, which is usually rather very challenging to
achieve.
Further insights into the structural parameters, thermody-

namic, and mechanical stabilities of the Cu2Zn1−xCdxSnS4(x =
0.0, 0.25, 0.50, 0.75, and 1.00) materials was gained through
first-principles DFT calculations. The structures at x = 0.0
(CZTS) and x = 1.0 (CCTS) compositions are shown in
Figure 2a,d, which are modeled in their most stable kesterite
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and stannite structures, respectively. The intermediate x =
0.25, 0.50, and 0.75 systems are shown in Supporting
Information Figure S2. The calculated lattice constants and
lattice spacing are found to increase with increasing Cd
concentration, which is in good agreement with the
experimentally measured ones, as shown in Table S4
(Supporting Information). The cohesive energy, which gives
a measure of the stability of the studied materials, has been
evaluated for the different Cd composit ions in
Cu2Zn1−xCdxSnS4. The cohesive energy of CZTS is found to
be 4.036 eV/atom, which closely agrees with the exper-
imentally reported33 value of 3.9 eV/atom and is comparable
to that of bulk silicon (expt., 4.68 eV/atom). A gradual
decrease in cohesive energy with increasing Cd content in the
unit cell is observed (Table S5, Supporting Information).
However, all compositions show comparable cohesive energies

ranging from 3.943 to 4.036 eV/atom, indicating that Cd does
not significantly affect the thermodynamic stability in
Cu2Zn1−xCdxSnS4 materials. To ascertain the mechanical
stability of these systems, their bulk elastic parameters, such
as bulk modulus, shear modulus, Young’s modulus, and
Poisson’s ratio at x = 0.0, 0.5, and 1.0 compositions have
been calculated, which are tabulated in Table S6 (Supporting
Information). All of the calculated single-crystal elastic
constants provided in Table S6 are found to satisfy the
Born-Huang’s mechanical stability criteria for tetragonal
structures34 thereby confirming the mechanical stability in
the studied materials under ambient conditions. The bulk and
Young’s moduli of CZTS are calculated to be 75.5 and 78.9
GPa, respectively, as compared to CCTS values of 62.5 and
64.4 GPa, respectively. The bulk to shear modulus ratios are
found to be greater than 1.75 for all the compositions, thus
establishing the ductility of the studied Cu2Zn1−xCdxSnS4
materials. Also, the calculated Poisson’s ratio (<0.5)
substantiates their stability against shear.
To examine the result of Cd substitution on electronic

structures of the Cu2Zn1−xCdxSnS4 materials, we have
calculated the electronic band structures and partial density
of states (PDOS) of the different compositions using the
hybrid exchange-correlation functional (HSE06), which has
been shown to give a good description of the electronic
properties of CZTS.35−38 It is quite evident from the band
structure of the Cu2Zn1−xCdxSnS4 materials (x = 0.0 and x =
1.0) as shown in Figure 2b,e, and other compositions (Figure
S3, Supporting Information)) that the Cu2Zn1−xCdxSnS4
materials are direct band gap semiconductors as both the
valence band maxima and conduction band minima possess
similar momentum position and lie in high-symmetry Γ-point.
A reduction in the bandgap with increasing Cd concentration
was first observed (x = 0−0.75, that is, from 1.49 eV (CZTS)
to 1.10 eV (CZCTS)) and then an increase to 1.27 eV for
CCTS (x = 1). These results are consistent with previous
theoretical predictions35−38 and experimental characterization

Figure 2. Crystal structure of (a) kers-Cu2ZnSnS4 and (d) stan-
Cu2CdSnS4. The HSE06 band structure (b,e) and the corresponding
DOS of (c,f) of kers-Cu2ZnSnS4 and stan-Cu2CdSnS4, respectively.
The Fermi level has been set to zero.

Figure 3. (a) Schematic diagram illustrating the thin film deposition for Cu2Zn1−xCdxSnS4 nanocrystals. (b) Images (i−vi) represent two-
dimensional (2D) AFM images for Cu2Zn1−xCdxSnS4 thin films with 1 μm2 surface areas. (c) Schematic diagram showing how the grain size of the
Cu2Zn1−xCdxSnS4 thin film will influence charge carrier separation.

