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ABSTRACT
Despite the potential of social media for environmental monitoring, concerns remain about the
quality and reliability of the information automatically extracted. Notably there are many obser-
vations of wildlife on Twitter, but their automated detection is a challenge due to the frequent
use of wildlife related words in messages that have no connection with wildlife observation. We
investigate whether and what type of supervised machine learning methods can be used to create
a fully automated text classification model to identify genuine wildlife observations on Twitter,
irrespective of species type or whether Tweets are geo-tagged. We perform experiments with
various techniques for building feature vectors that serve as input to the classifiers, and con-
sider how they affect classification performance. We compare three classification approaches
and perform an analysis of the types of features that are indicative for genuine wildlife observa-
tions on Twitter. In particular, we compare some classical machine learning algorithms, widely
used in ecology studies, with state-of-the-art neural network models. Results showed that the
neural network-based model Bidirectional Encoder Representations from Transformers (BERT)
outperformed the classical methods. Notably this was the case for a relatively small training cor-
pus, consisting of less than 3000 instances. This reflects that fact that the BERT classifier uses a
transfer learning approach that benefits from prior learning on a very much larger collection of
generic text. BERT performed particularly well even for Tweets that employed specialised lan-
guage relating to wildlife observations. The analysis of possible indicative features for wildlife
Tweets revealed interesting trends in the usage of hashtags that are unrelated to official citi-
zen science campaigns. The findings from this study facilitate more accurate identification of
wildlife-related data on social media which can in turn be used for enriching citizen science data
collections.

1. Introduction 1

Studies of wildlife species distribution patterns are increasingly important in the face of rapid ecosystem changes 2

which in turn have implications for disease emergence and spread, as well as food security (Amano et al., 2016; Barve, 3

2014), climate change, and invasive species biology. Traditional approaches for observing species occurrence involve 4

the participation of professionals. Despite the high reliability of data gathered by professionals, these approaches are 5

time and resource consuming and thus lack broad coverage (Amano et al., 2016). Citizen science campaigns of or- 6

ganised groups of volunteers in partnership with professionals have proven to be very effective for observing wildlife 7

behaviour and have considerable value in ecological conservation studies (Cohn, 2008). The National Biodiversity 8

Network (NBN) Atlas (https://nbn.org.uk) portal, which holds the most extensive collection of biodiversity in- 9

formation within the UK, has been populated with datasets collected by citizen scientists. NBN datasets have proved 10

beneficial in studying wildife distribution in a number of studies (Leivesley et al., 2021; Blight et al., 2009). However, 11

the use of social networks for observing the environment in contexts that are unrelated to any particular citizen science 12

programs presents a potentially valuable additional source of species observation datasets. 13

Social media provide a large number of users with the capability to share images and associated metadata with 14

other users. The significant amount of environmental data on social networks, such as Twitter and Flickr, and their 15

potential for monitoring ecological changes and species movement patterns, has become recognised in recent years 16

(Daume, 2016; Di Minin et al., 2015; Ghermandi and Sinclair, 2019; Edwards et al., 2021). Notably these data sources 17

provide the possibility of timely and (near) real-time monitoring and analysis of species distribution (Ghermandi and 18

Sinclair, 2019; Daume et al., 2014; ElQadi et al., 2017). Further, the large volume of available data comes with 19

lower time and labour resource overheads relative to citizen science campaigns (Ghermandi and Sinclair, 2019; An- 20

toniou et al., 2016; Soliman et al., 2017). Equally, the value of internet sources for gathering wildlife-related data has 21
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emerged in the context of several planned citizen science initiatives. For instance, the citizen science platform iNatu- 22

ralist (https://www.inaturalist.org/) has been successfully organising campaigns for observing wildlife. iNaturalist is a 23

web-based and mobile-supported social network which allows individuals to upload photo observations and identify 24

organisms (Aristeidou et al., 2021). Another example includes urban residents reporting occurrences of tagged birds 25

through a Facebook group, a smartphone application and email (Davis et al., 2017). A crowdsourcing tool was em- 26

ployed in (Fritz et al., 2012) to collect data for the creation of a land cover map, while in (Lowry and Fienen, 2013) 27

crowdsourcing was used as a supplemental method for collecting hydrologic data. An overview of the impact of in- 28

ternet social networks on traditional biodiversity data collection methods in (Di Minin et al., 2015) is optimistic and 29

concludes that social media can potentially play an important role in conservation science. The authors of (Daume, 30

2016; ElQadi et al., 2017; Barve, 2014) evaluate social media websites such as Flickr and Twitter in comparison to 31

traditional wildlife data portals in order to highlight the potential use of social media for augmenting traditional citizen 32

science data collection methods. 33

Despite the potential of social media to be used for species distribution models there are still some concerns about 34

the quality and reliability of information mined from social media (Ghermandi and Sinclair, 2019; Daume, 2016; Kent 35

and Capello Jr, 2013). There are also concerns about the data ownership and future availability of social network data 36

(Daume, 2016; Palomino et al., 2016; Ghermandi and Sinclair, 2019). A problem with using social media such as 37

Twitter to identify wildlife is that postings frequently use the common names of wildlife species in contexts that are 38

totally unrelated to making a wildlife observation. For example, the keyword ‘bluebird’ can refer to a species but it can 39

also refer to a rugby team, as in the Tweet ‘Come on blue birds #bluebirds’. Another example is the keyword ‘snipe’ 40

which can refer to the bird Snipe but it can also be used in the sense of shooting, and is widely used terminology in 41

video games, e.g. ‘Im LIVE right now come watch me trying to snipe !...’. Common names of wildlife species can also 42

be used to refer to a restaurant or a brand, such as ‘The Swan’. 43

A further issue with data quality arises with regard to the reliability of species identification in those message post- 44

ings that are intentional observations. An associated challenge is that of distinguishing between wildlife-related Tweets 45

that are direct observations and Tweets that mention wildlife but are not observations. For instance, the Tweet ‘Unfor- 46

tunately predators invasive alien species IAS like grey squirrels contributing decline native #wildlife red squirrels #ias 47

like must also controlled’ discusses a wildlife topic rather than indicating a specific observation of the presence of a 48

species. In comparison, the Tweet ‘Mine always big fans coolest greylag #goose never forget spotted #bird question 49

observing #mandarin #duck taking stroll park #greylaggoose #mandarinduck #aixgalericulata #anser’ indicates ob- 50

servations of a duck and a goose. In this regard literature is sparse in presenting solutions for validating social media 51

postings that may be useful biodiversity observations. Previous research on verifying social media data for wildlife 52

studies is limited to the use of manual or semi-automatic approaches and are limited to observing a small amount of 53

well-known species (Daume, 2016; ElQadi et al., 2017; Barve, 2014). Notably some automated techniques for vali- 54

dating genuine wildlife observations on social networks are based on image verification rather than text verification 55

techniques (ElQadi et al., 2017; Estima et al., 2014; Antoniou et al., 2016; Di Minin et al., 2018). While image veri- 56

fication techniques are undoubtedly very useful, there are many Tweets mentioning species names that do not include 57

images. Further, an image-based verification approach does not in itself provide a fine-grained distinction between 58

wildlife-related Tweets and Tweets that are actual wildlife observations. Although existing studies highlight the po- 59

tential value of social network data for supplementing traditional biodiversity data collections, little progress has been 60

made to date on developing reliable automated methods for exploiting the textual content of social media postings for 61

tasks such as the study of species distribution. 62

We address these gaps by proposing a text classification-based solution for identifying Tweets which include posts 63

for genuine wildlife observations regardless of the species observed 1. Three classification approaches are compared, 64

in particular logistic regression classification with various forms of input features; the word embeddings based fastText 65

pipeline; and the contextual word embedding transformer model of BERT. We perform experiments with pre-trained 66

and corpus-trained embeddings as well as different methods for building feature vectors. Species distribution data 67

were obtained from Twitter, because of its wide usage and its real-time nature. The data we have obtained relate to 37 68

species, including invasive species in the UK. We also look at language in the Tweets (including specific hashtags and 69

other text) that is indicative of wildlife occurrences. This can help the creation of targeted campaigns that influence 70

social media trends in order to produce higher quality data. Our main contributions are: 71

1The implementation for the classification methods and the dataset are freely available at:
https://github.com/te9055/Social-Media-Wildlife-Distribution
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1. A fully automated text classification approach for identifying genuine wildlife observations on Twitter - not 72

restricted to species types or geo-tagged Tweets. Our approach takes a Tweet as an input and produces a class 73

label for this Tweet with no human interaction. 74

2. An analysis of the relative effectiveness of different approaches to extracting and integrating features (i.e. data 75

items) that serve as the input to several alternative forms of text classification, given a relatively small corpus of 76

data for training the classifiers. 77

3. An investigation into the specific components of Tweets, including hashtags and URL links, that are indicative 78

for genuine wildlife observations on social media 79

The rest of the paper is structured as follows: In Section 1.1 we introduce our main text classification concepts 80

and methods. Section 1.2 presents related work on applications of machine learning to classifying social media that 81

relate to the environment, highlighting differences from our work. Our methods and materials are described in detail in 82

Section 2. In Section 3 we present the results from our classification models and relevant analyses. Section 4 discusses 83

findings and implications of the study and Section 5 concludes the paper. 84

1.1. Supervised Text Classification 85

Text classification methods typically use supervised machine learning to assign one or more labels to a given 86

sentence or document (Deng et al., 2019; Zhong and Enke, 2019). Text classification for social media data can be 87

particularly challenging because of the short text sequences (Chen et al., 2019), noisy data, the large number of mis- 88

spellings and the jargon language used, as well as the presence of polysemous words (Bouazizi and Ohtsuki, 2019). 89

In the following, we describe our classical machine learning approaches as well as the state-of-the-art neural network 90

models used for text classification (see Section 1.1.1) which have become commonly adopted for categorising social 91

media data. Further, we explain methods for representing the features often used as input for classification models (see 92

Section 1.1.2). 93

1.1.1. Machine Learning Approaches 94

Classical Machine Learning Models: Machine learning algorithms such as SVM and Logistic Regression, cou- 95

pled with feature vectors that represent the frequency of occurrence of individual words, have traditionally been used 96

for performing text classification. Despite their simplicity, they can provide a strong baseline for many social network 97

classification tasks (Çöltekin and Rama, 2018; Mohammad et al., 2018) and ecology studies (Jeawak et al., 2017, 2018; 98

Jauhiainen et al., 2019; Martinc and Pollak, 2019; Jeawak et al., 2020). A drawback of such approaches is that they are 99

limited in their capacity to deal with out-of-vocabulary (OOV) words (i.e. words in the test data that were not observed 100

in training) and with fine-grained distinction between classes (Joulin et al., 2017). The fastText pipeline classifier ad- 101

dresses this problem with an approach based on word embeddings (see also section 1.1.2) that represent the meaning 102

of words with multi-dimensional vectors based, in the case of fastText, on parts of words (Joulin et al., 2017). The 103

approach enables good prediction accuracy in classification tasks where some classes have very few examples. The 104

fastText classification pipeline is referred to as a shallow neural network as it consists of a single layer of neurons and it 105

is also referred to as a linear classifier (in contrast to multi-layer neural networks). The classification pipeline initially 106

represents each word in a sentence with its corresponding embedding. These word representations are then averaged 107

to create a sentence representation, which is fed into the classifier layer. The fastText classification pipeline has given 108

a strong performance in many classification tasks (Joulin et al., 2017). However, it has not received much attention in 109

ecology studies. We implement this form of classifier and compare it with more advanced approaches that use deep 110

learning. 111

Neural Network Machine Learning Models: Neural network models in contrast to some classical classification 112

approaches such as those described above can capture complex non-linear relationships. Earlier neural network models 113

commonly use a feed-forward approach, which processes the words of text input in a sequential manner with one word 114

followed by the next word (including for their representations within the layers of network). Examples of such neural 115

networks are recurrent neural networks (RNN) and long short-term memory (LSTM) which have been extensively 116

used in various text classification tasks (Xiao and Cho, 2016), including social network-related classification (Huang 117

et al., 2019; Gambäck and Sikdar, 2017; Poria et al., 2016). Though they process one word at a time in sequence 118

they do often include methods to retain, at each stage, knowledge of other words in the input sequence. However such 119

models can struggle to capture effectively these long term dependencies as doing so depends typically on a backprop- 120

agation training process that involves calculating gradients where those gradients can become unmanageable due to 121
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being either too high or too low (referred to as exploding and vanishing gradients respectively). The LSTM architec- 122

ture mitigates this somewhat with a gating unit which allows it to selectively determine what to remember over long 123

spans reducing the number of successive gradient calculations. Despite, this improvement, these neural models can 124

still fail at providing more context-specific representations and tend to be computationally expensive (Merity et al., 125

2018; Yang et al., 2018). These limitations are addressed in the transformer architecture in which the representation 126

of each word is directly connected to the representation of every other word (Merkx and Frank, 2020). These con- 127

nections use attention methods (typically a form of dot product) that update one representation as a function of other 128

connected representations. The non-sequential manner in which data is processed enables capturing more relation- 129

ships between words and thus provides better contextual representation (Vaswani et al., 2017). In our work we apply 130

the BERT (Bidirectional Encoder Representations from Transformers) (Devlin et al., 2018) transformer-based model 131

that achieves state-of-the-art performance in various NLP text classification tasks. Although BERT has been used to 132

classify Tweets, such as to infer their locations (Scherrer et al., 2021), we are not aware of previous work to date in 133

applying such transformer models to wildlife observation. 134

1.1.2. Feature Representation Methods 135

We distinguish between three main types of feature representation techniques, i.e. a simple frequency-based feature 136

representation, word embeddings consisting of multi-dimensional vectors that represent the semantics of words and 137

capture semantic relationships betweenwords (Mikolov et al., 2013b; Pennington et al., 2014; Bojanowski et al., 2017), 138

and transformer language models (also referred to as contextualised word embeddings) that have a neural network 139

architecture. 140

Some neural network architectures, such as transformer models, employ transfer learning in which, for NLP appli- 141

cations, the model is trained initially on large generic text corpora, referred to as pre-training, which can be very time 142

consuming. To apply the model to a specific task, it can be re-trained, with a fine tuning process, on a smaller set of 143

application specific data that allows the model to adapt to the particular application (McCann et al., 2017; Howard and 144

Ruder, 2018). The pre-training can be expected to have exposed the model to a much wider vocabulary and range of 145

language uses than in the application-specific training dataset. However, the representations for the words (based on 146

word embeddings) from pre-trainingmight be similar to those of related words that do appear in the application training 147

set, which allows the model to generalise better when it is applied to unseen test data (Goldberg, 2016). Such language 148

models and sets of word embeddings could also be learned from scratch using the application dataset, resulting in the 149

case of conventional word embeddings in corpus-trained embeddings. 150

Frequency-based representation: Traditional feature representation techniques represent words simply as indices 151

in a vocabulary. An example is the n-gram model, often used in combination with statistical machine learning ap- 152

proaches (Peng and Dean, 2007; Mikolov et al., 2013b), described in Section 1.1.1 where the input features consist of 153

a vector representing the presence or frequency of each word from an entire text collection (with most elements there- 154

fore being zero). The vector with an element for words in the entire vocabulary is referred to as a bag of words (BOW). 155

