Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Reactivity of CO2 on the surfaces of magnetite (Fe3O4), greigite (Fe3S4) and mackinawite (FeS)

Santos-Carballal, David ORCID: https://orcid.org/0000-0002-3199-9588, Roldan Martinez, Alberto ORCID: https://orcid.org/0000-0003-0353-9004, Dzade, Nelson Y. ORCID: https://orcid.org/0000-0001-7733-9473 and De Leeuw, Nora H. ORCID: https://orcid.org/0000-0002-8271-0545 2018. Reactivity of CO2 on the surfaces of magnetite (Fe3O4), greigite (Fe3S4) and mackinawite (FeS). Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376 (2110) , 20170065. 10.1098/rsta.2017.0065

[thumbnail of v9.1 - ORCA.pdf]
Preview
PDF - Accepted Post-Print Version
Download (499kB) | Preview

Abstract

The growing environmental, industrial and commercial interests in understanding the processes of carbon dioxide (CO2) capture and conversion have led us to simulate, by means of density functional theory calculations, the application of different iron oxide and sulfide minerals to capture, activate and catalytically dissociate this molecule. We have chosen the {001} and {111} surfaces of the spinel-structured magnetite (Fe3O4) and its isostructural sulfide counterpart greigite (Fe3S4), which are both materials with the Fe cations in the 2+/3+ mixed valence state, as well as mackinawite (tetragonal FeS), in which all iron ions are in the ferrous oxidation state. This selection of iron-bearing compounds provides us with understanding of the effect of the composition, stoichiometry, structure and oxidation state on the catalytic activation of CO2. The largest adsorption energies are released for the interaction with the Fe3O4 surfaces, which also corresponds to the biggest conformational changes of the CO2 molecule. Our results suggest that the Fe3S4 surfaces are unable to activate the CO2 molecule, while a major charge transfer takes place on FeS{111}, effectively activating the CO2 molecule. The thermodynamic and kinetic profiles for the catalytic dissociation of CO2 into CO and O show that this process is feasible only on the FeS{111} surface. The findings reported here show that these minerals show promise for future CO2 capture and conversion technologies, ensuring a sustainable future for society. This article is part of a discussion meeting issue ‘Providing sustainable catalytic solutions for a rapidly changing world’.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Advanced Research Computing @ Cardiff (ARCCA)
Chemistry
Publisher: The Royal Society
ISSN: 1364-503X
Funders: EPSRC
Date of First Compliant Deposit: 28 November 2017
Date of Acceptance: 7 September 2017
Last Modified: 12 Nov 2023 18:57
URI: https://orca.cardiff.ac.uk/id/eprint/107110

Citation Data

Cited 24 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics