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Abstract

Users of Location-Based Social Networks (LBSN) are giving away information about

their whereabouts, and their interactions in the geographic space. In comparison to

other types of personal data, location data are sensitive and can reveal user’s daily

routines, activities, experiences and interests in the physical world. As a result, the user

is facing an information overload that overburdens him to make a satisfied decision on

where to go or what to do in a place. Thus, finding the matching places, users and

content is one of the key challenges in LSBNs.

This thesis investigates the different dimensions of data collected on LBSNs and pro-

poses a user and place modelling framework. In particular, this thesis proposes a

novel approach for the construction of different views of personal user profiles that re-

flect their interest in geographic places, and how they interact with geographic places.

Three novel modelling frameworks are proposed, the static user model, the dynamic

user model and the semantic place model. The static user model is a basic model that

is used to represent the overall user interactions towards places. On the other hand,

the dynamic user model captures the change of the user’s preferences over time. The

semantic place model identifies user activities in places and models the relationships

between places, users, implicit place types, and implicit activities. The proposed mod-

els demonstrate how geographic place characteristics as well as implicit user interac-

tions in the physical space can further enrich the user profiles. The enrichment method

proposed is a novel method that combines the semantic and the spatial influences into

user profiles. Evaluation of the proposed methods is carried out using realistic data sets
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collected from the Foursquare LBSN. A new Location and content recommendation

methods are designed and implemented to enhance existing location recommendation

methods and results showed the usefulness of considering place semantics and the time

dimension when the proposed user profiles in recommending locations and content.

The thesis considers two further related problems; namely, the construction of dy-

namic place profiles and computing the similarity between users on LBSN. Dynamic

place profiles are representations of geographic places through users’ interaction with

the places. In comparison to static place models represented in gazetteers and map

databases, these place profiles provide a dynamic view of how the places are used by

actual people visiting and interacting with places on the LBSN. The different views

of personal user profiles constructed within our framework are used for computing the

similarity between users on the LBSN. Temporal user similarities on both the semantic

and spatial levels are proposed and evaluated. Results of this work show the challenges

and potential of the user data collected on LBSN.
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Chapter 1

Introduction

1.1 Background and Motivation

Over recent years, social media has become very popular, and so the topic has attrac-

ted many researchers from a variety of fields. Social networks enable users to post

their own, user-generated content at any time and from any location. Social media has

evolved through the rise of the mobile internet and smart-phones, and it has become an

essential part of many people’s daily lives. Consequently, with the further emergence

and growth of the use of GPS-enabled devices (along with wireless communication

technologies) users can associate their geographical location with the content they post

on the mainstream social networks (e.g., Twitter and Facebook). In addition, users

can interact in relation to their locations with the use of location-based social networks

such as Foursquare, Yelp, and Google Place. The emergence of LBSNs doesn’t simply

imply the addition of location information to existing social network technologies; it

also implies changes to the structure of social networks, relating, as it does, users to

the places they visit, their associated content and the time they visit the places. Us-

ing a LBSN, users check-in at different venues and share their life experiences relat-

ive to their various physical locations (past and present). This results in a significant

amount of spatiotemporal data being created that, essentially, represents the “4Ws”:

who, when, where and what.

The content involved in this context includes tags, images, videos, comments, and
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other posts generated or uploaded by users onto a social media platform, and represents

semantic information about users’ activities. The temporal and spatial layers of data

provide rich contextual information about users’ activities. Also, to some extent, the

dimension of location bridges the gap between online social networks and the physical

world. Using data from location-based social networks, we can enhance situational

awareness (what is going on around you) via the assembly of individual perspectives.

The users’ movements through physical space, the places that they visit, the people that

they interact with and the activities that they carry out all provide important clues about

their personalities and personal preferences. Constructing a faithful user profile based

on the information implied by the kind of interactions listed above has many potential

applications. In particular, such information can be used to provide users with a more

personalised search experience. This implicit data can also be used by recommendation

services and by personalisation applications to provide users with information relevant

to them. Its use can improve the functionality of recommendation services and lead

to more targeted adverts for commercial services. The existence of such data can also

improve the capabilities of location-based services, providing personalised access to

local services.

On the other hand, studying the social-network traces left by numbers of people visiting

particular places can enhance the understanding of the places visited and so help to

build profiles of places over time. Understanding places and their use by people can

help city authorities to understand the social dynamics of those places and so improve

service provision and planning.

In addition, developing proficient location recommendation systems (LRSs) based on

LBSNs becomes a more achievable task. In LRSs, the task of recommending places

of interest to the user is referred to as point-of-interest (POI) recommendation. POI

recommender systems have played an important role in the development of LBSNs

because they are intended not only to satisfy users’ personalised preferences as regards

visiting new places, but also to help the LBSNs themselves to increase their reven-
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ues by providing users with intelligent location-based services such as location-aware

advertisements.

Users of Location-Based Social Networks (LBSN) declare where they go (or check-

in) and which places are of interest to them (by tagging or leaving tips). Both these

spatial and semantic traces are equally useful in understanding people’s relationships

with place. Whereas, spatial tracks can be analysed to determine frequency of visits

and favourite places, semantic interactions can give clues to the sort of activities they

carry out in place and the experiences they share there. Combining both the explicit

spatial association to place and the implicit semantics of interaction with place provides

a unique opportunity for in depth understanding of both places and users.

The aim of the research presented in this thesis is to provide a user and place model-

ling framework from location-based social networks. The spatial (where), the semantic

(what) dimension, and the temporal dimension (when) of user and place data are used

to construct different views of a user profiles. Thus, the proposed approach provides

users with the ability to project different views of their profiles, using their direct inter-

actions with the social network or extended with a holistic view of other users’ interac-

tion with the network in different regions of geographic space. These profiles are then

used as a basis for computing different methods of similarity between users. Studying

user similarity from LBSN data is useful; as information available about users, their

locations and activities are considered to be sparse. Similarity between users on LBSN

is approached in a uniform manner within the proposed framework, thus providing

means of computing spatial, semantic or a combined view of user similarity on these

networks. Furthermore, user similarities are exploited to predict types of activities and

places preferred by a user based on those users with similar preferences.
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1.2 Thesis Hypothesis and Research Questions

The main hypothesis addressed in this thesis is:

The proliferation of GPS-enabled devices and their utilisation by users for geo-tagging

personal resources, actions, and interactions on the Web is leading to the accumulation

of a new type of information concerning individual users and user groups. The accumu-

lation of spatiotemporal (ST) user footprints on the Social Web provides an opportunity

for deriving profiles for both places, and users that closely reflect users’interests over

space and time. Extracting and making sense of such profiles can enhance both place

and content recommendation.

Providing evidence for this hypothesis in this thesis required:

• The design and development of methods for extracting users’ spatiotemporal

data from their Social Web “footprints”.

• The development of methods for constructing a dynamic user profile from the

user’s spatiotemporal data and for simulating how it may change over time.

• The development of methods for learning place profiles and as result adapting

individual users’ profiles based on group interaction.

• The development of methods for understanding the effects of interactions in

space and time on the constructed user profiles.

• The design and implementation of evaluation methods, using the collected data,

to evaluate the quality of the extracted user and place profiles.

In order to verify this hypothesis, a number of important research questions were ad-

dressed:

1. Static and Dynamic Location-based User Modelling Framework:
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Research Question 1: How can different views of user profiles be constructed from

user footprints collected on LSBNs that emphasis the different facets of collected

data? ( Work of Chapters 4, 6)

2. Spatial and Semantic Enrichment for User Modelling:

Research Question 2: How does the enrichment process impact the quality of per-

sonal user profiles? (Work of Chapters 4,6)

3. Extracting Place Semantics from Geo-Folksonomies

Research Question 3: How can implicit semantics of place profiles be used to reflect

users experience in geographic places through the activities they carry out in those

places? ( Work of Chapter 5)

4. Evaluation Methods

Research Question 4: How can we construct a new location recommendation method

using different dimension of LBSNs and evaluate it existing methods? (work of

Chapter 4, 5, 6)

Research Question 5: How can different user profiles be evaluated using user simil-

arity measures to assess their quality? (Work of Chapter 7)

1.3 Contributions

The primary contribution of this research is the ability to use different views of user

profiles to enhance place and content recommendation by combining the spatial, se-

mantic, temporal and social dimensions of data available on the social web.
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1. Static and Dynamic Location-based User Modelling Framework: We intro-

duce a framework for modelling different levels of user profiles extracted from

the heterogeneous user feedback in LBSNs. User-generated traces at venues in

LBSNs include both spatial and implicit semantic content. The location traces

are treated equally to the semantic traces inferred from their interaction with the

place through tagging and tipping. Collective behaviour of users on the network

are also used to understand the place characteristics and these in turn are further

used in the modelling of user profiles.Both the spatial (where) and the semantic

(what) dimensions of user and place data are used to construct different views of

a user’s profile. A place is considered to be associated with a set of tags or labels

that describe its associated place types, as well as summarise the users’ annota-

tions in the place. A folksonomy data model and analysis methods are used to

represent and manipulate the data to construct user profiles and place profiles.

The user modelling framework is then adapted and extended to consider the tem-

poral dimension of user interaction on LBSN. The temporal dimension of the

data is used to derive dynamic user profiles that project users’ activity and asso-

ciation with place over time. References

2. Spatial and Semantic Enrichment of User Profiles: The user’s direct links to

places extracted from the basic user modelling framework are extended to create

enriched profiles describing richer views of the place data available on the so-

cial network. Two types of enrichment are undertaken: a) Semantic enrichment

(based on tag similarity calculations); and b) Spatial enrichment (based on place

similarity calculations). The similarity calculations are used to enrich the basic

profiles and to build different views of these enriched user profiles. Hence, user

profiles can be extended from a basic model that describes user’s direct links

with a place, to enriched profiles describing richer views of place data on the

social network.

3. A novel semantic place model To study the place semantics in LBSNs, both
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explicit place affordance; the sort of services offered in a place as denoted by

its place type or place categories, and implicit place affordance; encapsulated in

reference to activities in place annotations, are used in building semantic user

profiles.

4. A new Location Recommendation Method: The evaluation of the proposed

methods is undertaken within a location recommendation problem framework. A

location recommendation method is proposed that considers similarities between

places and similarities between user profiles (i.e., ratings from similar users on

places). Both the temporal and semantic aspects of the data are taken into ac-

count.

5. A novel User Similarity Evaluation Method: Similarity between users on

LBSN is approached in a uniform manner within the proposed framework, thus

providing means of computing spatial, semantic or a combined view of user

similarity on these networks. Using the profiles developed within the proposed

framework, we are able to In particular, different similarity measures are presen-

ted based on: similarity of interests, similarity of co-location, similarity of place

categories visited and similarity of activities undertaken in a place. “Short-term

user similarity” and “Long term user similarity” are used to represent different

methods of handling time in the folksonomy.

1.4 Thesis Structure

The rest of the thesis is structured as follows:

Chapter Two provides an overview of the literature related to the research discussed

in the thesis. The chapter introduces the notions of user modelling and user similarity

measures and reviews related work in both areas in the context of LBSN. Different

approaches to location recommendation are also identified and critically evaluated.
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Chapter Three A general overview of the approach adopted in this thesis is given here.

In addition, a description of the data-set collected and the process of data cleaning,

preparation and modelling is also given.

Chapter Four describes the proposed user modelling framework. It begins by intro-

ducing the geo-folksonomy model that is at the core of our work. Next, we explain our

user modelling strategies by introducing the definitions of basic and enriched profiles.

Finally, we describe an experiment used to compare and evaluate different profiles us-

ing different evaluation metrics.

Chapter Five introduces the various structures of geo-folksonomies that relate the

concepts of place, place category and activity to users. The chapter considers how the

folksonomy model is adapted to represent these concepts and how these can then be

used to represent different views of user profiles.

Chapter Six describes the time modelling approaches proposed in this work for geo-

folksonmies. Two different approaches that represent a snap-shot view of the dataset

and a historical view of the dataset are used to develop temporal user and place pro-

files. Detailed evaluation experiments are carried out to test the quality of the proposed

methods.

Chapter Seven explores different views of user similarity within the framework pro-

posed. The similarity methods are systematically introduced and evaluated using real-

istic samples of datasets.

Chapter Eight highlights the key features of the research, evaluates its achievements

in relation to its aims and concludes with an appraisal of the overall research experience

and outcomes. Finally an outlook on further research issues and directions is given.
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Chapter 2

Background and Related Work

2.1 Overview

This chapter gives an overview of related work in two main relevant research areas:

user modelling, and location recommendation. In both areas, general methods are

first described and then works that adapt these methods to the location domain are

considered and evaluated. Figure 2.1 gives an overview of the topics covered in this

chapter.

2.2 User Modelling

User modelling is the process of understanding, learning, and representing information

about users [17]. The main goal of user modelling is to develop methods to address

user needs, characteristics and preferences. This process can also help users find rel-

evant information, provide feedback, support collaboration between users and predict

a user’s future behaviour [55].
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Figure 2.1: Road Map of Literature Review.

2.2.1 General Representation of User Model

User Profile Representation

User models are also known as user profiles. There are three fundamental methods that

are widely used in user modelling. These are known as: bag of words, keyword extrac-

tion, entity extraction and topic models. Using the ‘bag of words’ method, researchers

simply extract words (terms) by removing stop words, punctuation and URLs. This

method was widely used to analyse users’ micro-blogs [24] [46] [83]. Alternatively,
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Liu et al. [80] used keyword extraction to mine the interests of users; they combined a

translation-based method with a frequency-based method to extract appropriate interest

keywords. Moreover, concepts can be represented as named entities that are extracted

from textual content [38]. In all the above methods, a user profile is represented as a

vector-based profile using a vector of terms and their associated weights. The weights

are computed by a certain term weighting scheme such as TF and TF.IDF [99], or by

a time-sensitive weighting scheme [29]. Representing the user profile as a vector of

concepts has the advantage of growth and adaptive performance when new documents

are added at a future date. In addition, it enables a continuous degree of similarity

between queries and documents to be computed, allows documents to be ranked ac-

cording to their possible relevance, and allows partial matching. However, this method

may suffer from a noisy and a large number of unrelated words. A topic model is a type

of statistical model for discovering the abstract “topics” that occur in a collection of

documents [1]. Topic modelling is a text-mining tool frequently used for the discovery

of hidden semantic structures in a text body [45]. To construct a user profile, Bennett

et al. [15] represented users’ interests as a set of topics that are extracted from large

online individual’s history of queries and clicked documents. , however this required

expensive manual effort to determine the correct categories for each document. Har-

vey et al. [45] and Vu et al. [109] applied a latent topic model (i.e., LDA) to determine

these topics, which means that the topic space is determined based purely on relevant

documents extracted from query logs and hence human involvement is not required to

define the topics. Jian el al. [106] used point-wise mutual information (PMI) [84] to

measure the quality of the learned topics using LDA, and they argued that although

topic modelling has recently been widely used in user modelling, poor performance in

terms of of the LDA is expected when documents are too short, even if they are in a

very large number.

In this work, the vector-based model was employed to represent the user and place

profile because of the short text messages (tips) being used. Also, using a vector based

model allows the computing a continuous degree of similarity between users and places
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especially when users are visiting new places.

User Profile Enrichment

Enrichment is the process of enriching user profiles in order to make them more mean-

ingful. One of the problems of user modelling on the social web is the short length

of the posts that are generated by users. To improve the understanding of these short

messages, Abel et al. [5] created semantic user profiles by linking Twitter posts with

related news articles from the web. Furthermore, to better understand the semantic

meaning of the posts, [5, 59] enriched the posts with embedded links to enrich their

contents. Also, in [6] Abel el al. proposed an extension to user profiles using DBpe-

dia through adding semantics to tweets by extracting entities and enriching them with

external resources in order to create facets (e.g. persons, locations, organisations etc.),

but their work was only limited to Twitter and they did not consider enriching profiles

using internal network structure. Orlani et al. [87] proposed a category-based user pro-

file based on the category information of entities from DBpedia. The results based on

a user study demonstrate that the category-based user profiles performed similarly to

entity-based ones, but the authors did not evaluate those user modelling strategies in

the context of recommendations. Furthermore, the users’ interests can be modelled as

a network structure of terms and related terms [40]. These profiles are called semantic

network based profiles where weights are assigned to the terms and their related terms

as well as the links between them. Existing work has used WordNet [58] or external

knowledge sources such as DBpedia [10] ] to ascertain related terms. In InfoWeb [39],

user interests are modelled using a personalised information filtering system for online

digital documents to create semantic network-based user profiles. Initially, each user

profile is made up of a set of concepts that represent a user’s interests. As the user con-

tinuously interacts with the system, his or her user profile is updated by adding more

concepts to the semantic network as well as links between the concepts.

Although extending user profiles from external sources can be useful, other approaches
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have been proposed to extend the process of building user profiles that use tags that are

not directly used by the user using the tag relatedness within the social network [85],

[9], [49]. Also, in [31], the place semantics were used to enrich user profiles from the

concepts that are semantically related to the tags directly used by each user within a

folksonomy dataset, but the authors did not consider enriching user profile with

related spatial preferences.

2.2.2 User Modelling in LBSNs

In LBSNs, one can differentiate between different types of user profiles depending on

their source of information.

1. User Demographic profiling: In LBSNs, a user profile may contain demo-

graphic data or interests such as description and semantic text and tags. In [88],

a user’s profile is constructed using information on age, gender, cuisine prefer-

ences (from category information), and income data. In [96], Ramaswamy et

al. inferred user profiles using low-end devices capable only of handling voice

and short text messages (SMS); their user profile approach focused on utilising

a user’s address book to determine social relations (social affinity). Other re-

search, e.g. [119, 121], focused on improving the accuracy of the location tags

and categories by extracting user activity patterns for each location.

2. User History Profile: User profiles can be inferred from users’ online histor-

ies via three main sources: i) user ratings, ii) user interaction patterns, and iii)

user search histories. User ratings can be found in many online social networks

such as Yelp 1and YellowPages 2, which allow users to leave explicit ratings

for locations to express their opinions about locations. [27, 50, 122] Interaction

patterns in LBSNs include user tags or comments made by a user regarding a loc-

1https://www.yelp.co.uk/
2http://www.yellowpages.com/
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ation [41, 115]. User search histories include map browsing histories and spatial

searching logs [11, 108, 111].

3. User Location History Profile The user location history tracks the places that

the user has visited previously in the form of a ‘check-in’. We consider the user

history location profile to be the most realistic profile to use as it records the

actual places they have already visited. Using this profile, one can understand a

user’ s behaviour and preferences and it can be used for friend recommendation

by calculating the similarity between user profiles. For example, when two users

co-locate in the same place and at similar visit times, a relationship between

them can be assumed as they share the same preferences and interests.

Works on modelling user data in LBSN mainly consider two problems: a) place (or

point of interest) recommendation, and b) user similarity calculation. Different types

of data are used by different approaches, namely geographic content, social content

and textual annotations made by users. Different methods are also used in analysing

the data, for example distance estimations for geographic data modelling and topic

modelling for annotation data analysis.

In the area of POI recommendation, studies range from generic approaches that use

the popularity of places [21] to recommendation methods that are based on a user’ s

individual preferences [120]. A useful survey on these approaches can be found in [13].

Based on check-in data gathered through Foursquare3, Noulas et al. [86] exploit factors

such as transition between types of places, mobility between venues and spatiotem-

poral characteristics of user check-in patterns to build a supervised model for predict-

ing a user’s next check-in. Ye et al. [120] investigated the geographical influence with

a power-law distribution. The hypothesis is that users tend to visit places within short

distances of one another. Other works considered other distance distribution mod-

els [127]. Gao et al. [37] considered a joint model of geo-social correlations for per-

sonalised POI recommendation, where the probability of a user checking in to a new
3https://foursquare.com/
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POI is described as a function of correlations between user’s friends and non-friends

close to, and distant from a region of interest. Liu et al. [78] approached the problem

of POI recommendations by proposing a geographical probabilistic factor model that

combines the modelling of geographical preference user mobility. Geographical influ-

ence is captured through the identification of latent regions of activity for all users of

the LBSN reflecting activity areas for the entire population and mapping the individual

user mobility over those regions. Their model is enhanced by assuming a Poisson dis-

tribution for the check-in count which better represents the skewed data (users visiting

some places once, while other places hundreds of times). Whilst providing some use-

ful insights into modelling the spatial dimension of the data, the above works do not

consider the semantic dimension of the data.

Correlations between geographical distance and social connections were noted in [26,

36]. Techniques of personalised POI recommendation with geographical influence

and social connections mainly study these two elements separately, and then combine

their output together with a fused model. Social influence is usually modelled through

friend-based collaborative filtering [110,120,133] with the assumption that a user tend

to be friends with other users who are geographically close, or would want to visit sim-

ilar places to those visited by their friends. Ying et al. [125] proposed to combine the

social factor with individual preferences and location popularity within a regression-

tree model to recommend POIs. The social factor corresponds to similar users; users

with common check-ins to the user in question. In this work, we also use this factor

when extending user profiles to represent places of interest within the region of user

activity.