Such approaches that represent words directly do not capture the meanings of words and will fail to take account of 156

out-of-vocabulary words encountered when applying the classifier to unseen data (Peng and Dean, 2007; Mikolov 157

et al., 2013b). 158

Word Embeddings: As mentioned earlier, word embeddings represent words as low-dimensional vectors intended 159

to capture the semantics of the respective words. Words that are similar in meaning will tend to occur close to each 160

other in the vector space, enabling measurement of similarity between individual words or of analogy between pairs of 161

words. Common techniques for generating word embeddings are Continuous Bag-of-Words (CBOW) and skip-gram 162

models (Mikolov et al., 2013a). The Skip-gram model learns to predict a target word based on a nearby word. On the 163

other hand, the CBOWmodel predicts the target word according to its context. In our methods described in Section 2, 164

we perform experiments with three popular word embedding models. 165

Language Models: A limitation of the word embedding models described above is that they produce a single 166

vector of a word independent of the context in which it appears. Language models, built using transformer-based 167

principles, address this limitation by computing dynamic representations for words based on the context in which they 168

are used (Peters et al., 2018; Devlin et al., 2018). The BERT (Peters et al., 2018; Devlin et al., 2018) transformer model 169

that we use here has been pre-trained on large amounts of generic data (Books Corpus and English Wikipedia). This 170
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pre-trained model can be fine-tuned to a specific task (being classification of Tweets in our case) by adding a single 171

additional output layer (a classification layer) to the neural network architecture. In our work we have experimented 172

with using the pre-trained model directly and with fine-tuning the model, as explained further in Section 2. 173

1.2. Related Work: Text classification for wildlife data 174

Here we review related work that employs machine learning methods for detecting wildlife and related environ- 175

mental data from social media as well as related work that uses social media for detecting events in the context of 176

emergency response. 177

Relevant research on proposing classification approaches for identifying genuine wildlife occurrences on social 178

media is very limited. There are however a number of studies that apply machine learning to detect various aspects of 179

the environment and to detect postings that relate to particular environmental topics. Some of these exploit data from 180

both images and text as in (Leung and Newsam, 2012) who use text associated with Flickr photographs and the visual 181

features of the images to perform land-use classification with an SVM classifier. The approach was evaluated on two 182

university campuses and three land-use classes were considered: Academic, Residential, and Sports. The study showed 183

that the text entries accompanying photos are informative for geographic discovery. In other examples of classifying 184

aspects of the environment (Jeawak et al., 2017) use SVM classifiers that takes as input a bag-of words feature vector 185

combining text from Flickr postings with environmental data. They found for all experiments, including predicting 186

species distribution, scenicness, land cover and climate factors, that the use of the social media data always improved 187

the results relative to only using the environmental data input. Jeawak et al. (2020) propose a collective classification 188

model to predict similar environmental phenomena, again combining Flickr tags with environmental data, to define a 189

neighbourhood structure. An iterative approach predicts what is present at an individual location based on neighbouring 190

data that includes elements of the training data (analogously to interpolation methods). An associated study (Jeawak 191

et al., 2018) using only Flickr data focused on bird species distribution and demonstrated the benefit of a meta-classifier 192

approach that combines prior predictions withmachine learning features that represent the presence of the species name 193

in postings in the vicinity of the predicted location. In other related studies for similar prediction tasks, the same authors 194

presented methods for creating embeddings (i.e. vector space representations) of geographic locations using methods 195

based on the GloVe word embedding technique (Jeawak et al., 2019). The geographic embeddings were extended 196

to spatio-temporal embeddings in Jeawak et al. (2020). In both cases the embeddings were used as input features 197

to an SVM classifier, and with spatio-temporal embeddings also to a MLP (multi-layer perceptron, a basic form of 198

neural network) classifier, and were demonstrated to provide improvement relative to the simpler feature vector-based 199

(bag-of-words) approaches. The use of MLP did not provide significant benefit relative to SVM. 200

The work proposed by Xu et al. (2019) used Twitter to detect and classify suspicious wildlife trafficking and sale 201

using an unsupervised machine learning topic model combined with keyword filtering and manual annotation. The 202

study was limited to studying two wildlife animals and related products: elephant ivory and pangolin. The authors 203

used the clustering method bi-term topic model (BTM) to categorize similar text into related topic clusters. BTM is 204

an unsupervised machine learning topic model that uses natural language processing (NLP) to categorize short forms 205

of text in a given number of groups (topics) by analyzing the correlations between words and topics. Our work differs 206

from this study significantly in our focus on identifying Tweets that are observations of wildlife as opposed to ones 207

concerned with illegal sales, and that we adopt a fully automated supervised machine learning approach. 208

Monkman et al. (2018) present a text and data mining (TDM) approach applied to social media from specialised 209

forums to gather spatio-temporal information on wildlife recreation activity relating to fishing a particular species, 210

European seabass, that is subject to legal controls on overfishing. Natural language processing software was used in a 211

ruled based system to classify sentences based on their inclusion of terms from a manually constructed lexicon. 212

Additionally, recent work on text classification for social media has focused on disaster management and hate 213

speech recognition (Reynard and Shirgaokar, 2019; Huang et al., 2019; Gambäck and Sikdar, 2017; Li et al., 2018; Poria 214

et al., 2016) mainly using CNN or SVM classifiers. A more generalised classification model for filtering crisis Tweets 215

was proposed in Li et al. (2018), based on the use of pre-trained and specialised corpus-trained word embeddings for 216

representing the Tweets’ vocabulary. Two approaches were presented for building Tweets embedding vectors, the first 217

being based on calculating either the mean of all word embeddings in a Tweet, the tf-idf weighted average (of each 218

dimension) of the word embeddings, or concatenating min, max and average of the embeddings of each word in a 219

sentence along each dimension. The second approach uses sentence encoding techniques of respectively SIF (Arora 220

et al., 2017), InferSent (Conneau et al., 2017) and tfSentEncoder (Cer et al., 2018). The performance of the different 221

embedding methods was evaluated with Naive Bayes, Random Forest, K-nearest Neighbours and SVM classifiers. 222

T. Edwards et al.: Preprint submitted to Elsevier Page 5 of 20



Identifying Wildlife Observations on Twitter

An extensive analysis was conducted on how different word embedding models affect classification performance. In 223

our work, which is for a different task, we also evaluate the use of sentence embedding methods but we differ in 224

experimenting with and demonstrating the benefits of transformer based neural network methods. 225

The approaches described above perform classification with either classical machine learning methods or using 226

traditional neural models such as CNN that assume the availability of large amounts of training data. Further, there is 227

limited comparison between different classificationmodels and how their performance is affected by the use of different 228

feature representation methods. We present an extensive comparison between three different classification approaches 229

and various feature representation methods, and their suitability for small and task-specific social network collections. 230

Further, we propose a fully automatic approach for predicting wildlife observations, regardless of the species that need 231

to be studied. 232

2. Materials and Methods 233

Figure 1: Overview of the methodology followed to build a classifier including main steps (‘Tweets collection’, ‘Tweets pre-
processing’, ‘Feature Extraction’, ‘Feature Integration’, ‘Wildlife Observation Classifier’) as well as the different methods
we experimented with during each of these steps.

Our study aims to develop a text classifier model, for identifying wildlife observations on social media sites. We 234

have built classification models using the Python programming language and standard Python libraries suitable for 235

classification and use of neural network models, such as the Sklearn and Hugging Face transformers libraries. 236

Our methodology consists of five main steps, Tweets collection, Pre-processing, Feature Extraction, Feature Inte- 237

gration, and finally training a Wildlife Observation Classifier. See Figure 1 for overall flow of the methodology and 238

Figure 2 for an example of a Tweet being processed using the classificationmethodology. During the collection and pre- 239

T. Edwards et al.: Preprint submitted to Elsevier Page 6 of 20



Identifying Wildlife Observations on Twitter

Figure 2: Step by step guide of the methodology using the example of a Tweet (left side describes steps, while right side gives
a relevant Tweet representation for each step).

processing steps (see Sections 2.1 and 2.2) we gather Tweets related to wildlife, from which stop words are removed, 240

tokens normalised, and duplicates are removed. During Feature Extraction (see Section 2.3) we build word feature 241

vectors for the corpus using techniques based on the feature representation approaches described in Section 1.1.2. In 242

the Feature Integration step, we combine word feature vectors, using dimensionality reduction techniques, into a single 243

feature vector representing the entire Tweet (see Section 2.4). Finally, we experiment with three classifiers for building 244

aWildlife Observation Classifier (Section 2.5). These are based on the main supervised machine learning approaches 245

explained in Section 1.1. 246

2.1. Tweets collection 247

We collected Tweets using search phrases of common and scientific species names, to create a dataset for the 248

invasive species in the UK with occurrences on the NBN data portal, as well as the ten most numerous species on 249

NBN, and the ten most numerous species on Flickr, some of which overlap. Thus, we searched Twitter for 38 species 250

and found posts for 37 species in total (we provide more information on data distribution per species in Section 2.6, 251

Table 6). The Tweets have been collected regardless of whether they are geo-tagged. The reason for this is that the 252

majority of Tweets are not geo-tagged, even though some of these could be geo-tagged if they contain geographic 253

references. It is also the case that for some of the UK invasive species the number of geo-tagged Tweets is relatively 254

low. We collect Tweets for the period 2007 – 2019 using the historic Twitter API. For each Tweet, we downloaded the 255

following information: date when the Tweet was posted, username, any hashtags, mentions (i.e. Twitter usernames 256

preceded by the @ symbol), and links associated with the Tweet. Additionally, we only downloaded Tweets written in 257

English. 258

2.2. Tweets Pre-processing 259

Cleaning Tweets Stanford NLP Core is used for pre-processing the dataset, in particular for part of speech tagging. 260

Stop words were removed using the NLTK stop word list. Following tokenization of the Tweets we identify hashtags, 261

mentions, external links, and pictures within the Tweets text. External links within the Tweets were normalised in 262
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order to identify the main website source and disregard other parameters associated with the link such as queries and 263

fragments. For example, the url ’https://youtube/uJZh5Ou1WNUa0’ after normalisation is ’youtube’. 264

Entity Extraction We extract named entities and perform part-of-speech tagging in order to identify noun phrases. 265

We use the noun phrases and named entities to identify terms (e.g. ’blue tit’, ’audiology house’) that could assist in 266

classification. These terms are used to build feature representations with the BOW approach rather than only using 267

tokens (single words). 268

Removal of Similar Tweets A problem with the Tweets collection is the high number of duplicates, some of which 269

are Re-Tweets, due to one person Tweeting an existing Tweet. Duplicate Tweets and Re-Tweets have identical or very 270

similar vocabulary to the original Tweets. The presence of high numbers of duplicates causes uniformity of the dataset 271

vocabulary and thus classifiers may overfit to the given duplicates and fail to give accurate predictions when Tweets 272

with diverse language are given. To avoid overfitting, we remove duplicates using Levenshtein distance (Levenshtein, 273

1966). Levenshtein distance is a string metric for measuring the difference between two word sequences where the 274

distance between two words is the minimum number of single-character edits (insertions, deletions or substitutions) 275

required to change one word into the other. A threshold of 0.97 similarity was defined for Tweets to be considered 276

duplicates. The selected threshold was found following experiments with different values of the threshold (0.65, 0.80, 277

0.90, 0.97, 0.99). A higher value did not capture insignificant differences, such as misspellings and single character 278

insertions between the Tweets, while a lower threshold was inappropriate as it returns Tweets that are not duplicates. 279

Re-Tweets were removed using regular expression matching for Tweets starting with ’rt’. We also removed single word 280

Tweets. 281

The collection also contains a large number of similar Tweets, many of which are produced by spam accounts. 282

Examples of such Tweets are: ’#Forkknife #Snipe #blackout #Ps4 #Callofduty #Ttv #Live #Twitch #Share #funko 283

#Rage #Supportsmallstreamers live at ...’ and ’#Callofduty #blackout #Ps4 #Supportsmallstreamers #Snipe #Support 284

#Live #funko #Forkknife #wack #Share live at ...’. They share ten tokens ’#snipe’, ’live’, ’#forkknife’, ’#blackout’, 285

’#callofduty’, ’#share’, ’#supportsmallstreamers’, ’#funko’, ’#ps4’, ’#live’, which is the majority of the tokens in both 286

Tweets. Thus, we consider these similar. The method we use for removing similar Tweets is based on finding the 287

number of tokens that appear in both Tweets and it is performed in the following steps: 288

1. Represent Tweets as bag-of-words (BOW) 289

2. Given two Tweets, intersect their BOWs to find their common tokens: 290

3. If the length of the list containing the common tokens is above the threshold of 90% of the number of tokens 291

contained in one of the Tweets, then the two Tweets are considered similar and the Tweet with the flagged up 292

threshold is removed. 293

2.3. Feature Extraction 294

We performed experiments with three main types of feature extraction techniques, as described in Table 1. They 295

are reflective of the main approaches for building feature representations, identified earlier in the paper, i.e. simple 296

n-gram representation, word embedding models, and language models. In particular, the n-grams are a combination of 297

the 1-grams and 2-grams in the Tweet texts. We have performed experiments with three pre-trained word embedding 298

models, Word2Vec (Mikolov et al., 2013a), fastText (Bojanowski et al., 2017) and GloVe (Pennington et al., 2014). 299

Word2Vec embeddings (Mikolov et al., 2013a) are generated using a skip-gram approach for learning term embeddings 300

from raw text. A limitation of Word2Vec is that it ignores the morphology of words by assigning a distinct vector to 301

each word. This Word2Vec limitation is addressed in the fastText approach (Bojanowski et al., 2017) where each word 302

is represented as a bag of character n-grams which enables the construction of vectors for rare or misspelled words. 303

We have also included GloVe pre-trained embeddings as they have been trained on Twitter data. In addition to the pre- 304

trained fastText embeddings we use the wildlife-related Tweets collection to train a corpus-specific word embedding 305

model using the fastText architecture. This uses the skip-grammethod to build word embeddings with 300 dimensions. 306

Finally, we also perform experiments with the language model BERT (Devlin et al., 2018) introduced in Sec- 307

tion 1.1.1. As explained in Section 1.1.2, BERT takes into account the context of each word and hence offers an ad- 308

vantage over word embedding models where words have fixed representations regardless of the context within which 309

the word appears. As explained in Section 1.1.2 there are two steps in the BERT architecture: pre-training and fine- 310

tuning, both of which we use here in different experiments. We use the base pre-trained BERT model to create a 311
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Table 1
Feature Extraction Step — A summary of main methods deployed during this step.

Approach Approach Description Model Model Description
n-grams A continuous sequence of n tokens from

a given text
1,2-grams Represent Tweet as a sequence of 1 and 2 grams

Word Embeddings

Neural models that use unidirectional ap-
proach for learning word representations
and thus they produce single vector of a
word irrespective of the context in which
it appears

Word2Vec pre-
trained (Mikolov
et al., 2013a)

A two-layer neural model that uses skip-gram to learn word embed-
dings from raw text.

fastText pre-
trained (Bo-
janowski et al.,
2017)

Vector representations are generated for each character n-gram and
words are represented as the sum of these representations.

Glove pre-trained
(Pennington et al.,
2014)

A matrix of the co-occurrence of pairs of words is used to learn
embeddings for which the dot product of pairs of word embeddings
is equivalent to the log of the probability of the co-occurrence of
the respective words.

fastText corpus-
based

We use Tweets to train a corpus-specific word embedding model
using fastText. The skip-gram method is used to create word em-
beddings with 300 dimensions.

