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Summary of Thesis 

This thesis investigated the use cases of Electric Vehicles (EV) and stationary battery 

storage in a multi-level energy system with high penetration of renewable DER. The 

different energy system levels considered include large and local level, distribution 

network and customer premises. 

The reduction of excess electricity due to high shares of renewable energy 

technologies by using EV with Vehicle to Grid capability in a future GB energy system 

was investigated. It was found that with EV in vehicle to grid mode integrated into the 

energy system, the utilisation of fluctuating wind power was increased. This was 

realised by minimising the curtailment of excess electricity and CO2 emissions. Also 

in a local energy system with a high share of intermittent renewable energy, EV with 

Vehicle to Grid capability can reduce electricity import of about 34%. 

A microgrid was modelled for evaluating the impact of electrical vehicle charging on 

voltage profiles and energy losses in a local distribution network with a high share of 

distributed energy resources. The results show that with a smart charging scheme, the 

voltage profiles remain within distribution network operator’s defined limit. A 

reduction of energy losses in the microgrid was also noted. 

An optimisation tool using an optimisation technique was developed for optimising 

charging and discharging of a stationary battery storage. This was simulated to 

evaluate the revenue streams for an existing photovoltaic generation system. The key 

benefit of the photovoltaic generation system to the owner is the ability to maximise 

feed in tariff revenue streams by maximising self-consumption using a wholesale 

electricity tariff. The impact of storage unit cost on the adoption of battery storage for 

the photovoltaic generation system was also simulated using a time of use tariff. It was 

found that battery storage for the simulated system will only be economically viable 

when battery unit cost drops to £138/kWh. 

The impact of an optimised distributed energy system simulated in the Lawrence 

Berkeley’s Distributed Energy Resources Customer Adoption Model (DER-CAM) on 

distribution network constraints was investigated using a soft-linking power flow 

simulation procedure. It was found that voltage excursions occur mostly during peak 

day-types. It was found out that not all optimised distributed energy systems are 

feasible from the distribution network’s point of view. 
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Chapter 1  

1.Introduction 

 

 

1.1 EVOLUTION OF DISTRIBUTED ENERGY RESOURCES (DER) 

Renewable based DER such as solar, wind hydro, and biomass are considered to have 

a negligible environmental impact in terms of CO2 emissions. Such DER have 

emerged as alternative energy sources for reducing the dependence on fossil fuel based 

energy sources since the 1973 oil crises [1]. The high production costs of such DER 

along with the lack of government incentives ensured a stagnated deployment of 

renewable DER in energy systems [2]. 

The issue of climate change globally renewed the interest in the deployment of DER. 

Also, the technical and economic benefits along with changing energy policies and 

new technologies have significantly added to the renewed interest in DER deployment 

globally. For example, as of 1999, there was less than 0.7 GW of installed solar 

photovoltaic (PV) globally, which rise to 40 GW installed with a cumulative of 180 

GW of PV capacity [3]. 

From the perspective of Distribution Network Operators (DNO), intermittent DER 

deployed in low voltage (LV) distribution networks can be of benefit technically and 

economically. However, the high penetration of such DER together with uncertain 

demand growth has led to challenges in the distribution network ranging from 

distribution transformer overloading, power losses, voltage rise and voltage drops [4], 

[5]. Therefore, the concept of the smart grid has evolved to become an important part 

of the future grid modernisation to facilitate the integration of DER into distribution 

networks. As an integral part of the future smart power and energy system, a multi-

level energy system analysis is presented in this thesis. The key idea of behind the 

This introductory chapter presents the background, motivation, objectives and 

contributions of this thesis. The structure of the thesis is also outlined. 
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multi-level energy system is to explore the use cases of EV and stationary battery 

storage in (i) large and local energy systems (ii) distribution networks and (iii) 

customer premises strategically by considering various technical, economic and 

environmental factors. The multi-level energy system analysis introduced in this thesis 

is illustrated in 

 

 

Figure 1.1: Multi-level energy system schematic introduced in this thesis 

1.2 DER DEFINITIONS 

The term DER is used interchangeably with Distributed Generation (DG) according to 

[6]. DER refers to the connection of distributed generated electricity and controllable 

loads to distribution networks. In [7], the term DG was defined as generating power 

locally at the voltage level of the distribution network using RES and other non-

conventional energy sources like Combined Heat and Power (CHP), wind power, solar 

photovoltaic (PV), Fuel Cells (FC), microturbines, Stirling engines and their 

integration into the LV distribution network. In [8], DGs are defined as small scale 

CHAPTER 4

Impact of EV charging on voltage profile and 

energy losses in microgrids with onsite DERs

CHAPTER 6

Impact of distributed energy 

systems on microgrid constraints

CHAPTER 3

Assessment of electric vehicle charging in large and 

local energy systems

GB large energy system modelLocal energy system

CHAPTER 5

Management of battery storage for an existing PV system
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generators located to the loads that are being served. The broadness of DG and DER 

definition in terms of purpose, power provision, location and the market is highlighted 

in [9]–[11]. This definition of DER covers the provision of active power, installing 

and operating power production units directly in the LV network and electricity 

markets. Therefore, the definition of DER varies from country to country and from 

one type of distribution network to another. The broad definition of DER which 

includes Renewable Energy Sources (RES, like wind, PV and biomass), controllable 

loads and energy storage systems in the energy system will be used in this thesis. In 

chapter 4 of this thesis, the term DG is used to present the power flow studies analysis 

of distributed generators on a modelled microgrid. 

1.3 DER TECHNOLOGIES IN ENERGY SYSTEMS 

The energy systems in Europe has witnessed significant changes in the last 20 years 

as a result of privatisation of the sector, changing climatic conditions and the increased 

adoption of DER in energy systems [12], [13]. The role of fossil fuel based thermal 

power plants in the future energy systems is changing due to climate change policies 

and increased shares of RES [14]. 

Significant efforts have been put into investigating new pathways for efficient 

integration of DER into the future electricity supply system. However, there is a need 

to focus on smart energy systems that integrate the electricity, heating and transport 

sectors in order to effectively maximise the use of fluctuating RES [15]. The 

conventional energy system has been traditionally in the form of “source” (Extraction) 

to “service” (End-use conversion) as shown in Figure 1.2. 

 

Figure 1.2: Future energy systems [16] 

The improvements in the energy system of the future may involve the integration of 

following technologies into the traditional energy system [16]: 
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▪ DER technologies 

▪ Onsite DER generation in buildings 

▪ Energy efficient lighting 

▪ Smart Direct Current (DC) microgrids 

▪ Offshore wind power 

▪ EV 

▪ Virtual Power Plants (VPP) 

These new technologies will bring along with them a set of new challenges. Hence 

there is a need to manage the system in a way to maximise the utilisation of fluctuating 

RES and minimise CO2 emissions [17]. 

1.3.1 EV 

EV is a general terminology used to refer to automobiles powered by electric motors. 

EV are categorised as follows [18]: 

▪ Fuel Cell Electric Vehicles (FCEV). 

▪ Battery Electric Vehicles (BEV). 

▪ Hybrid Electric Vehicles (HEV). 

▪ Plug-in Hybrid Electric Vehicles (PHEV). 

The FCEV is powered with FCs, BEV are battery powered, and V2G is a special 

capability of BEV that can charge and discharge “to” and “from” the electricity 

network. HEV are powered by both battery and Internal Combustion Engine (ICE). 

The HEV can be further subdivided based on whether they can charge from the grid 

or not. HEV with the capability to connect to the electricity network are termed as 

PHEV. 

In this thesis, only BEV and BEV with V2G capability were considered. The term EV 

in this thesis are used to refer to BEV and in the case where the power from the EV 

can flow to the grid, EV are referred to as V2G. 

1.3.2 Battery Storage 

Battery storage stores electrical energy (charging) chemically and can be used 

(discharged) when required. 
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The two commonly used types of battery storage for onsite solar PV applications are 

(i) lithium-ion and (ii) lead-acid batteries. The key features of both technologies are 

summarised in Table 1.1. 

Table 1.1: Battery types and their features [19] 

Lithium-ion battery storage Lead-acid batteries 

Expensive Cheaper 

Common in residential grid connected 

Solar PV Systems 

Common for standalone applications 

where more storage is needed 

Light Heavier and larger 

Requires integrated controller for managing 

charging and discharging 

Needs charging and discharging routine to 

maintain battery health 

Efficient in handling discharging Less efficient 

Long expected life Shorter expected life 

 

In this thesis, stationary battery storage can charge from the electrical grid or operate 

by charging only from DER. The lithium-ion battery specifications used in chapter 5 

are taken from [20], [21]. The battery specification used in chapter 6 is taken from 

[22]. 

1.3.3 Electricity Tariffs 

The electricity tariffs considered in this thesis includes the UK retail electricity tariff, 

Time of Use (ToU) tariffs and wholesale electricity tariffs [23]. ToU tariffs are defined 

in this thesis as varying electricity tariffs based on time of the day and season of the 

year. The ToU used in this thesis include the following: 

▪ Economy 7 (dual tariff) [24], [25]. 

▪ California ToU tariffs obtained from Distributed Energy Resource Customer 

Adoption Model (DER-CAM) database [22]. 

In the absence of similar electric utility ToU tariffs like that of California in the UK, 

the wholesale electricity tariffs [23] was utilised in chapter 5 as a real time electricity 

tariff. 

1.3.4 Distribution Networks 

Conventionally, the electricity supply network has been designed to accommodate 

power flows in a unidirectional manner. However, with the increased penetration of 
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DER at the customer premises, it is becoming imperative to consider effective 

management strategies both from the DNO and the customer point of views. 

The DNO own and manage the assets of the electricity distribution network and are in 

charge of ensuring quality of service and that voltage profiles are maintained within 

defined limits [4], [26]. 

1.3.5 Management of DER 

The distribution system has been conventionally designed to receive power from the 

transmission system and distribute the power to local customers [6], [7], [27]. This 

means that power flows from higher to lower voltage levels. However, with increasing 

adoption of DER in customer premises, reverse bi-directional power flow is now 

obtainable in distribution networks. The impacts that may arise as a result of the bi-

directional power flows have been researched into (see [6], [27]–[30]). Some of the 

challenges that may arise because of the bi-directional power flow in distribution 

networks are summarised as follows: 

• Thermal ratings of network cables. 

• Voltage profile issues (voltage rise). 

• The sudden connection of large loads. 

• Overloading of distribution transformers. 

With the proliferation of EV, the complexity of the strain on the LV network will also 

increase. Therefore, there is a potential for deploying effective energy management 

systems that will manage the connection of DER to the distributions networks to 

maintain network operation within statutory limits. 

1.4 THESIS OBJECTIVES 

This thesis investigated the use cases of EV and stationary battery storage in a multi-

level energy system with high penetration of renewable DER. The objective of this 

research is to: 

▪ Develop a methodology to evaluate the potential of EV storage in 

minimising excess electricity curtailment referred to as Critical Excess 

Electricity Production (CEEP) and CO2 emissions in large energy systems with 

high shares of RES. Assess the benefit of aggregated EV and DER in local 

energy systems. 
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▪ Developed a heuristic optimisation power flow method in MATPOWER 

to assess the impact of managing EV charging in an LV microgrid with high 

penetration of DER. 

▪ Formulate and develop an optimisation tool for managing the charging and 

discharging of stationary battery storage for an existing PV System benefiting 

from the Feed UK FiT. 

▪ Designed a soft-linking procedure to test the impact of optimised distributed 

energy systems on a modelled distribution network in the form of a microgrid. 

1.5 THESIS STRUCTURE 

The remainder of this thesis is organised as follows: 

Chapter 2: This Chapter is a review of the relevant literature related to this thesis. It 

presents the background and state of the art for studies presented in Chapter 3, 4, 5, 

and 6. An overview is presented with regards to (i) distributed energy technologies (ii) 

EV charging in energy systems (iii) Integration of DER in distribution networks and 

(iv) optimisation of distributed energy systems and (v) the impact of optimal 

distributed energy systems on distribution network constraints. 

Chapter 3: In this Chapter, EV and V2G integration were investigated in energy 

systems with high shares of RES. The impact of EV charging and V2G in energy 

systems with high shares of RES were evaluated in terms of (i) CEEP and (ii) CO2 

emissions. The term CEEP refers to the energy that must be curtailed because of excess 

production from RES which cannot be maintained within the energy system’s 

generation – demand balance or through interconnection with other adjacent energy 

systems. 

Excess renewable energy curtailed means not utilising economically the renewable 

energy capacity in the system. This decreases the Return on Investment (ROI) of the 

system. The term “CO2 emissions” is used to refer to the gases released into the 

atmosphere as a result of combustion of fuels utilised in electricity generation, heating 

or energy demand to meet transportation needs [31]. The unit of CO2 emissions used 

in this thesis is the Million Tonne (Mt). 

Case Studies were defined and evaluated in terms of CEEP and CO2 emissions. The 

case studies were as categorised as (i) large energy systems with a high share of wind 
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power and (ii) localised energy system with aggregated small scale DER. The CEEP 

and CO2 emissions were also calculated with different EV charging rates in the case 

of the large energy systems. 

Chapter 4: In this Chapter, a method of managing EV charging in a modelled 

microgrid with DER is described. Case Studies were drawn to evaluate the voltage 

profiles and energy losses for controlled and uncontrolled EV charging regime. The 

voltage profiles and energy losses were evaluated for (i) summer scenario 

(representing minimum network loading) and (ii) winter scenario representing 

(maximum network loading). 

Chapter 5: In this Chapter, an optimisation technique for the optimal charging and 

discharging of battery storage for an existing Photovoltaic (PV) system using ToU 

tariff is described. The operation of the technique simulates FiT revenue streams for 

an existing PV generation system looking to maximise FiT revenue with battery 

storage and wholesale electricity tariff. Case Studies were defined and simulations 

performed. The optimised schedules of the battery storage charging and discharging 

for the existing PV system at (i) negative wholesale tariff periods, (ii) low wholesale 

tariff periods and (iii) high wholesale tariff periods were described. An evaluation and 

sensitivity analysis were performed on the unit cost of storage and its impact on the 

optimal decision to adopt or not to adopt battery storage for the existing system. 

Chapter 6: In this chapter, the impact of optimised distributed energy systems in 

distribution networks has been tested using a soft-linking procedure. This Chapter 

presents the optimised distributed energy systems and results evaluated at the 

Lawrence Berkeley National Laboratory (LBNL) with DER-CAM. An optimal 

investment analysis for the adoption of DER for a mid-rise apartment was simulated. 

Different scenarios of DER with battery storage were simulated. The optimal dispatch 

schedules for weekdays, peak days and weekend days were evaluated. A soft-linking 

procedure was developed to evaluate the impact of the optimised schedules on the 

voltage profile and energy loss of the microgrid connecting the mid-rise apartment. 

Chapter 7: A summary of the main conclusions of this thesis are provided. 

Suggestions for future work are given. 
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Chapter 2  

2.Background and State of the Art 

2.1 INTRODUCTION 

This chapter describes and sets out the background for the different segments of multi-

level energy systems (large energy systems, localised energy systems, distribution 

network and customer premises) with high penetration of DER. It also outlines the 

state of the art use cases of EV storage and stationary battery storage in energy systems 

from the perspectives of the distribution network, optimisation of techniques utilised 

in distributed energy systems and the impact of optimised distributed energy systems 

on microgrid constraints. 

2.2 DER INTEGRATION IN ENERGY SYSTEMS 

The DER technologies that will be studied in this thesis include the following: 

▪ Wind turbines. 

▪ PV. 

▪ FC and CHP. 

▪ EV. 

▪ Battery Storage. 

There is no specific categorisation regarding the technologies that are termed as DG 

according to [7], but generally, could be categorised and classified as follows: 

• Renewable. 

• Modular (large DER systems that can be built from small subsystems). 

• CHP. 

And, according to the size of the DG: 

• Micro: 1 W – to < 5 kW 

• Small: 5 kW to < 5 MW 

• Medium: 5 MW to < 50 MW 

• Large: 50 MW < 300 MW 
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2.2.1 Wind Power 

The wind energy conversion system or turbine produces power by utilising the kinetic 

energy of an incident wind on the turbine rotor. The power that could be extracted 

from the wind by the turbine is proportional to the cube of wind speed according to 

Equation 1 [6]: 

 31

2
w pP AV C    (1) 

Where wP is the theoretical wind power (W) that could be extracted from the wind, 

is the density of air (kg/m3), A is the swept area (m2) by the wind turbine rotor, V is 

the wind speed (m/s) and 
pC is referred to as the power coefficient or the rotor 

efficiency. 

In chapter 3 of this thesis, large scale wind power (onshore and offshore) were 

considered for the national energy case studies (case study 1 and 2), while small scale 

wind power was considered in the local energy systems case study (case study 3). 

Wind turbines can be classified as large onshore-offshore wind turbines and small 

scale domestic wind turbines. It is projected that 7% of DER technologies in the UK 

installed capacity in 2050 will consist of domestic wind turbines, approximately a total 

of about 1.4 GW [31], [32]. 

2.2.2 Solar PV 

Domestic solar PV despite having high installation costs have high adoption rates. This 

is largely driven by the FiT schemes in Europe and other parts of the world [33]–[35]. 

Large scale installations in the form of solar farms are also common due to favourable 

energy policies [36]. 

The UK has low solar irradiance compared to the countries in the southern part of 

Europe, however, even with this drawback, it is projected that about 2% of DER 

generation capacity in the UK by 2050 will be from PV generation systems [31]. 

PV can bring about benefits in the energy system in terms of peak load and CO2 

emissions reduction. However with these benefits comes also challenges like a 

mismatch between generation and load, reverse power flow and voltage rise [17]. 

The cost has been a major bottleneck in the adoption of solar PV. However, in recent 

years the cost of PV modules/W and PV systems is witnessing significant reduction 

according to the International Energy Agency (IEA) PV system trends [3], [37] in 
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Figure 2.1. This implies an increase in installed capacity in MW as shown in Figure 

2.2. 

 

Figure 2.1: Small Scale PV modules System Prices Evolution in selected IEA 

countries [37]. 

 

Figure 2.2: IEA PV installation capacity and module production capacity 

projections [3], [37]. 

It could be seen from Figure 2.1 that the module cost reduction for small PV systems 

for low range residential systems falls from about $ 3.5/W in 2006 to $ 0.6/W in 2015. 

This means an increase in the installation of residential PV which is mainly driven by 

FiT. However, declining FiT in recent years is slowing the investments in solar farms 

according to [38]. Hence there is a need for effective energy management strategies 

with energy storage to maximise self-consumption and improve the economic case of 

such systems. 
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2.2.3 FC and CHP Applications 

FCs produce a current through electrochemical reactions. In a hybrid fuel cell system 

connected to an electrolyser, hydrogen produced in the electrolyser system is used with 

oxygen in the fuel cell unit to produce electricity and water. This could be used in 

FCEV for extended range EV [39]. FCs though expensive are more efficient than 

thermal engines [40]. FCs have not been extensively used as DER in VPP applications 

because of the high initial capital costs, although they have been integrated with CHP 

plants in a microgrid [41]. 

2.2.4 Battery Storage 

A battery is a device that enables the conversion of chemical energy into electrical 

energy. This is achieved by oxidation – reduction reaction with packed active materials 

within a cell chamber [42]. Batteries can provide short-term storage with high charging 

and discharging capability. 

According to [43]–[45], battery adoption in energy systems with high shares of 

fluctuating DER can mitigate against high-frequency interruption caused by a specific 

electricity demand or grid connected distributed energy systems. 

An important issue in this context is to justify why the need for battery storage in 

electricity networks. Peak electricity demands in power systems are increasing and 

high shares of DER creates a mismatch between generation and demand. This means 

a poor utilisation of generation, Transmission and Distribution (T&D) infrastructure 

according to [45]. Battery storage can be utilised to maximise the usage of existing 

network capacity and defer network investments. Figure 2.3 summarises potential 

battery storage services that could be deployed in the future electricity system. 
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Figure 2.3: Potential battery storage services [46], [47]. 

The Rocky Mountain Institute report: “The Economics of Battery Energy Storage: 

How multi-use, customer-sited batteries deliver the most services and value to 

customers and the grid” [47] and also the articles [46], [48], [49] gave an overview of 

such services. These services include: 

• ToU tariff, wholesale electricity Bill Management and increased PV self-

consumption. This service type is explored in detail with the optimisation 

algorithm developed in chapter 5. 

• Demand charges reduction, for commercial customers to avoid costly peak 

charges using battery storage paired with PV power can reduce these 

charges. The application of this service was simulated in the optimal 

distributed energy systems simulated in chapter 6. 

• Frequency Response Services. 

• Backup power in the event of a failure in the electricity supply system, 

battery storage paired with an onsite DER can provide backup power at 

different scales. 

• Distribution network upgrade deferral. 
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Such battery services could be sited at different levels of the electricity supply system: 

(i) behind the meter seen as customer services providing the highest number of 

services, (ii) at the distribution level and (iii) at the transmission level [35], [47], [50]–

[52]. In [53], the potential benefits of electricity storage for the UK’s electricity supply 

network were highlighted. 

However, even with such potentials for electricity storage, the deployment of such 

storage services is less than 3 GW as of 2015 in Great Britain according to [35], [53]. 

This provides an opportunity to consider the technical, regulatory and policy barriers 

limiting the use electricity storage in the UK. 