More recently, the importance of content information for POI recommendation was

recognised. Two types of content can be considered, attributes of places and user-

contributed annotations. Place categories are normally used as an indication of user

activity, thus a user visiting a French restaurant would be considered as interested in

French food, etc. User annotations in the form of tips and comments are analysed col-
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lectively to extract general topics in order to characterise places or to extract collective

sentiment indications about the place. Examples of works that consider place categor-

ies are [53, 77, 82]. In [77, 82], the Latent Dirichlet Allocation (LDA) model was used

to represent places as probability distribution over topics collected from tags and cat-

egories or comments made in a place and similarly aggregate all tips from places a user

has visited to model a user’s interest. Aggregation was necessary as terms associated

with a single POI are usually short, incomplete and ambiguous. [53], on the other hand,

modelled topics from tweets and reviews from Twitter and Yelp, and assumed that the

relations between user interests and location is derived from the topic distributions for

both users and locations. This work also models users’ association to place through the

place’s relation to tags, but also adds the influence of other users’ relationships to the

place to the equation. Aiming at improving the effectiveness of location recommenda-

tion, Yang et al. [116] proposed a hybrid user POI preference model by combining the

preference extracted from check-ins and text-based tips which were processed using

sentiment analysis techniques. Sentiment analysis is an interesting type of semantics

which is not considered this thesis, but can be incorporated in future work.

2.2.3 Dynamic User Modelling

Based on the hypothesis that the interests of users change over time, several works

began to pay attention to dynamic user interests in online social networks [4,4,18,87].

In [4], short-term and long-term user profiles are proposed in the context of news re-

commendations on Twitter. Short-term user profiles refer to user interests within a

short-term period (e.g., the last two weeks), while long-term user profiles consider

user interests using all historical user generated content. In contrast, user profiles that

describe short-term user interests are usually updated frequently [39, 75]. Gentile et

al. proposed an approach to dynamically model user expertise based on information

communication exchange such as emails [38]. Alternatively, Ding and Li [29] presen-

ted a time weight item-based user profile that calculates the exponential time decay
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function to compute time weights for different items according to each user and each

cluster of items. Xiong et al. [91] modelled time stamped user-item ratings as a 3-D

tensor by assuming that each time feature vector depends only on its immediate prede-

cessor; they further argued in [114] that user preferences often exhibit long-term and

short-term factors, before proposing a session-based temporal graph model to capture

the dynamic preferences of users over time. Koenigstein et al. [61] presented a matrix

factorisation model that combines temporal analysis of user ratings and item popularity

trends to make music recommendations, while Zhang et al. [129] designed an evolu-

tionary topic pattern mining approach to discover changes in topic structures on a com-

munity question answering platform. This approach first extracted question topics via

LDA in each time window before determining topic transitions based on cosine similar-

ity; finally, the life cycles of the extracted topics were analysed. Moreover, Rafeh and

Bahrehmand [94] proposed an adaptive collaborative filtering algorithm which takes

time into account to reflect fluctuations in users’ behaviour over time. Liu et al. [79]

developed a social temporal collaborative ranking model to recommend movies.

2.2.4 User Similarity

Studying user similarity from LBSN data is useful as information available about users,

their locations and activities is considered to be sparse. User similarities can be ex-

ploited to predict types of activities and places preferred by a user based on those

of users with similar preferences. So far, most works on user similarity have mainly

focused on structured data, such as geographic coordinates, or semi-structured data,

e.g. tags and place categories. Recently, Lee and Chung [71] presented a method for

determining user similarity based on LBSN data. While the authors made use of check-

in information, they concentrated on the hierarchy of location categories supplied by

Foursquare in conjunction with the frequency of check-ins to determine a measure of

similarity. Mckenzie et al. [82] suggested exploring unstructured user-contributed data,

namely tips provided by users. A topic modelling approach is used to represent users’



2.2 User Modelling 18

interests in places. Venues (places in Foursquare) are described as a mixture of a given

number of topics and topic signatures are computed as distributions across venues.

User similarity can then be measured by calculating the dissimilarity metric between

the topic distributions of users. This method of modelling venues is interesting, but it

limits the representation of user profiles as they are based on generated topics derived

from collective user place annotations. Thus, individualised association of users with

place is somewhat ignored. In contrast with the above approach, the model used in this

work does not assume constraints on the number of topics represented by the tags, but

instead combines an individual’ s association with both tags and places in the creation

of user profiles. Social links between users have also been widely utilised to improve

the quality of location-based recommender systems since social friends are more likely

to share common interests in relation to POIs than strangers. Most current works have

derived the similarities between users from social links and put them into traditional

memory-based or model-based collaborative filtering techniques. For example, some

investigations [32,110,123,124,127] seamlessly integrated the similarities of users into

the user-based collaborative filtering techniques, while others [25, 116, 131] employed

the user similarities as the regularisation terms or weights of latent factor models.

Thus, in this work we propose a new method that exploits the social affinity between

users by aggregating the check-in frequency and tagging frequency from the historical

check-in data of all users. The social affinity in this research is defined as the similarity

between users and not by the social relation of users. We compare different types of

user similarity based on the temporal dynamics and semantics of user profiles. Similar-

ity between users is computed using different views of user profiles; using their direct

interactions with the social network or extended with a holistic view of other users’

interaction with the network in different regions of geographic space.
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2.3 Location Recommendation Approaches

In general, recommendation systems attempt to predict the user rating or preference on

a specific item, which is considered an explicit rating. In recent years, recommendation

systems have become widely utilised in a variety of areas: some popular applications

including movies, music, news, books, research articles, search queries, social tags,

locations and products in general. In location recommendation, the explicit rating of

locations is not available. However, the check-ins or tagging history of the users is util-

ised to reflect users’ preferences in locations implicitly. Thus, with the availability of

location-based social network data, existing recommendation methods can be applied

to location recommendation by treating locations as items. The main approaches of the

recommendation systems can be classified into the following three groups:

1. Content-based filtering approaches: Recommendation is based on items similar

to those that the user preferred in the past;

2. Collaborative-based filtering approaches: Recommendation is based on users

with similar taste and preferences in the past;

3. Mixed approaches: These methods combine collaborative and content-based

methods.

In the following subsection we will explain these three approaches and how they can

be applied to the location recommendation domain.

2.3.1 Content-based Filtering Approaches

In content-based filtering, items are recommended based on a comparison between the

content of the items and past user profile ratings of items. The recommendation in

these systems is based on the item itself rather than the preferences of other users. To
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select such items, content-based filtering measures item-to-item similarity by analys-

ing the content of textual information of the items. This textual information includes

the keywords representing the user’s characteristics (age, gender, location, etc.) and

item’s characteristics (product, price, appearance, etc.). For example, to recommend

movie m to user u, the content-based recommendation system will obtain data on the

previously rated movies by user u and then the movies with the highest similarity to

the user preferences are recommended. Different techniques are used to measure the

user’s preferences and the candidate items’ characteristics, including a cosine similarity

measure, Bayesian classifier, and decision trees [7], and are often used to recommend

items containing textual information, such as books, websites, and news.

Content-based filtering was successfully used for location recommendation in [88]

and [96]. The recommendation was performed by matching user preferences that are

implicitly inferred from users’ profiles, with context features extracted from locations

trajectories, such as tags and categories to make recommendations. Moreover, the au-

thors utilised the spatiotemporal contexts to provide a richer user profile and thus make

high-quality recommendations.

The advantages of using these methods for location recommendation are: a) if a user

profile is constructed accurately to reflect the user preferences, the new user and loc-

ation problems (cold start) can be avoided, and b) content-based filtering is a user

independent method, it doesn’t rely on other users preferences to carry out recom-

mendations.

The drawbacks of using content-based filtering in LBSNs is the limited degree of nov-

elty in recommending new locations as the recommendation is dependent on the loca-

tions in the user profile [81]. In addition, it is difficult to extract and analyse the features

of multimedia content such as audio, image, and video in order to measure the user’s

and item’s contents. Another problem with content analysis is that, if two different

items are represented by the same set of features, they are not distinguishable. Since

each item is represented by the most important keyword, content-based systems cannot
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distinguish between a good item and a bad one, if they use the same terms [102].

2.3.2 Collaborative-based Filtering Approaches

Collaborative filtering makes recommendations by measuring similarities of users’

preferences [101]. As it analyses patterns of favourable items without analysing any of

the content properties of items, it has been possible to discover these items without ex-

amining their content properties. Different collaborative filtering systems have been

developed in the literature. The methods introduced in [102] were considered the

first system to use collaborative filtering algorithms to automate prediction and recom-

mendation. It is clear that collaborative systems do not have some of the limitations

of content-based systems, especially when content information is unavailable. How-

ever, contrary to content-based approaches, collaborative filtering methods rely mainly

on rating information, a user typically needs to provide a sufficient number of ratings

before the system can return accurate recommendations. So, when a user is new, the

recommender system faces the “cold start problem” [74]. Also, collaborative systems

depend mainly on user’s preferences to make recommendations. Therefore, for a new

item that has not been rated, the recommendation system would not be able to process

it, which is known as the “new item” problem. Moreover, sparsity is another major

issue with collaborative filtering due to a lack of information about users and items.

However, collaborative filtering problems can be overcome, if both content-based fil-

tering and collaborative filtering are combined [89]. Also, adding context to a user

profile can overcome this issue, that is two users can be considered similar not only if

they rated the same item similarly, but also if they belong to the same geographic area.

Approaches for collaborative recommendations can be classified into two categories

[7, 117]: Memory (Heuristics)-based approaches, and Model-based approaches
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Memory-based Approaches

Memory-based algorithms essentially measure the similarity in previous ratings for

the same item by different users. The aggregated ratings from those similar users can

then be used as a prediction for the target user’s rating. The recommended ratings are

calculated from all known ratings by means of a particular mathematical expression.

For instance, in the user-based CF approach [47] the collection of ratings is utilized to

determine similarity between the users’ preferences, and then the ratings of the most

similar users (the neighbourhood) to the target user are used to estimate unknown rat-

ings of the target user.

In LBSNs, collaborative filtering can be applied for location recommendation, using

the fact that similar users tend to visit similar locations, that is a user is more likely to

visit a location that is preferred by similar users. This can be achieved by inferring sim-

ilarity between users or locations from, 1) implicit ratings resulting from their activity

in the place (check-ins or tipping), or 2) explicit online ratings history of locations

(such as restaurants and hotels) directly provided by users. There are two traditional

models for CF approaches 1) user-based collaborative filtering, where recommenda-

tions are based on user similarity [47] [132], and 2) item-based collaborative filtering

that use similarity between locations (items) to make recommendations [60].

Many online services, e.g. Yelp and Yellowpage, allow users to explicitly express their

preferences for locations using ratings. Based on those ratings, several location recom-

mendation systems are constructed to provide personalised location recommendation

based on direct user ratings of locations [27,28,50,122]. Also, other systems infer user

similarity from implicit ratings by using the frequency of visits (check-ins or tips) at

locations [103, 105].
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Model-based approaches

Model-based approaches learn a predictive model through the collection of previous

ratings, using approximation to predict the target user’s ratings. This requires a prior

learning process where the model is built, but thereafter the model directly generates

rating predictions, which leads to a faster response at recommendation time. Mat-

rix factorisation is a widely used example of model-based collaborative filtering [63].

Matrix factorisation models user-item interactions in a latent factor space, where lat-

ent factors are used to efficiently predict unknown ratings by taking into account the

user and item biases that are likely to be caused by rating deviations. For example,

some users may consistently give higher ratings than other users, and some items may

receive higher ratings than other items.

In location recommendation, the user ratings are represented by a matrix (user-location)

which reflects the user’s visit to the corresponding location. The user and location lat-

ent factors can be computed using a user-location matrix by applying the matrix fac-

torisation techniques [62, 64]. Cheng el al. [25] used a multi centre Gaussian model,

together with matrix factorisation to investigate the geographical and social influence

for location recommendation. In [54], matrix factorisation was used as a technique

to associate each category of place with a latent vector and extrapolated the relevance

score of a user to a POI based on the latent vectors of the categories of the POI. Gao el

al. [35] studied the content information on LBSNs for POI recommendation by invest-

igating different types of content information on LBSNs regarding sentiment indica-

tions, user interests, and POI properties with a low-rank matrix factorisation method

for POI recommendation.

2.3.3 Hybrid Approaches

Content-based filtering and collaborative filtering can be combined to overcome the

drawback of each method and to provide better recommendations. In general recom-
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mendation systems, hybrid approaches were introduced in [89]. However, upto our

knowledge, hybrid approaches were not used In location recommendation problems

before. Collaborative filtering recommender systems suffer from data sparsity and cold

start problems. Content-based recommender systems try to avoid these problems, but

only provide generic recommendations that ignore user’s personal preferences. All the

above issues are prominent in location recommendation problems and hence it is worth

investigating the effectiveness of a hybrid approach in this domain. Hybrid recom-

mender systems have been classified under seven main categories [19]: (i) weighted:

each item gets a number of partial scores from different simple recommendation tech-

nique. The score reflects the value of this item with respect to each recommendation

technique. The total item score results from the combination of the partial scores. (ii)

switching: the system selects from among simple recommender techniques based on

the evaluation of the recommendation situation. [43]; (iii) mixed: the output of two or

more recommendation techniques is given to the user and the best items among the lists

can then be selected by the user; (iv) feature combination: features of one source are

fed into an algorithm that is designed to carry out data processing of a various sources;

(v) feature augmentation: a recommendation technique is applied to extract a number

of features, which are then used as input to another recommendation technique; (vi)

cascade: a recommendation technique is applied to enhance the predictions made by

another recommendation technique; (vii) meta-level: the recommendation technique

model is used as input to another. In this thesis we adopt a hybrid (cascade) approach

in the location recommendation component of our framework.

2.3.4 Time-Aware Location Recommendation

User behaviour in LBSNs is often influenced by time. For example, a user is more

likely to check-in to a restaurant than going to the library during lunch time. This kind

of temporal pattern can facilitate the identification of user habits and interests. Taking

this context into account can potentially improve the recommendation results, as well
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as allow us to predict recommendation at different time points.

Different ways of representing time are as follows.

• Continuous variable: where the exact time stamp, e.g ‘2012-10-09 03:02:30’ is

used.

• Categorical values( Discrete Time slots): where time periods or seasons, e.g

mornings, evenings, weekends, weekdays, Christmas, Easter, are used.

• Time units: where common time units of Day, week, or a year. e.g Monday,

Tuesday, March, April, 2012, 2013..etc.

• Time Windows (consecutive hours): where time units are clustered into win-

dows relevant to the application in question, e.g 3 hour window.

Time-aware recommendation approaches have been classified as follows [20]:

1. Continuous time-aware models The time information is represented as a con-

tinuous variable with time-stamps attached to the user-item ratings. The recom-

mendations can then be made for a time different from the input time (e.g where

can I go tomorrow?). A common approach in this method is to use different

weights to ratings according to their ‘age’ with respect to the target time, so that

recent ratings will have more influence than old data [29, 48, 63].

2. Categorical time-aware models The time information is represented as categor-

ical values (e.g weekends, week days) so that the recommendation can be made

according to the time context by selecting relevant data, (e.g. where can I go on

the weekends) [8, 12, 70, 97].

3. Time adaptive models. In these models, data is dynamically adjusted relative

to the time dimension. These models are different from categorical and con-

tinuous time-aware models because particular time context is not targeted in the

recommendation [57, 72, 73].
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As discussed above, the time dimension has been widely used for traditional recom-

mendation systems. In LBSNs, the check-in behaviours mostly follow regular patterns.

For example, users visit a bar at night rather than in the morning, and tend to go to

university in the morning rather than at night. The regular periodic patterns are trans-

formed into discrete time slots to provide location recommendations for users. Some

works [34, 53, 126, 131] approached the problem by converting continuous time into

discrete time slots and managed the temporal effect separately for each time slot using

collaborative filtering techniques. Yuan et al. [126] proposed a time aware POI recom-

mendation algorithm that extends user-based collaborative filtering by including the

time factor when calculating the similarity between two users. They only considered

check-ins at a certain time slot rather than all time slots to make their recommendations.

A model-based POI recommendation algorithm was proposed earlier in [34] based on

matrix factorisation with temporal influence. They investigated the temporal cyclic

patterns of check-ins in based on two temporal criteria: non-uniformeness and consec-

utiveness. In the case of non-uniformness criteria, user check-in activities would vary

through the day. While in the case of the consecutiveness criteria, a user tends to have

more similar check-in preferences in consecutive hours. They introduced a temporal

state T ∈ [1,T ] to represent the hour of the day, where T=24 is the total number of tem-

poral states. They also defined other temporal categories like weekends and weekdays

by changing the temporal state into T=7 and thus aggregating over weekly patterns.

Ye et al. [119] proposed a method to extract location feature based on temporal dis-

tribution of user’ check-ins. They used explicit patterns such as the total number of

check-ins, the total number of visitors and the distributions of check-in times over a

week and over 24 hour interval. Moreover, they used implicit relatedness that captures

correlations between locations from check-in behaviour based on a moving window

and computed a similarity measure based on a probabilistic total variation distance to

compare individual feature types via their temporal bands.

Location recommender systems can also recommend locations based on the current

time using temporal characteristics of user check-in behaviour (as in the case of con-
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tinuous and categorical time-aware traditional recommender systems). In [26], Chao

et al. developed a model of human mobility that predicts future individual movements

based on the fact that human tend to travel at regular times of the day. They proposed a

coherent model that combines three properties: periodic temporal change, geographic

influence and social network structure. Rahimi and Wang [95] proposed a novel re-

commendation algorithm, the Probabilistic Category Recommender, which uses the

temporal probability distribution to recommend the category of a place location that

would be interesting for the user based on their historical behaviour. They first find

pairs of check-ins to the same category of location from the same user, and then plot

the frequency of check-in pairs based on the time interval (one-hour) of those check-

ins to further predict the probability of future check-ins in an hourly manner. A recent

study in [128] develops a continuous temporal model based on the kernel density es-

timation method to build a continuous time probability density of a user visiting a new

location.

Most techniques used in location recommendation suffer from time information loss

and may not correlate temporal influences at different time slots because of time dis-

cretization. In this thesis, a continuous time-aware location recommendation method

is developed in which the temporal aspect is used as a factor that decays the weight

of ratings over time. This method can also consider the various types of the temporal

pattern (weekly, monthly, yearly) which provides a potential to predict locations in the

future.

Also, not much work have considered the rich place semantics implicit in data on

LBSN. In this work, we consider other properties, beyond absolute place location in the

problem of place recommendation. In particular, we explore place types and activities

associated with places.
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2.4 Literature Gap Analysis

So far, previous works have studied data produced from LBSN from the point of view

of enhancing the services provided by these networks, namely, for point of interest

(POI) recommendations. There, the question of concern is to find places of interest to a

user based on their history of visits to other places and their general interaction with the

social network. Most works relied mainly on the spatial dimension of user data [76],

with some works more recently exploring the relevance of the social and content data

dimensions on these networks [36]. However, data dimensions are normally treated

separately, or their outputs are combined in fused models. Previous works attempting

a similar approach used matrix factorisation techniques to handle the multiple data

dimensions, but did not consider the use of the range of content data as used in this

thesis.

As mentioned earlier , several attempts have been made to enrich user profiles from

either external sources [5,5,59], or internal network [85], [9], [49], but their work deals

with semantic enrichment only (i.e enriching the user profile with concepts), so there

is a gap in enriching user profiles from other views (like spatial, activity, or place type

enrichment), or from combined views to integrate multiple dimensions. Thus, there

is a need to model the influence of other users relations in the place with the user’s

association to place. In addition, most of the above works considered only a static

view of user profile enrichment, so there is a need to explore an adaptive approach

represent the temporal dynamics of user profiles on these networks.

Furthermore, most works on user similarity mainly focused on structured, e.g., geo-

graphic coordinates, or semi-structured, e.g., tags and place categories, data [71] [71].

For example, Mckenzie et al. [82] suggested exploring unstructured user-contributed

data, namely tips provided by users using a topic modelling approach. However, this

method of modelling venues is interesting, but it limits the representation of user pro-

files as they are based on generated topics derived from collective user place annota-

tions.
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Several attempts have been made to enhance the POI recommendation in LSBNs us-

ing either content-based collaborative filtering approaches [88] [96], or Collaborative-

based filtering approaches [32, 110, 123, 124, 127] . But each approach has its draw-

backs [13]. For example, collaborative filtering suffer from data sparseness and cold

start problem, but content based filtering overcome these problems. So, to improve

the effectiveness of location recommendation systems, estimations of user preferences

and user similarity has to be accurate. One solution to achieve this is to integrate and

hybridize different types of recommendation methodologies to overcome limitations.

Finally, one of the the main drawbacks of the majority of dynamic user models re-

lated to LBSNs is that they rely on a static snapshot of attributes which do not reflect

the change in users interests and behaviour over time. So, there is a need to include

the temporal dimension more homogeneously in the presentation of user profiles and

compare this against the snapshot treatment of time in the literature.

2.5 Discussion

The work presented in this thesis targets dynamic user and place modelling on the

geo-social web and its evaluation using recommendation methods. From the literature,

there are some gaps that needs to addressed:

The need for Dynamic Spatio-semantic User Profiles:

There is a need to consider, homogeneously, the spatial, semantic and temporal di-

mensions when considering user profiles on LBSN. Each dimension provides distinct

opportunities to explore user interactions with place.

The need for Dynamic Spatio-semantic Place Profiles:

In a similar way to user modelling, LBSN provide a rich opportunity to draw up

profiles of geographic places based on actual user interactions and experiences with
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places. In comparison to static place models represented in gazetteers and map data-

bases, these place profiles have the potential to provide a dynamic view of how places

are used people visiting and interacting with them on LBSN.