ACS Applied Energy Materials www.acsaem.org Article

https://dx.doi.org/10.1021/acsaem.9b02314
ACS Appl. Energy Mater. 2020, 3, 5153−5162

5156

http://pubs.acs.org/doi/suppl/10.1021/acsaem.9b02314/suppl_file/ae9b02314_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsaem.9b02314/suppl_file/ae9b02314_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsaem.9b02314/suppl_file/ae9b02314_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsaem.9b02314/suppl_file/ae9b02314_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsaem.9b02314/suppl_file/ae9b02314_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsaem.9b02314/suppl_file/ae9b02314_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsaem.9b02314/suppl_file/ae9b02314_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsaem.9b02314/suppl_file/ae9b02314_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsaem.9b02314?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaem.9b02314?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaem.9b02314?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaem.9b02314?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaem.9b02314?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaem.9b02314?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaem.9b02314?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsaem.9b02314?fig=fig3&ref=pdf
www.acsaem.org?ref=pdf
https://dx.doi.org/10.1021/acsaem.9b02314?ref=pdf


of solution-processed Cd-substituted CZTS materials.12,13 The
partial density of states of Cu2ZnSnS4 and Cu2CdSnS4 in
Figure 2(c,f) indicates that the valence band maximum (VBM)
of both materials is composed mainly of Cu-3d and S-3p states.
The conduction band minimum (CBM) on the other hand is
composed primarily of Sn-5s and S-3p states. Considering that
the optical absorption properties of a semiconductor are of
great importance in its photovoltaic activity, we have simulated
the absorption spectra of the Cu2Zn1−xCdxSnS4 materials, as
shown in Supporting Information in Figure S4. A high
absorption coefficient (αabs > 105 cm−1) is predicted for the
Cu2Zn1−xCdxSnS4 materials, which agrees very well with
experimental results. The red shift in the absorption peak
with increasing Cd concentration is consistent with the trends
observed in the experimental UV−visible−NIR optical
absorption spectra. These properties show great promise for
Cu2Zn1−xCdxSnS4 in multijunction tandem solar cells.
Next, to investigate the topological properties, we have

developed a unique and simple electrophoretic deposition
method to successfully deposit highly dense and uniform
Cu2Zn1−xCdxSnS4 thin films. Shown in Figure 3a, is the
schematic diagram illustrating the deposition process for
Cu2Zn1−xCdxSnS4 thin films. In the setup, DC power was
used to apply the potential to two FTO electrodes dipped into
Cu2Zn1−xCdxSnS4 nanocrystals solution. The working and
counter bare FTO electrodes were introduced in parallel with
∼7 mm gap in 5 mg/mL Cu2Zn1−xCdxSnS4 nanocrystal
solution. After systematic optimization of the applied voltage
to 50 V and increasing the deposition time to 45 min, the
suspended nanocrystals in the solution moved toward the
positive electrode to form highly dense and uniform thin films.
The surface properties of the Cu2Zn1−xCdxSnS4 films were
examined by atomic force microscopy (AFM). Two-dimen-
sional (2D) AFM micrographs (Figure 3b) were obtained
without any additional or postannealing treatment. The three-
dimensional (3D) surface topology of the Cu2Zn1−xCdxSnS4
films were evaluated for 1 μm2 surface areas (Supporting

Information Figure S1), which revealed a smooth and highly
homogeneous thin film with low surface roughness within 10−
20 nm range (Table S7, Supporting Information). The
magnified AFM images (Figure 3b) confirm the formation of
Cu2Zn1−xCdxSnS4 thin films with grain sizes in the range of
50−400 nm. Similar large grain sizes were reported by
Badkoobehhezaveh et al.39 from their SEM micrographs of
CZT(SxSe1−x)4 films fabricated by electrophoretic deposition
technique without postannealing. Ravi et al.40 employed a
similar deposition procedure with an applied voltage of 100 V
to achieve the deposition of larger linear rods (∼500 nm in
length) of cesium lead halide perovskite nanocrystals without
postannealing. The effect of the annealing temperature on the
formation of Cu2ZnSnS4 thin films has been investigated by
several authors who have all achieved large grain (micron-sized
grains) with sulfurization treatments.41−46 The obtained large
grains in the present study may facilitate carrier transport and
easy collection, thus improving device performance via
minimizing trapping and recombination of photogenerated
carriers. In Figure 3c, we provide a schematic diagram showing
how larger grain can enhance charge carrier transport and
reduce carrier trapping at grain boundaries in thin films
compared to smaller grain size. With smaller grain sizes (Figure
3c(i)), the probability of recombination will be high at grain
boundaries whereas with larger grain sizes (Figure 3c(i)), the
recombination of charge carries can be significantly minimized.
To gain insight into the native photophysics in CZTS and