ToU optimisation can be leveraged to provide grid support services which can serve 

as a platform for new business models [25], [47]. According to [25], [47], battery 

storage can be contracted to provide grid support services in favour of costly grid 

upgrades. In chapter 5 of this thesis, the impact of battery storage in managing power 

flows for an existing PV generation system to maximise FiT revenue streams with 

wholesale electricity and ToU tariffs are presented. 

The application of battery storage to maximise FiT revenue streams is becoming 

attractive because of the significant difference between retail electricity tariff and the 

FiT export tariff [35]. 

Typically, distribution infrastructure upgrades are driven by peak electricity demand 

events that occur on only a few, predictable periods during a year. Transmission 

upgrades, on the other hand, are driven by the need for transmission congestion 

management and interconnectors. In the UK, National Grid uses transmission 

interconnectors to increase the security of energy supplies, help competition in the 

European electricity market, and integrate RES into the grid [54]. 

From the distribution network perspective, utilising incremental amounts of DNO 

owned battery energy storage to deal with limited time duration events can defer large 

investments and free up capital to be deployed elsewhere in the electricity supply 

system [5], [55]. This can also avoid over-sizing of the distribution network in a 

scenario of uncertain electricity demand growth. 

From the battery storage review above, it could be deduced future research work for 

energy storage services in the electricity supply system of the future. It was found the 

need to develop a modelling framework capable of computing the net value of stacked 

battery storage services and other DER as alternatives to the conventional generation 
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of electricity and traditional network upgrades. These insights could be driven by 

questions like how investments into energy efficiency measures and adoption of DER 

at different levels of the electricity supply system can be leveraged to defer costly 

investments in T&D network upgrades? The outcomes from such modelling platform 

should be able to provide policy and regulatory insights that will enable broad adoption 

of battery storage services and other DER. 

2.3 EV CHARGING IN ENERGY SYSTEMS 

The need for a future envisioned large scale sustainable energy systems will largely 

depend on the reduction of CO2 emissions. However, the main bottlenecks against this 

vision include (i) the high dependence on fossil fuels in the transport sector and (ii) 

maintaining a balance in a future energy system with high shares of fluctuating RES 

[56]–[58]. 

A future transport industry with increased shares of EV and V2G capabilities can be 

valuable in ensuring a high utilisation of high shares of RES and the reduction of CO2 

emissions. In [59], [60], the scope and scenarios of EV in the future UK transport 

sector are presented. The following section reviews EV in energy systems. 

2.3.1 EV in Large Energy Systems 

According to [61], inland transport in the UK was responsible for 131.4 million tonnes 

(Mt) of CO2 emissions in 2007 corresponding to 24% of the total nationally. This 

shows the need for EV integration in future energy systems capable of paving a 

pathway for the reduction of carbon emissions in the transport sector. Table 2.1 shows 

the energy consumption in the transport sector for the UK in 2008. It could be seen 

that road transport has the highest consumption of petroleum. 

Table 2.1: Consumption of energy in the transport sector (000s Tonnes oil 

equivalent), 2008 [61] 

Mode Petroleum Biomass 
Primary 

Electricity 
2008 Total 

% Change 

1998 – 2008 

Road 41331 821  42152 +2.8 

Rail 747  725 1472 +9.9 

Aviation 13426   13426 +31.1 

Domestic Shipping 1764   1764 +8.9 

Total 57268 821 725 58814 +9.4 
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EV could play a vital role in displacing petroleum consumption in the transport sector 

and reduction of CO2 emissions. 

However, it is interesting to note that substitution of ICE based vehicles in the transport 

sector without decarbonising the power sector means shifting CO2 emissions from the 

transport sector to the electricity supply system [18], [56], [58], [62]. 

Therefore, there is a need to effectively manage future integrated energy systems with 

high shares of RES and EV uptake. 

In chapter 3 of this thesis, large scale energy systems were modelled. The model 

integrated the electricity, transport and heat sectors including high shares of fluctuating 

wind power (which is used to represent an energy system with high shares of RES). 

Different EV charging ratings were simulated to evaluate the level of excess electricity 

(CEEP) and CO2 emissions in the system. The EV with V2G capability charging 

energy demand with different EV charging rates was formulated and developed in 

EXCEL (see Appendix A and B) and simulated in the EnergyPLAN model. 

EnergyPLAN has not been previously used to study the impact of EV in the UK energy 

system with a high share of RES. In [63], an electricity demand model with EV for the 

GB and Spain is presented and the impact of EV charging on the distribution networks 

was evaluated with different charging strategies: dumb charging, delayed charging and 

smart charging. In chapter 3 of this thesis, however, the impact of integrating large 

EV fleets on the energy system with a high share of RES in terms of the excess of 

electricity production and CO2 emissions was studied. 

In [15], [64], a review of modelling and simulation tools for evaluating RES 

integration into energy systems was presented. The evaluation was based on the 

following criteria: 

▪ Type of the model. 

▪ The number of downloads. 

▪ Cost. 

▪ Versions update. 

▪ The scope of the model. 

▪ Time step. 

Based on the ability to evaluate EV, EV with V2G capability, high RES shares, review 

and quality of journal papers [1], [15], [65]–[67] written with results from the model, 

the EnergyPLAN model was chosen to simulate the studied cases in chapter 3. 
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2.3.2 V2G in Energy Systems 

V2G is an EV capability that can deliver power from the EV to the grid. Subject to the 

availability of the hardware required for the bi-directional power flows, and 

appropriate control mechanisms, the vehicle’s battery could be made available while 

connected to the grid as an energy buffer for balancing services [68]. 

Clearly, it would be necessary to restrict the authority of the grid’s control over the 

vehicle battery to ensure a sufficient charge level when the car is next required for use 

on the road. In [69], a linear programming based peak shaving methodology was 

proposed to schedule power consumption in a home area with V2G enabled EV. 

In [67], a comprehensive review of V2G simulation tools in power and energy systems 

was presented. This review shows the importance of managing the EV charging and 

discharging regimes in energy systems with high shares of DER. According to [70], 

V2G energy storage allows a greater utilisation of available renewable electricity 

compared to stationary battery storage. 

In Chapter 3, a study case was drawn to simulate the impact of V2G with different 

EV charging rates on the reduction of excess electricity (CEEP) and CO2 emissions in 

energy systems with high shares of DER. 

2.3.3 EV in Localised Energy Systems 

EV in localised energy system with aggregated small scale DER can be leveraged to 

manage energy flows in a group of buildings in communities. According to [71], 

significant peak reduction could be obtained with an integrated DER system including 

demand side management (DSM). Figure 2.4 shows the aggregation of buildings to 

provide DSM and achieve peak reductions for a localised energy system. 

 

 

Figure 2.4: Aggregated local energy system [71] 

DNO
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In chapter 3 of this thesis, a local energy system with high shares of DER was 

simulated and electricity import reduction for EV and V2G was evaluated. 

2.4 INTEGRATION OF DER INTO DISTRIBUTION NETWORKS 

Distribution networks have been traditionally designed to receive power from the 

transmission system and distribute the power to local customers [6], [7], [27]. This 

means that power flows (active and reactive) from higher to lower voltage levels. 

However, due to the increased penetration of DER in customer premises, the flow in 

the network becomes bi-directional. Significant network impacts could arise as a result 

of the bi-directional power flow as presented in [6], [27]–[30]. The most relevant 

network impacts of DER connection are thermal constraints (for transformers and 

cables), voltage rise (for generation connection) and the voltage drop (for EV 

connection), network losses and problems associated with the tap setting mechanism 

for the on-load tap changers in transformers. 

With the envisioned high uptake of EV in energy systems, the strain on the LV network 

with RES connection increases. This gives an opportunity to develop energy 

management systems that will aggregate the connection of DER in distribution 

networks to meet constraints. 

 In Chapter 6, the impact of several optimised scenarios of distributed energy systems 

was evaluated based on voltage profile issues and energy losses on a modelled 

distribution network. 

2.4.1 EV in Distribution Networks 

The impacts of EV on LV distribution networks were investigated in [18], [30], [72]. 

In [68], large scale charging control of aggregated EV/PHEV, V2G frequency 

regulation, and participation in electricity markets were developed. With DER 

integration into the LV distribution networks, the complexity of the future energy 

systems requires complex artificial intelligence methods, optimisation, and agent-

based computing [73]. The aim of the work in [73] is to aggregate EV and DER in a 

VPP and formulate an algorithm that will respect the technical constraints of the 

network while increasing the visibility of DER. In [18], the effect on the cables thermal 

loading and the overloading of the distribution transformer as a result of EV integration 
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was extensively studied at the microgrid level using Monte-Carlo method. In [28], [29] 

the impact of DER integration into the distribution network was presented. In [30], 

[32], [72], the effects of EV on peak demand on the national level demand was 

investigated as well as the impact on distribution networks, particularly on steady state 

voltage, transformer loading and the power line losses. In [74], the technical 

parameters required for EV with V2G capability to participate in frequency regulation 

was presented. 

In Chapter 4 of this thesis, a method is developed to simulate the EV charging in a 

microgrid with different levels of DER integration using controlled and uncontrolled 

EV charging regimes. The voltage profiles and energy losses for summer and winter 

scenarios were then evaluated. 

2.4.2 Management of DER 

In [75] and [6], an Optimal Power Flow (OPF) technique, was used to characterise and 

develop a single operating profile for a Technical VPP with an aggregated load 

represented by the active and reactive power components. The characterisation of the 

Technical VPP was presented as follows: 

▪ DER generation profiles. 

▪ Generation limits. 

▪ The minimum stable output from DER generation. 

▪ Maximum generation and load capacity of the Technical VPP. 

▪ Ramp rate. 

▪ Frequency response characteristic. 

▪ Voltage regulating capability. 

▪ Fault levels. 

▪ Fault ride-through characteristics. 

▪ Efficiency. 

▪ Operating cost characteristics. 

 In [76], [77] an agent-based tool referred to as PowerACE was used to quantify the 

potential contribution of grid connected vehicles in balancing generation from RES. 

The simulation method described in [76] is a national case study of Germany and the 

state of California. To provide generalised models for the analysis of DER and EV, 

the concept of EV control in an aggregated portfolio of DER is required. In the 



Chapter 2                                                           Background and State of the Art  

 

 
20 

 
  

conventional power system, the Transmission System Operator (TSO) has been 

responsible for the system security. Increased penetration of DER and EV in 

residential premises will require active network management in the distribution 

network. This represents a radical departure from the conventional central control in 

the power system to a distributed control paradigm, which is applicable to thousands, 

possibly millions of DER and EV [78], [79]. Using distributed control in the power 

system means that DER can be decomposed into microgrids or autonomously 

controlled systems with a central system control. The concept of managing a portfolio 

of DER sometimes referred to as VPP, can be used to aggregate controllable groups of 

DER which can be utilised in system and energy management services. In chapter 4, 

the impact of controlled EV charging with aggregated RES on the customer side was 

evaluated in a benchmark microgrid model. 

ToU tariffs have been used to manage DER in energy systems (see [52], [79], [80]). 

Two main ToU tariffs are currently in use in the UK (i) the economy 7 and (ii) 

Economy 10. These tariffs charge lower tariffs during a specific number of hours. 

The economy 7 tariff is a ToU tariff offering seven off-peak hours (11:00 PM to 6:00 

AM) of low electricity rates [81]. About 9% of the UK residential electricity customers 

are subscribed to this tariff [82]. The remaining hours of the day are charged at high 

tariff rate. 

Economy 10 Tariffs (popularly known as "Heat wise") offers 10 hours of off-peak 

electricity, which the energy supplier charge at a discounted rate. Like in the case of 

economy 7, the economy 10 tariff best suits residential electricity customers with 

storage heaters. 

ToU tariffs are not fully implemented in the UK except for economy 7 and 10 but have 

well been deployed in other parts of the world like California USA. In the case of 

dynamic ToU tariffs, the assumption is that there is a wide-spread adoption of smart 

meters. According to the Low Carbon Networks Fund (LCNF) project [79], a strong 

agreement for the deployment of multi-rate tariffs was observed, 91% of the survey 

respondents agreed that dynamic ToU tariff should be applied on a wider scale. This 

agreement is only specific to the survey respondents and cannot be a generalised to a 

UK-wide scale. 
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A summary of the related literature to the integration of DER (with and without the 

consideration of EV/V2G) into the distribution grid and at the customer premises is 

given in Tables 2.2 and 2.3. Table 2.2 summarises the literature with the consideration 

of EV while Table 2.3 illustrates the related literature when EV are considered in the 

DER generation system. 

Table 2.2: A summary of related DER studies with consideration of EV 

 

Method Scope of Study Research Gap References 

Time Coordinated 

OPF (TCOPF) 

Using TCOPF formulation 

to control PHEV storage 

units to minimise energy 

losses in the distribution 

network. 

Thermal storage for CHP 

technologies was not 

considered. Also, stationary 

battery storage and PV were 

not considered. 

[83]–[85] 

EV Integration 

into a VPP 

Case study EV Integration 

into a VPP was 

demonstrated.  

The value of EV integration 

into the VPP in terms of 

electricity reduction was not 

demonstrated. 

[32], [86] 

Energy 

Management 

System modelled 

in MATLAB 

Investigated the effects of 

charging point availability 

on the economics of a VPP. 

The impact of optimised VPP 

on distribution network was 

not evaluated. 

[87]–[89] 

Multi-Agent 

System for 

Managing VPPs 

An architectural solution for 

the management of 

aggregated DER in a 

microgrid is introduced. 

Network constraints not 

considered in the agent 

system. 

[32], [90], 

[91] 

V2G in VPP A case study on the 

utilisation of V2G as a 

distributed energy storage 

system in a VPP. 

Local system cannot buy or 

sell electricity (autonomous). 

[92], [93] 
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Table 2.3: A summary of related DER studies without the consideration of EV 

 

Method 

 

Scope of Study 

 

Research Gap 

 

References 

Optimisation of a 

VPP 

Finding information required to 

build a local VPP for active 

control in a distribution grid. 

No investment analysis on 

the adoption of DER. 

[94], [95] 

Operation 

Optimisation in a 

Microgrid 

Operational Optimisation 

applied to maximise profit for a 

local energy area. 

PV and Wind power were 

not considered in the local 

energy area. 

[96] 

Dispatch 

Optimisation Using 

Linear 

Programming 

Aggregation of DER in a VPP to 

minimise conventional power 

plants costs due to poor RES 

forecast. 

Market prices and energy 

storage were not included 

in the system studied. 

[97] 

Electricity Cluster 

Oriented Network 

Dynamic Models of renewable 

energy generators developed in 

MATLAB to study the feasibility 

of coordinating loosely coupled 

independent local energy 

systems. 

Investment costs/analysis 

not considered. 

[98] 

Economic 

Evaluation of DGs 

in a Local Energy 

System 

DG and storage load 

management in different 

markets. 

The impact of the 

optimised system was not 

evaluated on the 

distribution network level. 

[99] 

Integration of DER 

into an Aggregated 

Energy System 

The technical and Commercial 

viability of the VPP was 

described. 

The value of aggregated 

DER could provide in the 

management of 

distribution grids could be 

further explored. 

[75], [78] 

 

In the surveyed literature above, the value of EV and stationary battery storage are not 

reflected in a multi-level energy system study (large energy system, local energy 

system, distribution grid and at the customer premises). 

The work reported in this thesis sets out to explore, simulate and test the extent to 

which EV and stationary battery storage can be utilised to maximise the utilisation of 
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stochastic RES electricity generation. In chapter 5, an energy management 

optimisation problem was formulated to manage charging and discharging of battery 

storage for an existing PV generation system using wholesale ToU tariffs. The 

optimisation problem was formulated based on the customer side of the meter. In 

chapter 6, an optimal investment analysis for the adoption of DER in a group of 

aggregated buildings aggregated as a mid-rise apartment is simulated as an optimised 

distributed energy system. The impact of the optimal distributed energy system on a 

modelled microgrid was evaluated using a soft-linking procedure. 

Section 2.5 below reviews the optimisation techniques (being the one the key 

technique used in this thesis) used in the simulation and analysis of energy systems. 

2.5 OPTIMISATION METHODS 

In chapter 5 and 6, the optimal battery storage charging and discharging are 

evaluated. A Mixed Integer Linear Programming (MILP) technique is applied for 

simulation of the case studies of chapter 5 and chapter 6. Optimisation techniques have 

traditionally been used for optimising schedules of large generators in power systems. 

The following sections present a review of optimisation methods of which the MILP 

is used in Chapters 5 and 6. 

2.5.1 Formulating a Problem 

Optimisation of a function 

In any optimisation problem, an objective which must be solved within certain 

boundaries referred to as constraints. Figure 2.5 shows the sequence for finding a 

solution to an optimisation problem. To formulate an optimisation algorithm, there is 

a need to identify the objective of the optimisation problem [100], [101]. 
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Figure 2.5: Optimal design procedure [102] 

Decision variables 

The decision variables sometimes referred to as design variables are the unknowns in 

the optimisation problem and will need to be determined by solving the problem. The 

speed and efficiency of the optimisation simulation depend on the number of decision 

variables to a large extent [103]. 

Constraints 

With the design variables identified, the constraints or limitations to such a problem 

must be chosen. The constraints express the relationship between design variables and 

other parameters in order to meet the requirement of a physical phenomenon or 

limitation in resources [104]. Some examples of constraints are battery state of charge 

in EV and battery storage, voltage boundaries in distribution networks, thermal ratings 

of distribution network cables. The constraints may take the form of equality (=) or 

inequality (Less or equal to ≤, or greater than or equal to ≥). According to [102], most 

constraints in design problems are of the inequality type. 

Objective function 

The next step after deciding the constraints is the formulation of the target objective 

referred to as the objective function. There may be multiple objective functions in an 

optimisation problem which is referred to as multi-objective optimisation. The 

objective function may be minimised or maximised. With the aid of duality principle, 
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minimisation can be converted to maximisation by multiplying with a factor of (-1) 

[31], [101], [102],. 

Variable bounds 

The variable bounds delineate the extent of the optimisation problem by selecting the 

minimum and maximum bounds on the decision variables. 

2.5.2 Optimisation Methods 

According to [31], [103], there are two main categories of the optimisation techniques: 

(i) Optimisation methods based on numerical and mathematical methods. 

(ii) Artificial Intelligence (AI) methods. 

The numerical methods are summarised as follows [31]: 

▪ Linear Programming (LP). 

▪ Interior Point. 

▪ Quadratic Programming. 

▪ Non-LP (NLP). 

▪ Integer/Mixed Integer Programming (MIP)/ (MILP). 

▪ Dynamic Programming. 

In chapter 5 of this thesis, an MILP was formulated to manage battery operation for 

an existing PV generation system. 

2.6 OPTIMISED DISTRIBUTED ENERGY SYSTEMS AND NETWORK 

CONSTRAINTS 

DER planning in energy systems are mainly discussed from the perspective of DNO 

[105]–[107], electricity customers and large retail aggregators [108], [109]. 

2.6.1 Customer Optimised DER Systems 

Several optimisation models are widely used for finding the optimal configuration and 

operation of onsite distributed energy technologies. The main objective in most of 

these models is to find the optimal configuration of distributed energy technologies 

that will meet a certain demand with the least cost and CO2 emissions [110]–[112]. 

Hybrid Optimisation Model for Electric Renewables (HOMER) is an optimisation tool 

that finds the best microgrid configuration with least Net Present Cost (NPC) [113]–
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[116]. DER-CAM is an MILP tool for evaluating adoption options for onsite DER in 

customer premises [109], [117]–[119]. 

In [120], a model to determine the optimal DER technologies based on minimising the 

annual cost of the system was presented. On the other hand in [121], an MILP 

modelling framework was developed for a microgrid in order to evaluate the optimal 

system configuration based on the flexibility of DER generating technologies. In 

[122], an energy management system to maximise profit for a microgrid was 

developed. 

In chapter 5 of this thesis, an MILP was developed to maximise battery charging and 

discharging to maximise FiT revenue for an existing PV generation system with ToU. 

In the reviewed literature above, the network constraints were not considered in the 

optimisation of the distributed energy system. This implies that some optimal solutions 

for these systems may not be possible to integrate due to a violation of technical quality 

constraints like voltage excursions, thermal limits and power losses. 

2.6.2 DNO Controlled DER Systems 

The DNO perspective of managing distributed energy systems is to use DER in 

managing distribution network operation and deferring network investments. In [5], 

an optimisation framework was proposed to manage DNO owned storage devices in 

order to maximise network assets utilisation. 

The vast majority of the DNO perspective is for planning and operation of the 

distribution network which optimises location and size of network assets and energy 

storage for minimising cost incurred by the DNO [4], [5], [106], [123]–[125]. 

2.6.3 Integrated DER Systems with Network Constraints 

 In the literature reviewed, the constraints of the electricity network are not considered 

in the formulation of the optimisation problem. From the network perspective, the 

distributed energy systems are not optimised based on the objectives of DER 

aggregators or owners. This is partly due to the computational challenge of integrating 

non-linear Alternating Current (AC) power flow equations in such optimisation 

models. Linearising these equations to include a Direct Current (DC) power flow 

instead of AC power flow in the formulation of the model is a method of avoiding the 

computational time constraint of the AC power flow as presented in [126]. However, 

such simplifications may not represent a realistic impact of network constraints on the 
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optimal objective function of such models [127], [128]. Most of the existing 

optimisation models do not take into account the constraints of the local distribution 

network and assume the network can accommodate all operations and configurations 

of onsite distributed energy technologies [11], [126]. 