Language Model Pre-train deep bidirectional representa-
tions by jointly conditioning on both left
and right context in all layers.

base BERT (De-
vlin et al., 2018)

We use the base pre-trained BERT language model, which has been
trained on Books Corpus and English Wikipedia

sentence encoding (see next section) that will be used as input to a Logistic Regression classifier, while also using the 312

fine-trained version, with BERT’s built-in classifier, in subsequent experiments. 313

2.4. Feature Integration 314

In this step, we generate Tweet classification feature vectors using three main approaches. One is simply based 315

on the statistics of the n-gram occurrences, specifically the counts of the 1-grams and 2-grams in the Tweet text2. 316

This can be regarded as a bag of words (BOW) method. The second approach uses various combinations of word 317

embeddings as features, one being the average of the embeddings of the words in a tweet and the other being a tf-idf 318

weighted average of the embeddings where the tf-idf values are those of the respective words. The third approach 319

is based on sentence encoding methods. The first of these uses the uSIF (unsupervised smoothed inverse frequency) 320

method of Ethayarajh (2018) that creates a weighted average of word embeddings where a lower weight is placed on 321

more frequent words. The method introduces a weighting scheme that improves on the approach of Arora et al. (2017). 322

To form a sentence embedding they subtract from the weighted average a weighted projection of the weighted average 323

onto the first m principal components of all weighted average sentence embeddings, i.e. the common discourse vectors 324

(where m equals 5 rather than only subtracting the first principal component as in Arora et al. (2017)). This is referred 325

to as piecewise common component removal. The second sentence encoding method uses the pre-trained BERT base 326

language model to extract the embedding of the token called [CLS], i.e. for classification, from the last hidden layer of 327

the BERT neural network representation. The output corresponding to that token can be considered as an embedding 328

for the entire input sentence. Note that the input to the first layer of the BERT model is a sequence of the embeddings 329

of each word of the sentence where those initial pre-trained embeddings are modified in subsequent layers to adapt to 330

their context. A summary of Feature Integration techniques is given in Table 2. 331

2.5. Wildlife Observation Classifier 332

We use three types of classifier where each classifier represents one of the main text classification methods outlined 333

in Section 1.1.1. In this way we want to ensure a coverage of the main existing approaches including the state-of- 334

the-art. These are classical machine learning models, the fastText pipeline, and fine-tuned BERT. We experimented 335

with a classical machine learning model based on frequency-based features and a suite of classification algorithms 336

available in the Scikit-Learn library (Pedregosa et al., 2011), namelyGaussianNaive Bayes (GNB), Logistic Regression 337

and Support Vector Machines (SVM). Of the three, the best results were achieved using Logistic Regression. We 338

use Logistic Regression for the n-gram baseline and for the classifiers in which the features were those described in 339

the previous section. Thus these features include sentence representations based on average pre-trained Word2Vec, 340

2As an alternative to counts of word occurrences we experimented with using tf-idf values of words but this did not provide an improvement in
performance
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Table 2
Feature Integration Step — A summary of main methods deployed during this step.

Approach Approach Description Model Model Description
statistical approach statistic-based approach for representing

words in a sentence
count We assign frequency weights to the 1,2 grams in a given Tweet

Combination of
Word Embeddings

It uses simple average or tf-idf weighting
of word embeddings in the sentence

Mean Average the embeddings of each word in a Tweet along each di-
mension

TF-IDF We assign TF-IDF weights to the words in a Tweet, and calculate
the weighted average of the word embeddings along each dimension
(where the contribution of a word is proportional to its TF-IDF
weight)

Sentence Encoders It employs more specialised sentence en-
coding to adapt the word embeddings

uSIF (Ethayarajh,
2018)

Based on calculating the weighted average of word embeddings,
with a lower weight placed on more frequent words. From each
weighted average vector is subtracted the projection on their first
principal components.

BERT sentence
encoder

A sentence embedding is represented by the embedding of the “clas-
sification” token [CLS] extracted from the last hidden layer of the
BERT representation.

Table 3
Wildlife Observation Classifier — A summary of classification approaches used to build a classification model.

Approach Approach Description Model Model Description

linear model It can represent linear relationships Logistic Regres-
sion (LG)

A strong baseline for many text classification tasks (Joachims,
1998); (McCallum et al., 1998); (Fan et al., 2008) including more
recently on noisy corpora such as social media text (Mohammad
et al., 2018; Çöltekin and Rama, 2018); however it tends to struggle
with OOV words, fine-grained distinctions and unbalanced datasets

fastText pipeline
(Joulin et al.,
2017)

It partially addresses issues associated with LG by integrating a
linear model with a rank constraint, allowing sharing parameters
among features and classes, and integrates word embeddings that
are then averaged into a text representation

Neural Model can learn non-linear and complex rela-
tionships

fine-tuned
BERT (Devlin
et al., 2018)

We use pre-trained BERT word representation model and add a
final sequence classification layer

fastText and GloVe embeddings, corpus-trained fastText embeddings, as well as the uSIF and base BERT sentence 341

representations. In addition to using pre-trained fastText embeddings with Logistic Regression, we used the fastText 342

pipeline which has its own classifier. Our final form of classifier was the fine-tuned BERT model where an additional 343

final layer of the model serves as a binary classifier. 344

A summary of classification techniques is given in Table 3 345

2.6. Dataset 346

We selected a subset of the Tweets collection chosen randomly to ensure the subset is representative of the dis- 347

tribution of all Tweets among the different species search names. We manually annotated Tweets as either a genuine 348

wildlife observation or a false wildlife observation. The main annotation was done by the first author. To verify the 349

quality of the annotation two other people annotated a sample of 100 Tweets. In both cases a high level of agreement 350

was found with the first annotation, with a cohen-kappa value of 0.978 in both cases. Note that the annotation pro- 351

cess involved following links within Tweets and examining the content of images, and paying attention to the nature 352

of hashtags, where genuine wildlife Tweets were characterised by the common use of photos of the observation and 353

of wildlife community tags, or of Latin names of species, thus allowing for the possibility of fairly reliable manual 354

tagging as was found here (see Section 3.3 for a discussion of indicative features of genuine wildlife observations). 355

Further, we balance the datasets among the two classes (genuine wildlife observation versus no wildlife observation). 356

After removing Re-Tweets and similar Tweets, we were left with 2798 manually annotated Tweets. 357

We used all collected Tweets (i.e. 1769384) for producing the corpus-trained word embedding model excluding 358

the Tweets which we manually annotated and are used for classification. The main features and statistics of the dataset 359

used for training the word embedding model are summarized in Table 4.3. An overview of the manually labelled 360

subset of the Tweets collection which was used for training the classifier is presented in Table 5. Analysis of the 361

3# Split (e.g. # Tweets) in the table indicates the number of instances in the given dataset.
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Table 4
Twitter collection used for building corpus-trained word embeddings, consisting of unlabeled data (‘#Tweets’ refers to
the number of Tweets used for training the model, ‘#Tokens’ refers to the number of tokens within the collection, ‘Avg
Length’ refers to the average number of tokens per Tweet.

#Tweets 1769384
#Tokens 31780390
Avg Length 18

Table 5
A subset of the Twitter collection, manually labelled and used for training classification models (‘#Tweets’ refers to the
number of Tweets labelled per class, i.e. verified as true wildlife observation or false wildlife observation).

Verified as True (wildlife
occurrence

Verified as False
(no wildlife occurrence)

Total

#Tweets 1,257 1541 2,798
#Tweets with hashtags 679 693 1,372
#Tweets with mentions 247 452 699
#Tweets with pictures 323 322 645
#Tweets with links 976 1,369 2,345

Table 6
Tweets distribution per species — limited to the 20 best represented species on Twitter (‘#Tweets’ refers to number of
Tweets per species).