The need of deriving a joint method for location recommendation This is a need to

design a joint POI recommendation method that can overcome the problems or recom-

mendation systems. This can be done by incorporating factors (e.g., semantic, tem-

poral) into traditional collaborative filtering model which can give better decisions.

The need for Dynamic Spatio-semantic User Similarity Methods:

The proposed approach and framework will allow the exploration of different method

of checking similarity between users on LBSN. Studying user similarity from LBSN

data is useful, as the information available about users, their locations and activities is

generally sparse. User similarities can be exploited to predict types of activities and

places preferred by a user based on those of users with similar preferences.
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Chapter 3

General Framework

3.1 Introduction

This chapter provides an overview of the proposed framework for the user and place

modelling research design. The framework is based on a geo-folksonomy model that

links users, places and tags together. A temporal dimension is also included in order

to construct, in effect, a temporal geo-folksonomy model. In addition, some semantics

related to place categories and activities are captured that provide more understanding

of users and places. The Research methodology is presented in 3.2. The proposed

framework is presented in Section 3.3. The data preparation process is explained in

Section 3.4, the geo-folksonomy model is presented in Section 3.5 and the database

design is described in Section 3.6. Finally, a summary of the chapter is provided in

Section 3.7.

3.2 Research Methodology

In this research, to verify the hypothesis, we applied the Data Science Research Meth-

odology (DSRM) introduced by Peffers el al. [90] as depicted in figure 3.1. Each step

is described and related to this PhD thesis chapters as follows.

1. Problem Identification and Motivation: This phase involves a critical and deep
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learning of the user and place modelling strategies and its research related areas.

The first step of this phase involves the identification of gaps in related literature

as presented in chapter two. In the second step, the research hypothesis statement

and the research questions is identified as presented in Chapter one. The third

step requires the choice of the data source and the development tools that will

be used to test the hypotheses. The last step involves doing a time plan for the

research by dividing the main problem into tasks and identifying the required

milestones.

2. Objectives of the solution: In this step, the problem definition in the previous step

is used in order to propose the objectives of the solution. In this research, differ-

ent levels of user profiles are extracted from the heterogeneous user feedback in

LBSNs. User-generated traces at venues in LBSNs include spatial, temporal and

implicit semantic content. Collective behaviour of users on the network are also

used to understand the place characteristics and these in turn are further used in

the modelling of user profiles. The qualitative spatio-temporal model framework

has been proposed in an attempt to investigate the effect of using different di-

mensions in user and place modelling on place recommendation. Chapter one

presented a qualitative objective of the solution.

3. Design and development: This step aims to design a solution of the problem

and develop it. This step has been explained in chapter three, four, five and Six.

The entire design of the general framework and the data models are explained

in chapter three. The design of static and dynamic user modelling has been

introduced in chapter four and six. Finally, the design of semantic place model

is explained in chapter four.

4. Demonstration: This step involves using the developed framework in a suitable

context. In this thesis, different experiments are been carried out in chapters four,

five, six using samples of realistic data sets for a representative number of users

with different levels of usage of the LBSN to demonstrate the effectiveness of
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the proposed framework. Users’ interaction on LBSNs can be regarded as user

feedback on geographic places they visited and interacted with. Thus, User’s

visits to places are recorded into a suitable database along with their comments

and tags.

5. Evaluation: This step involves assessing the effectiveness of the method pro-

posed compared to other methods. In this research, the evaluation experiments

aim to measure the impact of using the full range of content captured on LBSN

when building user profiles in comparison to using only partial views based on

the check-in information. Two evaluation methods are used, the top-N recom-

mendation used in chapters four, five and six, and user similarity evaluation pro-

posed in chapter 7. The effectiveness of user profiles are measured using recall,

precision and F1. We compare the results of the top-N recommendation using

basic recommendation methods: Item-based Collaborative Filtering and User-

based collaborative Filtering approaches and show the effectiveness improve-

ment.

6. Communication: In this final step, researchers publish their contributions to the

audience to get their feedback and stamp the importance of the problem and its

novelty. This thesis resulted in four publications, three conference papers and

two journal papers. The publications are listed in the list of publications section.

3.3 General Framework

This thesis introduces a new framework for user and place modelling in LSBNs. The

proposed framework is able to provide different user and place modelling strategies

including interest extraction, content enrichment and the identification of the temporal

dynamics of user interests. Different user modelling strategies are then evaluated in the

context of recommender systems using standard evaluation metrics such as ‘precision’
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Figure 3.1: Design Science Research Methadology (source: Peffers el al. [90])

and ‘recall’. An outline of the framework is shown in Figure 3.2 and the different stages

are described in more detail in Chapters 4, 7, 5, and 6. Two modelling strategies are

proposed, static and dynamic modelling. The static model doesn’t take the dynamics

of the users interests into account. Thus, the static model provides an overall picture

of user behaviour in places and the shift in human preferences can not be learned.

Dynamic modelling, on the contrary, combines the spatial, semantic, and temporal as-

pects to study the change of user behaviour over time. It provides a more up to date

picture of user behaviour. Changes in interests influences the learning process and it

takes into account current user interests and preferences. The first stage is the static

user modelling from geo-folksonomies which involves six stages: a) data collection, b)

geo- folksonomy building, c) profile creation, d) similarity measurement, e) profile en-

richment, and f) evaluation using location and tag recommendation. The second stage

is the user similarity calculation and its evaluation. This stage involves calculating dif-

ferent similarity measures from the various profiles we have and then evaluating the

result with a suitable information retrieval evaluation measure, as discussed in Chapter

7. The third stage involves extracting semantics from the place, mainly place type

and place activities, by changing the structure of the geo-folksonomy to relate to place
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activity, place types, users and tags alternatively. The last stage is the temporal user

modelling that is discussed in detail in Chapter 6. The design of the temporal user mod-

elling follows the same design as the static user modelling, but with added methods for

including temporal dynamics.

3.4 Data Preparation

To build the temporal geo folksonomy model, a step-by step data preparation is re-

quired in order to extract the relevant, necessary entities. Figure 3.3 shows the data

preparation process; this consists of: a) data collection, b) data pre-processing, and c)

time interval partition. These steps will be discussed in the following subsections.

Figure 3.3: Data Preparation Process

3.4.1 Data Collection

The data collection source used for the experiments is Foursquare. Users of Foursquare

check-in at different venues, share their check-ins and/or add tips to venues that contain

suggestions for things to do, see, or eat at the location. In Foursquare, the location

(venue) is the main element that connects users and user-generated content such as tips

and tags - which are features of the location. This work is concerned about two types of

activities: check-ins and tipping, as shown in Figure 3.4. Data about venues, tips and

tipping users can be streamed publicly via Foursquare, but due to privacy issues, user

check-in streams can only be accessed with the permission of the users. Therefore,
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it is difficult to collect user check-ins from Foursquare because it is hard to obtain

permissions from a large number of users. Fortunately, users from Foursquare tend to

push their check-in activity to Twitter as a Tweet. Tweets are public and can easily

be collected. Check-ins, on Twitter, are identified by a shortened URL linked in the

tweet. By resolving such a URL, we can obtain the full check-in activity in Foursquare.

Figure 3.5 shows a shortened check-in URL and its resolved URL on the Foursquare

web application.

Figure 3.4: Data Collection

Figure 3.5: Check-in shortened URL and Actual URL

In this work, the following data-sets were collected:
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-A long-term (about 10 months) check-in data set relating to New York City was col-

lected from Foursquare, from 12 April 2012 to 16 February 2013 by [1]. The typical

format of a check-in activity data item is as follows:

• A unique user ID identified by Foursquare that represents a user account.

• A unique venue ID identified by Foursquare that represents a location point.

• A UTC timestamp which represents the actual time of the check-in (e.g., Tue

Apr 03 18:11:04 +0000 2012). We convert the UTC time to the java time format

(e.g., 2012-04-3 18:11:04)

• A unique Category ID identified by Foursquare that represents the category of

each place.

Each venue ID in the above data-set is then used to collect the following data, using

the Foursquare API 1.

- Tip data: The tip- activity is collected from each venue. A typical tip activity format

is as follows:

• A unique user ID identified by Foursquare that represents a user account

• A unique venue ID identified by Foursquare that represents a location point.

• A unique tip ID identified by Foursquare that represents a tip.

• This is a short-text that represents the opinion of a user about a place

(e.g. Their Mac and Cheese is the best I’ve ever had! YUM!!).

- Venue Details: details about each venue are collected. The details are as follows:

• A unique venue ID identified by Foursquare that represents a location point.

1https://developer.Foursquare.com/
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• The venue name - identified by Foursquare as referring to a venue ID. (e.g.,

Island Salad)

• The longitude and latitude of the venue.

• The tags attached to the venue.

• The user count that represents the number of users who have visited the place.

• The check-in count that represents the number of check-ins associated with the

place.

• The venue categories for each place.

- User Data: Data about the users who have left tips in each venue as recorded in the

check-in data-set. The format of the user data-set is as follows:

• A unique user ID that is identified by Foursquare that represents a user account

• The gender of the user.

- Category data: data about each place category. In Foursquare, venues are organised

into a three-level hierarchical category classification. It The format of the category

data-set is as follows:

• A unique category ID identified by Foursquare that represents the category of

each place.

• A category name identified by Foursquare.( one of 437 categories)

• A parent category name that represents one of the 9 root categories (i.e., Arts

& Entertainment, College & University, Food, Great Outdoors, Nightlife Spot,

Professional & Other Places, Residence, Shop & Service, Travel & Transport).

Tables 3.1 and 3.2 show the statistics of the collected data. The data is geographically

related to New York City, in the United States. The reason for collecting the data for

this city in particular was the availability of the check-in data-set.
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Table 3.1: Check-in Data-set
Total number of checkins 227,428

Number of places 38,333

Number of users 1,083

Average number of checkin/user 210

Average number of places/user 84

Table 3.2: Tip Data-set
Total number of users 167,786

Number of places 28,878

Number of tips 604,924

Average number of tips/user 3.6

Average number of places/user 3.3

3.4.2 Data Pre-Processing

Data Cleaning

This pre-processing involves the following four steps:

1. Removal of all numeric characters.

2. Removal of all non-numeric and special characters (ex. %, * ...etc.).

3. Stop word removal.

4. Filtering of any tag less than 3 characters in length.

Tag Extraction

After pre-processing, tips are tokenized into words (tags) which are then stored in the

database. Duplicate tags are removed to avoid redundancy and any misunderstanding

of the relationships between places and users which might otherwise ensue.
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Word-Net Syntactic Categorisation

In this step, the Word-Net lexicographer is used to categorise tags. The Word-Net

lexicographer is a lexical database for the English language. There are 44 lexicographer

files that can be used to classify a word into a suitable category. Table 3.3 shows the

different word-net lexicographer files 2. As the figure shows, each noun, verb, and

adjective may be classified into multiple categories. For example, a verb may be an

emotion, a body, a creation etc., and a noun can be an action, a state, or a time, etc.

Activity Extraction

Noun.act class and the verb.competition class and the *.ing verbs were used to identify

activity words. The noun.act class identifies the nouns that denote acts and actions; the

verb.competition class contains verbs for fighting, athletic activities and so on; and the

*.ing verbs, nouns or adjectives identify an activity carried out.

3.4.3 Time Interval Partition

Users’ interests change as time goes by, which reveals that users may be interested in

different places at different periods of time. Therefore, users’ dynamically changing

interests can be expressed at different time intervals. As explained in the data collection

section, time is stored as a time-stamp attached to each user activity (check-in or tip).

So, time-stamps needs to be partitioned to the time intervals which are termed in this

thesis ‘time-slices’ (for example t1, t2, ....tn). Each time-slice denotes a temporal user-

tag, user-place or place-tag at a ti time interval. Figure 3.6 shows an algorithm for

calculating the number of time slices between two input dates. As the algorithm shows,

the time-slice can be identified as an hour, day, week, month or year.

2https://wordnet.princeton.edu/man/lexnames.5WN.html



3.5 Geo-Folksonomy Model 42

Table 3.3: A Subset of WordNet Lexicographer Files
Name Contents

noun.act nouns denoting acts or actions

noun.animal nouns denoting animals

noun.artifact nouns denoting man-made objects

noun.attribute
nouns denoting attributes of

people and objects

noun.body nouns denoting body parts

noun.cognition
nouns denoting cognitive

processes and contents

noun.communication
nouns denoting communicative

processes and contents

noun.event nouns denoting natural events

noun.feeling
nouns denoting feelings and

emotions

verb.competition
verbs of fighting, athletic

activities

verb.consumption verbs of eating and drinking

verb.contact
verbs of touching, hitting,

tying, digging

verb.creation
verbs of sewing, baking,

painting, performing

verb.emotion verbs of feeling

verb.motion
verbs of walking, flying,

swimming

verb.social
verbs of political and social

activities and events

verb.weather
verbs of raining, snowing,

thawing, thundering

3.5 Geo-Folksonomy Model

Foursquare holds a large number of crowd-sourced venues ( > 65 million places) from

a user population estimated recently to around 55 million users. As the application
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Figure 3.6: Time Interval Partitioning

defines it, a venue is a user-contributed “physical location, such as a place of business

or personal residence.” Foursquare allows users to check in to a specific venue, sharing

their location with friends, as well as other online social networks such as Facebook

or Twitter. Built with a gami fication strategy, users are rewarded for checking in to

locations with badges, in-game points, and discounts from advertisers. This game-play

encourages users to revisit the application, compete against their friends and contribute

check-ins, photos and tips. Tips consist of user input on a specific venue, normally

describing a recommendation, experience or activity performed in the place.

In this work, we use a folksonomy data model to represent user-place relationships and

derive tag assignments from users’ actions of check-ins and annotation of venues. In

particular tags are assigned to venues in our data model in two scenarios as follows.

1. A user’s check-in results in the assignment of place categories associated with

the place as tags annotated by this user. Thus, a check-in by user u in place r

with the categories (represented as keywords) x, y and z, will be considered as

an assertion of the form (u, r, (x, y, z)). This in turn will be transformed to a set

of triples {(u, r, x), (u, r, y), (u, r, z)} in the folksonomy.

2. A user’s tip in the place also results in the assignment of place categories as tags,

in addition to the set of keywords extracted from the tip. Thus, in the above

example, a tip by u in r with the keywords (t1, · · · , tn), will be considered as

an assertion of the form (u, r, (x, y, z, t1, · · · , tn)), and is in turn transformed to

individual triples between the user, place and tags in the folksonomy.



3.5 Geo-Folksonomy Model 44

The process of extracting keywords from tips is done by tokenizing the tip into a set

of words (terms) on white space and punctuation. Then we remove all words with

non-latin characters and stop words. The output is a set of single words (term vector).

Furthermore, we use WordNet syntactic category and logical groupings for classifying

the extracted terms 3. For example, WordNet ‘noun.act’ category is used to filter action

verbs and nouns to describe a user- or place- associated activity (ex. swimming, buying

or eating).

The data capturing process results in the creation of a geo-folksonomy, which can be

defined as a quadruple F := (U,T,R,Y), where U,T,R are finite sets of instances

of users, tags and places respectively, and Y defines a relation, the tag assignment,

between these sets, that is, Y ⊆ U × T × R , [2, 51].

A geo-folksonomy can be transformed into a tripartite undirected graph, which is de-

noted as folksonomy graph GF. A geo-Folksonomy Graph GF = (VF, EF) is an undirec-

ted weighted tripartite graph that models a given folksonomy F, where: VF = U∪T ∪R

is the set of nodes, EF = {{u, t}, {t, r}, {u, r}|(u, t, r) ∈ Y}} is the set of edges, and a weight

w is associated with each edge e ∈ EF.

The weight associated with an edge {u, t}, {t, r} and {u, r} corresponds to the co-occurrence

frequency of the corresponding nodes within the set of tag assignments Y . For example,

w(t, r) = |{u ∈ U : (u, t, r) ∈ Y}| corresponds to the number of users that assigned tag t

to place r.

In this research we use a database model to represent the tripartite graph. The nodes are

represented as entities, and each table relates the entities to represent the interactions

between the entities.
3https://wordnet.princeton.edu/man/lexnames.5WN.html



3.6 Database Design 45

3.6 Database Design

The database engine used in this research is SQ-Lite. This was selected because it

supports the date and time functions that are used to extract temporal dynamics of the

model. It is also server-less, so the database reads and writes are accessed directly

from the database files on disk without an intermediary server process. In addition,

this database engine is compatible with Raven 4, a university supercomputer service

that was used to run our project on.

The database instance created in this research was designed to support the storing and

searching of the collected folksonomy data-set as well as the output of the folksonomy

co-occurrence analysis methods implemented. The data model of the database is shown

in Figure 3.7. The three distinct components of the geo-folksonomy are modelled, with

Figure 3.7: The Geo-Folksnomy Database Represenation
4http://www.cardiff.ac.uk/arcca/services/equipment/User-Guide/user-guide.html
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the place table representing folksonomy tags extracted from tips, and the user table -

representing folksonomy users. The user place tag relates the three tables - user, place

and tag - together. There is a many to many relationships between users, places, and

tags which is then broken to extract the spatial information that represents the rela-

tionship between user and place; the semantic information which represents the rela-

tionship between user and tag; and the place profile which represents the relationship

between place and tag. The database also contains several tables for storing the output

of the folksonomy analysis such as tags similarity, place similarity and user similarity.

This database is instantiated multiple times in the database system - for different time

models, as discussed in Chapter 6. Also, it is instantiated to represent the places se-

mantics which are represented by the relationship between place category, place activ-

ity and, the user, as discussed in Chapter 7. The database schema of place semantics

is shown in Figure 3.10. As the figure shows, a ternary relationship is created between

user, place-category, and tag which is a many to many relationship. Relevant profiles,

such as user-based category profiles and tag-based category profiles are extracted. The

similarities between categories, tags and users are then re-calculated using the new

structure. Activities are also instantiated from a tag data-set which represents a subset

of tags.

Figures 3.8, 3.9 are examples of the queries that can be applied to the database:

Figure 3.8: A Query for Displaying all Tags Sorted by Tag Frequency, from High

to Low.
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Figure 3.9: A Query for Calculating the Average Number of Places for all Users

in the Data-set.

Figure 3.10: The Place Semantics Database Schema

3.7 Summary

A user and place modelling framework is proposed in this chapter. The framework

is a pipeline that shows a map of how methods are explained in each chapter. The

framework is divided in four sub-frameworks: static user modelling, user similarity

calculation and evaluation, semantics extraction, and dynamic user modelling. The

common processes involved in the four frameworks are then explained. The first pro-

cess is the data preparation. This involves: a) data collection, b) data pre-processing,
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and c) time interval partition. Then the relevant entities are stored in a database which

is described in the database design section. The proposed framework will be discussed

in the next four chapters.
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Chapter 4

User Modelling in Geo-Folksonomies

4.1 Introduction

Our work in this thesis focuses on Location-Based Social Networks (LBSN) that col-

lect information on users’ interests in physical places in the real world. By “switching

on” location on devices, we are giving away information on our whereabouts, our daily

routines, activities, experiences and interests. Thus, in comparison to other personal

information, location data are possibly the most crucial type of data of relevance to

privacy, as it pulls together our virtual and physical existences and thus raises critical

questions about privacy in both worlds. This chapter introduces methods for construct-

ing user profiles that considers the different dimensions of the data captured from users

on LBSN. These profiles, when made transparent to users of the network, should em-

power their sense of awareness and control of their data as discussed in [42].

In this work, both semantic and spatial interactions of users are used to project dis-

tinct and complementary views of personalised user profiles. Thus, user’s annotations

on places they visit are compiled in semantic profiles, while collective user annota-

tions on places are used to create specific profiles for places that encapsulate user’s

experiences in the place. Place profiles, in turn, are used to construct personalised user

profiles. In comparison to previous works in the area of recommendations, LBSN data

are treated as folksonomies of users, places and tags. User annotations in the form of

tips, their interaction with places, in the form of check-ins, as well as general place
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properties, namely, place categories and tags, are analysed concurrently to extract re-

lations between the three elements of the folksonomy.

Simple co-occurrence methods and similarity measures are used to compute direct and

enriched user profiles.

Thus the proposed approach provides users with the ability to project different views of

their profiles, using their direct interactions with the social network or extended with

a holistic view of other users’ interaction with the network in different regions of geo-

graphic space. Previous works attempting a similar approach used matrix factorisation

techniques to handle the multiple data dimensions, but did not consider the use of the

range of content data as used in this work. Sample realistic data from Foursquare are

used to demonstrate the approach and evaluation results show its potential value. In

particular it is shown that enriched user profiles offer potentially more accurate views,

than direct profiles, of user’s spatial as well as semantic preferences. Hence, these

should be considered when designing tools for enabling user awareness on these net-

works. This chapter will address the following research questions:

• How can different views of user profiles be constructed from user footprints col-

lected on LSBNs that emphasis the different facets of collected data?

• How does the enrichment process impact the quality of personal user profiles?

• How can we construct a new location recommendation method using different

dimension of LBSNs and evaluate it existing methods?