 In chapter 6, of this thesis, the impact of an optimised distributed energy system on 

a modelled microgrid was evaluated with an AC power flow using a soft-linking 

procedure. Different scenarios of the optimised distributed energy systems were 

simulated and evaluated based on voltage excursions and energy losses. 

2.7 RESEARCH GAPS 

The surveyed literature of EV storage with V2G capability in energy systems with 

high shares of DER has been reported to achieve different objectives. However, the 

value of EV with V2G capability and different EV charging rates in a large energy 

system has not been explored. Therefore, in this study, the value of EV storage with 

V2G capability in large and local energy systems with high shares of DER was 

investigated (discussed in chapter 3). 

 

The benefits of a multi-period power flow provide have been identified as important 

to evaluating the benefits of DGs in microgrids. However, techniques for evaluating 

the benefit of a multi-period heuristic power flow for a microgrid with high penetration 

of EV and DGs under uncontrolled and dual tariff profiles were not explored. 

Therefore, in this thesis, the operational benefits (in terms of voltage profiles and 

energy losses) of EV storage in a microgrid with DG penetration were quantified and 

reported in chapter 4. 

 

Maximisation of FiT revenue streams at the customer premises for an existing PV 

generating system benefiting from the UK FiT system can be achieved by using 

stationary battery storage. However, research conducted on suitable techniques for the 

evaluating the value of deploying battery storage for an existing PV system (benefiting 

from the UK FiT) and impact of storage unit costs (£/kWh) with different electricity 

tariffs were not found. Therefore, in this thesis, an MILP optimisation technique was 

developed and simulated to evaluate the value of deploying a stationary battery storage 

for a PV generating system benefiting from the UK FiT (discussed in chapter 5). 
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Evaluating the impact of optimised distributed energy systems (with battery storage 

and high DG penetration) can achieve savings for both the DNO and customer. 

However, in the surveyed literature techniques for evaluating distributed energy 

systems are only explored from the DNO perspective or the customer perspective. 

Therefore, in this thesis, a soft-linking procedure was designed to evaluate the impact 

(in terms of voltage profiles and energy losses) of optimised distributed energy systems 

on a modelled microgrid (discussed in chapter 6). 

2.8 SUMMARY 

In this chapter, the literature relevant to this thesis was analysed. A description of the 

studied DER was given. The use of EV in large energy systems was presented. Also, 

the use cases of battery storage services in future electricity supply was analysed to 

give a background to the ToU optimisation developed in chapter 5, for managing 

battery charging and discharging for an existing PV generation system. A review of 

network constraints and optimised distributed energy systems was presented to 

provide a background for the soft-linking procedure developed to assess the impact of 

optimised distributed energy systems in distribution networks. 

DER have been identified as key distributed resources in the future energy system 

mix. The DER that were described includes (i) wind turbines, (ii) PV, (iii) FCs, (iv) 

EV and (v) battery storage. The benefits of battery storage services with wholesale 

electricity and ToU tariffs optimisation was presented since it is studied in chapter 5. 

EV charging in energy systems with high shares of RES was identified as means of 

decarbonising the electricity and transport sectors. This is done to provide a 

background for the case studies simulated in chapter 3. The EV charging impacts on 

distribution network were reviewed. Voltage excursions and power losses were 

identified as one of the potential issues with DER integration into distribution 

networks. These criteria are applied on a controlled EV charging in a microgrid with 

DER developed in chapter 4. 

Techniques for the optimisation of distributed energy systems and its application in 

the management of a battery storage for an existing PV generation system were 

described. They are used in chapter 5 to optimise charging and discharging of battery 

storage for an existing PV system with ToU. 
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Optimised distributed energy systems and the assessment of network constraints 

was presented and the perspective of the DNO and customer/aggregator explained. A 

soft-linking procedure is developed in chapter 6 for assessing the impact of optimised 

distributed energy systems in distribution networks. 
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Chapter 3  

3.EV Charging in Energy Systems 

 

3.1 INTRODUCTION 

EV are expected to play a key role in the future of transport sector electrification. 

According to [129], large scale integration of EV into energy systems has the potential 

of maximising the utilisation of intermittent RES while minimising CO2 emissions. 

The energy import dependency in the UK as of 2012 is 36.5% according to [130], the 

highest in 40 years. To evaluate the potential of EV to maximise the utilisation of 

fluctuating RES in energy systems, the CEEP and CO2 emissions incurred because of 

EV integration should be evaluated. 

The objective of this chapter is to calculate the CEEP and CO2 emissions with varying 

levels of wind power integration in (i) large and (ii) local energy systems with and 

without the integration of EV. 

Two scenarios of EV were studied: (i) EV only and (ii) EV with the capability of power 

flowing from the EV battery to the grid referred to as V2G. 

A comparison was made with respect to using different EV charging rate by 

developing an excel tool with hourly energy demand distributions for wind power 

generation, electricity demand and electric vehicle energy demand (see Appendix A 

and B) for a complete year. All these were built into the EnergyPLAN model. 

As opposed to previous studies [1], [57], [66], [131] this chapter investigates the value 

of EV with V2G capability in a GB national and local energy system with high 

penetration of DER. The chapter gives a brief review of the modelled input parameters 

in EnergyPLAN and presents two case studies to evaluate the value of EV with V2G 

capability in i) GB large scale system (2012 reference scenario and 2020 alternative 

scenario and (ii) GB local system. 
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3.2 ENERGYPLAN MODEL 

The EnergyPLAN is a deterministic energy systems analysis tool which optimises the 

operation of a given energy system based on defined input parameters [57], [132], 

[133]. The model is used for building national or regional energy systems for the 

analysis of large scale integration of RES. The main objective is to model a variety of 

options that can be compared with one another based on defined input conditions. The 

EnergyPLAN model is a simulation platform rather than optimisation tool for 

analysing different pathway options for energy systems (electricity heating and 

transportation). The model is aggregated in its description of the energy systems in 

contrast to models in which each individual component is described. For example, the 

district heating systems in EnergyPLAN are aggregated into groups of heating 

systems. 

Figure 3.1 shows the modelling framework of the model, which integrates the 

electricity, heating and transport sectors. 

 

 

 

Figure 3.1: Schematic of the EnergyPLAN model 

3.2.1 Electricity Demand 

The GB system in the future growth scenarios of 2020 has a high penetration of RES 

[134]. A reference model for the GB energy systems was created in EnergyPLAN 

considering wind penetration from 0-180TWh. This represents 50% of the electricity 
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demand in GB. Table 3.1 shows the data sources of all the input parameters in Table 

3.2 shows the aggregated energy inputs for GB. 

 

Table 3.1: Data sources of the GB EnergyPLAN model parameters 

Input Parameter Data Sources 

Electricity demand (TWh) 

National Grid UK Future Energy Scenarios 2012 [135] 

Note: Demand in 2020 excludes electricity demand used 

for EV in the EnergyPLAN Model. 

CHP capacity MWe DECC Energy Digest, 2012 [130]. 

District heating demand (TWh) DECC Energy Digest, 2012 [130]. 

Total wind power (MW) 

ELEXON 2012, National Grid Generation data by fuel 

type [136] and National Grid Gone Green UK Future 

Energy Scenarios 2012 [135].  

Nuclear (MW) 
DECC Electricity Generation by fuel type, 2012 [130], 

[137]. 

Condensing power capacity (MW) 
DECC Electricity Generation by fuel type, 2012 [130], 

[137]. 

 

Table 3.2: Aggregated GB energy demand for 2012 and 2020 

 

 

 

 

 

 

To model the reference system in EnergyPLAN, data was collected for 2012 and then 

compared with future scenarios. The inputs of the model were collected from studies, 

reports and energy systems projections for the GB, (see, [134]–[138]). These inputs 

include electricity demand, hourly demand distributions, renewable energy capacities, 

hourly wind power productions, individual heat demands, industry heat demands and 

transport demands. UK transport data was collected from [139] which includes hourly 

traffic distributions and hourly transportation demand. 

 

 

Input 2012 2020 

Electricity demand (TWh) 320 322 

CHP capacity MWe 6111 11300 

District heating demand (TWh) 49 49 

Total wind power (MW) 6488 30855 

Nuclear (MW) 10633 12000 

Condensing power capacity (MW) 68352 62100 
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3.2.2 Heating Demand 

Heating demand data is synthesised using normalised hourly distributions in 

EnergyPLAN with space heating and hot water consumption data obtained from 

[134]–[138] for the UK. 

3.2.3 Transport Energy Demand 

The reference model for EV integration into the transport sector in EnergyPLAN is 

based on the energy consumption of internal combustion cars. The reference models 

are compared with two alternative scenarios: 

• EV without V2G: EV with smart charging but without V2G capability. 

• EV with V2G: EV with smart charging and V2G capability. 

For modelling the transportation demand for all the studied cases considered, an 

average battery capacity of 30kWh is assumed for each EV [1]. Based on this 

assumption and the data collected for the GB, an electric vehicle fleet was defined for 

GB which is given in Table 3.3. 

 

Table 3.3: GB transport inputs 

Inputs 
Reference 

Model 
With EV Integrated into 

the Model 

Number of cars (Millions) 28.7 1.7 

Petrol and Diesel Consumption 
(TWh/year) in the reference model 
with no EV and in the case when 1.7 
Million EV are added to the model 

456.68 450.94 

EV Electricity consumption 
(TWh/year) 

– 5.744 

Battery storage capacity (GWh) – 57.1 

 

EV energy demand 

 

According to [59], there are 33.9 million registered vehicles in the UK, of which 28.72 

million are private cars. It was assumed that 6% of the total number of private cars is 

the 2020 high penetration scenario which implies that by 2020 there will be 

approximately 1.7 Million EV in the UK. Table 3.5 describes the input parameters 

used for modelling EV in the transport sector of the model. 
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Table 3.4: Input parameters for modelling EV in the transport sector 

EVD  Transport demand of electric cars in TWh/year 

EV  The hourly distribution of transportation demand 

line
P  The power capacity of the grid connection to EV 

2
DrivingShare

V G  The share of EV with V2G capability on road and not 

connected to the grid 

Charger  The efficiency of the grid to battery connection 

Inv  The efficiency of battery to grid connection 

SE  The capacity of the battery storage in GWh 

_
2

Connection Share
V G  The share of parked V2G connected to the grid 

 

Equation 2 calculates the energy demand for each EV which implies that the total 

electricity demand (
EVD ) of aggregated EV can be computed: 

The EV fuel efficiency and the annual distance in this study are assumed to be 6 

km/kWh and 20,000 km/year respectively [140]. To calculate the battery hourly 

demand as an aggregate of the number of EV, Equation 3 was used together with the 

hourly traffic distribution data from the UK department of transport. 

 

 
Distance/year/vehicle (km/year)

/ year/vehicle = 
Vehicle Efficiency (km/kWh)

Energy   (2) 

 
arg

EV EV

EV Ch er

EV

D
e







 


  (3) 

Figure 3.2 represents the hourly distribution of transport demand derived from 

Equation 3 by using the hourly traffic distribution data ( EV ) from the study of the GB 

energy system. This is integrated into the model and use for the analysis EV integration 

into the energy system. 
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Figure 3.2: Hourly battery demand for a typical week 

To analyse the energy system by integrating EV with Vehicle to Grid (V2G) capability, 

Equation 4 was used to compute the hourly distribution for a year of the aggregated 

V2G fleet (
2V G

p ): 

 

2 _
2

(1 2 ) 2 (1 )
( )

V G line Connection Share

EV

DrivingShare DrivingShare

EV

p P V G

V G V G
Max





  

   
 
 
 

  (4) 

 

Equation 4 consists of three main factors. The first factor is 
line

P which denotes the 

power capacity of the entire EV with V2G capability fleet. This is multiplied by

_
2

Connection Share
V G , which is the fraction of parked cars that are plugged into the grid. The 

second factor in parenthesis (1 2 )
DrivingShare

V G  represents the minimum fractions of cars 

that are parked. The sub-factor (1 )
( )

EV

EV
Max




  calculates the fraction of cars on the road 

at each hour. The third factor is a multiplication of 2
DrivingShare

V G and (1 )
( )

EV

EV
Max




 , which 

calculates the additional fraction of cars parked during non-rush hour periods. The 

subject of the formula in Equation 4 
2V G

p calculates the power capacity of all connected 

EV with V2G capability at any given hour. 

A combination of 2
DrivingShare

V G ,
_

2
Connection Share

V G  and charging rates ( line
P ) could be made to 

obtain the V2G fleet distribution. In the study carried out for the GB energy system, 

2V G
p was computed using 3kW, 7kW, 11kW and 22kW as line

P . The different charging 
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capacities were used to evaluate the impact of EV charger capacity on the reduction of 

curtailed electricity from excess wind energy generation in the GB EnergyPLAN 

model. The charging capacities (3 – 22 kW) were based on the National Grid/Ricardo 

report: Bucks for Balancing [68]. For the realistic scenario the parameters 
_

2
Connection Share

V G  

and 2
DrivingShare

V G  were assumed to be 0.7 and 0.2 respectively [1]. This means that 20% 

of the EV are on the road driving, and the remaining EV are connected and charging. 

Figures 3.3 represents the power capacity of the aggregated EV with V2G capability 

for every hour of a typical week. 

 

 

Figure 3.3: V2G distribution for GB 

A 2020 projected number of 1.7 million EV for the GB transport system means that 

for an 11kW per vehicle line capacity, the total instantaneous grid connection is 

18.96GW. The aggregated EV with V2G capability capacities for different charging 

rates is computed as a function of the number of EV. Table 3.6 summarises the 

aggregated V2G capacities: 

Table 3.5: Aggregated EV with V2G Capacities 

Charger Rate (kW) V2G Capacity (GW) 

3 5.17 

7 12.06 

11 18.96 

22 37.91 

 

The model refines the computations from errors by iterating the calculations till an 

equilibrium is reached between the initial and final battery capacity. The initial EV 
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battery state of charge (storage content) is defined as 0.5 of the battery storage capacity 

[1], [57], [140]. The next section evaluates the studied system with two case studies i) 

national ii) local level. 

3.3 CASE STUDIES 

The results of the GB energy system are computed in terms of two graphs: CEEP and 

CO2 emissions against a range of wind power penetration representing 0-50% of the 

electricity demand. The UK localised energy system simulation results are computed 

in terms of electricity import into the local system against a range of wind power 

penetration. The snapshots of the EV and V2G distributions integrated to the 

EnergyPLAN model for all the studied cases is shown in Appendix A and B. 

3.3.1 GB Energy System 

Three different scenarios were modelled for the electricity sector in 2020 in addition 

to conventional power plants: 

▪ CHP scenario considering a system with CHP capacity of 11,300 MWe. 

▪ A non-CHP scenario where the CHP capacity is removed from the system to 

evaluate the impact of CHP on the excess of electricity production. 

▪ GB model with different EV charging rates. 

The non-CHP case was added to the simulated scenarios as a reference to compare the 

impact of CHP based heating in the reduction of CO2 emissions in the GB 

EnergyPLAN model. 

CHP case 

Figure 3.4 shows the result of the GB model described in previous sections. As the 

wind penetration increases beyond 80 TWh, there is little excess. An increase of 60 

TWh yields an excess of 12.27 TWh and rises exponentially to 59.51 TWh at 180 TWh 

of wind penetration in the reference case. There is little improvement in the reduction 

of CEEP in the case of GB system with EV without V2G capability. This is because 

only 1.7 million EV were modelled in comparison to 28.7 million combustion cars 

used for the reference case. 
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Figure 3.4: CEEP for the CHP case 

Figure 3.6 shows the CO2 emissions for the GB CHP reference case, with alternative 

EV and EV with V2G capability. 

 

 

Figure 3.5: CO2 emissions for the CHP case 

In the V2G case, there is a significant reduction in CEEP from 59.51 TWh to 40.21 

TWh at 180 TWh of wind power penetration. In Figure 3.6, it could be seen that CO2 

emissions decrease for all the three cases with increasing penetration of wind power 

into the system. The gap between the reference and the two alternative cases shows a 

constant reduction in CO2 emissions of about 7 Mt, until about 140-160 TWh of wind 

power penetration. At that point, the CO2 emissions of the EV without V2G case stop 

decreasing, while for the EV with V2G the drop continuous. This shows that at higher 
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penetration of wind power, EV with V2G capability can store this energy and send it 

back to the grid when required. 

Non-CHP case 

In the non-CHP system represented in Figures 3.6 and 3.7, similar results were 

obtained compared to the alternative CHP system. However, it could be seen from 

Figure 3.7 less excess electricity is generated in the system because CHP electricity 

production was removed. It also takes more than 80 TWh of wind power penetration 

before excess electricity is recorded. This creates an opportunity for more wind power 

integration in the system using EV with V2G capability than in the CHP case. In this 

scenario, only 22 TWh of excess electricity was produced compared to 40 TWh excess 

produced in the CHP case. 

 

Figure 3.6: CEEP for the non-CHP case 

 

Figure 3.7: CO2 emissions for the non-CHP case 
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Figure 3.7 shows that the CO2 emissions increases in the non-CHP system. This is due 

to the CHP heating demand transferred to district heating based on boilers. It is also 

noticed an increase in CO2 emissions from 470 to about 490Mt compared with the 

results of the CHP system. This shows the value of CHP in the reduction of CO2 

emissions. 

GB Model with different charging rates 

The model was simulated for EV charging rates of 3kW, 7kW, 11kW and 22kW. 

Figures 3.8 and 3.9 shows the CEEP and CO2 emissions for the respective charging 

rates. The different charging rates show a significant reduction in CEEP for the EV 

with V2G (see Figure 3.8). The value of the storage in EV with V2G capability case 

increases as the charging rate is increased. Also, the CO2 emissions decrease with 

increasing wind power penetration for all cases considered. The V2G with higher 

charging rates decreases CO2 emissions significantly at higher penetrations of wind 

power (see Figure 3.9). 

 

Figure 3.8: Curtailed electricity for the GB case with different EV charging rates 
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Figure 3.9: CO2 emissions for the GB case with different EV charging rates 

At higher penetration of wind power, EV with V2G capability can store excess energy 

and give it back to the grid when required. This energy replaces part of the energy 

generated from conventional power plants and the CO2 emissions are further reduced. 

The results also show that there is an insignificant difference between the CEEP when 

EV are charging without V2G for different charging rates. This explains the reason 

why different charging rates for the EV without V2G capability are represented in one 

scenario, namely “EV without V2G capability”. Additionally, CEEP decreases 

significantly (see Figure 3.8) as the charging rate is increased from 3kW to 22 kW 

which shows that V2G has the potential to significantly reduce CEEP. 

3.3.2 GB Local Energy System 

In this case study, the concept of the aggregated portfolio of DER was applied to a 

typical local energy system with high penetration of small sale DER. The system was 

modelled in EnergyPLAN using data from [86], [141]–[143]. Figure 3.10 shows 

schematic the local energy system with generators, loads and EV. 
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Figure 3.10: Schematic of the modelled local energy system 

In this local system, loads represent the electricity demand of 18432 residential 

customers. This number of customers is based on UK Generic Distribution Network 

(UKGDN). The UKGDN consists of 48 microgrids each with 384 customers (384 × 

48 = 18432) [142]. Figure 3.11 shows the studied local system. The dotted line shows 

the modelled local area with 18432 residential customers. 

 

Figure 3.11: Studied Local System with 18432 residential customers 

Generators refer to all the aggregated energy production from the wind, PV and CHP. 

In addition, EV can behave both as loads and flexible storage. When they are charging, 

there is energy consumption, but in V2G mode they act as flexible storage, storing and 

giving energy back to the system when it is required. 
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To model the local energy system in EnergyPLAN electricity load profile data was 

collected from [143] with the assumption of a daily minimum of 0.16 kW and a 

maximum of 1.3 kW as described in [141]. The high penetration scenario of 

microgeneration for the year 2030 was taken from [142] and summarised in Table 3.7. 

All data in Table 3.7 is based on the high microgeneration penetration of the article: 

(Carbon optimised Virtual Power Plant with Electric Vehicles, [142]). As it can be 

seen from the Table 3.7 the total installed power capacity of the local energy system 

is approximately 20 MW. 

Table 3.6: Microgeneration penetration scenario for the studied system [142] 

 

Based on the studies carried out by [62], there are 30 million vehicles in the UK with 

a population of over 60 million. It is assumed that half of the customers in the local 

energy system have private cars, and according to the high penetration scenario of 

[141], [142] for 2030, there will be 70% penetration of EV in the local energy system. 

Based on the domestic nature of the studied local energy system, a 3 kW charging rate 

was used in modelling the EV within the system. 

The model for the local energy system was simulated for a range of wind power 

penetration from 0 to 100% of the annual electricity demand of the localised energy 

system (91.9 GWh, evaluated from the load profile). The aim of the simulation is to 

evaluate the electricity import reduction in the local energy system for EV without 

V2G and EV with V2G capability as penetration of small scale DER is increased. 

Three different scenarios were modelled: 

Microgeneration Type Unit 

(kW) 

Microgeneration 

Units 

Total Power 

(kW) 

Wind Turbines 2.5 1824 4560 

Photovoltaic 1.5 960 1440 

Fuel Cell (Natural Gas) CHP 

Units 

3 1536 4608 

Micro Turbine (Biogas) 3 720 2160 

Stirling Engine (Wood 

Pellets) 

1.2 6144 7372.8 

Total 11.2 11184 20140.8 
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• Only internal combustion cars. 

• EV without V2G capability (70% penetration). 