Scientific Name Common Name #Tweets
Fagus sylvatica Beech 298,542
Gallinago gallinago Snipe 239,719
Parus major Great Tit 132,798
Pteridium aquilinum Bracken 116,591
Cyanistes caeruleus Blue Tit 110,780
Hedera helix Ivy 91,383
Bellis perennis Daisy 87,471
Turdus merula Blackbird 74,857
Scirurus carolinensis Grey squirrel 65,300
Fringilla coelebs Chaffinch 57,960
Passer domesticus House Sparrow 43,135
Anas platyrhynchos Mallard 46,135
Columba palumbus Woodpigeon 44,851
Chloris chloris Greenfinch 37,839
Prunella modularis Dunnock 32,791
Taraxacum officinale agg. Dandelion 31,948
Heracleum mantegazzianum Giant Hogweed 31,570
Hyacinthoides non-scripta Bluebell 30,282
Branta canadensis Canada Goose 27,094
Aix sponsa Wood Duck 27,403

distribution of Tweets per species (see Table 6) showed that the best represented species on Twitter can be split into 362

three main categories: pretty, i.e. photogenic, flowers (Bluebell, Daisy, Dandelion), sessile green plant species (Ivy, 363

Beech, Bracken) and garden and aquatic birds, which are also diurnal (Blue Tit, Great Tit, Mallard). 364

3. Results 365

3.1. Evaluation experiments 366

As mentioned in Section 2, our evaluation is focused on a mix of features, mostly employing various forms of 367

word embeddings along with Logistic Regression, fastText (Bojanowski et al., 2017) and BERT (Devlin et al., 2018) 368

classifiers. In addition to embedding-based features we include a Logistic Regression classifier based on frequencies 369

of n-grams reflected by their counts of words as a baseline. We used the 1000 most frequent n-grams to form feature 370

vectors for the baseline classifier (i.e. a bag-of-words approach). 371

The pre-trained and application corpus-trained word embeddings were fed as input to a fastText pipeline where we 372

used default parameters and ‘softmax’ as the loss function. However, for the fastText classifier we present only results 373

based on corpus-trained embeddings due to the poorer results produced with pre-trained embeddings. For the BERT 374

classifier, we fine-tuned it for the classification task using a sequence classifier, a learning rate of 2e-5 and 4 epochs. 375

In particular, we made use of the BERT’s Hugging Face default transformers implementation for classifying sentences 376
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Table 7
Results per classification approach (‘p’ refers to precision, ‘r’ refers to recall).

Classifier Feature Extraction Feature Integration p r F1 Accuracy
Logistic Regression
baseline

1,2 grams count 93.33%
(2.08%)

95.07%
(2.43%)

94.16%
(1.56%)

94.71%
(1.41%)

Logistic Regression

terms count 93.52%
(1.75%)

94.59%
(2.16%)

94.02%
(1.19%)

94.60%
(1.06%)

Word2Vec pre-trained

mean 93.14%
(1.85%)

90.79%
(2.16%)

91.93%
(1.39%)

92.85%
(1.22%)

TF-IDF 86.50%
(2.36%)

69.42%
(3.55%)

77.00%
(2.97%)

81.43%
(2.17%)

uSIF 94.34%
(2.10%)

91.57%
(3.31%)

92.88%
(1.63%)

93.71%
(1.38%)

fastText pre-trained

mean 92.44%
(2.12%)

82.57%
(2.78%)

87.19%
(1.82%)

89.14%
(1.46%)

TF-IDF 91.61%
(2.94%)

61.87%
(5.07%)

73.75%
(4.06%)

80.35%
(2.53%)

uSIF 91.53%
(2.47%)

91.81%
(3.05%)

91.62%
(1.66%)

92.46%
(1.46%)

Glove pre-trained

mean 77.51%
(6.46%)

87.96%
(5.91%)

82.33%
(5.73%)

76.34%
(7.72%)

TF-IDF 70.48%
(3.61%)

92.13%
(3.89%)

79.80%
(3.09%)

70.85%
(4.76%)

uSIF 63.31%
(1.25%)

95.81%
(2.72%)

76.23%
(1.37%)

62.67%
(2.17%)

fastText corpus-based mean 92.57%
(2.69%)

94.91%
(3.17%)

93.67%
(2.03%)

94.24%
(1.86%)

uSIF 92.27%
(2.24%)

94.35%
(2.83%)

93.27%
(1.86%)

93.89%
(1.68%)

base BERT BERT sentence encoder 92.31%
(1.06%)

95.39%
(1.58%)

93.82%
(1.03%)

94.35%
(0.93%)

fastText pipeline fastText pipeline fastText pipeline 93.44%
(1.37%)

96.10%
(2.15%)

94.74%
(1.38%)

95.21%
(1.23%)

fine-tune BERT base BERT BERT sentence encoder 96.0%
(1.03%)

96.1%
(1.45%)

96.0%
(1.23%)

96.0%
(1.84%)

(Wolf et al., 2019). The results of the classifier experiments were quantified with precision, recall, F1-measure and 377

accuracy. We also used 10-fold cross validation. This ensures that each class is (approximately) equally represented 378

across each test fold. 379

3.2. Classification Results 380

The baseline classifier based on frequency scores of n-grams as features provided remarkably good precision 381

93.33% and recall 95.07% (see Table 7). The feature extraction method based on noun phrase and named entity terms 382

rather than 2-gram representation did not lead to significant improvement over the baseline. The classification model 383

based on using Word2Vec pre-trained word embeddings is the best performing model using pre-trained embeddings. 384

It performs better than classification models using GloVe pre-trained embeddings. A potential reason for GloVe to 385

perform worse, even though it was trained with Twitter data, is that wildlife Tweets include a lot of common and Latin 386

names for species which are not widely used in general Tweets. 387

The use of fastText corpus-trained embeddings led to further improvements over the pre-trained models with a 1% 388

increase in F1-measure. Further to that, a simple linear classifier model coupled with corpus-trained fastText embed- 389

dings performed quite similarly to a linear (logistic regression) classifier coupled with the BERT sentence encoding 390

resulting from the [CLS] token of the base BERT language model. The use of the uSIF sentence encoding method was 391

usually found to be better than alternatives of a simple mean of word embeddings or a tf-idf weighted mean, but in 392

some cases the improvement was relatively minor and in the case of the GloVe pre-trained embeddings it was inferior 393

to the simpler alternatives. 394

Notably the fine-tuned BERTmodel gives the best results with precision, recall, F1-measure and accuracy all being 395

96%. The fastText pipeline is the second best performing classifier with precision 93.44%, recall 96.1% and an f1-score 396

of 94.7%. 397
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3.3. Indicative Features Analysis 398

We performed an analysis on the features indicative for wildlife using the manually annotated Tweets. The results 399

in Figures 3-5 show that there are trends across the usage of hashtags, mentions, and links distinguishable between 400

the genuine wildlife Tweets and the non-genuine wildlife Tweets. For instance, the majority of the genuine wildlife 401

Tweets have hashtags related to birds and wildlife, mentions of wildlife and nature groups such as ’@bbcspringwatch’ 402

and ’wildlife uk’. Further, the genuine wildlife observations include more links to pictures. In contrast, the false 403

wildlife Tweets contain hashtags and mentions related to gaming groups.

Figure 3: The ten most frequent hashtags per class label, Tweets with genuine wildlife observations (left), Tweets with false
wildlife Tweets (right).