CCTS systems, we have employed ultrafast pump−probe
spectroscopy with 420 nm pump excitation and probed the
transients in the visible region of the spectrum. The transient
spectra (TA) manifest a broad photoinduced absorption band
throughout the visible region (450−760 nm), represented in
Figure 4a. This positive feature in the case of CZTS persists
along the temporal evolution of the spectra for the entire time
range until it completely decays. Interestingly, the TA spectra
of CCTS nanocrystals show positive absorption band until 200
ps, but beyond 250 ps a negative absorption band (bleach)

Figure 4. (a) Differential transient absorption spectrum of CZTS and CCTS nanocrystals at different pump−probe delay time following 420 nm
photoexcitation. (b) Normalized transient absorption kinetics CZTS and CCTS NCs at similar experimental conditions. (c) Cyclic
voltammograms for CZTS and CCTS nanocrystals. (d) Effective masses of electrons (conduction band) and holes (valence band) of Cu2ZnSnS4
and Cu2CdSnS4 along high symmetry directions.
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appears in the 450−650 nm region which exists beyond 2 ns.
The photoinduced transient absorption is found to dominate
the TA spectra for both CZTS and CCTS nanocrystals. The
transient kinetics of charge carriers near the photoinduced
absorption maxima (600 nm) for the CZTS and CCTS
nanocrystals was also monitored as shown in Figure 4b. It is
interesting to see that the nature of the kinetic traces for CZTS
and CCTS nanocrystals is completely different. The transient
kinetics was fitted multiexponentially and fitting parameters are
listed in Supporting Information Table S8. The transient
kinetics for CZTS NCs is composed of 190 fs growth time
component and three decay time scales being τ1 = 0.38 ps
(−64.4%), τ2 = 72.1 ps (−31.9%), and τ3 = > 2 ns (−3.7%).
Similarly, the multiexponential fitting parameters for CCTS
transient kinetics are 130 fs growth time and three decay time
constants being, τ1 = 3.48 ps (−44.1%), τ2 = 247 ps (−55.9%),
and τ3 = >2 ns (+100%), respectively. We observed that the
majority of the CZTS photoinduced feature depletes at a much
faster rate (τ1

CZTS = 0.38 ps) compared to CCTS (τ1
CCTS =

3.48 ps). One may attribute this faster transient decay of CZTS
due to quicker trapping of photoexcited charge carriers in the
CZTS system compared to that of CCTS. It has also been
observed that the transient positive signal of CZTS completely
decays within 2 ns. However, in the case of CCTS at longer
time scale (beyond 250 ps onward), the bleach signal appears
which matches with optical absorption band of CCTS (Figure
4b). The existence of the bleach signal beyond 2 ns clearly
suggests that the charge carriers generated in CCTS are much
longer lived as compared to that of CZTS. Our results are
similar to those obtained by Pundsack et al. who reported short
excited state lifetime (<20 ps) of the photoexcited charge
carrier for CZTS nanocrystal47 and unfavorable nonradioactive
recombinations of the carrier’s limit efficiency in solar cells.
Our spectroscopic measurement indicates the more efficient
separation of optically excited charge carriers leading into
slower electron−hole recombination in CCTS as compared to
CZTS nanocrystals. Consistent with our spectroscopic study,
previous reports have observed enhanced current density and
solar power conversion efficiency for Cu2Zn1−xCdxSnS4 device
as compare to pure CZTS.12,13,24

The mean effective mass of charge carriers influences their
transport properties; hence, we have calculated the hole and
electron mean effective masses for CZTS and CCTS. A
quadratic polynomial was fitted to the energy of the
corresponding bands in the reciprocal lattice vector k for this
calculation. The calculated electron and hole effective masses
for CZTS and CCTS NC’s in some selective directions of the
Brillouin zone are shown in Figure 4d. Such light mass charge
carriers can be easily separated due to photoexcitation and can
enhance the efficiency of solar cell devices. The slightly smaller
electron and hole effective masses calculated for CCTS in
almost all directions than CZTS suggest higher charge carrier
mobility (electrical conductivity). In line with this, recent
studies by Wong and co-workers have reported efficiency
improvement for Cd-substitution with Zn (η = 9%)12 and
double cation (Cd for Zn and Ag for Cu) substitution (η =
10%)13 for CZTS solar cells.
The band edges (VBM and CBM) of the CZTS and CCTS

were determined through cyclic voltammetry measurements
(scan rate, 100 mV s−1). This measurement permits the
estimation of the electrochemical bandgap and the electron
affinity (EA) of CZTS and CCTS. Figure 4c shows the CV
data for CZTS with two peaks marked as A1 and C1 at 0.85 V