The rest of the chapter is organised as follows. A folksonomy background literature is

presented in Section 4.2. Different types of user profiles are defined in Section 4.3. In

Section 4.4, the experiment used to evaluate the approach is described and its results

presented and discussed. The chapter concludes in Section 4.5.
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4.2 Background

4.2.1 Folksonomy definition

There has been a huge amount of research progress regarding folksonomy analysis

and mining. The word “Folksonomy” is a concatenation of two words “folks” and

“taxonomy” [107]. “A folksonomy is the result of personal free tagging of information

and objects for one’s own retrieval. The tagging is carried out in a social environment

(shared and open to others). The act of tagging is performed by the person consuming

the information” [107]. Folksonomy is also known as collaborative tagging, social

classification, social indexing, and social tagging. Folksonomies allow their users to

manage bookmarks online and to annotate them with keywords known as tags. [112]

4.2.2 Folksonomy Structure

Formally, a folksonomy is a tuple F=< U,T,R, A >where U, T, R represent users, tags

and resources respectively. The relationship ‘A’ relates U, T and R. Consequently, the

folksonomy can be represented as a tripartite graph [44]. The vertices of the graph

are the users, tags and resources. The vertices of the graph are the users, tags, and re-

sources. Alternatively, the folksonomy graph can be represented as a three-dimensional

adjacency matrix. However, to simplify the manipulation, the tripartite graph can be

decomposed to three bipartite graphs: tag-user, tag-resource, and user-resource. [14].

4.2.3 Folksonomy Analysis Methods

Folksonomy analysis methods look at the relationships between users, resources and

tags in the social tagging systems in order to generate recommendations. These meth-

ods can be classified into two main methods: reduction methods, and non-reduction

methods. Reduction methods include co-occurrence [68], and collaborative filtering
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approaches [56], [100]. The reduction analysis methods reduce the three-dimensional

folksonomy data into three two-dimensional projections. Non-reduction folksonomy

methods include hypergraphs [130], [134], tensors [104], [92]. These methods use the

three dimensions to analyse the data.

The main disadvantage of using non-reduction methods is their sparseness, which leads

to difficulty processing data with normal machine memory sizes. The act of reducing

the data into two dimensions produces denser data-sets. Alternatively, the main disad-

vantage of reduction methods is that the hidden relationships between the dimensions

will be ignored, and thus these methods can miss some important information. In

the proposed method, the co-occurrence approach is employed to analyse the three-

dimensional data. Although is used a reduction approach, an attempt was made to

capture any relation between the three dimensions using combined similarity meas-

ures.

A lot of work was carried out in addressing the two folksonomy analysis methods. The

work presented in [67] proposed a novel method for including content data into the

widely recognised FolkRank tag recommendation algorithm, enabling it to recommend

tags for new untagged documents based on their textual content. The results showed

that including content information (words and their frequency rather than documents)

in the recommendation process gives a significant improvement over content-unaware

recommendation in full tagging datasets.

Furthermore, contextual user modelling in folksonomy was addressed by [3]. In this

work, semantically meaningful contextual information was deduced from tagging sys-

tems, and a ranking algorithm that exploits this contextual information was designed.

The idea is to not only use tags alone, but to also use context like the spatial inform-

ation, categories of the tags, and urls to facilitate further understanding of user beha-

viour.

There are three measures of tag relatedness as stated in [23]: Co-occurrence, Cosine

Similarity and Folk Rank.
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In the co-occurrence measure, the tag-tag co-occurrence graph is defined as a weighted

undirected graph whose set of vertices is the set T of tags, and two tags, t1 and t2, are

connected by an edge if there is a least one post. The weight of the edge is given by

the number of posts that contain both t1 and t1 [22].

In cosine similarity, the measure of tag relatedness is computed by using the cosine

similarity of tag-tag co-occurrence distributions. Two tags are considered related when

they occur in a similar context, and not when they occur together. [93]

The FolkRank method is derived from the PageRank algorithm, which reflects the idea

that a web page is important if there are many pages linking to it, more so if those

pages are important themselves. [16] The same principle is employed for FolkRank,

a resource which is tagged with important tags by important users becomes important

itself . The same holds for tags and users. [52]

For the purpose of this work, the cosine similarity measure is chosen to measure the

tag-tag, place-place, and user-user similarity.

4.3 User Modeling Strategies

We propose an approach to modelling users in LBSN that represents a user’s spatial,

semantic and combined spatio-semantic association with place. A spatial user profile

represents the user’s interest in places, while a tag-based profile describes his associ-

ation with concepts associated with places in the folksonomy model. A spatio-semantic

profile describes the user specific interest in certain concepts associated with places in

his profile. A user profile is built in stages. Starting with a basic profile that utilise dir-
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ect check-in and annotation histories, a user profile is then extended by computing the

relationship between places and concepts derived from collective behaviour of other

users in the dataset. A basic profile represents actual interactions with places, while

the extended profile describe “recommended” associations given overall interactions

between users, places and concepts in the dataset.

Figure 4.1 depicts the overall process of user profile creation. The process starts with

data collection of check-ins and tip data from Foursquare, that are then processed to

extract users, places and tags and their associated properties. The modelling stage

includes the definition of relationships between the three entities and the application of

folksonomy co-occurrence methods to extract the different types of profiles. Place and

tag similarity calculations are used to further extend the basic profiles to build different

views of enriched user profiles.

Figure 4.1: The Framework of the User Modlling Framework

We are able to model such interactions separately in the extended profile by controlling

the similarity function used to create the profile. For example we can focus on model-
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ling the types of places visited by the user or take into account visit behaviour of other

users whose profiles overlap with the user, as discussed below.

4.3.1 Basic User Profiles

Definition 1. Spatial User Profile A spatial user profile PR(u) of a user u is deduced

from the set of places that u visited or annotated directly.

PR(u) ={(r,w(u, r))|(u, t, r) ∈ Y,

w(u, r) = |{t ∈ T : (u, t, r) ∈ Y}|}

w(u, r) is the number of tag assignments, where user u assigned some tag t to place

r through the action of checking-in or annotation. Hence, the weight assigned to a

place simply corresponds to the frequency of the user reference to the place either by

checking in or by leaving a tip.

We further normalise the weights so that the sum of the weights assigned to the places

in the spatial profile is equal to 1. We use PR to explicitly refer to the spatial profile

where the sum of all weights is equal to 1, with

w(u, r) =
|{t∈T :(u,t,r)∈Y}|

n∑
i=1

m∑
j=1
|{ti∈T :(u,ti,r j)∈Y}|

, where n and m are the total number of tags and resources,

respectively. More simply, w(u, r) =
N(u,r)
NT (u) , where N(u, r) is the number of tags used by

u for resource r, while NT (u) is the total number of tags used by u for all places.

Correspondingly, we define the tag-based profile of a user; PT (u) as follows.

Definition 2. Semantic User Profile A semantic user profile PT (u) of a user u is de-

duced from the set of tag assignments linked with u.

PT (u) ={(t,w(u, t))|(u, t, r) ∈ Y,

w(u, t) = |{r ∈ R : (u, t, r) ∈ Y}|}

w(u, t) is the number of tag assignments where user u assigned tag t to some place

through the action of checking-in or annotation.
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PT refers to the semantic profile where the sum of all weights is equal to 1, with

w(u, t) =
N(u,t)
NR(u) , where N(u, t) is the number of resources annotated by u with t and

NR(u) is the total number of resources annotated by u.

Furthermore, we define a spatio-semantic profile of a user PRT (u), that is a personalised

association between user, place and tag.

Definition 3. Spatio-Semantic User Profile Let Fu = (Tu,Ru, Iu) of a given user u ∈ U

be the restriction of F to u, such that, Tu and Ru are finite sets of tags and places

respectively, that are referenced from tag assignments performed by u, and Iu defines a

relation between these sets: Iu := {(t, r) ∈ Tu × Ru|(u, t, r) ∈ Y}.

A spatio-semantic user profile PRT (u) of a user u is deduced from the set of tag assign-

ments made for place r by u.

PRT (u) ={([r, t],wu([r, t]))|(t, r) ∈ Iu,

wu([r, t]) = |{t ∈ Tu : (t, r) ∈ Iu}|}

where w([r, t]) is how often user u assigned tag t to place r.

PRT is the spatio-semantic profile where the sum of all weights is equal to 1, with

wu([r, t]) =
N(u,[r,t])
NRT (u) , where N(u, [r, t]) is the number of times u annotate r with t, and

NRT (u) is the total number of tags assigned by u for r. (Note that tag assignment by

users for a place comes from both the explicit action of annotation as well as implicit

action of checking-in as represented in the geo-folksonomy model).

4.3.2 Basic Place and Tag Profiles

Let PT (r) and PU(r) be the tag-based place profile and user-based place profile for

place r (defined in a similar manner to user profiles above). Conceptually, a tag-based

place profile is a description of the place by the tags assigned to it and a user-based

place profile is an account of users’ visits to the place and they are defined as follows:
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Definition 4. Tag-based Place Profile A tag-based place profile PT (r) of a place r is

deduced from the set of tag assignments linked with r.

PT (r) ={(t,w(r, t))|(u, t, r) ∈ Y,

w(r, t) = |{r ∈ R : (u, t, r) ∈ Y}|}

w(r, t) is the number of tag assignments where user u assigned tag t to some place

through the action of checking-in or annotation.

PT refers to the semantic profile where the sum of all weights is equal to 1, with w(r, t) =

N(r,t)
NR(r) , where N(r, t) is the number of users that annotated place r with t and NR(r) is the

total number of users who use tags to annotate place p.

Definition 5. User-based Place Profile A user-based place profile PU(r) of a place r

is deduced from the set of users that u visited or annotated the place directly. It is the

same as the spatial user-profile but with opposite assignments (Place-User instead of

User-Place)

PU(r) ={(u,w(r, u))|(u, t, r) ∈ Y,

w(r, u) = |{t ∈ T : (u, t, r) ∈ Y}|}

w(r, u) is the number of tag assignments, where u assigned some tag t to place r through

the action of checking-in or annotation. Hence, the weight assigned to a place simply

corresponds to the frequency of the user reference to the place either by checking in or

by leaving a tip.

So far, the basic user profile provides only a limited view of the user association with

places and concepts derived directly from captured data. Basic profiles reduce the

dimensionality of the folksonomy space by considering only 2 dimensions at a time;

user-place and user-tag, leading to a loss of correlation information between all three

elements.

Users profiles can be extended to represent possible latent relationships in the data.

Thus a user profile can be used to present places (respectively tags) similar to those
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in the basic profile, where similarity between places (respectively tags) is measured

through the collective actions of other users of check-ins and annotations.

To compute tag-tag similarity, profiles for tag are first defined through the places they

are used to annotate. Thus, a place-based tag profile (PR(t)) of a tag t is a weighted

list of places r that are annotated by t. That is, w(r, t) is determined by the number

of users’ check-ins and tips that resulted in assigning t to r in the geo-folksonomy.

Traditional method for calculating similarity are Cosine Similarity [7], Jaccard meas-

ure [65]and Pearson correlation [98]. Cosine similarity measures the angle between

two vectors and is useful for calculating similarity between two text documents. The

Pearson Coefficient is a more complex approach for calculating the similarity because it

generates a "best fit" line between attributes in two vectors. Jaccard measure calculates

the similarity by eliminating the zero matching attributes.In this thesis, the similarity

between tags is defined as the cosine similarity between their place-based tag profiles

as follows.

CosS im(t1, t2) =
|PR(t1) ∩ PR(t2)|
√
|PR(t1)|.|PR(t2)|

(4.1)

On the other hand, similarity between places is defined by measuring the similarity of

their tag-based and user-based profiles. Let PT (r) and PU(r) be the tag-based place

profile and user-based place profile for place r (defined in a similar manner to user

profiles above). Conceptually, a tag-based place profile is a description of the place by

the tags assigned to it and a user-based place profile is an account of users’ visits to the

place.

Cosine similarity between tag-based place profiles (CosS imtag(r1, r2)) and between

user-based place profiles (CosS imuser(r1, r2)) construct a tag-oriented ranking and user-

oriented ranking, respectively. These similarity rankings can be aggregated using the

so-called Borda method [30] to compute a generalised similarity score between two

places.

S im(r1, r2) = γ ∗CosS imtag(r1, r2) + (1 − γ) ∗CosS imuser(r1, r2) (4.2)
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where 0 ≤ γ ≤ 1 is a parameter that determines the balance of importance given to

similarity scores from PT (r) and PU(r). Conceptually, similarity between two places is

a function of the overlap between their tag assignments only (for γ = 0), a measure of

their common visitors only (for γ = 1), or both (for γ between 0 and 1).

4.3.3 Enriched User Profiles

We extend the basic user profiles by the information extracted from the computation

of tag and place similarity above. The enriched user profiles will therefore present

a modified view of how users are associated with places that reflect collective user

behaviour on the LBSN.

Definition 6. Enriched Spatial User Profile An enriched spatial user profile ṔR(u)

of a user u is an extension of the basic profile by places with the highest degree of

similarity to places in PR(u). Let Ru be the set of all places in PR(u) and wi is the

weight associated with place i in the profile.

ṔR(u) = {< ri,wi > |

wi =

 wi , if ri ∈ Ru

wi ∗ Max(S im(ri, r j)) ,∀(ri ∈ {R − Ru} ∧ r j ∈ Ru)


We compute the maximum similarity of the K most similar places in the dataset for

every place in the basic user profile, and use the highest similarity score as the weight

for the new place in the enriched user profile. The process of building the enriched

spatial profile is shown in the following algorithm

The algorithm has three inputs: the spatial user profile PR(u), the number of places

to be enriched (K), and the γ value that controls the enrichment combination. The

algorithm starts with finding all places in the spatial user profile and then compute the

similarity between places using the CosSim function. Then, the top K similar places
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Algorithm 4.1: SpatialEnrichment (PR(u),K,γ)

Input: A spatial Profile PR(u), K, γ

Output: Enriched Profile ṔR(u)

for all places ri in Spatial-Profile PR(u) do

if γ = 1 then

Compute CosS imtag(r1, r2)

else

if γ = 0 then

Compute CoS imUser(r1, r2)

else

Compute S im(r1, r2, γ)

end if

end if

Find top K similar places r j to each ri in PR(u)

for each < r j, sim > in top similar places do

w j = wi ∗ sim

add < r j,w j > to PR(u)

end for

end for

return ṔR(u)

are fetched and enriched in the profile after calculating their new weights. Finally, the

enriched profile ṔR(u) is returned as an output.

Definition 7. Enriched Tag-based User Profile An enriched tag-based user profile

ṔT (u) of a user u is an extension of the basic profile by tags with the highest degree of

similarity to tags in PT (u). Let Tu be the set of all tags in PT (u) and wi is the weight

associated with tag i in the profile.



4.3 User Modeling Strategies 61

ṔT (u) = {< ti,wi > |

wi =

 wi , i f ti ∈ Tu

wi ∗ Max(S im(ti, t j)) ,∀(ti ∈ {T − Tu} ∧ T j ∈ Tu)


A similar algorithm to that of enriching place profiles is used for choosing the tags and

weights.

Definition 8. Enriched Spatio-Semantic User Profile

An enriched spatio-semantic user profile ṔRT (u) of a user u is an extension of the basic

profile by tags and places with the highest degree of similarity to tags in PRT (u). Let Tu

be the set of all tags in PT (u), Ru be the set of all places in PR(u) and wi j is the weight

associated with tag i and place j in the profile.

ṔRT (u) =< [ri, t j],wu(ri, t j) > |wu(ri, t j) =
wu(ri, t j) , if ri ∈ Ruandt j ∈ Tu

wu(ri, t j) ∗ Max(S im(ri, rk)) , t j ∈ PT (rk) ∧ rk ∈ {R − Ru}

0 otherwise


The spatio-semantic profile is extended with the most similar places to the user profile

and these are assigned a weight computed using the place similarity value for all tags

in their place-tag profiles and 0 for tags that are not in their profile. Thus the user

simply inherits relationships with all the tags and their associated weights from basic

places that are deemed similar to those in his profile.

User Profile Example

Here an example is given of a sample user profile created from the data-set used in this

work. ‘user164’ checked in 200 different venues, with associated 82 venue categories.

Note that one venue can have more than one venue category. Figure 4.2 shows the

top 20 tags in his semantic user profile. Figure 4.3 shows filtered tags from his profile

representing human activity (approximately 5% of all tags), as derived by mapping

to Wordnet noun.act category. Figure 4.4 and 4.5 show the spatial profile and the
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Figure 4.2: Example Semantic User Profile for User ‘user164’.

Figure 4.3: Activities in a Semantic User Profile for ‘User164’.

enriched spatial profiles for user ‘user164’, respectively. γ = 0.5 was used in the place

similarity equation of the enriched profile. The size of the dots in the figures represents

the weight of the place in the profile.
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Figure 4.4: Spatial User Profile for User ‘user164’.

4.4 Experiments and Results

Experiments in this chapter were carried out using a sample of two hundred users with

a high frequency of check-ins, co-location rate and tips. Table 4.1 shows summary

statistics of the sample data-set used.

Table 4.1: High Frequent Dataset

Number of Distinct Venues 10,988

Total number of Check-ins 4,212

Total Number of Tips 10,469

Total Number of Tags 13,396

Number of users 200

Total Number categories 459

Total Number of Relationships 165,453

Average places/user 121

Average tag/user 365
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Figure 4.5: Enriched Spatial User Profile for user ‘user164’ with γ = 0.5.

4.4.1 Experiment Setup

The evaluation experiment aims to measure the impact of using the full range of content

captured on LBSN when building user profiles in comparison to using only partial

views based on check-in information. The experiment takes the form of place (and tag)

top-N recommendation problem using the different constructed user profiles based on

the users profiles cosine similarities and seeks to establish how well the profiles reflect

the user spatial and semantic character when using the LBSN. Figure 4.2 show the

Spatio semantic Top-K Recommendation algorithm.

The algorithm has two inputs: the number of top places to be recommended (K), and

the γ value that controls the enrichment process. The algorithms starts with calling the

spatial enrichment function discussed earlier to enrich the profiles with the required

places, then the user similarity is computed between each two user profiles in the data-

set using the UserS im function. The top k places are recommended by finding the top

similar user to each user. The Top-K places ri, and weights wi are then returned as the

output of the algorithms.
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Algorithm 4.2: Spatio-semantic Top-K Location Recommender

Input: γ,K.

Output: Top-K< ri,wi >

1: for each ui do

2: SpatialEnrichment(PR(ui),K, γ)

3: end for

4: for all ui, u j do

5: Fetch profiles PR(ui), PR(u j)

6: Compute UserSim(ui, u j) .

7: end for

8: for each Ui do

9: Fetch most similar user u j

10: Sort < ri,wi > of PR(u j)

11: Recommend top K ri that are not in PR(ui)

12: end for

13: return Top-K< ri,wi >

We use recall@N, precision@N and F1@N as our success measures, where N is the

predefined number of places (or tags) to be recommended. Recall measures the ratio

of correct recommendations to the number of true places (or tags) of a test check-in or

tip record, whereas precision measures the ratio of correct to false recommendations

made. Recall and precision are given by

recall =
T P

T P + FN

precision =
T P

T P + FP

where TP (true positives) is the number of correct place (or tags) recommended, FP

(false positives) is the number of wrong recommendations and FN (false negatives) is

the number of true place (or tags) which were not recommended. F1 is a combination
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of recall and precision and is given by

F1 =
2 ∗ precision ∗ recall

precision + recall

The values of TP, FP, FN are determined by randomly splitting the users into two sets;

the training set and the testing set. Multi-fold cross-validation was used to ensure a fair

partitioning between test data and training data. Data were split 90% for training and

10 % for testing, and the process was repeated 5 times to create 5 folds and the mean

of the performance was reported.

4.4.2 Evaluation of Different Similarity Measures

We used the basic spatial profile to train the user-based collaborative filtering method

with different similarity measures. The similarity between users were measured using

the cosine, jaccard, and pearson similarity measure. Table 4.2 shows the results of pre-

cision and recall when comparing different methods. The results of the three measure

are almost the same, but the cosine similarity seems to be the best in terms of the F1-

measure because it compares the two profile vectors and calculates the similarity based

on the weights in each vector. Thus, we used cosine similarity to calculate similarity

between users in our proposed recommendation method.

4.4.3 Evaluation of Spatial Profiles

Results for the enriched user profiles using the proposed top-N recommendation method

are presented. Different versions of the enriched spatial profiles, using different place

similarity measures were created, a) using γ = 0 (to represent place-tag similarity

only), b) using γ = 1, (to represent place-user similarity only), and c) using γ = 0.5

for an aggregated view of both effects. We choose these three values of γ to show

compare the results of using each similarity alone against the combined similarity. The
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Table 4.2: Comparison between different similarity measures.

Top-N
Pearson Correlation Jaccard Measure Cosine Similarity

Precision Recall Precsion Recall Precision Recall

1 0.5625 0.090385 0.575 0.096635 0.575 0.096635

2 0.2875 0.096635 0.2875 0.096635 0.30625 0.097381

3 0.195833 0.096706 0.204167 0.097594 0.216667 0.098632

4 0.153125 0.097707 0.15625 0.098054 0.1625 0.098632

5 0.1225 0.097707 0.1275 0.098379 0.1325 0.098703

10 0.07375 0.104646 0.0725 0.10139 0.0725 0.101038

20 0.046875 0.111808 0.03875 0.103073 0.04125 0.107751

30 0.03375 0.114669 0.030417 0.107076 0.031667 0.111437

40 0.028438 0.119753 0.024688 0.109422 0.028125 0.115961

50 0.026 0.12525 0.02225 0.11478 0.0255 0.123466

value 0.5 combines the two similarities equally and thus gives an insight of the be-

nefit of combination. Hence, result sets are shown for the following user profiles. 1.

Enriched-Spatial(Tag) 2. Enriched-Spatial(User) 3. Enriched-Spatial(All).