404

Figure 4: The ten most frequent mentions per class label, Tweets with genuine wildlife observations (left), Tweets with false
wildlife Tweets (right)

Figure 5: The ten most frequent URL links class label, Tweets with genuine wildlife observations (left), Tweets with false
wildlife Tweets(right)

In order to identify whether hashtags, mentions, and URLs can be used as a way of distinguishing the genuine 405

wildlife species we performed a statistical analysis looking at the number of non-genuine wildlife Tweets containing 406

the most indicative features, displayed in Figures 3 to 5. Experiments showed that none of the top 5 most frequent 407

wildlife-related mentions are present in the non-genuine wildlife Tweets. There are two false wildlife Tweets including 408

wildlife indicative hashtags, i.e., ‘#bird’ and ‘#wildlife’with examples respectively, ‘Blue Tit Bird Painting Blue Yellow 409

White http://dld.bz/fj5W5 #birds #wildlife #painting’ and ‘Unfortunately predators invasive alien species IAS like grey 410

squirrels contributing decline native #wildlife red squirrels #ias like must also controlled’. The first Tweet is about a 411

painting of a bird rather than an actual wildlife observation and while the second example is relevant to wildlife it is 412

not a wildlife observation. There is a single false wildlife Tweet with a wildlife indicative URL (i.e., ‘instagram’). 413
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Table 8
Confusion matrix for fine-tuned BERT classification model (left) and fastText classification pipeline (right), where ‘Wildlife’
signifies genuine wildlife observation and ‘Not Wildlife’ signifies Tweets that are not genuine wildlife observations

‘Wildlife’ ‘Not Wildlife’
Predicted as ‘Wildlife’ 239 15
Predicted as not
‘Wildlife’

8 297

‘Wildlife’ ‘Not Wildlife’
Predicted as ‘Wildlife’ 233 17
Predicted as not
‘Wildlife’

14 295

The main conclusions from this analysis are: 414

1. The presence of mentions such as ‘@bbcspringwatch’, ‘@rspb_nescotland’, ‘@natures_voice’, ‘@wildlife_uk’, 415

‘@bbcearth’ are strong indications that a Tweet is a true wildlife observation since they are mentions of official 416

campaigns for wildlife observations. However, these kind of mentions appear in less than a 100 Tweets. This 417

suggests that crowdsourcing of wildlife observations could be improved by promoting such groups. 418

2. Hashtags such as ‘#wildlife’ and ‘#bird’ can be used for distinguishing between wildlife-related and false wildlife 419

Tweets, but they are not indicative of Tweets with genuine wildlife observations. Photography related hashtags 420

(‘flickr’, ‘photography’) and nature-related tags have however been used exclusively in genuine wildlife obser- 421

vation Tweets. This suggests that there is a trend towards the usage of wildlife hashtags in Twitter wildlife 422

observations that are not related to official campaigns. It might also explain why the baseline, that uses only n- 423

grams rather than embeddings as features, performs very well, albeit not as well as the fine-tuned BERT model. 424

3.4. Error Analysis 425

We compare the performance of the two best performing classifiers - fine-tuned BERT and fastText pipeline using 426

a test set of 559 Tweets from the 2798 manually annotated Tweets, which corresponds to one test fold from the 10 427

fold cross validation (described in Section 3.1). A confusion matrix of the performance of the classification models is 428

given in Table 8. 429

Error Analysis comparing the false positives and false negatives between the two classifiers showed that BERT 430

performs better for Tweets whichmention species name in a different context thanwildlife. An example of false positive 431

for fastText where BERT correctly classifies the Tweet as ‘not Wildlife’ is ’looking buyer 8 woodduck #littleeggharbor 432

#nj #realestate http://tour.circlepix.com/’. This Tweet is about buying property with the name 8 woodduck rather than 433

talking about the species. BERT also performs better for Tweets containing the Latin names of the species and also a 434

mix between English and other languages. A false positive example of the latter for fastText, where BERT correctly 435

classifies the Tweet as ‘Wildlife’ observation, is: ’le petit oison des bernaches du canada branta canadensis canada 436

goose pic.twitter.com/’. 437

Figure 6: Comparison between the performance of baseline, fastText, and BERT classifiers for different length of Tweets.

Experiments comparing the best performing classifiers for different Tweets lengths showed that BERT performs 438

better than the baseline for any length. Further, fine-tuned BERT gives better results than fastText pipeline and the 439

baseline for shorter Tweets. For long sentences fine-tuned BERT and fastText pipeline have very similar performance 440

with a difference less than 1% (see Figure 6). 441

4. Discussion 442

Classification results and error analysis presented in Sections 3.2 and 3.4 showed that, despite the relatively small 443

amount of labelled data, features based on the corpus-trained embeddings from fastText produced better results than 444
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pre-trained embedding models including the pre-trained embeddings of GloVe which were trained on Twitter data. 445

The latter performance advantage can be attributed to the fact that genuine wildlife observations can use Latin species 446

names which might be relatively insignificant in use in the pre-trained GloVe embeddings. It is this occurrence of 447

distinctive vocabulary that might also explain why the baseline Logistic Regression classifier, in which the features 448

were either simply the count of words or of n-grams, outperformed all other classifiers except the fastText pipeline 449

and the fine-tuned BERT classifier. Regarding the specialised sentence embedding method of uSIF, in the case of 450

pre-trained Word2Vec and fastText embeddings it was found to be superior to mean and tf-idf weighted methods, but 451

for GloVe the opposite was the case. Also for fastText corpus-trained embeddings it was slightly inferior to using 452

the mean. These findings indicate that pre-trained embedding models, trained on large but generic corpora are less 453

beneficial for classification of text with more specialised terminology (i.e. the ecology-related data), compared to 454

corpus-trained word embeddings which are trained on a smaller but more task-specific dataset. 455

It may also be noted that the (best performing) fine-tuned BERT classifier performedwell even for Tweets withmore 456

specialised language (i.e. Latin names, use of non-English words) and in correctly classifying non-genuine wildlife 457

observations Tweets that used the common names of wildlife species in contexts that are totally unrelated to making 458

a wildlife observation. This indicates that deep learning transformer models can perform well even for small amounts 459

of labelled data, especially when more contextual knowledge is needed. Further, the BERT deep learning model 460

performed better than linear models for very short Tweets while for longer Tweets, deep learning performed similarly 461

to linear models. The high performance of the fine-tuned BERT classifier (i.e., 96% accuracy) shows the potential 462

of state-of-the-art deep learning models to be used for developing automated tools for identifying valuable ecology 463

data among informal social network sources automatically and on a larger scale, independent of the species observed 464

at hand. Therefore, this research addresses many of the gaps associated with previous work on text classification for 465

wildlife data, presented in Section 1.2 where some solutions involve manual processing, the use of linear classification 466

models or analysis limited to a few species. Additionally, our analyses address the suitability of different classification 467

approaches for smaller wildlife-related datasets, compared to previous research presented in Section 1.2 468

Analysis of the use of hashtags and mentions across genuine wildlife observation Tweets showed that hashtags such 469

as ‘#wildlife’ and ‘#bird’ can be used for distinguishing between wildlife-related and false wildlife Tweets, but they 470

are not indicative of Tweets with actual wildlife observations. Photography related hashtags (‘flickr’, ‘photography’) 471

and nature-related tags have however been used exclusively in genuine wildlife observation Tweets. This suggests 472

that there is a trend towards the consistent usage of hashtags related to wildlife observations which are not related to 473

official campaigns. In future, such hashtags could be used by informal social network campaigns to encourage people 474

to indicate when they are posting about wildlife. However, the presence alone of some of these hashtags cannot be 475

considered adequate in itself for identifying wildlife observations. A reason for this is that the list of indicative features 476

may expand as new species names are used or Tweets are collected for different time spans, regions, and languages. 477

Additionally, Tweets often contain misspellings which can affect the representation of indicative features. The use of 478

more sophisticated methods, such as the language models with contextual word embeddings employed here to identify 479

wildlife observations, as opposed to simply selecting Tweets according to the presence of particular terms, allows us 480

to identify the semantics of terminology used to make wildlife observations, rather than being dependent on a fixed 481

vocabulary. Thus terms with similar meaning will have similar representations which can help accurate classification 482

despite the diverse spelling or diversity of terminology. This allows our methods to be applied to a wider range of 483

species, geographical regions and even different languages than would otherwise be the case. It is also possible to 484

envisage that, in future, classification models could be improved by creating feature selection techniques which assign 485

higher importance to the sort of indicative features identified in this work. 486

The statistical analysis, presented in Table 6 show trends in the best represented species on Twitter, which can be 487

split into three categories, i.e. pretty (photogenic) flowers, sessile green plant species, and garden and aquatic birds. 488

Similar species distributions have been found in Flickr (Edwards et al., 2021; August et al., 2020) which suggests 489

that there are common trends among different social networks on the type of species they represent. A more detailed 490

analysis of the value of Twitter for collecting species-specific data is outside the scope of this research. Instead, we are 491

interested in providing tools for identifying genuine wildlife-related data which can be applied to studying any kind of 492

species. However, in future, the developed classification pipeline can be used to filter genuine wildlife observations 493

which can then be used to perform more detailed analysis of spatial and temporal distribution of specific species. 494

T. Edwards et al.: Preprint submitted to Elsevier Page 15 of 20



Identifying Wildlife Observations on Twitter

5. Conclusion 495

In this work we have explored the problem of identifying genuine wildlife observations on Twitter using text 496

classification approaches. This is a significant challenge as Tweets commonly mention species names without being 497

actual observations of the named species. In preparation for developing amachine learning classifier to identify genuine 498

observations we created a dataset of Tweets that were manually annotated according to whether or not they were classed 499

as genuine wildlife observations. We performed experiments with three classification approaches: a classical (linear) 500

Logistic Regression, the fastText pipeline and the fine-tuned BERT transformer model classifier. These methods were 501

used variously in association with features that consisted of simply counts of the actual words (as 1- and 2-grams) in 502

the Tweets, which was treated as a baseline, and various forms of embeddings of the sequence of words in a Tweet. 503

These latter sentence embedding methods included simple and tf-idf weighted averaging of the embeddings of each 504

word, along with the uSIF sentence embedding method and the sentence embedding obtained from the CLS token 505

of the last layer of the basic BERT language model. Various word embedding methods were employed, namely pre- 506

trained GloVe, Word2Vec and fastText, corpus trained fastText embeddings, along with the contextually generated 507

BERT embeddings. The best performance of .96 for each of precision, recall and F1 score was obtained using the fine- 508

tuned base BERT model in which word embeddings are adapted to their context. In particular, the fine-tuned BERT 509

model proved valuable in classifying correctly instances with more specialised terminology even when a training set 510

of less than 3000 instances is provided. This shows the potential of state-of-the-art neural network transfer learning 511

techniques to facilitate the discovery of valuable wildlife related data on social networks without the need of human 512

verification steps or officially organised citizen science campaigns. Analysis into the usage of hashtags, mentions, and 513

URL links throughout the genuine wildlife related Tweets suggested trends in the use of hashtags that are unrelated to 514

official citizen science campaigns. Such hashtags can therefore be exploited in automated feature selection techniques 515

for improving classification performance, as well as used as part of more informal campaigns encouraging people to 516

use these hashtags when wildlife observations are posted. We provided a broad analysis of the suitability of various text 517

classification and feature extraction methods for identifying genuine wildlife observations on social media. In doing so 518

we address the need for devising automated strategies which facilitate the discovery of valuable ecology-related data 519

from informal online sources which can be used to expand and enrich existing citizen science data portals. 520
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Appendix A: Glossary 658

Neural Network: Neural networks are machine learning algorithms inspired by the structure of the human brain. 659

Neural networks are comprised of layers of nodes, containing an input layer, one or more hidden layers, and an output 660

layer. Each node, or artificial neuron, connects to another and has an associated weight and threshold. If the output of 661

any individual node is above the specified threshold value, that node is activated, sending data to the next layer of the 662

network4. 663

Early Neural Networks: These neural networks are based on feed-forward approaches where text is processed in a 664

sequential manner, word by word. Examples of such neural networks are Recurrent Neural Network (RNN) and Long 665

Short Term Memory (LSTM) Neural Network. These sequential neural network architectures can fail at providing 666

more context-specific word representations and tend to be computationally expensive. 667

4Resource on Neural Networks: https://www.ibm.com/cloud/learn/neural-networks
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Recurrent Neural Network (RNN): RNNs are feed-forward NNs, which process text in a sequential manner where 668

sentences are processed word by word. Previous input is represented as the hidden state of the recurrent computation 669

and each new input is processed and combined with the hidden state. A limitation of RNN is that they process text 670

from left-to-right or right-to-left and have limited capacity to remember long term dependencies between words. 671

Long Short Term Memory (LSTM) Neural Network: Long-short term memory neural models (LSTMs) are an 672

extension to RNNs and they address the problem of RNN (learning only short-term dependencies) by using a gating 673

unit which allows it to selectively determine what to remember over long spans reducing the number of successive 674

gradient calculations. Despite this improvement, these neural models can still fail at providing more context-specific 675

representations and tend to be computationally expensive. 676

Transformer-based Neural Network: Transformer type neural network architectures address the problems associ- 677

ated with earlier neural network models by using an attention mechanism where each word representation in a sentence 678

is directly connectedwith the representation of every other word. The non-sequential manner in which data is processed 679

enables capturing more relationships between words and thus provides better contextual representation. 680

Skip-gram approach: An approach for building word embedding models where during training it tries to predict the 681

source context words (surrounding words) given a target word (the center word). 682

CBOW approach: An approach for building word embedding models where during training it predicts the target 683

word according to its context words. 684

Pre-trained Model: Neural network architectures allow model pre-training where word or language representation 685

models can be trained on large generic corpora. They can be applied directly or be adapted to specific tasks using an 686

application-specific training dataset to fine-tune the model. 687

Corpus-trainedModel: Neural network language representations learned from scratch using the application training 688

set (task-specific dataset). Note though that all pre-trained models have been trained on generic corpora. 689

Fine-tuning technique: This a technique, mainly used in transformer-based architectures where a pre-trained word 690

model is adapted (fine-tuned) to the classification task by adding a single additional neuron layer which is task-specific 691

and requires labelled training data. 692

Word Embedding Model: Multi-dimensional vector space representations of words generated using dimensionality 693

reduction methods that represent the semantics of words and capture semantic relationships between words. Word 694

embeddings can be created in various ways including shallow neural network architectures. Some of the most efficient 695

techniques used to generate word embedding models are skip-gram and CBOW. A problem with standard word em- 696

bedding models is that they produce a single vector representation per word independent of the context in which they 697

appear. 698

Language Model: These are word representations also referred to as contextualised word embeddings built using 699

transformer-based principles. They address the limitations associated with conventional word embeddings by comput- 700

ing dynamic representations for words based on the context in which they are used. 701

Bidirectional Encoder Representations from Transformers (BERT): A state-of-the-art language model. It is 702

available as a pre-trained model for various domains. However, one of the biggest and most widely used pre-trained 703

BERTmodels is trained on the Books corpus andWikipedia data. This pre-trained model can be fine-tuned for various 704

tasks by adding a single output layer. 705

GloVe: An embedding model where a weighted least squares regression dimensionality reduction procedure uses a 706

co-occurrence counts matrix. For this paper, we used the GloVe model pre-trained on a large corpus of generic Tweets. 707

Word2Vec: A word embedding model which uses the skip-gram approach to build term representations. it is a two- 708

layer neural network which gives as an output an embedding matrix, where each term (single or multi-token) from the 709

corpus vocabulary is represented as an n-dimensional vector. A problem with the Word2Vec model is that it ignores 710
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the morphology of words by assigning a distinct vector to each word. For the paper, we used a pre-trained Word2Vec 711

model trained on Google news datasets. 712

fastText: A word embedding model which generates vector representations of each character n-gram and words are 713

represented as the sum of these representations. This allows the creation of representations of rare and misspelled 714

words. 715

fastText classification pipeline: A one layer neural network which has been developed to deal with unbalanced 716

large datasets with fast training time. The classification pipeline learns embeddings for each word in a sentence. These 717

word representations are then averaged to create a sentence representation, which is fed into the classifier layer. 718
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