• EV with V2G capability (70% penetration). 

Simulation Results 

Figure 3.11 shows that all three cases, the electricity import into the local energy 

system decrease with increasing penetration of wind power into the VPP. The 

reference case with no EV shows the system reduces import more than the scenario 

with EV. This is because EV are added loads to the system, however, the V2G scenario 

with added storage capability can reduce electricity import more than the scenario with 

EV having no V2G capability. 

The import reduction rate as a percentage for the V2G case is represented in Figure 

3.12. With V2G, Figure 3.12 is showing that with no wind penetration, there is about 

24 % decrease in electricity import due the added capability of the V2G. 

 

Figure 3.12: Electricity import in the studied local energy system 
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Figure 3.13: Import reduction rate with V2G 

It could also be seen that with 10 GWh wind power penetration, the electricity import 

to the localised energy system is decreased by 34 % when EV have the V2G capability. 

It is worth mentioning, that the optimal reduction rate is attained with 40 GWh of wind 

power penetration in the case with V2G (see Figure 3.12). 

3.4 DISCUSSION 

The results in this section have shown the value of EV storage with V2G capability in 

large energy systems of reduction of CEEP and CO2 emissions. Also, up to 34% 

electricity, import could be reduced when EV with V2G capability in a local energy 

system with high DER penetration. The non-CHP case was only used a reference point 

to evaluate the impact of CHP plants and CO2 emissions in large energy systems. It is 

seen from the results that the power rating of the EV charger (3 – 22 kW) plays a 

significant role in the amount of curtailed electricity (CEEP). 

This method for the GB has not been previously carried out in the surveyed literature 

[1], [57], [66], [131]. 

The input data used in the model have been drawn from plausible sources (see Table 

3.1). However, these input parameters can be replaced by equally plausible alternatives 

which will result in different outcomes. 

Also, the EnergyPLAN model is a one node energy balance model and does not model 

the electricity network. Going forward, there is a need to evaluate the value of EV 

integration in a local distribution network with DG penetration. Therefore, in chapter 
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4, the analysis of EV integration in a modelled microgrid with high DG penetration is 

further explored. 

3.5 SUMMARY 

In this chapter, the integration of wind power in combination with EV with and without 

V2G capability as flexible storage was studied in three case studies: 

▪ One for the GB national energy system with CHP and non-CHP scenario. 

▪ GB national model with various charging rates of 3kW, 7kW, 11kW and 

22kW. 

▪ A local energy system with high shares of aggregated DER. 

In the first study case, the GB energy system was modelled using the 2020 projection 

data for electricity, heating and transport sectors in EnergyPLAN. In this scenario, two 

different energy systems were considered, one with CHP and the other without CHP 

which is typical for the GB energy system. For these two systems, three different 

vehicle fleets were examined: one only with internal combustion cars, and the other 

two with EV with and without V2G capability. The results showed that EV with V2G 

capability can reduce CO2 emissions and excess electricity production. That means 

that more wind power can be integrated with of V2G as a flexible storage. 

In the second case study (GB with different charging rates), the results show that 

there is an insignificant difference between the CEEP when EV are charging without 

V2G for different charging rates. This explains the reason why different charging rates 

for the EV without V2G capability are represented in one scenario, namely “EV 

without V2G”. However, in the V2G scenario, CEEP decreases significantly as the 

charging rate is increased from 3kW to 22 kW which shows the potential of V2G in 

the significant reduction of CEEP. 

In the last case study case, a localised energy system was simulated in EnergyPLAN 

tool. This system consisted of 18432 customers with microgenerators and EV with 

V2G and without V2G capability. It was found out that EV with V2G capability can 

reduce the electricity imports, which makes the system more self-sustaining. This 

shows that integrating wind power when using V2G as a flexible storage, can reduce 

the electricity imports in the studied local energy system by about 40%. 



Chapter 4                                                 EVs Charging Management in a Microgrid Distribution Network 

 

 
47 

 
  

Chapter 4  

4.EV Charging Management in a 

Microgrid Distribution Network 

 

4.1 INTRODUCTION 

RES in LV networks are causing important changes in the operation of the electric 

power system[73], [144]. Generally, the integration of RES largely occurs in medium 

and LV networks. This leads to the concept of the microgrid, defined as a small scale, 

LV distribution network mainly configured to supply electricity and heat loads in small 

communities and local industrial sites[145].Microgrids have the potential to optimise 

the performance of LV distribution networks. Technically, a microgrid is defined as 

an autonomous group of controllable plug and play micro-sources and energy storage 

devices optimally placed and operated for the benefit of the customers [7]. 

DER are increasingly becoming a key component in the operation of distribution 

networks. This is partly because of the technology improvement of many DER 

technologies such as wind energy, photovoltaic, FC, and CHP. The integration of such 

DER is important for the reduction of CO2 emissions and the improvement of 

operation, efficiency and security of distribution networks[146]. Microgrids as active 

LV networks can potentially provide an increase in the reliability and quality of 

services offered to the users. For this research, the benchmark microgrid [147] is used. 

The DER considered in the model include Micro-CHP, Wind Energy Conversion 

System (WECS), solar PV and FC. 

Two research projects, microgrids and more microgrids were funded by the 

European Commission to investigate microgrids. The main objectives of these projects 

were to increase the penetration level of renewable energy generation and use DER to 

improve the reliability of power supply through intentional islanding, reduce the 

overall system losses, and enhance the power quality [148]. This demonstrates the 

importance of microgrids in the future electric power system. EV uptake in the 

transportation sector is widely anticipated to be a key policy driver that will facilitate 
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the shifting of transport energy demand from fossil fuels to an electric power system 

based on RES and low carbon microgenerators [149]. 

The increasing penetration of EV charging is likely to occur in LV networks EV 

mobile batteries in VPPs and microgrids can be used to increase the utilisation of 

intermittent RES [72], [150]. 

EV charging can be carried out in an uncontrolled manner or in a controlled pattern 

using two-step tariff profiles like the economy 7, also referred to as a dual tariff model. 

In the uncontrolled mode, the utility/aggregators make no effort to control or influence 

the timing and amount of EV charging loads [151]. The dual tariff charging mode is a 

policy based on a lower electricity price during the night hours. This could create 

saving opportunities for the EV owners which begin their charging at 23:00 and finish 

at approximately 6.00 [152]. 

In this chapter a time series load flow study over a 24-hour period was carried out 

using a benchmark microgrid model described in [153], with different EV charging 

modes and different DG penetration levels. The network is modelled using typical 

residential load profiles for summer and winter and typical DG generation profiles 

obtained from the [31], [143], [154]. The modelling study is carried out to evaluate the 

impact of EV charging profile (uncontrolled and dual tariff) and the integration of 

different penetration levels of DG in the microgrid. It was evaluated the voltage 

profiles and energy losses for summer and winter load profiles representing different 

loading conditions of the network. 

The DGs impact on voltage level in the benchmark model is presented. The impact of 

EV charging on the voltage level considering different levels of penetration and 

charging modes (uncontrolled and dual tariff) is analysed. Also, the energy losses in 

the benchmark model for a fixed penetration of DG and for two EV charging modes 

(uncontrolled and dual tariff) and for summer and winter load profiles were analysed. 

4.2 BENCHMARK MICROGRID MODEL 

The Conseil International des Grands Réseaux Électriques (CIGRE) benchmark 

microgrid simulated in this chapter is based on the data from [147], [155]. The 

reference microgrid (Figure 4.1) with residential loads and representative renewable 

sources from DER technologies, was modelled using MATPOWER a power system 

analysis toolbox based on MATLAB. 
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Figure 4.1: CIGRE Benchmark model [147] 

4.2.1 Network Data 

Figure 4.2 shows the buses modelled buses of the CIGRE benchmark model. The 

network parameters were taken from the CIGRE microgrid model (see Figure 4.1). An 

MV/LV transformer connects the microgrid and the Medium Voltage (MV) 

distribution network. 

The grid electricity import into the microgrid is kept to a minimum in times when 

electricity supplied by onsite DGs is adequate to meet the electricity demand. 
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Figure 4.2: Configuration of the benchmark microgrid 

The MV/LV transformer parameters and network cable data are given in Table 4.1 and 

4.2 respectively. The transformer is a 400 kVA, 20/0.4 kV with the impedance of 0.01+ 

j 0.04 p.u. The transformer is equipped with off-loading taps at the High Voltage (HV) 

winding, providing a typical regulation range of ± 5%. Its connection group is Dyn11, 

corresponding to a delta-connected primary and wye-connected secondary winding. 

Table 4.1: Microgrid transformer parameters 

Capacity (kVA) Primary (kV) Secondary (kV) R (per unit) X (per unit) 

400 20 0.4 0.01 0.04 

 

Bus 1: 20 kV, Slack

Bus 2: 0.4 kV

Bus 3

Bus 4

Bus 5

Bus 6

Bus 7

Bus 8

Bus 9

Bus 10

Bus 11
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Table 4.2: Microgrid data 

From bus 

To bus 

Branch Conductors 

Type 

Rph 

(Ω/km) 

Xph 

(Ω/km) 

Length 

(km) 

Per Unit values 

1-2 Transformer - - - - 0.01+j0.04 

2-3 1 Overhead 

line 

4x120 𝑚𝑚2 

Al 

XLPE 

0.284 0.083 0.07 0.0497+j0.0145 

3-4 2 Service 

Connection 

4x6 𝑚𝑚2 Cu 

3.690 0.094 0.03 0.276+j0.007 

3-5 3 Overhead 

line 

4x120 𝑚𝑚2 

Al 

XLPE 

0.284 0.083 0.035 0.0248+j0.007 

5-6 4 Overhead 

line 

3x70 𝑚𝑚2 

Al 

 

0.497 0.086 0.105 0.130+j0.022 

5-6 4 Service 

Connection 

3x50 𝑚𝑚2 

Al 

0.822 0.077 0.03 0.061+j0.0057 

5-7 5 Overhead 

line 

4x120 𝑚𝑚2 

Al 

XLPE 

0.284 0.083 0.07 0.0497+j0.0145 

7-8 6 Service 

Connection 

0.871 0.081 0.03 0.0653+j0.0060 
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4x25 𝑚𝑚2 

Cu 

7-9 7 Overhead 

line 

4x120 𝑚𝑚2 

Al 

XLPE 

0.284 0.083 0.105 0.0745+j0.0217 

9-10 8 Service 

Connection 

4x6 𝑚𝑚2 Cu 

3.690 0.094 0.03 0.276+j0.0075 

9-11 9 Overhead 

line 

4x120 𝑚𝑚2 

Al 

XLPE 

0.284 0.083 0.035 0.0248+j0.0072 

9-11 9 Service 

Connection 

4x16 𝑚𝑚2 

Cu 

1.380 0.082 0.03 0.103+0.0062 

 

The per unit data was calculated with the assumption of the base values for apparent 

power and voltage as shown in Equations 5, 6 and 7. 

 400 baseS kVA   (5) 

 0.4 baseV kVA   (6) 

 
2

base
base

base

V
Z

S
   (7) 

Based on the value of 
baseZ , the per unit (p.u) values of the branch parameter resistance 

puR  and reactance puX  are obtained from Equations 8 and 9. 

   

 line
line ph pu

base

R
R R length R

Z
      (8) 

 line
line ph pu

base

X
X X length X

Z
      (9) 
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4.2.2 Load Data 

In the modelled microgrid, the loads are mainly different types of residential buildings. 

Table 4.3 gives a description of the loads and power factor (to calculate the active 

power) in the modelled buses. 

Table 4.3: Load description 

Bus Description So (min) (kVA) S (max) 

(kVA) 

Power factor 

3 Single 

Residential 

5.7 15 0.85 

6 Apartment 

Building 

57 72 0.85 

8 Group of 

four 

residences 

23 50 0.85 

10 Single 

Residential 

25 47 0.85 

11 Apartment 

Building 

5.7 15 0.85 

 

The maximum demand (Smax) of each consumer group, depends on the number of 

individual consumers within each group and is found using standardised coincidence 

factor for residential consumers, which become smaller as the number of consumers 

increases. For this reason, the contribution of minimum demand (So) of each group to 

the maximum demand of the feeder will be further reduced. The total maximum 

demand of the aggregated loads is 116 kVA (given by the sum of all So in Table 4.3). 

The power factor of all consumers is assumed to be 0.85. 

A standard domestic unrestricted load profile is taken from [143] and was used in 

modelling the domestic loads in the microgrid. This is achieved by fitting the minimum 

and maximum loads presented Table 4.3 into the load profile shapes. The load profiles 

are representing average residential load for weekdays in two typical UK seasons: 

Summer and Winter. Figure 4.3A shows the normalised summer and winter load 

profile for uncontrolled residential and dual tariff Elexon load classes. The additional 

EV load profile is shown as a normalised profile (uncontrolled and dual tariff) in 

Figure 4.3B. 
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(A) 

 

(B) 

Figure 4.3: A) Normalised Elexon Summer and Winter weekdays load profile for 

uncontrolled and dual tariff load classes [143], [156]. B) Normalised uncontrolled 

and dual tariff EV load profile. 

It could be seen that the normalised summer uncontrolled Elexon load profile has a 

similar shape with the winter uncontrolled profile. EV load profiles (see Figure 4.3B) 

are added to the load profiles of Figure 4.3A to obtain the total load profile of each of 

the buses in the CIGRE microgrid benchmark model. 

4.2.3 DG Profiles 

The microgrid has different DG technologies. Table 4.4 shows the placement of DGs 

in the microgrid and their capacities. 
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Table 4.4: Reference DG in the microgrid 

Bus Description Capacity (kW) 

6 

Microturbine 

CHP 

30 

8 Wind + PV 10+10 

10 PV 3 

11 Fuel cell 10 

 

The DG profiles used in this chapter were taken from the United Kingdom Generic 

Distribution System (UKGDS) [154]. Figures 4.4 and 4.5 shows the generation 

profiles for the DGs studied in this chapter. 

 

Figure 4.4: Normalised generation profiles for the wind, PV and CHP 

 

Figure 4.5: Normalised FC generation profile 
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The DG generation profiles were used as data input for the simulation of the case 

studies. The PV, wind and CHP the profiles were obtained in a normalised format from 

the UKGDS and adapted to the DER capacities in the microgrid case study. 

To run time series simulations, real power outputs curve for the different types of DGs 

and typical residential load pattern were obtained from the normalised profiles of 

Figures 4.4 and 4.5 considering two different loading conditions of the network (winter 

high and summer low). These profiles (demand and generation) have half-hourly time 

step, so they represent electricity demand and generation for each half-hour of the day 

(48 time steps). 

4.3 MODELLING PROCEDURE 

4.3.1 MATPOWER Description 

The microgrid is modelled in MATPOWER, a package of MATLAB script files used 

for solving power flow and OPF problems [157], [158]. 

4.3.2 Power Flow Procedure 

For the study of the network model, it was used the power flow study commonly 

referred to as load flow. Power flow is a mathematical procedure based on Newton-

Raphson numerical analysis technique. It is used to study steady state analysis during 

normal operation of the Microgrid. To do this, the operation of the microgrid was 

assumed to be in a balanced operating condition. Load flow study usually uses 

simplified notations like a one-line diagram and per unit system. The network model 

is required to be converted to single line diagram which is a simplified notation for 

representing a complex three-phase power system. The single line diagram is used in 

a per unit system format. This expresses the system quantities as fractions of a defined 

base quantity. When power flow routine is completed the results provide voltage, 

active and reactive power injection for all the buses of the network. Figure 4.6 shows 

a flowchart representing the power flow routine used in this study. 

The branch data, node data (loads and generation) of the modelled network are passed 

to MATPOWER. A programming script was then developed in MATLAB 

environment. This script makes use of a combination of nested loops to simulate the 

operation with different scenarios of the microgrid modelled in MATPOWER. 
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Figure 4.6: Power flow routine for all studied cases 

4.4 CASE STUDIES 

The case studies described in Table 4.5 were considered and simulated in the 

MATLAB – MATPOWER model: 

 

 

Table 4.5: Case study description 

Case Study (CS) Description 

CS1 Integration of DGs only (no EV) 

CS2 Integration of EV only (no DGs) 

CS3 Integration of EV + 50% more DGs than the reference DGs 

CS4 Energy losses for different EV and DG penetration 

 

For CS1, additional DG penetration level are added as a percentage (0%, 

25%,50%,75%, and 100%) considering DGs presented in Table 4.4 

In CS2, the reference DGs in Table 4.4 stays the same, however, EV uptake levels are 

considered in the form of a percentage (0%, 25%,50%,75%, and 100%) of the original 

number of EV uptake shown in Table 4.6. 

Start

For case studies 1...N

Run Load Flow using 
MATPOWER

 study cases completed?

Analyse Results

End

YES

Load profiles (summer & 
winter) 

DG generation profiles
EV load profile

NO
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Table 4.6: Number of EV connected to each bus 

Bus Number 
Description 

Number of EV Charging rate 

4 1 3 kW 

6 13 3 kW 

8 4 3 kW 

10 1 3 kW 

11 7 3 kW 

 

It could be seen from Table 4.6, that bus 6 is the bus with the highest number of 

customers and the highest number of connected EV. Therefore, all the load flow results 

presented in this chapter would be based on bus 6. This is because of the potential large 

voltage deviations compared to the other buses. 

In CS3, a 50% increase in penetration level is added to the reference DG level 

presented in Table 4.4. Then a variation of EV uptake levels based on percentage 

increments (0%, 25%,50%,75%, and 100%) is simulated in the load flow routine. This 

is to evaluate the potential of DG contribution in minimising the voltage drop (due to 

the EV connection). At the same time, it is shown a decrease of the power flow from 

the grid because EV are charging using the local generation from DG. 

CS5 evaluates the microgrid’ s energy losses with different (i) EV uptake levels, (ii) 

EV charging modes and (iii) DG penetration levels into the microgrid. 

CS1, CS2, and CS3 are evaluated based on: 

▪ Daily voltage profile. 

▪ Summer and winter network loading. 

▪ Uncontrolled and dual tariff EV charging regimes. 

CS4 is evaluated based on: 

▪ Energy losses. 

▪ Summer and winter network loading. 

▪ Uncontrolled and dual tariff EV charging regimes. 
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4.5 SIMULATION RESULTS 

4.5.1 Voltage Profiles 

The voltage simulation profiles are presented in this section for all scenarios defined 

in Table 4.5 and are evaluated based on the 2002 UK Electricity Safety, Quality and 

Continuity Regulations distribution network steady state voltage statutory limits. 

These limits are 230V+10% (Upper Limit) and 230V – 6% (Lower Limit) [159], [160]. 

DG only case (CS1) 

 

To study the impact of DG integration on the voltage excursions at bus 6, different 

levels of DG penetration were considered. This assumption is based on the continuous 

development of RES technologies, and the efficiencies improvement of these 

technologies[161], [162]. 

Four levels of DG penetration were assumed expressed in percent (25%, 50%, 75%, 

and 100%) increment, to the reference DG level in the microgrid (see Table 4.4). 

Figures 4.7 and 4.8 are presenting the voltage profiles for summer and winter 

respectively. 

 

Figure 4.7: Voltage profile in summer 
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Figure 4.8: Voltage profile in winter 

It could be seen that the voltage profile fluctuates within the day. This is caused by the 

daily variation of the load pattern and the variability of stochastic renewable energy 

resources. As expected the voltage rises when the DG penetration is increased. The 

voltage measurements were also found to be within the statutory limits (230 

V+10%and -6% in the UK) for both summer and winter scenario. Little difference is 

observed in the voltage profiles of Figures 4.7 and 4.8 due to the similar shapes of the 

normalised Elexon load profiles presented in Figure 4.3 

EV only case (CS2) 

 

The impact of dispersed EV battery charging in a microgrid is presented in this study 

case. The assumed charging rate of each EV is 3 kW which is common for most 

residential applications [1]. The placement of EV in each bus of the microgrid is shown 

in Table 4.6. EV uptake levels of 25%, 50%, 75% and 50%, taken from [163], were 

simulated. “Uncontrolled” and “dual tariff” EV charging regimes were considered for 

managing the EV charging in the microgrid. In the “uncontrolled” charging regime, 

the EV owners start charging their vehicles when arriving home. However, in the “dual 

tariff” regime, the EV charging is assumed to be delayed. This charging delay is based 

on the economy 7 (dual tariff regime) in which between the hours 22:30 and 03:30, a 

cheaper night electricity tariff is available. 

Figures 4.9 and 4.10 presents the voltage profiles for summer and winter respectively. 
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Figure 4.9: Voltage profiles in summer (uncontrolled) 

 

Figure 4.10: Voltage profiles in winter (uncontrolled) 

Figure 4.9 shows the voltage in bus 6 for the uncontrolled charging considering 

different uptake levels of EV. It is noted that between 15.00 – 22.00 hours, the voltage 

drops from, about 0.94 to 0.91 p.u. Similar voltage excursions occur in the winter case 

as shown in Figure 4.10, however, the voltage drop is higher due to the higher winter 

load profile (see Figure 4.3) between the hours 18:30 – 20:00. 