We compare the results of the top-N recommendation using the three different profiles

with traditional Item-based Collaborative Filtering (IBCF) [100] and the User-based

collaborative Filtering (UCBF) [89] approaches, applied against the basic spatial user

profile. The results of the precision, recall and F1 measures for recommending top-1,

2, 3, 4, 5, 10, 20, 30, 40, 50 places are shown in Figures 4.6, 4.7 and 4.8, respectively.

As shown in the figures, results show that the enriched profiles perform consistently

better than basic profiles using both UBCF and IBCF, with the best results achieved for

the enriched user profiles. We also observer from results that the proposed method of

recommendation using tag-based and user-based place similarity gives the best overall

results. We conclude that enrichment with the combined similarity has more influence

on place recommendation than using tag-based or user-based place similarity, which
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Figure 4.6: Precision Values for the Top-N Place Recommendations.

Figure 4.7: Recall Values for the Top-N Place Recommendations

reveals the importance of the spatial and semantic features in location recommendation.

The results also demonstrates that the combined place similarity method improves the

accuracy of the recommendation compared with the place similarities from users and

Figure 4.8: F1-Measure Values for the Top-N Place Recommendations
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from tags. This shows that the influence of user preference on user location update gets

better recommendation.

4.4.4 Evaluation of Semantic profiles

A similar experiment was carried out to evaluate the semantic user profiles. Again,

the results were compared to the UBCF and IBCF approaches. Figures 4.9, 4.10 and

4.11 show the results of the top-10, 20, 30, 40, and 50 tag recommendations using the

different methods. Results demonstrates the quality of the enriched user profiles, and

thus confirm their utility for more accurate representations of user profiles.

The profile enrichment helps in constituting the missing data with inferred weights

based on tag-similarity which solves the problem of data sparseness. Hence, the per-

formance of top-k recommendation using the semantic enrichment method that uses

the tag enrichment showed better results than the UBCF and IBCF that uses the basic

semantic profile.

Figure 4.9: Precision Values for the Top-N Tag Recommendations.

We believe that the data used in this experiment is sufficient because it represents a

sample of users in one region. Previous experiments were done on the smaller data set

of 20 users. The statistics of the data-set is listed in table 4.3. It is noted that the same

conclusions is drawn from the small dataset as shown in figures 4.12, 4.13, 4.14. This



4.4 Experiments and Results 70

Figure 4.10: Recall Values for the Top-N Tag Recommendations.

Figure 4.11: F1-measure Values for the Top-N Tag Recommendations.

assures that the enriched spatial combined profile is the best profile for representing

the spatial user profile.

Figure 4.12: Precision values for the top-N place recommendations-Small Data-

set..
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Table 4.3: Small DATASET
Number of Venues 2,041

Total number of Checkins 4,212

Total Number of Tips 942

Total Number of Tags 3,357

Number of users 20

Total Number categories 317

Total Number of Relationships 17,955

Average Checkins/user 601

Average tag/user 363

Figure 4.13: Recall values for the top-N place recommendations-Small Dataset

4.5 Summary

This work considers the problem of user profiling on location-based social networks.

This chapter was able to answer successfully the first two research questions which are

How can different views of user profiles be constructed from user footprints collected

on LSBNs that emphasis the different facets of collected data? How does the enrich-

ment process impact the quality of personal user profiles? Both the spatial (where) and

the semantic (what) dimensions of user and place data are used to construct different

views of a user’s profile. A place is considered to be associated with a set of tags or

labels that describe its associated place types, as well as summarise the users’ annota-
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Figure 4.14: F1 measure values for the top-N place recommendations-Small Data-

set.

tions in the place. A folksonomy data model and analysis methods are used to represent

and manipulate the data to construct user profiles and place profiles. It is shown how

user profiles can be extended from a basic model that describes user’s direct links with

a place, to an enriched profiles describing richer views of place data on the social net-

work. The model is flexible and can be adjusted to focus on the spatial and semantic

dimensions separately or in combination. Flexibility means the ability for the solution

to adapt to possible or future changes in its requirements. The model proposed can

be adopted to include more dimensions using the same framework. Temporal dimen-

sion can be adopted as discussed in Chapter 6. Also, the model can be adopted to

spatial types and semantic activities as will be explained in Chapter 7. Results demon-

strate that the proposed methods produce user profiles that are more representative of

user’s spatial and semantic preferences. This chapter answered the first two research

questions proposed in this thesis. Also, this chapters proposed a location recommenda-

tion algorithm that was used to evaluate the proposed profiles against existing methods

of recommendation. So, this chapter also contributed in answering research question

which states How can we construct a new location recommendation method using dif-

ferent dimension of LBSNs and evaluate it existing methods?. These three questions

will also be revisited in chapter six when we explain the dynamic user modelling meth-

ods.
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Chapter 5

Place Profiles in Geo-Folksonomies

5.1 Introduction

Foursquare provides a type attached to each place that is known as a place category.

These categories build a category hierarchy based on the relationship between categor-

ies. There are eight main categories in Foursquare: Arts and Entertainment, College

and University, Events, Food, Nightlife Spots, Outdoors and Recreation, Professional

and Other Places, and Transport. These categories contain about 525 subcategories.

Every user is related to a place and its place categories, and every place is related to its

place category. The place can have more than one category assigned to it.

The aim of this chapter is to study each category based on the users’ behaviour in

places, and thus construct a behavioural place category profile. This chapter will also

cover the third research question: ’how can implicit semantics of place profiles be used

to reflect users experience in geographic places through the activities they carry out

in those places?’. In this research, place semantics is represented by place categories

and place activities. Towards this, the first step of constructing the category profile is to

replace each place instance of its place category and construct the relationship between

it and the user and the tag using the geo-folksonomy model. Thus, relationship Y

becomes the relationship between place categories, users and tags. Figure 5.1 shows

the different structures of geo-folksonomy. Figure 5.1a shows the geo-folksonomy

structure among places, users, and tags, and Figure 5.1b shows the geo-folksonomy
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(a) Place, User, Tags (b) Place Category, User, Tags

Figure 5.1: Geo-Folksonomy Structure

structure using place categories, users and tags.

5.2 Definitions

5.2.1 Basic User Profiles

Definition 9. Category-based User Profile A category user profile PC(u) of a user u is

deduced from the set of categories of the places that u visited or annotated directly.

PC(u) ={(c,w(u, c))|(u, t, c) ∈ Y,

w(u, c) = |{t ∈ T : (u, t, c) ∈ Y}|}

w(u, c) is the number of tag assignments, where user u assigned some tag t to a place

category c through the action of checking-in or annotation. Hence, the weight assigned

to a place category simply corresponds to the frequency of the user reference to the

place category either by checking in or by leaving a tip.

Definition 10. Parent Category User Profile A parent category user profile PCp(u) of

a user u is deduced from the set of parent categories of the places that u visited or
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annotated directly.

PCp(u) ={(c,w(u, p))|(u, t, p) ∈ Y,

w(u, p) = |{t ∈ T : (u, t, p) ∈ Y}|}

w(u, p) is the number of tag assignments, where user u assigned a tag t to a parent

place category p through the action of checking-in or annotation. Hence, the weight

assigned to a parent place category simply corresponds to the frequency of the user

reference to the place category either by checking in or by leaving a tip.

Figure 5.2 shows an example of a spatial user profile and their category-based user

profile.

5.2.2 Basic Category Profiles

Let PT (c) and PU(c) be the tag-based category profile and user-based category profile

for place category c (defined in a similar manner to the user profiles above). Concep-

tually, a tag-based category profile is a description of the place categories by the tags

assigned to it and a user-based category profile is an account of users’ visits to the place

categories. They are defined as follows:

Definition 11. Tag-based Category Profile A tag-based place profile PT (c) of a place

category c is deduced from the set of tag assignments linked with c.

PT (c) ={(t,w(c, t))|(u, t, c) ∈ Y,

w(c, t) = |{c ∈ C : (u, t, c) ∈ Y}|}

w(c, t) is the number of tag assignments where user u assigned tag t to some place

categories through the action of checking-in or annotation.

Definition 12. User-based Category Profile A user-based place profile PU(c) of a

place category c is deduced from the set of users that u visited or annotated the place
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(a) Spatial User Profile for user900

(b) Category-based User Profile for user900

Figure 5.2: An Example of Spatial vs. Category User Profile

category directly. It represents the relationship between a user and a place category.

PU(c) ={(u,w(c, u))|(u, t, c) ∈ Y,

w(c, u) = |{t ∈ T : (u, t, c) ∈ Y}|}

w(c, u) is the number of tag assignments, where u assigned some tag t to place category

c through the action of checking-in or annotation. Hence, the weight assigned to a
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(a) Place Distribution for Main Categories (b) User Distribution for Main Categories

Figure 5.3: A Pie-Chart for Place and User Distributions in Categories

place category simply corresponds to the frequency of the user reference to the place

cateogry either by checking in or by leaving a tip.

5.3 Dataset

Figure 5.3aAs expected, the category that includes the largest number of places is

Food. Shop & Service, and Nightlife Spots have a substantial set of places, while the

remaining categories hold less than 10% of the total places. Figure 5.3b shows the

distribution of users across the main categories of Foursquare. It is observed from the

Figure that the users are distributed equally, except for amongst the event, college and

university, and residence categories.

Table 5.1 show each category and the number of its subcategories deducted from the

data set.
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Table 5.1: Subcategories Distribution for Main Categories
Category Name Subcategories count

Arts & Entertainment 45

College & University 35

Event 7

Food 127

NightlifeSpot 19

Outdoors & Recreation 65

Professional & OtherPlaces 68

Residence 4

Shop & Service 111

Travel & Transport 41

Figure 5.4: The Number of Distinct Categories and Places for Users

5.4 Evaluation of Category-based User Profile

As mentioned in the above definitions, the category-based user profile is a clustered

view of the spatial profile. The user is related to the category of a place rather than

the places themselves. The category of a place implies the property of the place and

what kind of activities attract the user through their history of checking-in. Thus, with
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(a) Precision (b) Recall

Figure 5.5: Evaluation of Category versus Spatial User Profile

the help of the category information of the place, the specific preference of a user can

be obtained. A place grouping is performed to place instances in the spatial profile.

Figure 5.4 shows the place and category distribution for each user in the dataset. The

average number of categories per user is half the average number of places visited or

tipped.

The user model based on place category maps user’s preference from places to place

categories. As a result, a reduction of the user model is achieved. The traditional high-

dimensional user-place rating model is transformed into low-dimensional user-place

category rating statistical model.

Using a category-based user profile, relevant categories can be recommended using

collaborative based filtering by calculating the similarity between users. This similar-

ity is calculated using the cosine similarity between category-based user profiles. Thus,

the similarity deduced represents the common categories between two users. The sim-

ilarity value is 1 if they are very similar, and 0 represents no relation.

To evaluate the importance of the category recommendations, the place recommenda-

tion versus the category recommendation category based user profile and spatial user

profiles was compared. Then, the precision and recall were calculated as our evaluation

metrics. Figure 5.5a and 5.5b show the precision and recall results for evaluating the

spatial and the category profile. The precision and recall using the category-based user

profile outperforms the spatial user profile.
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(a) Precision (b) Recall

Figure 5.6: Evaluation of Parent Category, Category and Spatial User Profile

Also, user’s interest can be modelled with greater granularity using the parent cat-

egory user profile. In this profile, the categories in the category-based user profiles are

grouped to the nine main categories provided by Foursquare. This makes the profile

less spare and reduces its dimension. We compared the spatial, category-based, and

spatial user profiles using user-based collaborative filtering. Figure 5.6 shows the pre-

cision and recall of Top-N recommendation. As the figure shows, when increasing the

granularity of the user model, the parent category user profile shows the best values

of precision and recall. Only the top-k values of 1, 2, 4, and 8 were shown because

of restriction by the eight main categories, and thus the other profiles with the same k

values were compared.

5.5 Category Clustering

As mentioned in the above definitions, there are two types of category profiles: the

user-based category profile, and the tag-based category profile. When calculating the

category similarity between the profiles, the cosine similarity equation is applied to

both profiles. Each similarity matrix has values that range from 0 to 1. In order to

evaluate the different category similarities, the category profile is clustered into four

classes. Very High, High, Moderate, and Low. The process of clustering is carried out

by sorting the weight in the category profile descending, and then calculating the four

quantiles. These clusters represent the relationship between the category and its tags
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or its users. The m-quantiles of the underlying distribution of the (min; Q1; ...; Qm −

1; max) observed data values are used, which is known as Symbolic Clustering Based

on Quantile Representation.

Table 5.2 shows an example of the category profile. Category similarity 1 is the sim-

ilarity between user-based category profiles, and category similarity 2 is the similarity

between the tag-based category profile. As the table shows, the similarity between

categories from different profiles is different. In category similarity 1, the highest sim-

ilarities are all categories that contains ‘school’ word , and all categories have the same

parent category ‘Professional and Other Places’. However, in category similarity 2, the

highest similarity to category school reflects the behaviour of the users in the places,

which means for example that people who visited the sub-category school also vis-

ited the college history building and college classroom. It is important to note that the

similarity between the place categories (place types) depends on the users’ behaviour.

So, we expect that for different regions, the similarity between categories can differ

according to the behaviour of the users in that particular region. So, it is important to

suggest relevant category types to the user.

Category similarity was also evaluated using a recommendation method that calculates

the category cosine similarity and uses it to recommend new tags or users. Figure

5.7a and 5.7b show the evaluation results. It is observed from the figure that the re-

call values for the user-based category profile have higher values than the tag-based

category profile.

5.6 Place related Human Activities

As people share their experience, emotions, and opinions about places on the geo-

social web, it is important to extract place semantics from the tags attached to them.

Place semantics help in the discovery of structured knowledge from unstructured data

(tags). Discovering semantics from tags can make the tags more useful, and thus will
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Table 5.2: Different Clusters of Category Similarities
Cluster Rank Category Similarity1 Category Similarity 2

Very High

1
College History

Building
High School

2 College Classroom Elementary School

3 Board Shop Nursery School

4 Luggage Store Law School

5 Cemetery Trade School

High

1 Breakfast Spot Veterinarian

2 Toy / Game Store Malaysian Restaurant

3 Science Museum City Hall

4 Irish Pub Bike Rental / Bike Share

5 Seafood Restaurant Mediterranean Restaurant

Moderate

1 Pier Greek Restaurant

2 Home (private) Synagogue

3 Bridge Piano Bar

4 Medical Center Hotel

5 Belgian Restaurant Ukrainian Restaurant

Low

1 Cuban Restaurant Post Office

2 Vietnamese Restaurant Hookah Bar

3 Bike Shop Juice Bar

4 Club House Bike Shop

5 Middle Eastern Restaurant Vegetarian / Vegan Restaurant

be of great benefits to users interacting with the geo-social web. Extraction of place

semantics is important for many applications such as place search, tag recommend-

ation for places, and the inference of place information for untagged places in other

geo-social applications like Twitter. An important semantic related to place is discov-

ering the place activities from tags. In other words, it is desirable to construct a model
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(a) Precision (b) Recall

Figure 5.7: Category Similarity Evaluation

for activity recognition in places. Towards this, the tips in Foursquare can be mined

to extract, categorise, and map people’s activities. Thus, we want to answer the ques-

tion of “what activities are there in nearby places?”. By identifying these activities,

this chapter will answer the research question of how can implicit semantics of place

profiles be used to reflect users experience in geographic places through the activities

they carry out in those places?. As activities are extracted from tags, an activity can

be associated with a place instance, place type, or a user. Moreover, activities can be

modelled using the geo-folksonomy model by replacing the tag instances with activity

instances. We define different activity related profiles in the following sub-section.

5.6.1 Activity Related Profiles

Definitions

Definition 13. Activity User Profile An activity user profile PA(u) of a user u is deduced

from the set of the places that u visited or annotated directly with activity tags.

PA(u) ={(r,w(u, r))|(u, a, r) ∈ Y,

−w(u, cr) = |{t ∈ T : (u, a, r) ∈ Y}|}

w(u, r) is the number of tag assignments, where user u assigned some activities a to a

place r through the action of checking-in or annotation. Hence, the weight assigned to
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a place simply corresponds to the frequency of the user reference to the place either by

assigning an activity tag to a place.

Definition 14. Activity-based Category Profile An activity-based category profile PA(c)

r is deduced from the set of activity assignments linked with category C.

PA(c) ={(a,w(c, a))|(u, a, c) ∈ Y,

w(c, a) = |{c ∈ C : (u, a, c) ∈ Y}|}

w(c, a) is the number of tag assignments where user u assigned tag a to a place that

belongs to category c through the action of checking-in or annotation.

PA refers to the activity profile where the sum of all weights is equal to 1, with w(c, a) =

N(c,a)
NR(c) , where N(c, a) is the number of users that annotated place category c with a and

NR(c) is the total number of users who use activity tags to annotate place category c.

Definition 15. Activity-based Place Profile An activity-based place profile PA(r) r is

deduced from the set of activity assignments linked with place r.

PA(r) ={(a,w(r, a))|(u, a, r) ∈ Y,

w(c, a) = |{c ∈ C : (u, a, r) ∈ Y}|}

w(r, t) is the number of tag assignments where user u assigned activity a to some place

that belongs to place r through the action of checking-in or annotation.

PA refers to the activity profile where the sum of all weights is equal to 1, with w(r, a) =

N(r,a)
NR(c) , where N(r, a) is the number of users that annotated place r with a and NR(r) is

the total number of users who use activity tags to annotate place category r.

As the definitions show, an activity performed at a particular location represents some

‘doing’ sense. A user can be related to an activity, a places or a place category. Figure

5.8 the two geo-folksonomy structures using activities. Figure 5.8a shows the relation-

ship between a user, an activity and a place, and Figure 5.8b shows the relationship

between a user, an activity and a place category. Figure 5.9 shows an example of
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(a) Activity Geo-Folksonomy using

place instances

(b) Activity Geo-Folksonomy using

place category instances

Figure 5.8: Activity Geo-Folksonomy Structure.

Figure 5.9: An Example of Activities Related to Place Categories.
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four activities and their relationship between different categories. As the Figure shows,

places categories may contain more than one activity and activities are shared among

different categories.

Figure 5.10 shows the MAP, MSE, and MAE values when we compared the activity

user profiles with the tag user profile using user-based collaborative filter. Although the

semantics profile results is more promising than activity profile results, it is important

to recommend location-specific activities to users. Also, using the activity similarity

for enriching profiles can enhance the activity recommendation.

Figure 5.10: Recall values for Tag-based Category User Profile and Activity-based

Category User Profile.

5.7 Activity-aware Category Recommendation

In this section a new category recommendation method is proposed. The recommend-

ation method is considered as a hybrid recommendation method. It recommends cat-

egories similar to the categories in the category-based user profile ( content filtering

recommendation) (list1) and then it enriched list1 into the category-based user pro-

file and use the user similarity to recommend categories from high similar user (list2)

(collaborative-based filtering). In this algorithm, the similarity between categories is
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Algorithm 5.1: CategoricalEnrichment (PC(u),K,γ)

Input: A Category-based User Profile PC(u), K,γ.

Output: Enriched Category-based User Profile ṔC(u)

for all places Ci in Category-based User Profile PC(u) do

if γ = 1 then

Compute CatCosS imactivity(r1, r2)

else

if γ = 0 then

Compute CatCosS imUser(r1, r2)

else

Compute CatS im(r1, r2, γ)

end if

end if

Find top K similar places c j to each ci in Pc(u)

for each < c j, sim > in top similar places do

w j = wi ∗ sim

add < c j,w j > to Pc(u)

end for

end for

return Ṕc(u)

calculated using the activity-based category profile, or the user-based category profile

profile or a combination from both.

Cosine similarity between activity-based place profiles (CatS imactivity(c1, c2)) and between

user-based category profiles (CatS imuser(c1, c2)) construct an activity-oriented ranking

and tag-oriented ranking, respectively. These similarity rankings can be aggregated us-

ing the so-called Borda method [30] to compute a generalised similarity score between

two place categories as depicted in equation 5.1. By setting the value of gamma to

0.5, the similarity score between two place categories using its activities is summed up
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Algorithm 5.2: Spatio-semantic Top-K Category Recommendation

Input: The combination factor γ, and the number of top categories to recommend K.

Output: Top-K recommended categories< ci,wi >

1: for each ui do

2: CategoricalEnrichment(PC(ui)), γ)

3: end for

4: for all ui, u j do

5: Fetch profiles PC(ui), PC(u j)

6: Compute User-Sim(ui, u j) .

7: end for

8: for each Ui do

9: Fetch most similar user u j

10: Sort < ci,wi > of PC(u j)

11: Recommend top K ci that are not in PC(ui)

12: end for

13: return Top-K< ci,wi >

with the similarity score between the same two place categories using its users. This

gives an equal balance between the two similarity measures and thus the result will be

a generalised similarity score between two place categories.

CatS im(c1, c2) = γ ∗CatCosS imactivity(c1, c2) + (1 − γ) ∗CatCosS imuser(c1, c2) (5.1)

where 0 ≤ γ ≤ 1 is a parameter that determines the balance of importance given to

similarity scores from PA(c) and PU(c). Conceptually, similarity between two place

categories is a function of the overlap between their activity assignments only (for

γ = 0), a measure of their common visitors only (for γ = 1), or both (for γ between 0

and 1).

Algorithms 5.1 and 5.2 are used to do the recommendation which are similar to the two
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proposed methods in Chapter 4.