(−5.35 V vs Vac) and at −0.68 V (−3.82 V vs Vac) over
repeated cycles, which correspond to the anodic and cathodic
peaks, respectively. For CCTS, the anodic A2 and cathodic C2
peaks are observed at 0.51 V (−5.01 V vs Vac) and at −0.6 V
(−3.9 V vs Vac), respectively. The potential difference between
the anodic and cathodic peaks of CZTS (1.53 V) and CCTS
(1.11 V) corresponds to their bandgap values. CdS, which is
commonly used as a buffer layer for CZTS PV devices has a
band gap of 2.42 eV and electron affinity of 4.0 eV.48 The exact
positions of the conduction and valence bands with respect to
the vacuum level are calculated using the relations EVBM = −IP
= −(Epeak‑oxidation + Eref) and ECBM = −EA = −(Epeak‑reduction +
Eref), where IP is the ionization potential and EA is the electron
affinity.1 Ferrocene was used as the internal reference Eref (4.5
eV vs NHE), and Epeak‑oxidation and Epeak‑reduction energies
corresponds to A1 and C1 peaks, respectively, in Figure 4c.
On the basis of the estimated IP and EA values, the band
alignment of the CZTS/CdS and CCTS/CdS heterojunctions
was constructed (Figure 5), showing a staggered type II band

alignment. The conduction band offset (CBO) and valence
band offset (VBO) of the CZTS/CdS heterostructure are
estimated at 0.23 and 1.10 eV, respectively, whereas for
CCTS/CdS heterostructure, they are 0.15 and 1.44 eV,
respectively.
The CZTS/CdS and CCTS/CdS interfaces were simulated

in order to derive atomic-level insights about the interface
structures, composition, stabilities, and band offsets. From the
band structure and density of states of CdS provided in
Supporting Information, Figure S5, the band gap is predicted
at 2.45 eV. A (2 × 2) CZTS or CCTS supercell and a (3 × 2)
CdS supercell were used to construct the CZTS/CdS and
CCTS/CdS heterojunctions, ensuring less than 5% lattice
mismatch. The optimized structure of the CZTS(001)/
CdS(100) and CCTS(001)/CdS(100) heterojunctions are
shown in Figure 6a,c and the corresponding energy band
alignment diagrams are illustrated in Figure 6b,d. The two
interfaces are found to be dominated by strong covalent Cu−S
and Cd−S interactions, which are calculated at 2.229 and
2.578 Å at the CZTS/CdS interface compared to 2.284 and
2.631 Å at the CCTS/CdS interface. The interfacial adhesion
energy, calculated as Ead = (EA/B − (EA + EB)/S, where EA and
EB are the individual ground-state relaxed total energy of layer
A and layer B, respectively, is used to evaluate the
thermodynamic stability of the heterojunctions. EA/B is the
total energy of the entire A/B interface system calculated based
on the geometry optimized structure and S is the surface area
of the interface. The adhesion energy of the CZTS(001)/
CdS(100) and CCTS(001)/CdS(100) heterostructures was
calculated to be −0.189 eV Å−2 and −0.149 eV Å−2,

Figure 5. Energy band alignment diagram of (a) CZTS/CdS and (b)
CCTS/CdS heterojunctions
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respectively, which indicates both interfaces are stable. The
interfaces are stabilized by newly formed Cu−S and Cd−S
chemical bonds, confirmed by electron density accumulation in
these boding regions. By applying the potential-line-up method
according to the formula: BO = ΔEv,c + ΔV, where ΔEv refers
to the difference in the VBM, the band offsets (BOs) at the
heterojunction interfaces were calculated. ΔV results from the
line-up of the macroscopic average of the self-consistent
electrostatic potential across the interface. By solving the
Poisson equation, the electrostatic potential V(r)̅ and the
planar-averaged potential V̅(z) of the heterojunctions can be

obtained from the equation V z V r x y( ) ( )d d
S
1̅ = ̅ , where S is

the interface surface area. Employed as a reference level to
align the valence-band, the macroscopic average of electrostatic

potential V z( ) was calculated as V z V( ) (z )dz
L L

L1
/2

/2∫= ̅ ′ ′
−

,

where L is a corresponding distance of one period at each
point z′. The planar-averaged electrostatic potential of the
CZTS/CdS and CCTS/CdS heterojunctions are shown in
Figures S6 and S7. By adding calculated band gaps to the
relative position of the valence bands, the discontinuities at the
conduction band can be obtained as ΔEc = ΔEv + ΔEg. The
schematic representation of the predicted band discontinuities
for the CZTS/CdS and CCTS/CdS heterostructures are
shown in Figure 6b,d, both of which reveal type II staggered
band alignment. The CBO and VBO at the CZTS/CdS
interface are 0.21 and 1.15 eV, respectively, compared to 0.11
and 1.38 eV at the CCTS/CdS interface. These results are
consistent with the experimental CV measurements and point
to efficient charge separation with photoexcited electrons
migrating to the buffer CdS layer and holes to the absorber
CZTS or CCTS layer.

In a working PV device, the electron and the hole have to be
dissociated to obtain free charge carriers. The exciton is
characterized by its binding energy (Eb) and it has to be as low
as possible to facilitate the dissociation. If we assume that the
exciton will be dissociated by the thermal energy, Eb should be
lower than kBT (around 25 meV at room temperature). After
the free charge carriers are created from the exciton
dissociation step, they have to diffuse to the back electrodes
in a photovoltaic system before their recombination. The
discontinuities at the absorber/buffer interface act as barriers
to electrical transport across the interface. Hence the
magnitude of the discontinuities (band offsets) controls the
transport phenomena at these interfaces and characteristics of
devices. The smaller the CBO and the VBO between the
absorber/buffer layers the less resistance the free charge
carriers experience when moving across the interfaces. This
often results in efficient free charge carrier separation and
minimized recombination rates. In light of this, the smaller CB
offset predicted for the CCTS/CdS compared to the CZTS/
CdS indicates that free electrons generated in CCTS will
diffuse much faster and be collected before their recombination
with free holes in the VB. Consistent with our results, recent
studies have reported higher efficiencies for Cu2Zn1−xCdxSnS4
based devices than pure CZTS.12,13,24

■ CONCLUSIONS
In summary, we have employed combined experimental and
theoretical approaches to unravel the interface chemistry and
energy band alignment of Cu2Zn1−xCdxSnS4 based heterointer-
face. Insight into the charge carrier dynamics of the CZTS and
CCTS nanocrystal are also provided. Without any postanneal-
ing treatment, highly dense and uniform Cu2Zn1−xCdxSnS4
thin films with large gains were obtained using electrophoretic

Figure 6. Geometry optimized model of the (a) CZTS(001)/CdS(100) and (c) CCTS(001)/CdS(100) interface. The corresponding isosurface of
the differential charge densities at the interface the red (charge depletion) and green (charge accumulation) contours. Schematic representation of
the valence-band offset (VBO) and the conduction-band offset (CBO) are shown in panels b and d.
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deposition method. Besides exhibiting high absorption
coefficient (∼105 cm−1), we have observed bandgap tuning
(1.51−1.02 eV) of the Cu2Zn1−xCdxSnS4 with increasing Cd
concentration, which is promising for highly efficient solar cell
fabrication. A type-II staggered band alignment was observed
at the CZTS/CdS and CCTS/CdS heterointerfaces with a
smaller conduction band offset of 0.15 eV (0.11 from DFT)
predicted for the CZTS/CdS as compared to 0.23 eV (0.21
from DFT) for the CZTS/CdS interface. The observed type-II
staggered band alignment points to efficient charge separation
and transfer across the interfaces and ultrafast transient
spectroscopic measurements show longer charge carrier
lifetime in CCTS as compared to CZTS nanocrystal. These
results provide detailed insights into recent reports of
enhancement of the photocurrent in Cd-substituted CZTS
devices, which we have shown can be ascribed primarily to
optimal band gap tuning, improved band offsets, and long-lived
charge carriers in CCTS compared to CZTS. The controlled
deposition of large grain Cu2Zn1−xCdxSnS4 thin films at room
temperature with favorable optoelectronic properties should
open novel paths for evolving additional effective Cu-
quaternary chalcogenides-based solar cells and flexible display
devices.
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