Figures 4.11 and 4.12 present the voltage profile for the dual tariff charging 

considering different EV uptake levels. EV begin charging at 22:00 and finish at hour 

03:00. 
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Figure 4.11: Voltage profiles summer (dual tariff) 

 

Figure 4.12: Voltage profiles winter (dual tariff) 

The voltage drops to about 0.92 p.u. for winter scenario (see Figure 4.12) compared to 

about 0.9 p.u. for the summer scenario (see Figure 4.11). The voltage drop is more 

significant in the hours 21.00 to 23.00 compared to the hours 0.00 to 3.00 for both 

scenarios. In both scenarios, even when EV charging is a controlled manner, there may 

be some hours that the voltage excursions may occur due to the simultaneous charging 

of EV within that period. 
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EV with 50% additional DG to the reference DG level 

 

In this scenario, 150% DG penetration is considered (that is 50% additional DG to the 

reference DG level in the microgrid) and the EV uptake levels varied from 25% to 

100%. Figures 4.13 and 4.14 represents the uncontrolled scenario. 

 

Figure 4.13: Voltage profiles in the summer (uncontrolled) 

 

Figure 4.14: Voltage profiles in the winter (uncontrolled) 

It can be seen a drop to about 0.93 p.u. between the hours 15.00 – 18.00 for both EV 

charging scenarios in Figures 4.13 and 4.13. Compared with the reference DG case in 

Figures 4.9 and 4.13, the voltage excursions are minimised. 

With dual tariff EV charging regime, there is a smaller voltage drop between 21.00 to 

23.00 hours in the summer case (see Figure 4.15) compared to the winter loading 
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condition as presented in Figure 4.16. As expected, the voltage drops increase at higher 

EV uptakes. 

 

Figure 4.15: Voltage profiles in the summer (dual tariff) 

 

Figure 4.16: Voltage profiles in the winter (dual tariff) 

The winter voltage profiles with dual tariff regime completely stay within the UK 

distribution network statutory voltage limits. This shows that for the extreme case of 

minimum load and maximum generation the voltage excursions are higher. 

4.5.2 Energy Losses 

Energy losses for the modelled microgrid were computed for four different scenarios: 

▪ An uncontrolled EV charging regime with summer load profile for different 

DG penetration levels. 
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▪ A dual tariff EV charging regime with summer load profile for different DG 

penetration levels. 

▪ An uncontrolled EV charging regime with winter load profile for different DG 

penetration levels. 

▪ A dual tariff EV charging regime with winter load profile for different DG 

penetration levels. 

Summer Loading case 

 

The uncontrolled charging regime without DG connected in the microgrid is recording 

the highest energy losses (see Figure 4.17) with more than 0.21 MWh. The energy 

losses in the dual tariff charging regime (Figure 4.18) is 0.04 MWh lower than the 

uncontrolled charging case. 

 

Figure 4.17: Energy losses in summer (uncontrolled) 

 

 

Figure 4.18: Energy losses in summer (dual tariff) 
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The energy losses are decreasing when DG penetration is increasing. This shows the 

value of connecting both controlled EV charging and DGs in minimising the energy 

losses in microgrids. 

Winter Load case 

 

Figures 4.19 and 4.20 shows the energy losses for winter scenario. It is noted that the 

energy losses are smaller, below 0.2 MWh in the uncontrolled charging regime and 

below 0.15 MWh in the dual tariff charging regime. This indicates the importance of 

the loading conditions in the network. With summer network loading (see Figure 4.17 

and 4.18) and maximum DG penetration, the losses are more significant. 

 

Figure 4.19: Energy losses in winter (uncontrolled) 

 

Figure 4.20: Energy losses in winter (dual tariff) 

The dual tariff case, presented in Figure 4.20, shows a further reduction in energy 

losses compared with the uncontrolled case in Figure 4.19. This demonstrates the value 

of delayed EV charging in managing the energy losses in the microgrid. 
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4.6 DISCUSSION 

This chapter presented a multi-period heuristic power flow technique developed to 

extend the capability of MATPOWER. This is applied to a microgrid with high 

penetration of EV and DGs under two different tariff typical Elexon [156] residential 

load profiles i) uncontrolled and (ii) dual tariff. This was not explored in other previous 

studies [83], [84], [92]. 

The voltage profile and energy loss analysis is based on the normalised load profiles 

of Figure 4.3 and DG generation profiles of Figures 4.4 and 4.5. It is seen that the 

loading condition is playing a key role in voltage profile variation and energy losses 

in the microgrid. The load profiles are based on the Elexon profiles and as such could 

be improved by integrating suitable load modelling and forecasting techniques into the 

multi-period heuristic power flow technique. 

No cost data for DGs, wholesale tariff and stationary battery storage has been 

considered in this chapter, therefore in chapter 5, an MILP optimisation technique is 

further explored to evaluate the impact of adopting a battery storage for an existing PV 

system benefiting from the UK FiT. 

4.7 SUMMARY 

In this chapter, the impact on voltage profiles over a 24-hour period and energy losses 

for varying levels of EV and DGs penetration in a microgrid were investigated. An LV 

benchmark model was simulated using a time series load flow. 

Voltage Profiles and EV charging regimes: Based on the simulation results, the 

integration of EV into microgrids in an uncontrolled manner leads to a significant 

voltage drop that may exceed the UK distribution network statutory voltage limits., 

particularly in the summer loading and maximum generation scenario. 

However, with a dual tariff charging regime and the integration of different levels of 

DG penetration the voltage drop is less significant. This shows that effective utilisation 

of DGs in microgrids by charging EV preferentially from renewables could be 

leveraged in managing power flows in LV distribution networks. 

 Energy losses and Network loading conditions: The energy losses are less 

significant in the dual tariff EV charging regime compared with the uncontrolled 
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charging regime. The loading conditions (summer and winter) are playing an important 

role in improving the voltage profile. With summer load profile, the energy losses are 

more severe compared with the winter loading conditions.
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Chapter 5  

5.Management of Battery Storage 

Operation for an existing Photovoltaic 

System 

 

5.1 INTRODUCTION 

 

Energy policies across Europe are designed to increase the security of energy supply 

while minimising the cost of supply [33]. This extends to the installation of distributed 

energy systems in residential premises. From 2010 it was recorded an increase of PV 

installation due to the decrease of the module cost and the implementation of incentive-

based programmes like the FiT policies [17], [164]. The recent changes in the FiT 

policies in the UK and the closure of the Renewable Obligation scheme applied to a 

small scale solar PV with a capacity less than or equal to 5MW will drastically affect 

the scale of domestic PV installations [38], [165]–[167]. 

The intermittent nature of solar PV and the mismatch between customer-sited solar PV 

power output and the residential electricity load profiles makes battery storage a 

potential option to maximise savings for customers with onsite DG [81], [110], [168]. 

The cost of battery packs is falling, about 25% reduction for lithium-ion battery 

between 2009 and 2014 according to [33]. The domestic electricity storage battery 

could provide support to an existing customer-sited PV enrolled in the FiT scheme. 

According to [169], the value of the California’s Public Utilities Commission policy 

on supporting affordable solar PV installations in multi-family housing could be 

enhanced by battery storage systems. This means that the value proposition for solar 

PV owners in respect to changes in electricity rates and tariffs could be improved 

considerably with a well-managed battery energy storage system. In Spain for 

example, the parliament have signed an agreement to remove the decree against self-
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consumption [170], [171]. This implies that the net metering and self-consumption are 

permitted. This shows a clear opportunity for the deployment of battery energy storage 

in existing solar PV systems benefiting from FiT schemes. 

Therefore, it is important to study the management of energy flows in existing solar 

PV generation systems with battery storage to maximise the revenue streams from FiT. 

Maximising the use of battery storage for grid connected residential solar PV 

applications has been studied and the benefits to the DNO has been demonstrated in 

[5], [55]. By optimising charging and discharging of battery storage coupled to a 

residential PV the effect of variable PV output is minimised. LP and MILP methods 

using optimisation software tools have been proposed for maximising the scheduling 

of DER with battery storage systems [44], [172], [173]. 

Smart tariffs have the potential to encourage DER adoption, however, in the UK, the 

only ToU tariff offered are the economy 7 and economy 10. In [174]–[177], an OPF 

management scheme was proposed for a standalone backup generator. The objective 

of the work in [176] is to minimise the fuel costs of a backup generator for a residential 

building using battery energy storage coupled to a grid connected solar PV. In [5], 

[55], an LV DNO owned battery storage was used to control the power flows in the 

network. In [5], smart ToU tariffs were used to maximise daily revenue streams for a 

residential solar PV connected to a battery storage, however, no FiT incentive was 

considered in the optimisation process. The work in [178], investigated the usage of 

battery storage in the residential LV distribution network to defer costly network 

upgrades, a multi-objective optimisation technique to evaluate the trade-offs between 

voltage regulation, peak power reduction and the annual cost of electricity supply was 

developed. In [80], an optimisation based approach that maximises daily operational 

savings for grid connected solar PV customers is presented. An OPF management 

framework for a grid connected PV with battery storage in order to maximise peak 

shaving service is presented in [179]. Another study [180] simulated the impact of 

using a combination of solar PV, battery storage, Stirling Engine CHP on electricity 

self-sufficiency, intermittent grid demand and customer economic costs. Other studies 

have considered the optimisation of battery storage operation under different tariff 

structures (example, [80], [181], [182]). Others have looked into large scale 

operational planning of RES (solar PV and wind power) in combination with battery 

energy storage (example, [183]–[186]). 
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The previous works (example, [108], [174], [176], [177], [179]) focused on using 

varying ToU tariff structures to optimise the operation of customer owned solar PV in 

combination battery storage system over a 24 hour period. In [108], the optimal benefit 

of battery energy storage was only computed for a typical day in summer and winter 

and then computed for the year using projected estimates. 

In the surveyed literature above, no suitable techniques for evaluating the value of 

deploying battery storage for an existing PV system (benefiting from the UK FiT) and 

impact of storage unit costs (£/kWh) with different electricity tariffs were found. 

Therefore, in this chapter, the benefit of deploying battery storage system to an existing 

customer owned solar PV system benefiting from the UK feed in tariff structure was 

evaluated. An optimisation technique was developed using wholesale electricity tariff. 

The aim of the optimisation technique is to optimise the operation of the battery storage 

system coupled to an existing customer owned PV generation system benefiting from 

the feed in tariff scheme. For the validation of the optimisation model, a set of real 

half-hourly PV output data and residential load data over a period of one year was 

simulated in AIMMS. Case studies for the existing PV system are presented for the (i) 

retail electricity tariff with no battery storage (ii) wholesale tariff (optimal dispatch 

schedules for negative, low and high wholesale tariff periods) and (iii) the impact of 

storage unit costs on the adoption of battery storage for the existing PV system (using 

economy 7 tariff). 

5.2 SYSTEM MODEL 

The system studied is presented in Figure 5.1. The solar PV is an existing system 

benefiting from the FiT scheme. The main components of the system in Figure 5.1 are 

the existing PV generation system, the proposed battery storage, customer aggregated 

electricity loads, the LV grid and power electronic converters. 

An MILP optimisation algorithm is developed to optimise the battery storage charging 

and discharging under a wholesale electricity tariff to maximise FiT revenue for the 

solar PV owner. In the UK, FiT system, the existing PV installation is assumed to be 

paid 12.57 p/kWh for each kWh generated and 4.64 p/kWh for each kWh exported 

based on the data from [35]. The large difference between the generation tariff and 

export tariff makes it attractive for battery storage systems. The battery storage system 

has the potential to maximise self-consumption for solar PV owners benefiting from 
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the FiT scheme. The use case for a residential battery storage coupled to an existing 

solar PV generation system in maximising FiT revenue is investigated in this chapter. 

The battery storage system can maximise the usage of peak solar PV output power by 

storing excess PV power output for use inexpensive peak ToU tariff hours as illustrated 

in Figure 5.2. Thus, avoiding high electricity costs in such hours. 

 

Figure 5.1: Residential battery storage configuration 

 

Figure 5.2: Potential of shifting energy usage and power flows with battery 

storage 

5.2.1 Assumptions of the Optimisation Model 

The validity of the developed optimisation algorithm for managing charging and 

discharging of the battery storage system coupled to a PV generation system benefiting 

from the FiT scheme is based on the following assumptions: 

midnight 6am midday 6pm 11pm

cheap off peak energy

free solar energy

expensive peak energy

Power (kW)
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• The residential customer has an existing PV generation system enrolled in the UK 

FiT scheme. This scheme sets the generation tariff at 12.57p/kWh and the export 

FiT at 4.64 p/kWh [35]. 

• A smart meter is installed at the customer premises, as such export is accurately 

measured. The current system caps exported energy (kWh) as 50% of the 

generated energy (kWh) by the PV system [187]. 

• The battery storage specifications were taken from [20], [21]. 

• The optimisation algorithm for managing the battery storage charging and 

discharging coupled to the existing PV generation system is simulated using 

historical electricity demand and real PV power output data of a residential 

customer obtained from [156], [188]. 

• Three different grid purchase tariffs are used in this chapter (i) Retail tariff [189] 

(ii) wholesale electricity price [23] for evaluating the impact of varying tariffs on 

the objective function of the optimisation algorithm and (iii) Economy 7 tariff [24] 

for simulating and evaluating the impact of battery storage unit cost (£/kWh) on 

the adoption of the battery storage for the existing PV generation system in DER-

CAM. 

• The unit cost in (£/kWh) of $990/kWh (equivalent to £683/kWh) for the battery 

storage is taken from [190]. 

5.2.2 Electricity Load Profiles 

Half-hourly residential electricity load profiles were taken from ELEXON [156] for a 

complete year with a minimum load equal to 0.213kW and the maximum load equal 

to 0.95kW. 

5.2.3 PV Generation Data 

The PV monitoring data was taken from the Sheffield microgeneration database [188], 

[191], [192]. The Sheffield microgeneration database records PV generation in the UK 

by collecting data from donor volunteers. A year’s worth of half-hourly PV generation 

from 50 PV systems was selected at random from the microgeneration database. The 

generation data was obtained in the form of cumulative half-hourly export meter 

readings. The total installed capacity of the solar PV generation system used in the 

simulation of the optimisation model is 3.36 kW covering an area of 23 m2. 
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5.2.4 Retail Electricity Tariff 

The retail electricity prices in the UK have fairly seen no variation in recent years as 

shown in Figure 5.3 according to Committee for Climate Change (CCC) projection 

[189]. 

 

Figure 5.3: Retail electricity price projections from 2013 to 2030 [189] 

5.2.5 Wholesale Electricity Tariff 

A wholesale tariff data obtained from [23] is used to evaluate the impact of varying 

tariff rates on the objective function value. Figure 5. shows a plot of the wholesale 

tariff for the year 2015. 

 

 

Figure 5.4: Plotted wholesale price 
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Table 5.1 shows the summary of the wholesale electricity tariff data. It could be seen 

from Table 5.1 that the minimum value of the wholesale tariff is negative at about 

minus 3p/kWh, the maximum goes up to about 36p/kWh and the standard deviation is 

about 1p/kWh. 

Table 5.1: Annual wholesale electricity tariff data 

Wholesale electricity tariff statistics 

Min (£/MWh) -34.98 

Max(£/MWh) 359.63 

Average(£/MWh) 39.9 

Standard Deviation (£/MWh) 12.82 

 

5.2.6 FiT in the UK 

The FiT was introduced in the UK by the Department of Energy and Climate Change 

(DECC) on 1 April 2010 as a financial incentive to encourage uptake of DER [187], 

[193]. Most residential electricity customers with onsite DER qualify for this scheme. 

The FiT scheme includes a generation tariff and export tariff. The generation tariff is 

paid for every kWh of PV generated and the export tariff is paid for every kWh of PV 

generation exported. 

5.3 BATTERY OPERATION OPTIMISATION 

The battery storage (charging and discharging) operation optimisation for an existing 

solar PV generation is described in this section. 

The optimisation model is formulated as an MILP problem and solved in Advanced 

Interactive Multidimensional Modelling System (AIMMS) [104]. AIMMS is an 

integrated development environment that allows developers to create customised 

solutions. It enables the development of optimisation models through a unique set of 

design tools for model building, data modelling and graphical user interface creation. 

Results can easily be validated by creating visual representations of outcomes [194]. 

The flexibility of AIMMS (i) ensures model separation from data, (ii) makes it easy to 

repeat different scenarios with new datasets and (iii) easily scale up to larger models. 

Figure 5.5 shows the optimisation model setup. 
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Figure 5.5: Optimisation model setup 

5.3.1 Objective Function 

The optimisation model is indexed by the sets (d, t), where d is the set of days in a year 

(1≤d≤365) and h is the set representing the half-hour periods in each day (1≤h≤48). 

The objective function (OF) presented in Equation 10 seeks to maximise the FiT 

revenue streams and minimise the grid electricity import for an existing residential 

solar PV with and without the installation of battery energy storage. This is evaluated 

for two import tariff cases i) flat retail tariff and ii) varying wholesale electricity tariff. 

 ( , )

( _ ( , ) _ _ _ export( , ) _ export

_ ( , ) _ )

d t

OF P pv d t p FIT P pv d t p

P grid d t p retail t

   

  


  (10) 

The OF in Equation 10 is modified to include the wholesale tariff. The new equation 

with the wholesale electricity tariff is shown in Equation 11. 

 

 

( , )

(( _ ( , ) _ ) ( _ _ export( , ) _ export)

( _ ( , ) _ ) ( _ )

( _ ))

d t

OF P pv d t p FIT P pv d t p

P grid d t p wholesale P_charge_grid(d,t) p wholesale

P_discharge(d,t) p wholesale t

   

   

  



  (11) 

 

The OF computes the net revenue from onsite generation _ ( , )P pv d t  and the export 

of electricity _ _ export( , )P pv d t . The model parameters and decision variables are 

described in the following sections. 

5.3.2 Optimisation Model Parameters 

The optimisation model parameters are described in Table 5.2. 
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Table 5.2: Model parameters 

Model Parameters Description 

_ ( , )P pv d t  Generated PV Power at every time step (kW). 

_ ( , )P dmd d t  Electricity demand at each time step. 

_p FIT  Generation FiT (pence/kWh) (12.57p/kWh) [35]. 

_ exportp  Export FiT (pence/kWh) (4.64p/kWh) [35]. 

_p retail  Standard retail electricity tariff (15p/kWh) [35]. 

_p wholesale  Wholesale tariff (p/kWh). 

t  Optimisation time step: half-hourly. 

_ _ ( , )P dmd unmet d t  Unmet electricity demand at each time step (kW). 

_ _ ( , )P pv excess d t  Excess electricity from PV at each time step (kW). 

_ _ ( , )P pv onsite d t  PV power output used for self-consumption (kW). 

_ minPch  Minimum battery charging power (kW). 

_ maxPch   Maximum battery charging power (kW). 

_ minPdis   Minimum battery charging power (kW). 

_ maxPdis  Maximum battery discharge power (kW). 

ce  Battery charging efficiency. 

de  Battery discharging efficiency. 

_ minEbatt  Battery minimum energy state of charge (kWh). 

_ maxEbatt  Battery maximum energy state of charge (kWh). 

M   Big M is an arbitrary number that should be big enough 

 to ensure a feasible solution with defined storage constraints.  

 

5.3.3  Decision Variables 

The decision variables are the unknowns in the optimisation model. Table 5.3 

describes the model’s decision variables. 
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Table 5.3:Model decision variables 

Decision Variables  Description 

_ _ export( , )P pv d t  PV power sold to the grid at each time step (kW). 

_ ( , )P grid d t  Grid Electricity Imported at each time step (kW). 

_ ( , )P charge d t  The power used to charge the battery from excess PV (kW). 

_ _ ( , )P charge grid d t  The power used to charge the battery from the grid (kW). 

( , )Y d t  Binary variable at each time steps that constraints charging power in 

order to prevent charging and discharging simultaneously. 

( , )Z d t  Binary variable at each time steps that constraints discharging power 

in order to prevent charging and discharging simultaneously. 

P_discharge(d,t)  The power discharged by the battery in order to meet unmet demand 

(kW). 

_ ( , )E s d t  Battery energy state of charge at each time step (kWh). 

_ ( , 1)E s d t   Battery energy state of charge at the previous time step (kWh). 

( , )X d t  A binary variable that prevents buying and selling of electricity 

simultaneously at each time step. 

 

5.3.4 Model Constraints 

The decision variables and the OF in the optimisation model are subject to the 

following constraints: 

 0 _ ( , ) _ _ ( , )P grid d t P dmd unmet d t    (12) 

 

if _ ( , ) _ ( , ),  then

   _ _ ( , ) _ ( , ) _ ( , )

_ _ ( , ) 0

 

P dmd d t P pv d t

P dmd unmet d t P dmd d t P pv d t

else

P dmd unmet d t

endif




 


 



  (13) 

 0 _ _ export( , ) _ _ ( , )P pv d t P pv excess d t    (14) 

 

if _ ( , ) _ ( , ),  then

   _ _ ( , ) _ ( , ) _ ( , )

_ _ ( , ) 0

 

P pv d t P dmd d t

P pv excess d t P pv d t P dmd d t

else

P pv excess d t

endif




 


 



  (15) 
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The OF is modified to include battery charging and discharging schedule when battery 

storage is considered in the model (See Equations 10 and 11). With battery storage 

coupled to the existing PV generation system the following constraints are added to 

the model: 

 ( , ) _ min _ ( , ) ( , ) _ maxY d t Pch P charge d t Y d t Pch    (16) 

 ( , ) _ min ( , ) _ maxZ d t Pdis P_discharge(d,t) Z d t Pdis    (17) 

 ( , ) ( , ) 1Y d t Z d t    (18) 

 
( , ) ( , )d t d t

P_discharge(d,t) P_charge(d,t)    (19) 

 

_ ( , ) _ ( , 1)

_c c

d

E s d t E s d t

P_discharge(d,t)
e P_charge(d,t) e P_charge grid(d,t)

e

  

 
  

 

  (20) 

 (1 ( , ))P_pv_export(d,t) M X d t    (21) 

 _ min _ ( , ) _ maxEbatt E s d t Ebatt    (22) 

 _ ( , ) ( , )P grid d t MX d t   (23) 

 
_

P_grid(d,t)+ P_pv(d,t) P_pv_export(d,t) P_charge(d,t)

P_charge grid(d,t)+ P_discharge(d,t)= P_dmd(d,t)

 


  (24) 

 _ ( , )P_pv_export(d,t) P pv d t   (25) 

 _ ( , ) _ _ ( , )P grid d t P dmd unmet d t   (26) 

 _ ( , ) _ _ ( , )P_discharge(d,t) P grid d t P dmd unmet d t    (27) 

  

Once the optimisation algorithm is executed, a set of solutions is produced for each 

day of the year and each half-hour period of each day. The optimisation algorithm 

formulated in AIMMS is presented in Appendix C. 

5.4 CASE STUDIES 

Two case studies were simulated to evaluate the (OFs) of the optimisation model in 

Equations 10 and 11. 

Case study 1: PV (standard flat tariff as electricity import tariff). This case study 

serves as the reference case. The grid import is evaluated based on the electricity 

demand profile and the solar PV output profile. 

Figure 5.6 below shows the system configuration for case study 1. 
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Figure 5.6: PV generation system without battery storage 

Case study 2: PV with battery storage (wholesale tariff as electricity import tariff) 

Figure 5.7 shows the system configuration for case study 2. 

 

 

Figure 5.7: PV generation system with battery storage (case study 2) 

For case study 2, the OF is modified to include battery charging and discharging as 

decision variables. In case study 2, the wholesale retail electricity tariff taken from 

[23] is considered. 

A simulation of the optimisation algorithm was performed. For case study 1, an 

example of optimised scheduled profiles for the system is presented for winter 

(representing high electricity loads and low PV generation) and summer (representing 

high PV power generation and low electricity loads). In case study 2, an example of 

optimal dispatch profiles for the PV – Battery system for the periods of negative, low 

and high wholesale electricity tariffs are presented. 
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5.4.1 Case Study 1 

The results of this case study are evaluated for a typical winter and summer day of the 

year. 

Winter 

On a winter typical day, early in the morning, the grid import is required to meet the 

electricity demand. This is due to the low solar irradiance. The grid electricity import 

steadily decreases as the PV generation builds up during the day 

Electricity imported from the grid is evaluated and simulated if onsite electricity 

demand is greater than the PV power output. The amount of PV generation utilised for 

export and self-consumption is shown in Figure 5.8. 

 

Figure 5.8: Power profiles of the PV system with no battery storage (winter) 

The exported power in the winter case is low and most of the PV generation is 

consumed onsite. When the PV decreases to zero at 15:30 hour, the site is starting to 

import electricity to meet demand. This implies an increase in the total costs to meet 

the peak electricity demand by importing electricity from the grid. The grid electricity 

imported (blue curve in Figure 5.8) is following the electricity demand (red curve in 

Figure 5.8) 

Summer 

On a summer, typical day, there is a significant generation from the PV in the mid-

day. The electricity demand is at its minimum compared with the rest of the year. 

Therefore, the electricity imported from the grid is low and the export of PV power 

increases as shown in Figure 5.9. However, because there is no battery storage at the 

site, the excess PV electricity generated is sold at the export tariff (4.64p/kWh). 
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Figure 5.9: Power profiles of the PV system with no battery storage (summer) 

5.4.2 Case Study 2 

Over the course of a year, electricity demand and PV power generation are changing 

as seen from the historical PV generation data (due to varying weather conditions and 

energy consumption behaviour). This case study presents the optimal flow of power 

for an existing PV generation system combined with a battery storage in order to 

maximise the FiT revenue streams. Three examples, representing periods of negative, 

low and high wholesale electricity tariff optimal dispatch schedules, over the course 

of the year are presented using the optimisation algorithm. 

Negative wholesale tariff periods 

 

On a typical day within the year when hours (04:30 – 06:30) have negative wholesale 

electricity tariff price shown by the dashed line on the secondary axis of Figure 5.10, 

the battery charges from the grid (red line). This is because the negative wholesale 

price implies that customers are paid to consume electricity. Therefore, cheap 

electricity is available for charging the battery storage. With this low wholesale 

electricity tariff, the optimiser in the controller of the PV generation system chooses 

to export the excess of electricity from the PV system at 4.64 p/kWh while using the 

residual generation for self-consumption. 
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Figure 5.10: Optimal power profiles for the PV system with battery storage and 

negative wholesale tariff 

Starting at 16:00 hour, the solar PV generation drops to zero, and grid electricity import 

steadily rises (black line), and drops to zero when the wholesale electricity price 

suddenly increases. The battery that was charged with negative wholesale electricity 

tariff is discharged between the hours (19:30 – 22:30) in order to minimise grid 

purchase associated with the sudden rise of wholesale electricity tariff. 

This shows that self-consumption is maximised and grid electricity import is 

minimised within that period. 

Low wholesale tariff periods 

 

Figure 5.11 presents the same optimisation process of battery charging and discharging 

but in this case with low wholesale electricity tariff periods. It could be seen that the 

grid electricity import (black line) follows and match the electricity demand (blue 

curve) in the hours where PV generation is zero. 

However, when PV generation begins (brown line) to ramp up at hour 08:30, PV 

generation is used to meet the onsite demand and the generation excess is used for 

export at 4.64p/kWh. The grid electricity import becomes zero within this period. At 

hour 11:30 when the wholesale price drops below 5p/kWh, the PV export (yellow line) 

begins to reduce and charging from the grid begins, and this drops to zero at 12:30 

when solar PV generation is highest. At that point, the battery charges from the excess 

PV generated (shown in the ash coloured dotted line). 
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Figure 5.11: Optimal power profiles for the existing PV system with battery 

storage and low wholesale tariff 

As the wholesale electricity tariff continue to drop and the PV generation reduces, the 

battery charges from the grid again (red line). When the electricity demand of the 

building ramps up at 15:30, and the wholesale tariff is less than 4p/kWh, grid 

electricity is used to meet this demand. The battery discharges (green line) between 

the hours 17:30 and 19:30 when the wholesale electricity tariff is highest, this in turns 

avoid relatively high grid purchase costs within that period. 

High wholesale tariff periods 

 

In this section, an optimal schedule example for the existing PV generation system 

within a period of extremely high wholesale electricity tariff is presented. Figure 5.12 

shows that the grid electricity import matches the building electricity demand from 

00:30 – 08:30 when the PV system is not generating electricity. 

However, when the PV generation system begins to produce electricity, and wholesale 

the electricity tariff is just below 5p/kWh, the battery charges from the excess PV 

generation (shown in the ash coloured dotted lines) equivalent with the battery’s 

charging capacity. This occurs after the self-consumption have been met. The 

remaining surplus, after the battery is charged, is exported (shown in yellow line). As 

the wholesale electricity tariff drops further, between hours 13:30 and 15:30 and the 

PV generation drops, the battery is charging from the grid (shown in red line). 
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Figure 5.12: Optimal power profiles for the existing PV system with battery 

storage and high wholesale tariff 

It was observed that at hour 16:30, the wholesale electricity tariff begins to ramps up, 

and reaches a maximum of 26p/kWh at hour 18:00. This maximum value is 11p greater 

than the retail price of electricity. Within this period, the battery discharges (shown in 

green line) and avoids the high electricity cost associated with importing electricity 

from the grid. 

5.5 OF RESULTS 

In this section, the results of sensitivity analysis carried out for case study 2 in order 

to evaluate the impact of battery capacity (kWh) on the OF value are presented. 

In addition, the summary results of the case study 1 and 2 are presented in terms of the 

OF in Equations 10 and 11. 

5.5.1 Sensitivity Analysis 

In order to evaluate the effect of the battery size in (kWh) on the (OF) of case study 2, 

a sensitivity analysis was carried out using the AIMMS procedure in the developed 

optimisation algorithm. The procedure is expressed as follows: 

( )for i  do

     Ebatt := BatteryCapacityPoints(i);

     Run MainOptimizationExecution;

     OptimalBenefit(i) := TotalBenefit;

endfor;

 

The sensitivity analysis is carried out by varying the battery capacity (kWh) parameter 

in the optimisation algorithm and performing a simulation to quantify the impact of 
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that parameter on the OF. This is utilised as a strategy to find the optimal battery 

capacity that maximises the OF. 

The optimal solution procedure is looped over varying battery capacity sizes and the 

optimisation procedure is run over this loop. Figure 5.13 shows the effect of this 

procedure for case study 2. In Figure 5.13, the x-axis is representing the range of 

energy capacities in kWh considered and the y-axis is representing the OF value. The 

revenue increases as the battery size increase until 3 kWh of battery size capacity is 

reached and no further increase in revenue is obtained. This shows that the optimal 

battery storage size for the load and PV dataset used in this work could be increased 

to 3kWh for a marginal increase in revenue. 

 

Figure 5.13: Impact of varying battery capacity on the OF for case study 2 

Such a procedure can be used to evaluate the battery storage capacity that will 

maximise revenue streams for an existing residential PV generation systems. 

5.5.2 OF for Case Study 1 and 2 

Table 5.2 shows the OF value obtained after a year’s operation of the existing PV 

generation system for case study 1 and 2. 

Table 5.4: Revenue for PV owner in case study 1 and 2 

Study Case OF (£) 

Case Study 1 314.04 

Case Study 2 507.28 
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It was found that for the wholesale electricity tariff, the OF increases from £314 in the 

base case (Case study 1) to £507. This shows that with varying smart electricity tariffs 

and falling battery costs, the economic case for battery storage coupled to an existing 

PV generation system could be enhanced. Section 5.6 analyses the impact of battery 

unit cost (£/kWh) on the adoption of battery storage for an existing PV generation 

system. 

5.6 IMPACT OF BATTERY UNIT COST ON REVENUES 

The revenue streams for the existing PV generation system will largely depend on the 

battery installation costs. According to [33], lower battery prices will ensure battery 

energy storage coupled with existing PV generation systems are attractive with good 

payback periods. The existing PV generation system with an option for battery 

installation is simulated in DER-CAM. DER-CAM was used to determine the battery 

unit costs (£/kWh) required to make an economically viable investment into battery 

storage for the existing PV generation system. The access to the DER-CAM source 

code was provided during a two months’ research visit to the LBNL, California USA 

(see Appendix D). 

5.6.1 Modification in DER-CAM 

The detailed mathematical formulation in DER-CAM is reported in [195]–[197]. See 

also chapter six. 

The high-level formulation of the OF is expressed in Equation 28: 

 

Minimize

AnnualEnergySupplyCost :

energy_purchase_cost +amortized_DER_technology_capital_cost

+annual_O & M_cost

  (28) 

Equation 28 was slightly modified to include the UK FiT in order to model the PV 

generation system presented in this Chapter. The modification is presented in Equation 

29: 

 

_ _

Minimize

AnnualEnergySupplyCost :

energy_purchase_cost +amortized_DER_technology_capital_cost

+annual_O & M_cost

p FIT TotalPV generated p_export×TotalPV_exported  

  (29) 
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Where _TotalPV generated is the total kWh generated by the existing PV system 

that is eligible for the generation tariff ( _p FIT ), and TotalPV_exported  is the 

amount of kWh exported to the grid that is eligible for the export tariff ( p_export ). 

5.6.2 ToU Tariff in DER-CAM 

To simplify the modelling of ToU tariffs in DER-CAM, the economy 7 tariff data was 

used. The economy 7 has a two-tier tariff, one for 7 hours’ off-peak period and the 

other hours for the peak period. Figure 5.14 shows the economy 7 tariff. 

 

Figure 5.14: Economy 7 tariff [24], [198] 

It could be seen from Figure 5.14, the off-peak tariff is about 6p/kWh between the 

hours (1:00 – 6:00) and (23:00 – 24:00). The peak is charged at about 15.8p/kWh 

between the hours (7:00 – 22:00). 

5.6.3 Simulation Results 

The existing PV generation system was simulated in DER-CAM with the datasets for 

electricity demand and the existing PV generation system reported in section 5.22 to 

5.24. However, the electricity tariff data in Figure 5.14 is used as electricity import 

tariff in DER-CAM. The payback period is constraint to 10 years. 

Four scenarios are run in DER-CAM, all with the economy 7 as a ToU tariff: 

▪ Scenario 1 (S1): Reference, no PV generation system. 

▪ Scenario 2 (S2): PV + FiT. 

▪ Scenario 3 (S3): PV + FiT + Battery storage at a unit cost of $990/kWh 

(£683/kWh) [190]. 

▪ Scenario 4 (S4): PV + FiT + Battery storage with a sensitivity analysis on the 

costs in scenario 3. 
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Scenarios 3 and 4 are simulated to evaluate the minimum unit cost of storage that will 

make economically viable the battery storage for the existing PV generation system. 

Table 5.5 shows the results when no battery storage is considered for the existing PV 

generation system. S1 shows that the system total cost of meeting electricity demand 

with no PV is about £328. 

Table 5.5: Results for scenarios 1 and 2 (no battery storage considered) 

Scenario Annual Electricity Costs (£) Savings (%) Optimised OF (£) 

S1 328.21 0 328.21 

S2 161.76 168.8 -228.34 

 

With S2, the FiT is applied and the OF becomes negative meaning that the amount 

earned from generation and export tariff is greater than the cost of electricity imported 

from the grid to meet the onsite electricity demand. 

Table 5.6 presents the scenarios where battery storage is considered. It is observed that 

at the battery unit cost of £683/kWh, the battery storage was not adopted by the 

optimisation algorithm in DER-CAM, meaning that at such unit costs, the battery 

storage does not make economic sense for the existing PV generation system. 

 

Table 5.6: Results for scenarios 3 and 4 

Scenario 

Annual 

Electricity 

Costs (£) 

Savings (%) 
Optimised 

OF (£) 

Battery 

Power(kW) 

Battery Capacity 

(kWh) 

S3  161.7636 168.8 -228.34584 0 0 

S4 100.9194 172.1 -239.14779 1.27 2 

 

However, the optimisation in DER-CAM only adopts battery storage for the existing 

PV generation system when the unit cost reaches £138/kWh (scenario 4). A 2 kWh 

battery is installed showing that battery unit cost must drop the cost to £138/kWh or 

lesser for battery storage to be economically viable for existing PV generation systems 

with FiT revenue streams. 

5.7 DISCUSSION 

Maximisation of FiT revenue stream for existing PV systems using battery storage 

benefiting from the UK FiT system is becoming attractive due the significant 



Chapter 5                    Management of Battery Storage Operation for an Existing Photovoltaic System 

 

 
90 

 
  

difference between retail tariff (15 p/kWh used in this chapter, [35]) and FiT export 

tariff (4.64 p/kWh used in this chapter, [35]). However, previously reviewed literature 

in section 5.1 did not find a suitable technique to evaluate the value of battery storage 

for the existing PV system benefiting from the UK FiT. This chapter examined the 

value of battery storage with wholesale electricity tariff and the impact of the unit cost 

of battery storage on the adoption of the battery storage system. 

 

However, if electricity customers with onsite distributed energy systems are to 

optimise their systems with battery storage, what will be the impact of their connection 

to a local distribution network? This question was not addressed in this chapter. 

Chapter 6 answers this question by designing a soft-linking procedure to analyse the 

impact of optimised distributed energy systems on a modelled microgrid. 

5.8 SUMMARY 

In this chapter, an optimisation algorithm was used to optimise FiT revenue streams 

for an existing PV generation system coupled with battery storage. The optimisation 

algorithm was simulated for a complete year with real half-hourly PV generation 

profiles. Two case studies were presented (i) PV generation system with flat 

electricity tariff and (ii) PV generation system with wholesale electricity tariff and 

battery storage system. A sensitivity analysis was carried out to evaluate the impact 

of varying battery capacity on the OF. DER-CAM was used to simulate the existing 

PV generation system with dual economy 7 tariff and, the impact of battery unit costs 

(£/kWh) on the economic adoption of battery storage was evaluated. 

The main findings are stated below: 

Optimal scheduled profiles: The optimal profiles for the battery charging and 

discharging for the case with no battery storage using flat tariff as import tariff, 

and the case with battery storage using wholesale tariff as import tariff were 

drawn. It was found that in the case of the system with no battery storage the PV 

generation is used for self-consumption and any generation excess is sold at 

4.64p/kWh. However, with wholesale electricity tariff, the battery charges from the 

grid when the electricity tariffs are low or negative and discharge at high electricity 

tariff periods. Also, it was found that the battery prefers to charge when the PV 
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generation is at its maximum and switches to charge using grid electricity when the 

PV generation drops and wholesale electricity tariff is low. 

Battery Capacity: The sensitivity analysis shows that with the wholesale sale 

electricity tariff in case study 2, the battery capacity could be increased to 3kWh for a 

marginal increase in revenue. 

FiT Revenue: The results shows that with battery storage, the FiT revenue for the 

existing PV owner increases from £314 with standard retail tariff (case study 1) to 

about £507 in the case of wholesale tariffs (case study 2). However, this revenue 

streams will depend on the reduction of battery unit costs. 

The impact of unit cost (£/kWh) on the adoption of battery storage for the existing 

PV generation system: The simulation DER-CAM shows that battery adoption (with 

Economy 7 ToU tariff) for the existing PV generation system presented in this Chapter 

will only be economically viable when battery unit cost drops to £138/kWh. 
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Chapter 6  

6.Impact of Optimised Distributed Energy 

Systems on Microgrid Constraints 

 

6.1 INTRODUCTION 

Optimal investment decisions for the adoption of DER in a mid-rise apartment were 

evaluated at the Grid Integration Group, LBNL, California, USA. The case study was 

simulated using LBNL’s DER-CAM. This was carried out as part of a two months’ 

research visit to the LBNL (see Appendix D). 

A procedure was then developed to evaluate the impact of optimal decisions from 

DER-CAM on distribution network constraints using a time series power flow. 

Several optimisation models are widely used for finding the optimal configuration and 

operation of onsite distributed energy technologies. The main objective in most of 

these models is to find the optimal configuration of distributed energy technologies 

that will meet a certain demand with the least cost and CO2 emissions [110]–[112]. 

HOMER is an optimisation tool that finds the best microgrid configuration with least 

Net Present Cost (NPC) [113]–[116]. DER-CAM is an MILP tool for investigating 

adoption options for onsite DER on customer premises [109], [117]–[119]. In the 

reviewed literature, the constraints of the electricity network (voltage limits, thermal 

constraints) are not considered in the formulation of the optimisation problem. This is 

partly due to the computational challenge of integrating non-linear AC power flow 

equations in such optimisation models. Linearising these equations to include a Direct 

Current (DC) power flow in the formulation of the model is a method of avoiding the 

computational time constraint of the AC power flow as presented in [126]. However, 

such simplifications may not represent the realistic impact of network constraints on 

the optimal OF in these models [127], [128]. Most of the existing optimisation models 

do not take into account the constraints of the local distribution network and assume 
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the network can accommodate all operations and configurations of onsite DER [11], 

[126]. 

The purpose of the procedure presented in this chapter is to extend the concept of 

optimal investment decisions for the adoption of DER to consider local grid 

constraints. The approach is implemented using a soft-linking procedure to evaluate 

the impact of different optimised scenarios of investment decisions on a modelled local 

electrical grid. It inherits the benefit of detailed optimisation models such as DER-

CAM while adding a soft-linking approach for evaluating the impact of these solutions 

on the local distribution network constraints. The outcome is presented in this chapter. 

6.2 DER-CAM OPTIMISATION FRAMEWORK 

DER-CAM is a decision support tool for evaluating the worthiness of investing in 

onsite distributed energy technologies in buildings and microgrids. The tool models 

energy profiles of buildings as microgrids and evaluates the adoption options given a 

set of DER based on an MILP framework. There is a wide range of distributed energy 

technologies that can be modelled in DER-CAM. Figure 6.1 shows the modelling 

structure in DER-CAM. The full mathematical formulation of the optimisation 

problem in DER-CAM is reported in [195], [197], [199]. DER-CAM is formulated as 

a mixed integer linear optimisation model that considers energy balances and 

constraints of demand, DER technologies and ToU tariff data applicable to the 

building or microgrid. 

 

Figure 6.1: DER-CAM optimisation framework [109] 
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DER-CAM simulates three typical load profiles (weekday, weekend and peak days), 

and weather data for each month of the year. The model determines the optimal 

dispatch of the DER onsite and optimal grid electricity import. 

6.2.1 Distributed Energy Technologies in DER-CAM 

 Distributed energy technologies in DER-CAM are modelled as: 

• Continuous technologies 

• Discrete technologies 

The continuous technologies modelled in this case study are modelled with a 

continuous variable in DER-CAM and they include: 

• Electric storage (stationary battery storage). 

• Solar PV. 

• Air-Source Heat Pump. 

Only continuous technologies are modelled for the mid-rise apartment studied in this 

chapter. 

6.2.2 Input Data 

The datasets used for the case studies in this chapter is for a mid-rise apartment 

building. All the datasets are obtained from the DER-CAM database [22]. The mid-

rise apartment’s electricity loads are highest in summer due to additional loads (see 

Figure 6.2 – 6.4). The DER-CAM input data are summarised as follows: 

• Weather and location data like the solar insolation (for each month of the year) 

in kW/m2. Figure 6.2 shows the monthly insolation data for the location of the 

mid-rise apartment. The highest insolation occurs in September with insolation 

greater than 0.9 kW/m2. 

• End-use hourly load profiles (for electricity, cooling, gas, hot water, and space 

heating). These data sets are defined over three day-types: weekdays, weekend 

days and peak days (the peak days represent outliers in the data set for each 

month of the year that energy demand is greatest). Figures 6.3 – 6.5 shows the 

aggregated demand of the mid-rise apartment. 

• Electricity tariff and natural gas prices. 
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• Capital costs, operation and maintenance (O&M) costs and fuel costs for 

available distributed energy technologies. 

• Interest rates on investments and maximum payback period. 

 

 

Figure 6.2: Typical solar insolation for the mid-rise apartment’s location 

 

Figure 6.3: Average demand for the mid-rise apartment over the weekdays 

 

Figure 6.4: Average demand for the mid-rise apartment over the peak days 
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Figure 6.5: Average demand for the mid-rise apartment over the weekend days 

The tariff data used in this case study is made of: 

• Volumetric energy costs in ($/kWh). The volumetric energy costs depend on 

the energy usage and are defined as ToU rates using three categories. Peak, 

mid-peak and off-peak hours. Table 6.1 shows the ToU rates considered in 

computing the energy costs. 

• Power demand charges in ($/kW), which are set on a daily or monthly basis. 

Power demand charges depend on the maximum demand observed within a 

specific control period. These control periods include peak, mid-peak and off-

peak. Table 6.2 shows the power demand charges for each month of the year. 

The coincident hour refers to the hour when the electricity grid observes the 

global system peak and this hour is set by the utility company monthly. 

Demand charges form a significant part of the energy bill, therefore, there is 

an opportunity to consider onsite distributed energy generators to mitigate 

against high demand charges. 
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Table 6.1: ToU rates [22] 

Energy charge 

($/kWh) 

On 

Peak 

Mid 

Peak 

Off 

Peak 

January 0 0.09451 0.07885 

February 0 0.09451 0.07885 

March 0 0.09451 0.07885 

April 0 0.09451 0.07885 

May 0.14026 0.09916 0.07512 

June 0.14026 0.09916 0.07512 

July 0.14026 0.09916 0.07512 

August 0.14026 0.09916 0.07512 

September 0.14026 0.09916 0.07512 

October 0.14026 0.09916 0.07512 

November 0 0.09451 0.07885 

December 0 0.09451 0.07885 

 

Table 6.2: Power demand charges [22] 

Demand Charge 

($/kW) 

Coincident Non 

coincident 

On 

Peak 

Mid 

Peak 

Off 

Peak 

January 0 9.71 0 0.24 0 

February 0 9.71 0 0.24 0 

March 0 9.71 0 0.24 0 

April 0 9.71 0 0.24 0 

May 0 16.04 9.71 3.33 0 

June 0 16.04 9.71 3.33 0 

July 0 16.04 9.71 3.33 0 

August 0 16.04 9.71 3.33 0 

September 0 16.04 9.71 3.33 0 

October 0 16.04 9.71 3.33 0 

November 0 9.71 0 0.24 0 

December 0 9.71 0 0.24 0 

 

The output data from the model as shown in Figure 6.1 includes the following: 

• Investment decisions: Optimal capacities of onsite distributed energy 

technologies. 
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• Optimised strategic dispatch of all distributed energy technologies and energy 

flows. 

• Economics of the system including total cost of energy supply. 

• CO2 emissions. 

6.3 DER INVESTMENT SCENARIOS 

The focus of this chapter is to evaluate the impact of investment decisions made in 

DER-CAM for the adoption of distributed energy technologies on a modelled local 

distribution network. Eight different scenarios were modelled in DER-CAM, each 

representing the adoption of different DER configuration that will minimise the cost 

of energy supply to the mid-rise apartment. The description of each scenario is shown 

in Table 6.3. These investment scenarios are compared to a base case where no 

investment into onsite distributed energy technologies is made, all energy demand is 

met from the utility grid (Business as usual, no DER investment allowed). 

Scenario 1, provides a base case for evaluating scenarios 2 to 8. All power generated 

onsite in scenarios 2 to 5 was constrained to be consumed onsite, while in scenarios 6 

to 8, the PV electricity export is allowed in order to evaluate the impact of net power 

flows on the local distribution network constraints. 

Table 6.3: Description of simulated scenarios in DER-CAM 

Scenarios Description 

Scenario 1 (S1) Base case, all energy supplies and demand are met by the utility grid 

Scenario 2 (S2) Investment in solar PV (self-consumption) and Battery is considered 

Scenario 3 (S3) Investment in solar PV (self-consumption) and Battery with load shifting 

as a demand response strategy is considered 

Scenario 4 (S4) Investment in solar PV (self-consumption), Battery and Air-Source Heat 

Pump considered 

Scenario 5 (S5) Investment in solar PV (self-consumption), Battery and Air-Source Heat 

Pump. Load shifting as a demand response strategy is considered 

Scenario 6 (S6) Investment in solar PV (excess export) and Battery considered 

Scenario 7 (S7) Investment in solar PV (excess export), Battery and Air-Source Heat 

Pump 

Scenario 8 (S8) Investment in solar PV (excess export enabled), Battery and Air-Source 

Heat Pump. Load shifting as a demand response strategy is considered 

 

Load shifting is a form of energy management strategy in DER-CAM. The total energy 

remains unchanged when the load shifting strategy is applied, which is represented by 

the following parameters in the optimisation code: 
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• Percentage Schedulable Peak: The percentage of the load that can be scheduled 

daily on peak days. 

• Percentage Schedulable Week: The percentage of load that can be scheduled 

daily on weekdays. 

• Percentage Schedulable Weekend: The percentage of the load that can be 

scheduled on weekend days. 

• Maximum load in each hour: Maximum load that can be scheduled in any hour 

(kW). 

• Load increase: Maximum load that can be added in any hour (kW). 

It is assumed that no costs are associated with the load shifting parameter, which 

implies a high tendency to shift demand from periods of high ToU rates to lower rates. 

As a result, load shifting flattens the load profiles which minimises demand charges 

and energy purchase costs. 

6.4 OPTIMISATION RESULTS AND DISCUSSIONS 

For each run of the optimisation procedure in DER-CAM, the minimised total cost of 

energy supply, total CO2 emissions and optimal dispatch strategy is obtained. 

6.4.1 Optimal Investment Decisions 

Table 6.4 presents a summary of the optimal DER configuration for each of the 

scenario. Scenario 8 achieves the highest savings (40.1%) for the mid-rise apartment. 

However, even with minimised costs of scenario 8, scenario 5 has a lower amount of 

CO2 emissions partly due to the absence of battery storage and self-consumption of 

PV electricity generated onsite. 
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Table 6.4: Optimal investment decisions for each scenario 

Scenario PV 

size 

(kW) 

Battery 

Storage 

Size 

(kWh) 

Battery 

Power 

 

 (kW) 

Air-

Source 

Heat 

Pump 

(kW) 

PV 

Exports 

Load 

Shifting 

Total 

Annual 

Energy 

Costs 

(k$) 

Total 

Annual 

CO2 

Emissions 

(kg CO2 

emissions) 

Total 

Savings 

Percent 

Base 

case 

(S1) 

0 0 0 0 No No 601.1 736600 - 

S2 107 72 56.0 0 No No 461.9 605900 23.9 

S3 107 2 1.9 0 No Yes 431.8 603000 28.9 

S4 107 61 52.5 67 No No 387.5 466800 36.2 

S5 107 0 0 61 No Yes 365.4 464700 39.8 

S6 107 222 172.8 0 Yes No 458.6 670900 24.5 

S7 107 128 99.7 63 Yes No 386.8 500500 36.3 

S8 107 6 4.3 61 Yes Yes 363.3 481200 40.1 

 

6.4.2 Optimised Dispatch Schedules 

With each optimal configuration in each scenario, an indicative dispatch strategy for 

all three day-types and months of the year is obtained. The detailed dispatch schedules 

for scenario 8 (the scenario with the highest savings for the mid-rise apartment) are 

illustrated in Figures 6.7 and 6.9. The optimal dispatch schedules for scenarios 1, 2, 3, 

4, 5, 6 and 7 are presented in Appendix G. The dispatch schedules for a typical 

weekday in winter (represented by a typical day in January) and summer (represented 

by a typical day in July) are shown in Figures 6.7 and 6.9 respectively. 

Figure 6.6 shows the winter ToU rates ($/kWh). It could be seen that the electricity 

consumption of the air-source heat pump is highest during the off-peak period (1:00 – 

8:00) of the ToU rate in Figure 6.6. Figure 6.7 shows that at the highest PV production 

between the hours (9:00 – 16:00), the grid electricity import plunges to zero and the 

new load profile (thick black) line increases as the PV production varies to maximise 

self-consumption as much as possible. The battery state of charge (shown as a dashed 

line of the secondary axis of Figure 6.7) rises to a maximum in order to charge with 

excess PV generation and discharges at the peak ToU electricity rates of Figure 6.6. 
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Figure 6.6: Winter ToU tariff 

 

Figure 6.7: Optimal Electricity Dispatch for a typical day in January 

It could be observed that there is no electricity load offset for cooling in the winter 

(represented by a typical weekday in January) for the mid-rise apartment. 

However, in the summer the ToU tariff shown in Figure 6.8 with on peak, mid-peak 

and off-peak is applicable. Figure 6.9 shows the summer optimal dispatch schedules 

with high solar insolation, which implies high PV generation for self-consumption. 

Electricity consumption increases during the off-peak hours (1:00 – 8:00) of Figure 

6.8. This is to take advantage of the load shifting strategy (see the thick black line in 

Figure 6.9) and low tariff rates within that period. 
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Figure 6.8: Summer ToU tariffs 

 

Figure 6.9: Optimal Electricity Dispatch for a typical day in July (summer) 

The cooling offset for the summer case increases compared with the winter case with 

no cooling load offset (see Figure 6.9). This is due to the increase in electricity demand 

for cooling by the mid-rise apartment during summer. The battery state of charge 

(SOC) ramps up and down between the hours (8:00 – 13:00) representing charging 

(red area on the stacked graph in Figure 6.9) and discharging (the light blue area on 

the stacked graph in Figure 6.9). The discharging falls within the period of the high 

ToU rates and demand charges of Figure 6.8 and Table 6.2 respectively. This offset 

the energy supply cost due to high demand charges and time use rates within that 

period. 
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6.5 IMPACT OF OPTIMISED DISTRIBUTED ENERGY SYSTEMS ON 

LOCAL MICROGRID CONSTRAINTS 

In this section, the optimal investment decisions of DER-CAM to meet the energy 

demand requirements of the mid-rise apartment using onsite distributed energy 

resources and the utility grid are tested on a distribution network model. This was 

simulated using a time series sequential power flow in NEPLAN. 

The procedure evaluates the impact of DER-CAM optimal decisions and dispatch 

schedules on distribution network constraints (voltage profiles and power losses). 

The evaluation is carried out for the eight scenarios simulated in DER-CAM. The 

detailed description of each scenario is shown in Table 6.3. The investment decisions 

(cost of energy supply) and DER capacities adopted for each scenario are shown in 

Table 6.4. 

6.5.1 Assessment Procedure 

To assess the impact of the optimal investment DER configuration and operation from 

DER-CAM, a MATLAB script (see Appendix E) is written to read the output of DER-

CAM in each scenario and net power flows are computed and send to a modelled 

distribution network in NEPLAN. 

The validity of the assessment procedure is based on the following assumptions: 

▪ The mid-rise apartment is connected to bus 9 of the CIGRE benchmark model 

[147], [148], [200] (see Figure 6.10). 

▪ The CIGRE benchmark model is assumed to be in a climatic condition like that 

of the mid-rise apartment where electricity demand is maximum in the summer 

(due to additional cooling loads) and minimum in the winter. 

▪ The voltage quality limits are based on [201]: ±10% of the nominal voltage 

that is: between 0.9 p. u and 1.1 p. u. 

Microgrid Distribution Network Model 

 

The microgrid distribution network is modelled in NEPLAN (a power systems and 

analysis software) and the data of the network is obtained from [200]. The network is 

a 20/0.4 kV CIGRE benchmark LV microgrid model. Figure 6.10 shows the modelled 

network and the node where the mid-rise apartment was connected. The modelled 
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network in NEPLAN is shown in Appendix F. The transformer and impedance data of 

the network obtained from [200] are shown in Tables 6.5 and 6.6 respectively. 

 

Table 6.5:Transformer data of the Microgrid [200] 

Capacity 

(kVA) 

Primary 

Side (kV) 

Secondary 

Side (kV) 

R (pu) X (pu) 

400 20 0.4 0.01 0.04 

 

Table 6.6: Network cable impedance data [200] 

Conductors Rph  

( / )km  

Xph  

( / )km  

OL – Twisted cable 

4×120
2mm Al 

0.284 0.083 

OL – Twisted cable 

3×70 
2mm Al + 54.6

2mm AAAC 

0.497 0.086 

SC – 4×6
2mm Cu 3.690 0.094 

SC – 4×16
2mm Cu 1.380 0.082 

SC – 4×25
2mm Cu 0.871 0.081 

SC – 4×50
2mm Cu Al + 35

2mm Cu 0.822 0.077 

SC – 4×95
2mm Cu Al + 35

2mm Cu 0.410 0.071 

 

The block diagram of the implemented procedure is shown in Figure 6.11. 

Net Load 

 

The net load in bus 9 is computed using Equation 30 and iterated over all scenarios. 

 
_( , ) ( ( , )) ( , )

( , )

n

NET DER ONSITE GRID

i

DEMAND

P daytype hour P daytype hour P daytype hour

P daytype hour

 




  (30) 

Where ( , )daytype hour represents the optimisation, set indexed by day type 

(weekdays, peak days and weekend days) for one day type in each month of the year. 

Hour represents the hours in each day type (1:00 – 24:00). A time series load flow with 

load profiles is then simulated in NEPLAN for each scenario. 
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Figure 6.10: Modelled CIGRE network with mid-rise apartment connected to bus 9 

 

Scenario 1
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13
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30 m

70 m

105 m
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Figure 6.11: Block diagram of the procedure 

The results are written to a text file and are analysed by plotting the voltage profiles 

and overall network energy losses for each day type (weekdays, peak days and 

weekend days). 

6.6 RESULTS 

The load flow is run over a period of 24 hours for each typical day in each month of 

the year (24×12 = 288 hours representing the year). 

6.6.1 Voltage Profiles 

The load flow results were evaluated in terms of voltage profiles (Weekdays, Peak 

days and weekend days) for node 9 (the mid-rise apartment is connected to node 9). 

In the section describing the results for typical weekdays, only the voltage profiles for 

scenarios 6 and 8 are presented. This is because scenario 1 and 6 have the most extreme 

voltage excursions during weekdays. During the typical peak days, the voltage 

profiles for scenarios 1, 6, and 8 are presented. This is because scenario 1 in the peak 

days also had voltage excursions beyond the -10% lower limit. The voltage profiles 

for the typical weekend days are presented with only scenarios 6 and 8, given that 

scenario 6 had a small voltage excursion beyond the -10% lower limit. Scenario 8 

(being the scenario with highest savings and lowest cost) is included in all the typical 
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days (week, peak and weekends) to evaluate its performance from the distribution 

network perspective. 

The combined voltage profiles plot for all the scenarios are shown in Appendix H. 

Weekdays 

 

The peak days are outliers within the data set and occupancy level is highest within 

this period compared with the weekdays and weekend days. Figure 6.12 shows the 

voltage profiles for scenarios 6 and 8 during typical weekdays in the year. It could be 

seen that the voltage drops for scenario 8 are within the ±10% limit except for scenario 

6. The voltage excursion beyond the -10% lower limit in the case of scenario 6 occurs 

between hour 144 and 228, and these hours correspond to the month of June and July 

where the highest demand for cooling occurs for the mid-rise apartment. 

 

Figure 6.12: Voltage profiles for typical weekdays 

The voltage profile in scenario 8 which has the lowest cost and highest savings in terms 

of energy supply (see Table 6.4) are within the ±10% limit. This is partly due to the 

optimal investment in an air-source heat pump, battery storage and load shifting 

strategy which minimises grid electricity import and high demand charges during the 

summer months. 

Peak days 

 

As mentioned earlier the typical peak days are outliers within the energy demand data 

of the mid-rise apartment. Figure 6.13 represents the voltage profiles for the typical 

outlier data sets in scenarios 1, 6 and 8. 
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Figure 6.13: Voltage profiles for typical peak days 

It is interesting to note that the -10% lower limit is violated from 0.9 p.u down to about 

0.83 p.u in the case of scenario 1 (which represents the base case where no 

investment in DER is considered). The voltage drops that violates the -10% lower 

limit in the case of scenario 1 occurs between the hours 204 and 216. These hours 

occur in September which is within the summer months in the dataset of the mid-rise 

apartment. This is due to the high cooling demand in the hours (11:00 – 16:00) (see 

Figure 6.9). Scenario 6 and 8 slightly violates the -10% lower limit at 206 hours, which 

represents a typical peak outlier with high electricity demand for cooling during the 

summer. 

Weekend days 

 

The weekend days represents a slightly higher occupancy levels compared to typical 

weekdays for a residential building. Figure 6.14 shows the voltage profiles at the node 

connecting the mid-rise apartment. 

 

Figure 6.14: Voltage profiles for typical weekend days 
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It is observed that only scenario 6 has voltage violation issues in hours 156 and 204, 

these hours represent 12 noon in July and September respectively. This is partly due 

to an increase in cooling demand and fluctuation in PV generation output. This 

scenario has a total optimised savings of 24.5% (see Table 6.4), and is not a good 

alternative to investing both in terms of the optimisation results and impact on node 9 

bus voltage profiles. 

6.6.2 Energy Losses 

The total energy losses of the microgrid for each scenario were evaluated and 

represented in Figure 6.15. As expected the business as usual case (scenario 1, with no 

investment in DER) leads to the highest energy losses (about 2.76MWh) compared 

with all other scenarios. The lowest energy losses compared to other scenarios is 

achieved in scenarios 2 and 3 and these are 1.57MWh and 1.58MWh respectively. 

However, these two scenarios produce savings compared to scenario 1 costs (after 

investment) of 23.9% and 28.9% respectively as shown in Table 6.5, which is lower 

than the 40.1% savings achieved in scenario 8. 

 

Figure 6.15: Microgrid Energy losses 

Although scenario 8 produces high savings from the optimisation point of view, it 

increases the energy losses of the microgrid by about 0.48 MWh when compared to 

scenarios 2 and 3. 

This shows that there may be many solutions obtained using distributed energy 

technologies planning optimisation models that are optimal from the point of view of 

DER owners but not feasible from the local electricity network’s technical constraints 

point of view. 
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6.7 DISCUSSION 

Evaluating the impact of optimised distributed energy systems (with battery storage 

and high DG penetration) can achieve savings for both the DNO and customer. 

However, in the surveyed literature (see section 2.6 of chapter 2), techniques for 

evaluating distributed energy systems are only explored from the DNO perspective or 

the customer perspective. Therefore, in this thesis, a soft-linking procedure was 

designed to evaluate the impact (in terms of voltage profiles and energy losses) of 

optimised distributed energy systems on a modelled microgrid (discussed in chapter 

6). 

The results indicate that not all optimised distributed energy systems solutions from 

the customer perspectives are feasible from the DNO point of view. This work can, 

however, be extended by developing a multi-objective decision support system for 

evaluating distributed energy systems from the DNO and customer perspectives. A 

trade-off analysis can be carried out to evaluate Pareto optimal points for DNO and 

customer perspective. 

6.8 SUMMARY 

In this chapter, a procedure for the assessment of the impact of optimal investment 

decisions from DER planning and optimisation tools on the local electricity network 

was developed. Eight different scenarios were considered in the optimisation 

simulation: Table 6.7 recalls the description of each of the considered scenarios. 

Table 6.7: Description of all scenarios considered in the optimisation simulation 

Scenarios Description 

Scenario 1 (S1) Base case, all energy supplies and demand are met by the utility grid 

Scenario 2 (S2) Investment in solar PV (self-consumption) and Battery is considered 

Scenario 3 (S3) Investment in solar PV (self-consumption) and Battery with load shifting 

as a demand response strategy is considered 

Scenario 4 (S4) Investment in solar PV (self-consumption), Battery and Air-Source Heat 

Pump considered 

Scenario 5 (S5) Investment in solar PV (self-consumption), Battery and Air-Source Heat 

Pump. Load shifting as a demand response strategy is considered 

Scenario 6 (S6) Investment in solar PV (excess export) and Battery considered 

Scenario 7 (S7) Investment in solar PV (excess export), Battery and Air-Source Heat 

Pump 

Scenario 8 (S8) Investment in solar PV (excess export enabled), Battery and Air-Source 

Heat Pump. Load shifting as a demand response strategy is considered 
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A case study was presented for a mid-rise apartment building using the Lawrence 

Berkeley’s Distributed Energy Resources Customer Adoption Model (DER-CAM). 

The optimal investment decisions and schedules were interfaced (using a script written 

in MATLAB) to a time series load flow model. 