Figures 5.11a, 5.11b, 5.11c show a significant increase in precision and recall when

using the combined method to predict categories.

5.8 Summary

This Chapter propose a place model based for extracting place semantic from LBSNs,

namely place categories and place activities. The chapter aimed to answer the question

of how can implicit semantics of place profiles be used to reflect users experience in

geographic places through the activities they carry out in those places? Towards this,

Category-based and activity based user profiles are also proposed and evaluated against

basic spatial and semantic profiles conducted in Chapter 4 using collaborative filtering

recommendation algorithm. A behavioural category clustering method is also proposed

and evaluated. Finally, an activity aware category recommendation is proposed and

evaluated against basic recommendation methods. Experiment results shows that the

proposed model can effectively deal with sparsity score data, which enhance the quality

of recommendation.



5.8 Summary 90

(a) Category Recommendation-Precision

(b) Category Recommendation-Recall

(c) Category Recommendation-F1-Measure

Figure 5.11: Category Recommendation
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Chapter 6

Dynamic User Modelling

6.1 Introduction

Users’ interests are not static, they always change as time goes by and their interests in

places also changes. In this chapter, we propose a temporal Geo-folksonomy model to

analyse users’ behaviours. The model learns users’ preferences by extracting keywords

from Tips over a period of time, and then the impact of time is considered to deal with

interest drifts. Using this model, we are also proposing a new time-aware location

recommendation algorithm. This Chapter follows the same steps of Chapter 4, but

with temporal extension of the user model. Thus, it aims to answer the following

research questions:

• How can different views of user profiles be constructed from user footprints col-

lected on LSBNs that emphasis the different facets of collected data?

• How does the enrichment process impact the quality of personal user profiles?

• How can we construct a new location recommendation method using different

dimension of LBSNs and evaluate it existing methods?
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6.2 Temporal Geo-Folksonomy (TGF) Model

Different representations of time context information can be used in this model. For

example, time may be represented as a continuous variable whose values are the spe-

cific times at which places are tagged (e.g. a timestamp like “January , 1st, 2010

at 00:00:00”). Another option is to specify meaningful categorical values with time

intervals that characterise people’s visit patterns to places. For instance, continuous

time units can be defined by days or months, or categorical groups of time units can be

defined, e.g. weekends and weekdays, seasons, etc. In this sense, storing the timestamp

of tagging is the most flexible option, since it enables the exploitation of diverse rep-

resentations of the time context. Thus, in general, tag assignments in the folksonomy

are associated with a time stamp, that is, an instance of the set of time units chosen for

representation. For example, a folksonomy representing users’ interactions clustered

over different months of the year may contain assertions of the form:

(u, r1, {g1, g2}, January)

(u, r1, {g1, g3}, January)

(u, r2, {g1, g4}, January)

representing user’s u checkins and tips in place r1 and r2 in January. Different views

of folksonomy can be thus be created using different time units.

The data capturing process results in the creation of a geo-folksonomy, which can be

defined as a quintuple F := (U,G,R,T,Y), where U,G, and R are finite sets of instances

of users, tags and places respectively, T is a set of time intervals at which the data were

captured, and Y defines a relation, the tag assignment, between these sets, that is,

Y ⊆ U ×G × R × T ,

A geo-folksonomy can thus be transformed into a finite set of tripartite undirected

graphs: {GF1, . . .GF
n
}, where n is the number of time units defined in T . Let Fi =

(U i,Gi,Ri, Ii) be the restriction of F to ti, such that, Gi and Ri are finite sets of tags

and places respectively, that are referenced from tag assignments performed by the

set of users U i at ti, and Ii defines a relation between these sets: Ii := {(u, g, r) ∈
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U i ×Gi × Ri|(u, g, r) ∈ Y}.

A geo-Folksonomy graph at time slot ti defined as GFi = (VFi , EFi), is an undirected

weighted tripartite graph that models a given folksonomy Fi, where: VFi = U i∪Gi∪Ri

is the set of nodes, EFi = {{u, g}, {g, r}, {u, r}|(u, g, r) ∈ Ii}} is the set of edges, and a

weight w is associated with each edge e ∈ EFi .

The weight associated with an edge {u, g}, {g, r} and {u, r} corresponds to the co-occurrence

frequency of the corresponding nodes within the set of tag assignments Ii. For example,

w(g, r) = |{u ∈ U i : (u, g, r) ∈ Ii}| corresponds to the number of users that assigned tag

g to place r at time slot ti.

Figure 6.1 depicts the overall process of user profile creation.

Figure 6.1: The Temporal Geo-Folksonomy Framework
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6.3 User Modelling

User modelling is used here to learn more about user preferences and interests, and

enhance recommendation and personalization systems. The user interests describes

the association of a user to places and concepts in a region of interest.

Thus, an approach to modelling users in LBSN that represents a user’s spatial, se-

mantic and combined spatio-semantic association with place is proposed. A spatial

user profile represents the user’s interest in places, while a semantic profile describes

their association with concepts associated with places in the folksonomy model. A

spatio-semantic profile describes the user combined interest in specific place-concept

associations.

Two different method for modelling time in user profiles are used here, denoted, the

time-slice approach and the decay approach. In the time-slice approach, user profiles

are simply computed from the geo-folksonomy temporal graph GFi for any time slot of

interest ti, whilst the other folksonmy graphs for t , ti are discarded. For example, in

a geo-folksonomy representing data collected over a year and aggregated by months, a

user profile in the month of June will be computed only from the folksonomy graph for

June, etc. The decay approach, on the other hand, considers the historical interactions

in all sub graphs of the folksonomy prior to the time point of interest. Thus, user

profiles for the month of June will reflect users’ interactions from all the folksonomy

graphs from January to June.

In both approaches, a user profile is built in stages. Starting with a basic profile that

utilises direct check-in and annotation histories, a user profile is then extended by com-

puting the relationship between places and concepts derived from collective behaviour

of other users in the dataset.

A basic profile represents actual interactions with places, while the extended profile

describe “recommended” associations given overall interactions between users, places

and concepts in the dataset. It is possible to model such interactions separately in the
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extended profile by controlling the similarity function used to create the profile. For

example one can focus on modelling the types of places visited by the user or take into

account visit behaviour of other users whose profiles overlap with the user, as discussed

below.

The decay approach is intended as a dynamic view of user profiles that will capture

the change of interests in places over time. In particular, the degree of associations

between users, places and concepts are attenuated by a factor proportional to their age

in the folksonomy graph. We use a pre-filtering approach to the application of time

function, where the decay factor is applied to the folksonomy graph before the profiles

are computed.

The Decay is an exponential function defined as the way in which a quantity naturally

decreases over time at a rate proportional to its current value [33]. Tags and posts are

considered to have a lifetime. When they are first defined, they are fresh and interest-

ing to users then they decay over time and their interest value decreases. [118]. Using

the decay model for modelling the dynamic user and place profiles is as it is important

to maintain the freshness of the tags and to monitor the change of the tag behaviour

over time. Different time decay functions have been used [69] in the literature. Decay

functions can be represented as an exponential [29], power [113], Linear [72], logistic

function [29] and as a Base Level Learning (BBL) function [66] In this work, an ex-

ponential decay function is used and different values of the decay factor is evaluated

using the location recommendation evaluation method. Exponential function is suit-

able for modelling interests in places visited over time. Users’ historical interests may

influence his future interests, and more recent interests may have stronger impact on

the future preference prediction than earlier interests. The following equation shows

how to calculate the weights after applying the exponential decay equation.

w(t) = wt0 · e
−λ∆t (6.1)

where, w(t) is the weight at time slot t, wt0 is the weight at time slot t0 < t, λ is the
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decay rate and ∆t is the number of time slots between t and t0.

In what follows, the different types of user profiles are presented, both the time-slice

approach and, the decay approach.

Definition 16. Basic Spatiotemporal User Profile A spatiotemporal (ST) user profile

PRtc(u) of a user u is deduced from the set of places that u visited or annotated directly.

Time-slice:

(PR(u))tc ={(r,w(u, r)tc)|(u, g, r) ∈ Y,

w(u, r)tc = |{gtc ∈ G : (u, g, r) ∈ Y}|

w(u, r)tc is the number of tag assignments in the time slot tc.

Decay:

(PR(u))tc ={(r,w(u, r)tc)|(u, g, r) ∈ Y,

w(u, r)tc =

tc∑
t=ti

|{gti ∈ G : (u, g, r) ∈ Y}| · d f (tc − ti)}

w(u, r)tc is the number of tag assignments accumulated over the timeline of the user

data to time slot tc, attenuated by the decay factor d f defined relative to tc.

Here, tag assignments are defined when user u associates some tag g to place r through

the action of checking-in or annotation. Hence, the weight assigned to a place at

a specific time point simply corresponds to the frequency of user’s tag assignments,

decayed over time.

The the weights are further normalised so that the sum of the weights assigned to the

places in the spatial profile is equal to 1. P̄R is used to explicitly refer to the spatial

profile where the sum of all weights is equal to 1, with

w̄(u, r)tc =
|{g∈G:(u,g,r)∈Y}|

n∑
i=1

m∑
j=1
|{ti∈T :(u,gi,r j)∈Y}|

, where n and m are the total number of tags and resources,

respectively. More simply, w̄(u, r)tc =
N(u,r)
NG(u) , where N(u, r) is the number of tags used

by u for resource r, while NG(u) is the total number of tags used by u for all places.
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Correspondingly, the semantic profile of a user; PT (u), is defined as follows.

Definition 17. Semantic-Temporal User Profile A semantic temporal (SemT) user pro-

file PGtc(u) of a user u is deduced from the set of tag assignments linked with u at time

point tc.

Time-slice:

PG(u)tc ={(g,w(u, g)tc)|(u, g, r) ∈ Y,

w(u, g)tc = |{rtc ∈ R : (u, g, r) ∈ Y}|

w(u, g) is the number of tag assignments at tc.

Decay:

PG(u)tc ={(g,w(u, g)tc)|(u, g, r) ∈ Y,

w(u, g)tc =

tc∑
t=ti

|{rti ∈ R : (u, g, r) ∈ Y}| · d f (tc − ti)}

w(u, g)tc is the number of tag assignments accumulated over the timeline of the user

data to time slot tc, attenuated by the decay factor defined relative to tc.

Here, tag assignments are defined when user u assigns tag g to some place r through

the action of checking-in or annotation. ¯PGtc refers to the semantic profile where the

sum of all weights is equal to 1, with w̄(u, g)tc =
N(u,g)
NR(u) , where N(u, g) is the number of

resources annotated by u with g and NR(u) is the total number of resources annotated

by u.

Furthermore, a spatio-semantic temporal profile of a user PRGtc(u), that describes how

a user is associated to both place-tag combined elements, is defined.

Definition 18. Spatio-Semantic Temporal User Profile Let Fu = (Gu,Ru, Iu) of a given

user u ∈ U be the restriction of F to u, such that, Gu and Ru are finite sets of tags and

places respectively, that are referenced from tag assignments performed by u, and Iu

defines a relation between these sets: Iu := {(g, r) ∈ Gu × Ru|(u, g, r) ∈ Y}.
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A spatio-semantic temporal user profile PRGtc(u) of a user u is deduced from the set of

tag assignments made for place r by u, defined as follows. Time-slice:

PRGtc(u) ={([r, g],wu([r, g]))|(g, r) ∈ Iu,

wu([r, g])tc =|{gti ∈ Gu : (g, r) ∈ Iu}|}

where w([r, g]) is how often user u assigned the specific tag g to place r.

Decay:

PRGtc(u) ={([r, g],wu([r, g]))|(g, r) ∈ Iu,

wu([r, g])tc =

tc∑
t=ti

|{gti ∈ Gu : (g, r) ∈ Iu}| · d f (tc − ti)}

where w([r, g]) is how often user u assigned the specific tag g to place r accumulated

over the timeline of the user data to time slot tc, attenuated by the decay factor d f

defined relative to tc.

¯PRG is the spatio-semantic profile where the sum of all weights is equal to 1, with

wu([r, g]) =
N(u,[r,g])

NrG(u) , where N(u, [r, g]) is the number of times u annotate r with g, and

NrG(u) is the total number of tags assigned by u for r. (Note that tag assignment by

users for a place comes from both the explicit action of annotation as well as implicit

action of checking-in as represented in the geo-folksonomy model).

6.3.1 Enriched User Profiles

The basic user profiles are expanded by the information extracted from the computation

of tag and place similarity defined in section 4.3.2. The enriched user profiles will

therefore present a modified view of how users are associated with places that reflect

collective user behaviour on the LBSN.

Definition 19. Enriched Spatiotemporal User Profile
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An enriched ST user profile ṔRtc(u) of a user u is an extension of the basic profile by

places with the highest degree of similarity to places in ¯PRtc(u). Let Ru be the set of all

places in ¯PR(u) and wi is the weight associated with place i in the profile.

ṔRtc (u) = {< ri,wi > |

wi =

 wi , if ri ∈ Ru

wi ∗ Max(S im(ri, r j)) ,∀(ri ∈ {R − Ru} ∧ r j ∈ Ru)


The maximum similarity of the N most similar places in the dataset is calculated for

every place in the basic user profile, and the highest similarity score is used as the

weight for the new place in the enriched user profile. The process of building the

enriched spatial profile is shown in the following procedure 6.1.

Definition 20. Enriched Semantic-Temporal User Profile An enriched Semantic-Temporal

user profile ṔT tc(u) of a user u is an extension of the basic profile by tags with the

highest degree of similarity to tags in ¯PT tc(u). Let Tu be the set of all tags in ¯PT tc(u)

and wi is the weight associated with tag i in the profile.

ṔT tc (u) = {< ti,wi > |wi =

 wi , i f ti ∈ Tu

wi ∗ Max(S im(ti, t j)) ,∀(ti ∈ {T − Tu} ∧ T j ∈ Tu)


A similar algorithm to that of enriching place profiles is used for choosing the tags and

weights.

Definition 21. Enriched Spatio-Semantic Temporal User Profile

An enriched spatio-semantic user profile ṔRT (u) of a user u is an extension of the basic

profile by tags and places with the highest degree of similarity to tags in PRT (u). Let Tu

be the set of all tags in ¯PT (u), Ru be the set of all places in ¯PR(u) and wi j is the weight

associated with tag i and place j in the profile.

ṔRT (u) =< [ri, t j],wu(ri, t j) > |wu(ri, t j) =


wu(ri, t j) , if ri ∈ Ruandt j ∈ Tu

wu(ri, t j) ∗ Max(S im(ri, rk)) , t j ∈ PT (rk) ∧ rk ∈ {R − Ru}

0 otherwise
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Algorithm 6.1: TemporalSpatialEnrichment(γ,K,ti,t j)

Input: γ,K,ti,t j

Output: ṔR(u)

Fetch Spatial Profile PR(u) between ti,t j

for all places ri in Spatial-Profile PR(u) do

if γ = 1 then

Compute CosS imtag(r1, r2)

else

if γ = 0 then

Compute CosS imUser(r1, r2)

else

Compute S im(r1, r2, γ)

end if

end if

Find top K similar places r j to each ri in PR(u)

for each < r j, sim > in top similar places do

w j = wi ∗ sim

add < r j,w j > to PR(u)

end for

end for

return ṔR(u)

The spatio-semantic profile is extended with the most similar places to the user profile

and these are assigned a weight computed using the place similarity value for all tags

in their place-tag profiles and 0 for tags that are not in their profile. Thus the user

simply inherits relationships with all the tags and their associated weights from the

places that are deemed similar to those in their profile.
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6.4 Experimental Analysis

In this section, our experiments are intended to address the parameters that affects the

proposed recommendation approach. Also, it shows a comparison between different

time approaches proposed and the basic recommendation methods.

6.4.1 Data Set description

The data set used was described in the previous chapters. The data-set contains two

subsets, the check-in users and the tipping users. The time-stamps of the check-ins

are distributed throughout 2012 and 2013, while the time-stamps for the tipping users

begins in year 2009 and ends in 2015. Figure 6.2 shows the temporal distribution of

users across the years. Figure 6.3 shows the distribution of the distinct number of

users, places, tags, and the folksonomy relationships in each month during 2012 and,

2013. Figure 6.4 shows the average distribution of users, places, and tags in each month

during 2012 and 2013. As the figure shows, the number of users between Feb,2012 and

Mar,2013 is larger than the rest of the months. This is because the check-in activity of

all users lies in this period of time.

6.4.2 Parameter Setting

To evaluate user profiles, a recommendation method that recommends places or tags

based on the similarity between profiles is used. In this subsection, the results of tuning

the recommendation parameters are presented. The first parameter is called the given

value, which represents the number of places or tags used for the training. So, for

example, for the semantic user profile, if a user profile contains 100 tags, not all of

them are used for training, only a “given value” is used. The given value value is

percentage of the tags used to train the semantic user profile. To set this parameter, the

recommendation method is trained with different values to see which value will give
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Figure 6.2: Temporal Distribution of Number of Users

Figure 6.3: Temporal Dataset Statistics

the best results. Figure 6.5, 6.6, and 6.7 show the precision, recall, and F1-measure

values when using 1 % 10 %,25 %,50 %, 75 % and 100 % of the tags in the training set

for the semantic user profile evaluation. The percision values shows that we increase

the number of tags in the training set, the precision values decreases, while the recall

values show the increase in the number of tags is directly proportional to the increase

of recall values. So, what is required is trad-off between the two values. Figure 6.7
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Figure 6.4: Temporal Average Dataset Statistics

shows that using 50% of the tags in the training set gives the best overall F1-measure

value. Thus, the given value is set at 50% of the number of tags or places in the training

set.

Another parameter that is used for training the recommender is the splitting percent,

which randomly assigns a predefined proportion of the users to the training set and all

others to the test set. In this experiment, values for the splitting percent ranged from

10% to 90% is experimented. Figures 6.8, 6.9, and 6.10 show the precision, recall,

and F1-measure values for different training settings. A radar chart is used to plot the

precision and recall values for different top-N recommendations as shown in figures

6.8 and, 6.9. Radar charts are a useful way to display multivariate observations with

an arbitrary number of variables. Each star represents an observation of the splitting

percent, the bigger the star the higher the values of precision and recall. As the figures

show, when using 90% the data-set for training, values of the precision, and recall are

the best. Figure 6.10 shows the values of the F1-measure for each splitting percentage

with a noted high performance for the 90% setting.

Another important parameter that is used in the recommendation method is the decay

factor λ. The decay factor is the value that controls the freshness of the tags. In

constructing a dynamic user profile, tags should be ranked according to freshness and

frequency. Old tags with no repetitions should decay over time, while recent tags
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Algorithm 6.2: Temporal Decay Spatio-semantic Top-K Recommender(γ,K,tnow)

Input: The combination factor γ,

Number of places to recommend K,

The current timetnow,

Output: Top-K recommended places< ri,wi >

for each ui do

Fetch t0 for ui

SpatialEnrichment(γ,K,t0,tnow)

end for

for all ui, u j do

Fetch profiles PR(ui), PR(u j)

Compute User-Sim(ui, u j) .

end for

for each Ui do

Fetch most similar user u j

Sort < ri,wi > of PR(u j)

Recommend top K ri that are not in PR(ui)

end for

return Top-K< ri,wi >

should have strong weight. In addition, if a recent tag has a small frequency, its weight

should be high. Similarly, old tags with high frequency should have a high weight as

well. In other words, all the data contribute to the location recommendation, while the

most recent data contributes the most. The old data reflects users’ previous preferences.

It should have small weights in the prediction of recommendation if it was not repeated

several times. In the proposed algorithm, an exponential form for the time function is

selected to achieve the goal. The exponential time function is widely used in many

applications in which it is desirable to gradually decay the history of past behaviour as

time goes by. In this experiment the decay value is set to different values depending on
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Figure 6.5: Evaluation of the Given Parameter-Precision

Figure 6.6: Evaluation of the Given Parameter-Recall

the half-life parameter (T0) which is the time that elapses until the weight of the tag is

reduced to half of its amount. In the dataset, the time range is 24 month. The decay

value is defined by the following equation.

λ =
1
T0

(6.2)
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Figure 6.7: Evaluation of the Given Parameter-F1-Measure

Figure 6.8: Evaluation of the Splitting Parameter-Precision
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Figure 6.9: Evaluation of the Splitting Parameter-Recall

Figure 6.10: Evaluation of the Splitting Parameter-F1-Measure
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Table 6.1: Half-Life and Decay Values
Half-life T0(in months) Decay Value (λ)

1 1

2 0.5

3 0.333333

4 0.25

5 0.2

6 0.166667

7 0.142857

8 0.125

9 0.111111

10 0.1

11 0.090909

12 0.083333

Table 6.1 shows the decay values when using different half-life periods.

Conceptually, the aim of designing a half-life parameter is to define the rate of de-

cay of the weight assigned to each data point. The time function f (∆t) = ·e−λ∆t is

an exponential function that ranges from 0 to 1.The more recent the data, the higher

the value of the time function. This exponential function is suitable for our problem.

Figure 6.11 shows different curves of time function when using different values of the

half-life parameter T0. The values of the half are 3 month, 6 month, and 12 month.

In the presented problem, the decay rate of old data is decided by how frequently the

user interests in places changes. In order to find the appropriate value of parameter

T0 to precisely predict the user’s future preference, the recommendation method was

trained using different settings of T0. It is necessary to find the appropriate value of

parameter T0 to precisely predict the user’s future preference, thereby improving the

performance of our proposed algorithm. Figure 6.12 shows the F1-Measure when us-

ing different values of T0. The figures shows that the best value for the decay factor is
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‘0.33’ which corresponds to three month half-life. This means that after six month the

tag that was never repeated will vanish from the dataset.

Figure 6.11: Training of Spatial Profile Using Different Half-life Values.

Figure 6.12: F1-Measure of Training Different Values of T0
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6.5 Temporal Decay User-Profile Evaluation

This section will evaluate the decay method proposed with the basic methods of user-

based and the item-based collaborative filtering. The time-slices method used in the

literature is also compared, with the proposed.

6.5.1 Spatial Profiles Evaluation

Results for the enriched temporal spatial user profiles using the proposed top-N recom-

mendation method are presented. Different versions of the enriched temporal spatial

profiles, using different place similarity measures were created, a) using γ = 0 (to

represent place-tag similarity only), b) using γ = 1, (to represent place-user similarity

only), and c) using γ = 0.5 for an aggregated view of both effects. Hence, the result

sets are shown for the following user profiles. 1. Enriched-Spatial(Tag) 2. Enriched-

Spatial(User) 3. Enriched-Spatial(Combined).

The results of the top-N recommendation is compared using the three different profiles

with traditional Item-Based Collaborative Filtering (IBCF) [100] and the User-Based

collaborative Filtering (UCBF) [89] approaches, applied against the basic spatial user

profile. The results of the precision, recall and F1 measures for recommending the

top-1, 2, 3, 4, 5, 10, 20, 30, 40, 50 places are shown in Figures 6.13, 6.14 and 6.15,

respectively.

6.5.2 Semantic Profile Evaluation

A similar experiment was carried out to evaluate the semantic user profiles. Again,

the results were compared to the UBCF and IBCF approaches. Figures 4.9, 4.10 and

4.11 show the results of the top-10, 20, 30, 40, and 50 tag recommendations using the

different methods. The results demonstrates the quality of the enriched user profiles,

and thus confirm their utility for more accurate representations of user profiles.
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Figure 6.13: Evaluation of the decay Method-Precision

Figure 6.14: Evaluation of the Decay Method-Recall

6.5.3 Decay Method versus Time-Slices evaluation

This subsection will compare the proposed decay method to the time-slices method.

The first evaluation metric utilised to compare the methods is the MAP, which is the

mean of precision values for all top-N recommendations. The MAP was previously
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Figure 6.15: Evaluation of the Decay Method-F1-Measure

Figure 6.16: Evaluation Semantic Profiles-Precision

introduced in chapter 4 in Equation 7.4. A typical way to evaluate a prediction is to

compute the deviation of the prediction from the true value. This is the basis for the

Mean Average Error (MAE) described in Equation 6.3.

1
|K|

∑
i, j∈K

|ri, j − rˆ
i, j| =

FP + T N
FP + FN + T P + T N

(6.3)
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Figure 6.17: Evaluation of Semantic Profiles-Recall

Figure 6.18: Evaluation of the Semantic Profiles-F1-Measure

where K is the set of all user-item pairings (i,j) for which we have a predicted rating

rˆ
i, j and a known rating ri, j which was not used to learn the recommendation model.

Figure 6.19 shows the comparison of different enrichment values using the two pro-

posed method, timeslices and decay. As the figure shows, the decay method outper-
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Figure 6.19: Comparing Time-Slice and Decay Methods-MAP

forms the timeslice method in all profiles with best one for the combined enriched

spatial profile. The reason for better MAP is, increasing the length of the time-slice

makes the data denser, leading to better precision. We also compared the two methods

using the MAE metric, but using only the enriched combined profile in Figure 6.20. As

figure shows, the decay method error are smaller than the time-slices, which means that

rating prediction is better for the decay method. It is observed in the experiments that

when increasing the length of time slots, more ground truth places is brought for each

user at each time slice. With the number of recommendations (i.e., N) unchanged,

poorer recall values are observed with increasing the length of time slot. Thus, the

decay method shows poorer recall values because it adds up the profile along the time.

The two proposed methods, time-slice and decay, are used for top-N recommendation

as illustrated previously. Each method has it characteristics. In time slice method,

the recommended place are predicted based on the short term profile that appears only

within the time-slice, while in the decay method, the recommended places are pre-

dicted based on the whole historic profile of the user. Figure 6.21 illustrates an ex-

ample of recommendation when using both methods. The figure shows the profile of

a user during three months, January February and March. When we use both meth-
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Figure 6.20: Comparing Time-Slice and Decay Methods-MAE

Restaurant

Coffee Shop

Stadium

Super Market

Hotel

Train Station

Theatre

Bar

January

February

March

Top-1 recommendation 
using time-slice Method

Top-1 recommendation 
using decay method

Figure 6.21: A Top-1 Recommendation Example using Time-Slice and Decay

Methods.

ods for recommending places to this specific user, the time-slice method recommends

the “theatre” because the recommender looks only at the user profile created during

March. On the other hand, the decay method recommends the “café”’ because the

recommender look at the user profile during the three months together. Thus,the time-

slice method is considered as short-term recommendation, while the decay method is



6.6 Summary 116

considered as a long-term recommendation method. The long-term place recommend-

ation is more realistic than the short term recommendation method because it captures

routine activities and interests of the user. The short term recommendation method can

be some-how misleading because it does not reflect the actual activities and interests

of the user towards the places he visits.

6.6 Summary

This chapter began by describing the temporal geo-folksnomy model and arguing that

it is important to study the temporal influence in user modelling. It went on to sug-

gest two methods for representing the time influence. The first method extracts user

preferences during different time slots. Then, it calculates user and place similarities

in each time interval based on co-occurrences. In the second method, an exponential

decay function is used to measure interest drifts. Then, the user’s location preferences

are predicted using both methods at each time interval. The results of the location re-

commendation for both methods were discussed. The experimental results show that

the proposed decay methods beat all baselines, and improve the accuracy of location

recommendation over the time-slice method.The next chapter describes anther method

for evaluating the user profiles using user similarity evaluation, it also empathises the

conclusions retrieved in this chapter.
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Chapter 7

Evaluation of User Similarity

7.1 Introduction

With the growth of location-based social networks, there is a need to calculate the

similarities between their users. User similarity has a substantial impact on users,

communities, and service providers. In LSBNs, different factors affect users similarity

including co-existence in the same place, common interests between users, and tem-

poral dynamics, which monitors the users’ behaviour change over time. This Chapter

studies and evaluate user similarity based on the users’ interests and common POIs and

aims to answer Research Question 5: How can different user profiles be evaluated us-

ing user similarity measures to assess their quality?. To answer this question, different

user similarity measures are proposed and evaluated using a search process.

The rest of the chapter is organised as follows. Section 7.2 explains the different views

of user similarity based on different criteria. In Section 7.3 introduces the evaluation

method used to evaluate different user similarities. In Section 7.4, the experiment used

to evaluate the approach is described and its results presented and discussed. The

chapter concludes in Section 7.5.
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7.2 Different Views of User Similarity

According to empirical analysis of the different views of user profiles proposed in

chapters 3 and 5, the similarity between users A and B is measured using four different

types of characteristics: similarity of interests, similarity of co-location , similarity of

categories visited and similarity of activities in the place . Thus, there are four types of

user similarity depending of the type of the profile used.

• Semantic user similarity: This is the cosine similarity between semantic user

profiles. Semantic profiles is a conceptual measure of user interests. Similarity

of semantic profiles can answer questions such as, “which other user share the

same interests as I do?”

• Spatial user similarity: This is the cosine similarity between spatial user pro-

files based on the common places they visited. Similarity of spatial profiles can

answer the question of “which other users’ visiting habits are similar to mine?”

• Categorical user similarity: This is the cosine similarity between category-

based user profiles based on the common categories that they visited. Similarity

of categorical profiles can answer the question of “which other users visit place

categories similar to mine?”

• Activity user similarity: This is the cosine similarity between activity-based

user profiles based on the common activities that they talked about (or actually

took part in) at the places visited. Similarity of Activity user profiles can answer

the question of “which other users share the same sort of activities as I do?”

Table 7.1 shows the top most similar users from a sample of five users and a corres-

ponding bar chart of their similarity values. As the figure shows, the most similar user

changes according to the view of the profile.

Cosine similarity between semantic user profiles (S emantic(u1, u2)) and between spa-

tial user profiles (S patial(u1, u2)) construct a tag-oriented ranking and place-oriented
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Table 7.1: The Top Most Similar Users from a Sample of Five Users

ranking, respectively. Moreover, cosine similarity between category-based profiles

(Categorical(u1, u2)) and between activity based profiles (Activity(u1, u2)) construct an

activity based ranking and a category-oriented ranking respectively.

While the basic profiles will discover a map of common places, interests, categories or

activities that the users visited or annotated, the enriched spatial profile will produce an

extended map of places that are likely to be of interest to both users. Cosine similarity

between user profiles can be used to find the recommended user similarity after the

enrichment process. The procedure for calculating the recommended user similarity

between two users using the spatial and semantic user profiles is shown in algoirthm

7.1.

User interests are not static; contrarily, their interests may change as time goes by. Al-

though u1 and u2 might have common interests, at the same time, u1 may continue

to pay attention to the same topic or place, while u2 might change their interest to a

different topic or place. In this case, it will be inappropriate to give a constant user sim-

ilarity measure throughout. Therefore, taking temporal information into consideration

may improve the accuracy of user similarity predictions. To this end, a two temporal

user similarity, long term user similarity, and short term user similarity for each type of

profile is proposed. The short term user similarity is based on the time slices method

discussed in Chapter 6. In the time slices method, the data is divided into short periods

(weeks/ months) and the user similarity is determined based on interaction in this time

slice only. In the long-term user similarity is based on the decay method discussed in

Chapter 6. In the decay method, a higher weight is assigned to places visited recently

than those that appeared a long time ago, since more recent preferences have greater
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influence on users’ potential interests than earlier preferences.

The decay method adds interactions over time with a forgetting factor that maintains

the interactions to be deleted. Thus, the user similarity based on the profile constructed

by the decay method expresses all the past history of the user throughout a certain

period of time.

Algorithm 7.1: AdaptiveUserSim(u1, u2)

1: Fetch Spatial Profiles PR(u1), PR(u1)

2: Compute UserSim(PR(u1), PR(u1))

3: ṔR(u1)=SpatialEnrichment(PR(u1), γ, K)

4: ṔR(u2)=SpatialEnrichment(PR(u2), γ, K)

5: Compute UserSim(ṔR(u1), ṔR(u2))

6: Fetch Spatial Profiles PT (u1), PT (u1)

7: ṔT (u1)=SemanticEnrichment(PT (u1),K)

8: ṔT (u2)=SemanticEnrichment(PT (u2),K)

9: Compute Recommended UserSim(ṔT (u1), ṔT (u2))

Figure 7.1 shows a bar chart of similarity values between ‘user164’ and other users,

using their basic spatial and enriched spatial profiles. The figure demonstrates the im-

pact of enrichment on user similarity, where this user appears to become more similar

to other users in their profile, given an extended view of their interests in places and

their associated concepts.

7.3 User Similarity Evaluation

The measure of user similarity is evaluated as an information retrieval problem where

we search for the most similar user to a particular user in question. Each user is rep-

resented by his user profile, and the similar user is calculated by finding the cosine

similarity between the user and all other users in the data-set, and then find the most
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Figure 7.1: Similarity Between ‘user164’ and Other Users Using Spatial and En-

riched Spatial Profiles.

similar user profile with the highest similarity. For instance, using user ui as a query,

the top similar user is retrieved based on their similarity score. To find a ground truth

for evaluation, each user, and the most similar user, the place categories are retrieved

because similar users tend to visit the same categories of places. Table 7.2 shows an

example; where distinct categories for the top-10 most visited place are shown for two

sample users (with similarity value of 0.65). Foursquare attaches more than one cat-

egory to a place, and thus, there may be more than 10 categories for the top-10 places

. The highlighted cells show the common categories between the two users.

We use the following evaluation metrics: Precision, Recall, and F-Measure, which are

calculated in equations 7.1,7.2, and 7.3

Precision =
| f (u)

⋂
f (usim)|

f (u)
(7.1)

Recall =
| f (u)

⋂
f (usim)|

f (usim)
(7.2)

where f(u) is the set of the distinct categories of the top-k places of user u, usim is the

most similar user and f(usim) is the set of distinct categories of the top-k place of the

most similar user usim F1-Score is a combination of recall and precision and is given
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Table 7.2: Distinct Categories for Two Users with Similarity Value= 0.65

by

F1 − S core =
2 ∗ precision ∗ recall

precision + recall
(7.3)

Hence, precision represents the ratio of common categories between the two users in

reference to those of the first user, while recall presents the same ration with respect to

the second user. The F1 measure is the harmonic mean of precision and recall. Then,

the average of the precisions, recalls, and F-measures for all users is obtained. The

precision represents the percentage of common categories between the two users to

the total number of categories for the first user. The recall represents the percentage

of common categories between the two users to the total number of categories of the

second user. The f1 measure is the harmonic mean of precision and recall.

7.4 Experiments and Results

Experiments in this chapter were carried out using a two groups of user. The first group

is users with high frequency of check-ins, co-location rate and tips that was previously

described in Section 4.4, and the other is a low frequent user dataset that is described

in Table 7.3. Figure 7.2 shows the number of places versus the number of users of the
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collected in the big dataset. As the figure shows, about 94% of the users visited less

than 10 places and about 3% of users visited from 11 to 21 places and the remaining 3%

visited from 20 to 400 places. The two sample datasets are subsets of the big dataset in

the region of New york city. The application of the user similarity evaluation process is

constrained by a geographic region of interest to improve the evaluation performance.

Figure 7.2: The Number of Users Versus the Number of Venues

Figure 7.3: The Number of Distinct places and Tags for Users

Table 7.3: Low Frequent User Dataset
Number of Distinct Venues 4,411

Total number of Checkins 4,212

Total Number of Tips 2,900

Total Number of Tags 5,949

Number of users 200

Total Number categories 374

Total Number of Relationships 57,786
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7.4.1 Evaluation of different user similarities

In this experiment, we want to evaluate the four basic user similarities coming from

the basic user profiles. Thus, we want to evaluate spatial, semantic, categorical, and

activity user similarity. Figure 7.4 shows the precision and recall values of comparing

different user similarities. The semantic profile showed the best results in terms of pre-

cision and f1-measure. This means that the user similarity deduced from the semantic

user profile is the most realistic.

Figure 7.4: Evaluation of Basic User Similarities-Precision and Recall

7.4.2 Evaluation of Enrichment

This section show the effect of enrichment on user similarity. In the previous section,

we observed that the spatial and semantic user similarities are the top representations

of the different basic user similarity. Thus, in this section we will show the effect

of enrichment on the spatial and semantic profiles by evaluating the user similarity

between these two profiles.
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Figure 7.5: Evaluation of Basic User Similarities-F1-Measure

Evaluation of Spatial Profiles

The evaluation experiment aims to measure the impact of using the full range of content

captured on LBSN when building user profiles in comparison to using only partial

views based on check-in information. The user similarity between the following user

profiles is calculated:

1. Spatial User profile

2. Enriched Spatial with CosS imtag (γ=1)

3. Enriched Spatial with CosS imuser (γ=0)

4. Enriched Spatial with combined similarity (γ = 0.5)

The user similarities between the above profiles will be named as user_sim, user_simtag,

user_simuser, user_simcombined, respectively.

Table 7.6 calculated the precision, recall and F1-measure values for the various user

similarities. For each profile, frequent top-5, 10, 20, 30, 40, 50 venues are captured,
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and then categories are evaluated using the equations. As the table shows, enrich-

ing spatial profiles and linking similar places to create Enriched spatial user profiles

improves the precision, recall and F-measure significantly. The best user similarity

results come from the Enriched spatial user profiles with combined place similarity.

This shows that although two users might visit very different locations, they can be

similar because they carry out the same activities (like shopping), visit the same cat-

egories, or talk about same concepts together. To show the improvements in precision

and recall, figures 7.6, 7.7, 7.8 the improvement of the enriched profile over the basic

spatial profile. A positive value means that when using the enrichment process, the

performance improved, whereas a negative value means that the performance dimen-

tioned. It is observed from the figures that the average gain in precision and recall for

a spatial profile enriched with combined are dominant, starting from the top-10 to the

top-50.

Figure 7.6: user_simtag Improvement over user_sim

To evaluate the over all performance,the Mean Average Precision (MAP) ,is also em-

ployed to evaluate the performance of our method. MAP is the most frequently used

summary measure of a ranked retrieval run. In this experiment, it stands for the mean

of the precision score after each relevant user is retrieved for different top-N values.
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Figure 7.7: user_simtag Improvement over user_sim

Figure 7.8: user_simcombined Improvement over user_sim

Equation 7.4 shows how the MAP is calculated.

MAP =

∑N
1 p@n

N
(7.4)

Figure 7.9 shows the MAP results using the dataset.The figure shows a comparative

study of MAP between different user similarities from different profiles baselines.

Again, enriched combined user similarity shows clear advantages over all other sim-

ilarities. Similarity computation with the enriched spatial profiles produce a higher
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Figure 7.9: Mean Average Precision for Different User Similarities

degree of precision, recall and F-measures in general, whilst the best results are for

the enriched profiles with the combined place similarity. Results indicate that location

tracks may not be the best basis for finding similar users and that a combined treatment

of both the spatial and semantic dimensions can produce more accurate views of user

profiles.

Evaluation of semantic Profiles

This section will evaluate the user similarity from semantic profiles. The same ex-

periment evaluating spatial profiles is repeated here. There are two types of semantic

profiles: basic and enriched. Table 7.4 shows the precision and recall and F1 measure

values of evaluating the basic and enriched semantic similarity between users. As the

table shows, the enriched semantic similarity performed better than the basic one when

evaluating it against the place categories of each user. This means that the process of

enrichment enhances the similarity between users.
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Table 7.4: Semantic Similarity Evaluation
Precision Recall Fmeasure

Semantic Enriched Semantic Semantic Enriched Semantic Semantic Enriched Semantic

Top-5 0.304228 0.284233 0.302118 0.275948 0.296848 0.277169

Top-10 0.337925 0.283362 0.326494 0.279485 0.319749 0.279089

Top-20 0.389438 0.365204 0.344888 0.360197 0.348238 0.35966

Top-30 0.423739 0.410384 0.351962 0.405662 0.361898 0.402931

Top-40 0.456672 0.452301 0.369331 0.443004 0.382173 0.441523

Top-50 0.468839 0.49545 0.372371 0.474493 0.386104 0.475632

Table 7.5: Descriptive Statistics for Different Users Categories
Descriptive Statistics Low Frequent Users High Frequent Users

Mean 26.685 123.455

Median 28 105.5

Mode 29 104

Standard Deviation 6.221682 65.91199

Sample Variance 38.70932 4344.39

Range 29 648

Minimum 9 42

Maximum 38 690

User Count 200 200

7.4.3 Frequent User Evaluation

In this section, two different user groups are used: low frequent users, and high frequent

users. This was done by sorting the checking in or tipping activity and then choosing

two hundred users from each category. Table 7.5 shows descriptive statistics of distinct

venues for user categories.

Figure 7.10 shows the evaluation of high frequent users and low frequent users when

using the enriched combined user similarity. As the figure shows, the precision and

recall shows high values when considering users with high activity. This makes the

model more important for highly frequent users.
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Figure 7.10: Activity Effect on Combined User similarity

7.4.4 Evaluation of Temporal Effect on User similarity

This section will compare short-term user similarity with long term user similarity over

a two year period. The data is clustered into months. The different user similarities

were calculated for each month by constructing the profiles within the month and then

calculating the cosine similarity between each user and all other users throughout this

period. The short term user similarity expresses a partial view of the profile within

the month period. Thus, it is observed that some of the users in the data set do not

have a user profile during this short period, and, accordingly, similarity with these

users is zero. On the contrary, in long-term similarity, the profiles express the history

of the user in the current month and previous months. For example, if the dataset

time-stamp starts in January and one wants to calculate the user similarity values for

users in March, one will first calculate the user profiles within January, February and

March using the decay method. The user similarity is then calculated based on the user

profiles created. Thus, the long-term user similarity expresses not only the similarity

over one month, but adds up past similarities as well.

Regarding evaluation, the same metrics were applied for both short-term and long-term

similarities to observe their performance. The two methods were compared using the
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combined spatial user similarity. Figure 7.11 shows the precision and recall of each

method. As the Figure shows, the long-term user similarity performed better than the

short-term user similarity in terms of both precision and recall. Thus, we conclude that

it is better to calculate the user similarity between users based on the history of their

interactions, not only the present interactions.

Figure 7.11: Evaluation of Short Term versus Long Term User Similarity

7.5 Summary

This chapter demonstrated different types of user similarity based on four characterist-

ics: similarity of interests, similarity of co-location, similarity of categories visited, and

similarity of activities in a place. Two similarity measures based on the temporal effect

are also proposed, entitled “short-term user similarity” and “long-term user similar-

ity”. The different user similarity measures are evaluated via an information retrieval

process in which the user information is utilised to search for the most similar user.

The evaluation method showed that calculating user similarity based on semantic user

interests is the best way of representing the relationship between users; furthermore,

it was evident that user similarity can be more accurately measured when long-term

activity regularities are captured to calculate the semantic similarity. Moreover, the

results demonstrated that the enrichment process enhances the results. Finally, the res-
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ults showed that the user similarity model is more important for high frequency users

in comparison with low frequency users.

Table 7.6: User Similarity Evaluation: Precision, Recall, F1-measure
Precision

Top-K Places user_sim user_simtag user_simuser user_simcombined

Top-5 0.29016885 0.2836818 0.2936379 0.27810863

Top-10 0.32131577 0.28528178 0.28525722 0.35280818

Top-20 0.3590904 0.35163218 0.35682544 0.3996159

Top-30 0.38940138 0.39706513 0.40721306 0.42995644

Top-40 0.41870615 0.43158174 0.45326504 0.4587258

Top-50 0.43747735 0.48375404 0.49606603 0.46999252

Recall

Top-K Places user_sim user_simtag user_simuser user_simcombined

Top-5 0.2910496 0.26843706 0.28794414 0.2881556

Top-10 0.31549093 0.28207284 0.28236988 0.36440614

Top-20 0.35180694 0.34977493 0.35360697 0.4058911

Top-30 0.37913677 0.38837454 0.4045744 0.44445464

Top-40 0.39773872 0.41915244 0.44400847 0.4669912

Top-50 0.40748206 0.45438704 0.48419788 0.47782102

F1-measure

Top-K Places user_sim user_simtag user_simuser user_simcombined

Top-5 0.29060855 0.27584896 0.29076314 0.28304298

Top-10 0.3183767 0.28366823 0.28380620 0.35851338

Top-20 0.35541135 0.35070109 0.35520891 0.40272906

Top-30 0.38420052 0.39267175 0.40588944 0.43708534

Top-40 0.40795319 0.42527629 0.44858900 0.46282160

Top-50 0.42194730 0.46861089 0.49006011 0.4738744
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Chapter 8

Conclusions & Future Work

Knowledge of users’ visits to places is one of the keys to understanding their interest

in places. User-contributed annotations of place, as well as other place properties, add

a layer of important semantics that if considered, can result in more refined represent-

ations of user profiles. In this work, a user and place modelling framework is proposed

to represent spatial and semantic relationships between users, places, tags and time.

The framework is used to build different views of personalised user profiles that is be

used for enhancing place and content recommendation. The main contributions of this

work can be roughly summarised as follows:

1. A static and dynamic location-based user modelling framework from users’

direct feedback on venues from LBSNs: Users’ interaction on LBSNs can

be regarded as user feedback on geographic places they visited and interacted

with. User’s visits to places are recorded along with their comments and tags.

Modelling different levels of user profiles extracted from the heterogeneous user

feedback in LBSNs. User-generated traces at venues in LBSNs include both

spatial and implicit semantic content. The location traces are treated equally to

the semantic traces inferred from their interaction with the place through tagging

and tipping. Collective behaviour of users on the network are also used to under-

stand the place characteristics and these in turn are further used in the modelling

of user profiles.
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2. A novel spatial and Semantic Enrichment process: The proposed approach

offers a uniform framework for presenting different views of user profiles, using

their direct interactions with the social network or extended with a holistic view

of other users interaction with the network in different regions of geographic

space. Basic profiles capture direct user interactions, while enriched profiles

offer an extended view of user’s association with places and tags that take into

account relationships in the folksonomy. In particular, it is shown that enriched

user profiles can offer potentially more accurate views, than direct profiles, of

user’s spatial or semantic preferences.

3. A novel semantic place model: Both explicit place affordance; the sort of ser-

vices offered in a place as denoted by its place type, and implicit place afford-

ance; encapsulated in reference to activities in place annotations, are used in

building semantic user profiles. Collective user spatial and semantic interactions

with places are used to create profiles for geographic places, that in turn provide

further enrichment to individual user profiles and is used to recommend activities

for users based on user similarity

4. A new location recommendation method: The location recommendation method

proposed is considered as a hybrid method of recommendation. User-based col-

laborative filtering is combined with content based filtering to recommend places

based on places visited by similar users and places similar to the places visited by

the user. Moreover, the semantic and the temporal information is encapsulated

in the recommendation method to be more adaptive.

5. A novel approach to user similarity evaluation: Similarity between users

on LBSN is approached in a uniform manner within the proposed framework,

thus providing means of computing spatial, semantic or a combined view of user

similarity on these networks.
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8.1 Evaluating Research Hypothesis

The research hypothesis for this thesis was presented in Chapter 1. To remind the

reader, the hypothesis is reiterated below:

The proliferation of GPS-enabled devices and their utilisation by users for geo-tagging

personal resources, actions, and interactions on the Web is leading to the accumulation

of a new type of information concerning individual users and user groups. The accumu-

lation of spatiotemporal (ST) user footprints on the Social Web provides an opportunity

for deriving profiles for both places, and users that closely reflect users’interests over

space and time. Extracting and making sense of such profiles can enhance both place

and content recommendation.

The research documented in this thesis, particularly, Chapters 4,5,6 tested this hypo-

thesis to the point where it is possible to say that it is true. The research methodology

presented in section 3.2 was followed to achieve this conclusion was to build a frame-

work to a) collect realistic users’ spatio-temporal data were extracted from their Social

Web “footprints”. Mainly, users’ direct feedback on venues from LBSNs that captures

users’ interaction on LBSNs was collected. This can be regarded as user feedback on

geographic places they visited and interacted with. User’s visits to places are recorded

along with their comments and tag; b) analyse the collected spatio-temporal data and

design a framework for user and place modelling; c) evaluate the proposed framework

to measure its quality using the well known information retrieval evaluation metrics:

precision and recall.

Evaluation experiments are carried out using samples of realistic data sets from Four-

square LBSN. The influence from the user visits to places and the user behaviour in

places are combined to define user and places. The framework proposed could also ap-

plied to other social networks such as twitter. However tweet analysis needs a process

of identifying the places visited by users.
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8.2 Answers of Research Questions

In this section, the research questions previously identified in Section 1.2 will be dis-

cussed in relation to the research undertaken in this thesis. Each research question will

be repeated and the relevant research will be discussed including any related analysis,

evaluation approaches and new knowledge that has been acquired.

Research Question 1: How can different views of user profiles be constructed

from user footprints collected on LSBNs that emphasis the different facets of

collected data? To answer this question, Chapter 4 introduced a user modelling

framework entitled the ‘geo-folksonomy model’, which produces user profiles from

LBSN data. The proposed approach provides users with the ability to project different

views of their profiles using their direct interactions with the social network. This

approach to modelling users in LBSN mainly represents a user’s spatial, semantic and

combined spatio-semantic association with place. A spatial user profile represents a

user’s interest in places, while a semantic profile describes his or her association with

concepts associated with places in the folksonomy model. Finally, a spatio-semantic

profile describes the user’s specific interest in certain concepts associated with places

in his or her profile. The word-net was also used to divide the tags into classes,

which were then used to capture the semantics of tags in Chapter 5. In addition,

Chapter 6 proposed two different methods for temporal user modelling : the time-

slice approach and the decay approach. In the time-slice approach, user profiles are

simply computed from the geo-folksonomy temporal graph GFi for any time slot of

interest ti, while the other folksonomy graphs for t , ti are discarded. The decay

approach considers the historical interactions in all sub-graphs of the folksonomy

before the time point of interest.The results in Chapter 6 revealed the consideration of

temporal constraints for the construction of user profiles improves the performance of

personalised recommender systems. Furthermore, in comparison with the time-slice ,
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the high quality decay method produced a better performance. This reveals that when

designing user profiles, it is beneficial to learn and add historical interactions through

time rather than simply taking a snapshot time window.

Research Question 2: How does this enrichment process impact the quality of

personal user profiles? To improve the understanding of user profiles, an enrichment

process was created to extend the basic profiles by using data from other users’ in-

teractions with the LBSN relating to various regions of geographic space. In Chapter

4, an extended profile that describes “recommended” associations given the overall

interactions between users, places and concepts in the data-set was constructed. To

model such interactions separately in the extended profile by controlling the similar-

ity function used to create the profile. For example, one can focus on modelling the

types of places visited or take into account the visit behaviour of other users whose

profiles overlap with the user. Two types of enrichment have been undertaken: a)

semantic enrichment (based on tag similarity calculations); and b) spatial enrichment

(based on place similarity calculations). These calculations were used to enrich the

basic profiles and to build different views of these enriched user profiles; these were

then evaluated using a recommendation method. The results showed that enriched

profiles perform better than basic profiles.

Research Question 3: How can implicit semantics of place profiles be used to

reflect users experience in geographic places through the activities they carry

out in those places?

Chapter 5 introduced a semantic place model that uses three primary concepts: place,

place categories and place activities. In Chapter 5, a behavioural place category model

was constructed. Moreover, motivated by our observation of users’ interests in ex-

ploring new location categories, a category-based user profile that represents these

interests in categories rather than locations was proposed. This changes user-place

high-dimensional rating data into user-category reduced rating data. Using this new

user model, an enhancement in category recommendation quality was evident in the
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results. Human related activities were also studied in Chapter 5 and activity related

user and place profiles were proposed. Finally, an activity-aware category recom-

mendation method was proposed, and the results shows effectiveness of the proposed

algorithm.

Research Question 4: How can we construct a new location recommendation

method using different dimension of LBSNs and evaluate it existing methods?

In this thesis, the location recommendation problem was studied to evaluate the ef-

fectiveness of the user and place models proposed.To answer this question , we pro-

posed in Chapter 4 a location recommendation method that uses user similarity and

a combined place similarity to recommend locations for users. We also proposed in

Chapter 6 a temporal decay location recommendation method that considers the four

dimensions of the data: user, location, content, and time. The recommendation meth-

ods shows the effectiveness of the user and place modelling techniques used. These

methods were compared to basic collaborative filtering recommendation methods and

it showed better precision and recall results.

Research Question 5: How can different user profiles be evaluated using user

similarity measures to assess their quality?

Studying user similarity from LBSN data is useful, as information available about

users, their locations and activities is considered to be sparse. User similarities can be

exploited to predict types of activities and places preferred by a user based on those

of users with similar preferences. To answer the above question, different kinds of

user similarity based on four characteristics: similarity of interests were created: sim-

ilarity of co-location, similarity of categories visited and similarity of activities in the

place. Two similarity measures based on the temporal effect were also proposed, en-

titled “short-term user similarity” and “long term user similarity”. The different user

similarity measures are evaluated via an information retrieval process in which the

user information is used to search for the most similar user. The evaluation method

showed that calculating user similarity based on semantic user interests is the best
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way of representing the relationship between users; furthermore, it was evident that

user similarity can be more accurate when long-term activity regularities were cap-

tured to calculate the semantic similarity. Moreover, the results demonstrated that

the enrichment process enhances the results. Finally, the user similarity model was

shown to be more effective when considering active users of the LBSN in comparison

to low frequency or occasional users.

8.3 Future Work

This section discusses some points learned during our research and that highlights

possible future directions.

1. Big data challenge Nowadays, with the increasing level of social and geo-spatial

data, it is important to address the problem of data scalability. It is a challenge

to handle large volume datasets efficiently and quickly because most computer

systems do not have sufficient memory or computational power. In this research,

the framework proposed has two problems: high complexity of algorithms pro-

posed and high memory usage. To overcome these problems, a supercomputer

that contain sufficient memory (Raven) was used to run our experiments. An-

other way to solve big data challenge is to use parallel algorithms such as map

reduce to decrease the running time. Another possible directions for future work

is to explore matrix factorisation reduction algorithms that transforms the data in

the high-dimensional space to a space of fewer dimensions. The key advantages

of reduction algorithms is that it reduces the time and storage space required.

Moreover, it improves the performance of the machine learning model.

2. Integrating data sources: As users are now addicted to using social networks

(e.g. Twitter, Flicker, Yelp, Foursquare), collecting data about a user from dif-

ferent data sources could be a promising future direction. In this research, we
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used the foursquare only as our data source, but it is observed that one user can

have multiple profiles in other social networks. The fusion and integration of

social data from unstructured sources to extract value knowledge is an extremely

difficult task which has not been completely explored. User profiles from such

sources can be integrated and consequently enhance the problem of data sparsity

and the performance of the location recommendation in general.

3. Sentiment analysis: In the proposed framework, the user opinion towards a

place is mapped as words. A possible future direct is to extend the our proposed

framework by integrating the sentiments or opinions extracted from the text of

users’ comments on POIs to improve the quality of location recommendation.

4. Context awareness In this research, the spatial, semantic, temporal, and social

aspects were used. Another possible approach for the future is to add user context

to location recommendations. Examples of user context include age, gender,

profession, and income. An Environmental context could also help in improving

recommendations as it includes information about weather, traffic and events.



141

Bibliography

[1] Topic model. https://en.wikipedia.org/wiki/Topic_model. Accessed: 2016-

07-18.

[2] Fabian Abel. Contextualization, User Modeling and Personalization in the So-

cial Web. Phd thesis, Gottfried Wilhelm Leibniz University Hannover, April

2011.

[3] Fabian Abel, Q Gao, GJ Houben, and K Tao. Contextualization, user modeling

and personalization in the social web. In Proceedings of Extended Semantic Web

Conference (ESWC), Heraklion, Greece. Springer, Heidelberg. Citeseer, 2011.

[4] Fabian Abel, Qi Gao, Geert-Jan Houben, and Ke Tao. Analyzing user modeling

on twitter for personalized news recommendations. In International Confer-

ence on User Modeling, Adaptation, and Personalization, pages 1–12. Springer,

2011.

[5] Fabian Abel, Qi Gao, Geert-Jan Houben, and Ke Tao. Semantic enrichment

of twitter posts for user profile construction on the social web. In Extended

Semantic Web Conference, pages 375–389. Springer, 2011.

[6] Fabian Abel, Claudia Hauff, Geert-Jan Houben, and Ke Tao. Leveraging user

modeling on the social web with linked data. In International Conference on

Web Engineering, pages 378–385. Springer, 2012.

https://en.wikipedia.org/wiki/Topic_model


Bibliography 142

[7] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation of

recommender systems: A survey of the state-of-the-art and possible extensions.

IEEE transactions on knowledge and data engineering, 17(6):734–749, 2005.

[8] Gediminas Adomavicius and Alexander Tuzhilin. Context-aware recommender

systems. In Recommender systems handbook, pages 217–253. Springer, 2011.

[9] Ching-man Au Yeung, Nicholas Gibbins, and Nigel Shadbolt. Contextualising

tags in collaborative tagging systems. In Proceedings of the 20th ACM confer-

ence on Hypertext and hypermedia, pages 251–260. ACM, 2009.

[10] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cy-

ganiak, and Zachary Ives. Dbpedia: A nucleus for a web of open data. In

The semantic web, pages 722–735. Springer, 2007.

[11] Andrea Ballatore, Gavin McArdle, Caitriona Kelly, and Michela Bertolotto. Re-

comap: an interactive and adaptive map-based recommender. In Proceedings of

the 2010 ACM Symposium on Applied Computing, pages 887–891. ACM, 2010.

[12] Linas Baltrunas and Xavier Amatriain. Towards time-dependant recommenda-

tion based on implicit feedback. In Workshop on context-aware recommender

systems (CARS‘09), 2009.

[13] Jie Bao, Yu Zheng, David Wilkie, and Mohamed Mokbel. Recommendations

in location-based social networks: a survey. GeoInformatica, 19(3):525–565,

2015.

[14] Samia Beldjoudi, Hassina Seridi, and Catherine Faron-Zucker. Ambiguity in

tagging and the community effect in researching relevant resources in folkso-

nomies. In Proc. of ESWC Workshop User Profile Data on the Social Semantic

Web, 2011.

[15] Paul N Bennett, Ryen W White, Wei Chu, Susan T Dumais, Peter Bailey, Fedor

Borisyuk, and Xiaoyuan Cui. Modeling the impact of short-and long-term be-



Bibliography 143

havior on search personalization. In Proceedings of the 35th international ACM

SIGIR conference on Research and development in information retrieval, pages

185–194. ACM, 2012.

[16] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web

search engine. Computer networks and ISDN systems, 30(1):107–117, 1998.

[17] Peter Brusilovsky and Eva Millán. User models for adaptive hypermedia and ad-

aptive educational systems. In The adaptive web, pages 3–53. Springer-Verlag,

2007.

[18] Ceren Budak, Anitha Kannan, Rakesh Agrawal, and Jan Pedersen. Inferring

user interests from microblogs. Technical report, Tech. Rep, 2014.

[19] Robin Burke. Hybrid web recommender systems. In The adaptive web, pages

377–408. Springer, 2007.

[20] Pedro G Campos, Fernando Díez, and Iván Cantador. Time-aware recommender

systems: a comprehensive survey and analysis of existing evaluation protocols.

User Modeling and User-Adapted Interaction, 24(1-2):67–119, 2014.

[21] Xin Cao, Gao Cong, and Christian S Jensen. Mining significant semantic loca-

tions from gps data. Proceedings of the VLDB Endowment, 3(1-2):1009–1020,

2010.

[22] Ciro Cattuto, Alain Barrat, Andrea Baldassarri, Gregory Schehr, and Vittorio

Loreto. Collective dynamics of social annotation. Proceedings of the National

Academy of Sciences, 106(26):10511–10515, 2009.

[23] Ciro Cattuto, Dominik Benz, Andreas Hotho, and Gerd Stumme. Semantic ana-

lysis of tag similarity measures in collaborative tagging systems. arXiv preprint

arXiv:0805.2045, 2008.

[24] Jilin Chen, Rowan Nairn, Les Nelson, Michael Bernstein, and Ed Chi. Short

and tweet: experiments on recommending content from information streams.



Bibliography 144

In Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, pages 1185–1194. ACM, 2010.

[25] Chen Cheng, Haiqin Yang, Irwin King, and Michael R Lyu. Fused matrix factor-

ization with geographical and social influence in location-based social networks.

In Aaai, volume 12, pages 17–23, 2012.

[26] Eunjoon Cho, Seth A Myers, and Jure Leskovec. Friendship and mobility: user

movement in location-based social networks. In Proceedings of the 17th ACM

SIGKDD international conference on Knowledge discovery and data mining,

pages 1082–1090. ACM, 2011.

[27] Chi-Yin Chow, Jie Bao, and Mohamed F Mokbel. Towards location-based social

networking services. In Proceedings of the 2nd ACM SIGSPATIAL International

Workshop on Location Based Social Networks, pages 31–38. ACM, 2010.

[28] Lucia Del Prete and Licia Capra. differs: A mobile recommender service. In

2010 Eleventh International Conference on Mobile Data Management, pages

21–26. IEEE, 2010.

[29] Yi Ding and Xue Li. Time weight collaborative filtering. In Proceedings of

the 14th ACM international conference on Information and knowledge manage-

ment, pages 485–492. ACM, 2005.

[30] Cynthia Dwork, Ravi Kumar, Moni Naor, and Dandapani Sivakumar. Rank

aggregation methods for the web. In Proceedings of the 10th international con-

ference on World Wide Web, pages 613–622. ACM, 2001.

[31] Ehab ElGindy and Alia Abdelmoty. Enriching user profiles using geo-social

place semantics in geo-folksonomies. International Journal of Geographical

Information Science, 28(7):1439–1458, 2014.

[32] Gregory Ference, Mao Ye, and Wang-Chien Lee. Location recommendation

for out-of-town users in location-based social networks. In Proceedings of the



Bibliography 145

22nd ACM international conference on Information& Knowledge Management,

pages 721–726. ACM, 2013.

[33] L Fonda, GC Ghirardi, and A Rimini. Decay theory of unstable quantum sys-

tems. Reports on Progress in Physics, 41(4):587, 1978.

[34] Huiji Gao, Jiliang Tang, Xia Hu, and Huan Liu. Exploring temporal effects for

location recommendation on location-based social networks. In Proceedings of

the 7th ACM conference on Recommender systems, pages 93–100. ACM, 2013.

[35] Huiji Gao, Jiliang Tang, Xia Hu, and Huan Liu. Content-aware point of interest

recommendation on location-based social networks. In AAAI, pages 1721–1727.

Citeseer, 2015.

[36] Huiji Gao, Jiliang Tang, and Huan Liu. Exploring social-historical ties on

location-based social networks. In ICWSM, 2012.

[37] Huiji Gao, Jiliang Tang, and Huan Liu. gscorr: modeling geo-social correlations

for new check-ins on location-based social networks. In Proceedings of the

21st ACM international conference on Information and knowledge management,

pages 1582–1586. ACM, 2012.

[38] Anna Lisa Gentile, Vitaveska Lanfranchi, Suvodeep Mazumdar, and Fabio

Ciravegna. Extracting semantic user networks from informal communica-

tion exchanges. In International Semantic Web Conference, pages 209–224.

Springer, 2011.

[39] Gianluigi Gentili, Alessandro Micarelli, and Filippo Sciarrone. Infoweb: An

adaptive information filtering system for the cultural heritage domain. Applied

Artificial Intelligence, 17(8-9):715–744, 2003.

[40] M Rami Ghorab, Dong Zhou, Alexander O’ Connor, and Vincent Wade. Per-

sonalised information retrieval: survey and classification. User Modeling and

User-Adapted Interaction, 23(4):381–443, 2013.



Bibliography 146

[41] Eric Gilbert and Karrie Karahalios. Predicting tie strength with social media. In

Proceedings of the SIGCHI conference on human factors in computing systems,

pages 211–220. ACM, 2009.

[42] Tom Gross, Chris Stary, and Alex Totter. User-centered awareness in

computer-supported cooperative work-systems: Structured embedding of find-

ings from social sciences. International Journal of Human-Computer Interac-

tion, 18(3):323–360, 2005.
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