The results demonstrated that a combination of DER technologies and demand 

response strategies (load shifting and ToU rates in this case) can produce savings for 

onsite DER and the same time operate within the limit of the local electricity network 

constraints as seen in the case of scenario 8. Using the procedure developed in 

MATLAB to read DER-CAM optimal dispatch schedules to a modelled CIGRE 

distribution network model, the following main findings are: 

• During typical peak days within the year, scenarios 1 and 6 violates the ±10% 

voltage lower limit (from 0.9 p.u down to about 0.83 p.u in the case of scenario 

1), when compared to the weekdays and weekend days. 

• The business as usual case with no investment in DER contributed to the 

highest overall microgrid energy loss of 2.76 MWh. This shows that properly 

managed onsite DER can reduce the energy losses on the local distribution 

grid. 

• Not all optimal solutions obtained using distributed energy technologies 

planning optimisation models are feasible from the local electricity network’s 

perspective in terms of voltage and energy loss constraints. 

 

With optimal decisions in optimisation tools such as DER-CAM, the main finding is 

summarised are summarised as follows: 

• Significant potential savings could be achieved for buildings and microgrids 

by investing into onsite DER using optimisation with a combination of DER 

technologies, ToU rates and load shifting (e.g. demand response). 

▪ The procedure presented in this chapter can be of benefit to an aggregator of 

buildings in a community looking to optimise investment decisions in low 

carbon technologies within their local distribution network constraints. It 

inherits the benefit of detailed optimisation models such as DER-CAM while 

adding a soft-linking approach of evaluating the impact of these solutions on 

the local distribution network constraints. 
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Chapter 7  

7.Conclusions and Future Work 

7.1 CONCLUSIONS 

Multi-scale energy systems based on high penetration of DER are to provide 

opportunities for the deployment of electricity storage in the form of EV and stationary 

battery storage. This thesis investigated the management of DER with electricity 

storage (EV and stationary battery storage), at three different scales: i) national and 

local (ii) distribution network level and (iii) customer premises (see Figure 1.1). 

7.1.1 Management of EV Charging in Energy Systems with High 

Penetration of DER (National and Local Scale) 

A one node/bus bar GB energy system model was built in EnergyPLAN with a library 

of hourly electricity demand, heating demand and transportation distributions for a 

reference year and an alternative future scenario. 

This was used to evaluate: 

• The extent to which aggregated EV and EV with V2G capability can be 

utilised to minimise curtailed electricity and reduce CO2 emissions in 

future energy systems with high shares of wind power. 

• The benefit of an aggregated DER cluster with EV and EV with V2G 

capability in a local community energy system in the reduction of 

electricity import. 

It was found that in a future GB energy system with high shares of wind power, 

aggregated EV battery can be used to increase the wind power utilisation, and reduce 

wind power curtailment in the energy system. 

It was also found that, with higher EV charging rate (7-22 kW), the fraction of curtailed 

electricity reduces. In the V2G mode, curtailed electricity decreases significantly as 

the charging rate is increased from 3 kW to 22 kW which shows the potential of using 

V2G in the reduction of curtailed electricity. 
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At the local energy system level with onsite DG generation, EV with V2G capability 

have the potential to reduce electricity import. Both EV and V2G reduces the import 

of electricity with increasing amount of RES, however, with V2G, the reduction rate 

is higher compared to the EV mode. This is due to the added capability of discharging 

the EV battery for use onsite. The modelled system can achieve approximately 40% 

import reduction with EV having V2G capability while increasing the utilisation of 

fluctuating RES. 

7.1.2  Managing EV Charging in a Microgrid (Distribution 

Network Scale) 

An alternative model for evaluating the impacts of charging EV in a microgrid with 

high DER penetration was developed. The model was developed in MATPOWER with 

customer load profiles, DER generation profiles, EV charging profiles (uncontrolled 

and dual tariff) to evaluate the impact of distribution network loading on voltage 

profile and energy losses over a 24-hour period. The model evaluates how uncontrolled 

and dual tariff EV charging modes affects voltage profiles and energy losses in the 

microgrid. 

It was found out that with winter load profiles and uncontrolled EV charging mode, 

the networks suffer voltage deviation from the network statutory voltage limits. With 

the addition of 50% of the reference distribution generation, the voltage excursion 

reduces. With controlled EV, the voltage profiles stay within the network statutory 

voltage limits 

The voltage profiles with summer load profiles and uncontrolled EV charging regime 

improves the voltage deviations compared to the winter scenario with uncontrolled EV 

charging. However, when the EV charging is managed and DG uptake levels are 

increased, all voltages in the summer case stay well within the network statutory 

voltage limits. 

At maximum loading and controlled EV charging, energy losses decrease with 

increasing DG penetration compared to the uncontrolled EV charging scenario. 

However, with minimum network loading (represented by summer load profiles) and 

uncontrolled EV charging, the highest energy losses are incurred. Also at maximum 

generation and minimum network loading (represented by summer load profiles), 

the losses are most significant, which points out on a non-utilisation of network assets 
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7.1.3 Optimal Battery Operation for an Existing PV Generation 

System (Customer Premises Scale) 

An optimisation algorithm was developed to manage charging and discharging of a 

battery storage for an existing solar PV generation system at customer premises using 

wholesale electricity pricing 9 (as a form of a real time pricing). The optimisation 

algorithm maximises revenue streams for the existing solar PV owner using FiT 

incentives, half-hourly PV output and load dataset over a period of one year. The 

algorithm was simulated for a complete year with real half-hourly PV generation 

profiles. 

It was found that in the case of the wholesale electricity tariff, the battery charges from 

the grid when the electricity tariffs are low or negative and discharges at high 

electricity tariff periods. Also, it was found that the battery prefers to charge when the 

PV generation is at its maximum and switches to charge with grid electricity when the 

PV generation drops and wholesale electricity tariff is low. Within the high wholesale 

tariff period of about 26p/kWh, the battery discharges using energy stored during 

hours of low wholesale tariff and avoids costly grid purchase. This maximises the OF. 

For the modelled existing PV generation coupled with battery storage, the FiT revenue 

for the existing PV owner increase from £314 with standard retail tariff (case study 1) 

to about £507 in the case of wholesale electricity tariffs (case study 2). It was 

concluded that with wholesale electricity tariff/time use tariff, self-consumption is 

maximised and FiT revenue increases compared with the reference case with no 

battery storage and flat tariff. The proposed battery capacity for the existing PV system 

could be increased to 3kWh for a marginal increase in revenue. The battery storage 

adoption (with economy 7 as ToU tariff) for the existing PV generation system 

presented in chapter 5 will only become economically viable when battery unit cost 

drops to £138/kWh or less. 

7.1.4 Impact of Optimised Distributed Energy Systems on 

Microgrid Constraints (Distribution Network and Customer 

Premises Scale) 

A procedure was developed to evaluate the impact of optimised distributed energy 

systems simulated in an optimisation tool (DER-CAM) on distribution network 
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constraints using a time series power flow. In peak typical days of the year, more 

voltage excursions occur compared to typical weekdays and weekend days. 

The business as usual case with no investment in DER contributed to the highest 

overall microgrid energy loss of 2.76 MWh. This shows that properly managed onsite 

DER can reduce the energy losses on the local distribution grid. Also, not all optimal 

solutions obtained using distributed energy technologies planning optimisation models 

are feasible from the local electricity network’s perspective (in terms of voltage and 

energy loss constraints). Therefore, network constraints can be modelled in DER 

energy planning tools. By using optimisation tools to evaluate the investment decisions 

for the adoption of onsite DER, significant savings could be achieved for buildings 

and microgrids. This is achieved by investing into onsite and considering different 

DER technologies, ToU rates, load shifting and demand response strategies. 

7.1.5 Contributions of the Thesis 

Through this PhD study, the contributions can be summarised as: 

▪ A methodology was built into EnergyPLAN for assessing the benefit of EV 

storage in large & local energy systems with high shares of RES. 

▪ A heuristic optimisation method was developed for evaluating the impact of 

controlled and uncontrolled EV charging was developed using MATPOWER. 

The method can be used to evaluate the impact of network loading and EV 

charging (controlled and uncontrolled) on voltage profile and energy losses 

over a 24-hour period. (Chapter 4). 

▪ An optimisation methodology was developed for managing battery storage 

operation for an existing PV system benefiting from the UK FiT system. 

▪ A soft-linking procedure was designed to evaluate the impact of optimised 

distributed energy systems simulated in DER-CAM on microgrid constraints 

using a time series power flow in NEPLAN. The procedure can be utilised to 

evaluate the impact of optimised schedules from DER planning tools on the 

local distribution network. (Chapter 6). 
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7.2 FUTURE WORK 

Following the analysis of simulated results described in this PhD thesis, a summary 

of further research directions is outlined as follows: 

1. The energy system model presented in chapter 3 can be extended with an 

economic optimisation to evaluate the costs of curtailed electricity. A trade-off 

analysis can then be carried out to determine the best option: between 

minimising the cost curtailed of electricity and minimising CO2 emissions. 

2. The MATPOWER technique developed in chapter 4 for evaluating EV charging 

in a microgrid could be enhanced by using a detailed building model like 

EnergyPLUS to model the microgrids loads. 

3. Stochastic programming techniques can be utilised to account for uncertainty in 

load demand for the optimisation model presented in chapter 5. 

4. Include AC power flow network constraints directly into the AIMMS 

optimisation model and compare with the soft-linking procedure used in chapter 

6. 

5. Compare EV and stationary battery storage for the optimisation model 

developed in chapter 5. 

6. Study the communication systems that can be used for the management of 

battery storage services with smart electricity tariffs. 
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Appendix A 

EV with V2G capability distributions snapshot (GB) 
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Appendix B 

EV and V2G distributions snapshot (local energy 

systems) 
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Appendix C 

Optimisation script developed in Chapter 5 

 

Model Main_sabo44 { 

 Set time { 

 Index: t; 

 Definition: ElementRange(1,48); 

 } 

 Set daytype { 

 Index: d; 

 Definition: ElementRange(1,365); 

 } 

 Parameter P_dmd { 

 IndexDomain: (d,t); 

 } 

 Parameter P_pv { 

 IndexDomain: (d,t); 

 } 

 Parameter P_dmd_unmet { 

 IndexDomain: (d,t); 

 Definition: { 

 if P_dmd(d,t)>P_pv(d,t) then 

 P_dmd(d,t)-P_pv(d,t) 

 else 

 0 

 endif; 

 } 

 } 

 Parameter P_pv_excess { 

 IndexDomain: (d,t); 

 Definition: { 

 if P_pv(d,t)>P_dmd(d,t) then 

 P_pv(d,t)-P_dmd(d,t) 

 else 

 0 

 endif; 

 } 

 } 

 Parameter p_retail { 

 Definition: 0.15; 

 } 

 Parameter p_export { 

 Definition: 0.0464; 

 } 

 Parameter p_FIT { 

 Definition: 0.1257; 

 } 

 Parameter Ebatt; 

 Parameter Ebatt_min { 

 Definition: 0.0*Ebatt; 

 } 

 Parameter Ebatt_max { 

 Definition: Ebatt*1; 

 } 

 Parameter Pch_min { 

 Definition: 0.255; 

 } 

 Parameter Pch_max { 

 Definition: 1.5; 

 } 
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 Parameter Pdis_min { 

 Definition: 0.255; 

 } 

 Parameter Pdis_max { 

 Definition: 1.5; 

 } 

 Parameter p_tou { 

 IndexDomain: (d,t); 

 } 

 Parameter dt { 

 Definition: 0.5; 

 } 

 Parameter e_c { 

 Definition: 0.954; 

 } 

 Parameter e_d { 

 Definition: 0.954; 

 } 

 Parameter M { 

 Definition: 30; 

 } 

 Variable P_grid { 

 IndexDomain: (d,t); 

 Range: nonnegative; 

 } 

 Variable P_pv_export { 

 IndexDomain: (d,t); 

 Range: nonnegative; 

 } 

 Variable P_charge { 

 IndexDomain: (d,t); 

 Range: nonnegative; 

 } 

 Variable P_charge_grid { 

 IndexDomain: (d,t); 

 Range: nonnegative; 

 } 

 Variable P_discharge { 

 IndexDomain: (d,t); 

 Range: nonnegative; 

 } 

 Variable E_s { 

 IndexDomain: (d,t); 

 Range: nonnegative; 

 } 

 Variable X { 

 IndexDomain: (d,t); 

 Range: binary; 

 } 

 Variable Y { 

 IndexDomain: (d,t); 

 Range: binary; 

 } 

 Variable Z { 

 IndexDomain: (d,t); 

 Range: binary; 

 } 

 Variable TotalBenefit { 

 Range: free; 

 Definition: sum((d,t), P_pv(d,t)*p_FIT*dt + P_pv_export(d,t)*p_export*dt - 

P_charge_grid(d,t)*p_tou(d,t)*dt + P_discharge(d,t)*p_tou(d,t)*dt + 

E_s(d,t)*0.00001 - P_grid(d,t)*p_tou(d, t)*dt); 

 } 

 Constraint ES1 { 

 IndexDomain: (d,t); 

 Definition: P_charge(d,t)<=Pch_max*Y(d,t); 

 } 

 Constraint ES2 { 
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 IndexDomain: (d,t); 

 Definition: P_charge(d,t)>=Pch_min*Y(d,t); 

 } 

 Constraint ES3 { 

 IndexDomain: (d,t); 

 Definition: P_discharge(d,t)<=Pdis_max*Z(d,t); 

 } 

 Constraint ES4 { 

 IndexDomain: (d,t); 

 Definition: P_discharge(d,t)>=Pdis_min*Z(d,t); 

 } 

 Constraint ES5 { 

 IndexDomain: (d,t); 

 Definition: Y(d,t)+Z(d,t)<=1; 

 } 

 Constraint ES6 { 

 Definition: sum((d,t), 

P_discharge(d,t))<=sum((d,t),P_charge(d,t)+P_charge_grid(d,t)); 

 } 

 Constraint SOCC { 

 IndexDomain: (d,t); 

 Definition: E_s(d,t)=E_s(d,t-

1)+(e_c*dt*P_charge(d,t)+e_c*dt*P_charge_grid(d,t))-

(P_discharge(d,t)*dt/e_d); 

 } 

 Constraint SOCC2 { 

 IndexDomain: (d,t); 

 Definition: Ebatt_min<=E_s(d,t)<=Ebatt_max; 

 } 

 Constraint export { 

 IndexDomain: (d,t); 

 Definition: P_pv_export(d,t)<=(1-X(d,t))*M; 

 } 

 Constraint import { 

 IndexDomain: (d,t); 

 Definition: P_grid(d,t)<=X(d,t)*M; 

 } 

 Constraint PowerBalance { 

 IndexDomain: (d,t); 

 Definition: P_grid(d,t)+P_pv(d,t)-P_pv_export(d,t)-P_charge(d,t)-

P_charge_grid(d,t)+P_discharge(d,t)=P_dmd(d,t); 

 } 

 Constraint d1 { 

 IndexDomain: (d,t); 

 Definition: P_pv_export(d,t)<=P_pv_excess(d,t); 

 } 

 Constraint d3 { 

 IndexDomain: (d,t); 

 Definition: 0<=P_grid(d,t)<=P_dmd_unmet(d,t); 

 } 

 Constraint d4 { 

 IndexDomain: (d,t); 

 Definition: P_discharge(d,t)+P_grid(d,t)=P_dmd_unmet(d,t); 

 } 

 Constraint gh { 

 IndexDomain: (d,t); 

 Definition: P_charge_grid(d,t)<=Pch_max; 

 } 

 MathematicalProgram BenefitModel { 

 Objective: TotalBenefit; 

 Direction: maximise; 

 Constraints: AllConstraints; 

 Variables: AllVariables; 

 Type: Automatic; 

 } 

 Parameter SOC { 

 IndexDomain: (d,t); 

 Definition: E_s(d,t)/Ebatt; 
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 } 

 Parameter TotalGridP { 

 Definition: sum((d,t),P_grid(d,t)); 

 } 

 Parameter TotalGridE { 

 Definition: sum((d,t),P_grid(d,t)*dt); 

 } 

 Parameter TotalExport { 

 Definition: sum((d,t),P_pv_export(d,t)); 

 } 

 Parameter BattE { 

 Definition: sum((d,t),E_s(d,t)); 

 } 

 Parameter steps { 

 Definition: 10; 

 } 

 Set CurvePoints { 

 SubsetOf: Integers; 

 Index: i_cp; 

 Definition: ElementRange(0,steps); 

 } 

 Parameter min1 { 

 Definition: 0.01; 

 } 

 Parameter max2 { 

 Definition: 10; 

 } 

 Parameter OptimalBenefit { 

 IndexDomain: i_cp; 

 } 

 Parameter BatteryCapacityPoints { 

 IndexDomain: (i_cp); 

 Definition: min1 + i_cp*(max2-min1)/steps; 

 } 

 Procedure RunBenefitModel { 

 Body: { 

 for (i_cp) do 

 Ebatt := BatteryCapacityPoints(i_cp); 

 MainExecution; 

 OptimalBenefit(i_cp) := TotalBenefit; 

 endfor; 

 } 

 } 

 Procedure MainInitialization; 

 Procedure MainExecution { 

 Body: { 

 SpreadSheet::RetrieveParameter("input.xlsx", P_dmd,"A1:AV1:AV365","load"); 

 SpreadSheet::RetrieveParameter("input.xlsx", P_pv,"A1:AV1:AV365","pv"); 

 SpreadSheet::RetrieveParameter("input.xlsx", p_tou,"A1:AV1:AV365","tou"); 

 solve BenefitModel; 

 

SpreadSheet::AssignParameter("output22.xlsx",P_dmd,"A1:AV1:AV365","demand",0

); 

 

SpreadSheet::AssignParameter("output22.xlsx",P_pv,"A1:AV1:AV365","pv_profile

s",0); 

 

SpreadSheet::AssignParameter("output22.xlsx",P_grid,"A1:AV1:AV365","GridPurc

hase",0); 

 

SpreadSheet::AssignParameter("output22.xlsx",P_pv_export,"A1:AV1:AV365","Exp

orted_PV",0); 

 

SpreadSheet::AssignParameter("output22.xlsx",P_charge,"A1:AV1:AV365","Chargi

ng",0); 

 

SpreadSheet::AssignParameter("output22.xlsx",P_discharge,"A1:AV1:AV365","Dis

charging",0); 
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SpreadSheet::AssignParameter("output22.xlsx",E_s,"A1:AV1:AV365","BatteryEner

gy",0); 

 SpreadSheet::AssignParameter("output22.xlsx",SOC,"A1:AV1:AV365","SOC",0); 

 SpreadSheet::AssignParameter("output22.xlsx",X,"A1:AV1:AV365","BinaryX",0); 

 SpreadSheet::AssignParameter("output22.xlsx",Y,"A1:AV1:AV365","BinaryY",0); 

 SpreadSheet::AssignParameter("output22.xlsx",Z,"A1:AV1:AV365","BinaryZ",0); 

 

SpreadSheet::AssignParameter("output22.xlsx",P_charge_grid,"A1:AV1:AV365","G

rid_Charge",0); 

 } 

 } 

 Procedure MainTermination { 

 Body: { 

 return DataManagementExit(); 

 } 

 } 

} 
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Appendix D 

LBNL confirmation of Attendance (Chapter 6) 
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Appendix E 

Sample MATLAB script that Reads and links DER-

CAM output to NEPLAN (Chapter 6) 

 

A_01=xlsread('N:\Dropbox\MATLAB\DER-

CAM_NEPLAN\reference.xlsm','Detailed Results','B612:Y612:Y623'); 
B_01=xlsread('N:\Dropbox\MATLAB\DER-

CAM_NEPLAN\reference.xlsm','Detailed Results','B625:Y625:Y636'); 
C_01=xlsread('N:\Dropbox\MATLAB\DER-

CAM_NEPLAN\reference.xlsm','Detailed Results', 'B638:Y638:Y649'); 
D_01 = transpose(A_01); 
E_01 = transpose(B_01); 
F_01 = transpose(C_01); 
weekdays1 = D_01(:); 
peak1 = E_01(:); 
weekend1 = F_01(:); 
total_profile1=[weekdays1;peak1;weekend1]; 

 
A_02=xlsread('N:\Dropbox\MATLAB\DER-

CAM_NEPLAN\reference.xlsm','Detailed Results','B782:Y782:Y793'); 
B_02=xlsread ('N:\Dropbox\MATLAB\DER-

CAM_NEPLAN\reference.xlsm','Detailed Results','B795:Y795:Y806'); 
C_02=xlsread('N:\Dropbox\MATLAB\DER-

CAM_NEPLAN\reference.xlsm','Detailed Results', 'B808:Y808:Y819'); 
D_02 = transpose(A_02); 
E_02 = transpose(B_02); 
F_02 = transpose(C_02); 
weekdays2 = D_02(:); 
peak2 = E_02(:); 
weekend2 = F_02(:); 
total_profile2=[weekdays2;peak2;weekend2]; 

 
xlswrite('N:\Dropbox\MATLAB\DER-CAM_NEPLAN\neplan 

input.xlsx',total_profile1,'neplan','A1'); 
xlswrite('N:\Dropbox\MATLAB\DER-CAM_NEPLAN\neplan 

input.xlsx',total_profile2,'neplan','B1'); 
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Appendix F 

Modelled Microgrid in NEPLAN (Chapter 6) 
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Appendix G 

Optimal Dispatch Schedules for Scenarios 1,2,3,4,5,6, 

and 7 in January (Chapter 6) 
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Appendix H 

Voltage profile plots for all simulated scenarios 

(Chapter 6) 
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