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An important step in the improvement of neurological care in infants is the appraisal of 

their brain dynamics since the understanding of their normal/abnormal neurological 

functionality is limited. For that reason, it is extremely important to use scalp EEG for the daily 

monitoring of brain activity as an assistive technology designed to improve neurological care 

in neonatal units (Bonifacio et al., 2011; Glass et al., 2011).

There is a number of studies that clearly demonstrate advances in the assessment of 

EEG activity through the refinement of various computational models used in brain activity 

monitoring of infants (Iyer et al., 2015a, 2015b; O’Toole et al., 2016). These analytic 

algorithms can be further improved by automatic epoching of EEG activity supported by the 

discriminative features between vigilance states (Palmu et al., 2013; Piryatinska et al., 2009; 

Räsänen et al., 2013). 

Even though the ontogenesis of sleep stages is a very active area of research, the 

outcomes are controversial. Clinicians have established clear and visually distinguishable EEG 

patterns for both active and quiet sleep stages in neonates as young as thirty weeks post-

menstrual age (André et al., 2010). A fluctuating amplitude-based EEG pattern has been 

detected and neurophysiologically linked to vigilance state cycling (Klebermass et al., 2011; 

Natalucci et al., 2013; Reynolds et al., 2014; Stevenson et al., 2014). These fluctuating EEG 

patterns were the prodromal stage of sleep stage cycling (Kidokoro et al., 2012, Thorenson et 

al., 2010). However, amplitude-based EEG sleep scoring is highly subjective and requires a 

clinician with specialized training. Additionally, non-automatic visual scoring of EEG epochs 

is sensitive to the introduction of artefacts. 

To eliminate the human factor from sleep stage scoring of EEG activity based on visual 

inspection, a more robust and reliable automatic algorithm is needed. Apart from the fact that 

manual sleep scoring is prone to error, it is time-consuming to train someone and time-

consuming to manually score hundreds of EEG recordings lasting an average of 7-8 hours (for 
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a review see Aboalayon et al., 2016). A high performing automatic sleep stage scoring (ASSC) 

of neonatal EEG recordings is missing from the literature. An objective, computerized ASSC 

would be an important assistive tool for clinicians in neonatal intensive care units (Glass et al., 

2011). 

Many algorithmic solutions have been proposed for automatic sleep stage scoring. In 

one of the very first attempts, Accardo et al. estimated fractal dimension as an appropriate 

feature for ASSC (Accardo et al., 1998). However, the authors did not present any classification 

results and the estimation of the fractal dimension D required long EEG recordings. This 

drawback inhibits the development of real-time systems for the accurate study of the 

microstructure of human sleep in epochs of less than a minute. An old study proposed a sleep 

stage classification system for neonates using the Pittsburgh dataset, and it successfully 

classified EEG epochs in three stages (awake, quiet and active sleep) (Scher et al., 1996). The 

study also demonstrated differences between full-term and pre-term groups of gestational ages. 

The whole system was based on discriminant analysis, specifically a nonlinear technique that 

manipulates EEG structure as applied to every individual recording (Sinha et al.,2001). A more 

recent paper, focusing on structural EEG time profiles, clustered temporal patterns using an 

adaptive technique (Krajca et al., 2006). It used k-means for classification of these temporal 

patterns of sleep activity without presenting any classification performance.

Two recent studies attempted to revive automatic sleep stage scoring in neonates. 

Fraiwan et al. designed an algorithmic pre-processing step for ASSC in full-term and preterm 

neonates. They focused on entropic features derived from the Hilbert–Hough Spectrum, the 

Continuous Wavelet Transform and the Wigner–Ville Distribution (WVD) to estimate a single 

EEG channel (Fraiwan et al., 2011). They adopted artificial neural networks as the appropriate 

classifier for the evaluation of ASSC, surpassing an 84% classification accuracy with WVD-

based features, which outperformed previously published work. A more recent study proposed 
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the decomposition of EEG time series using the empirical mode decomposition method (EMD)

(Huang et al.,1998) to decompose EEGs into basic intrinsic mode functions (IMF). The whole 

approach was presented with EEG recordings from 20 babies using time-frequency features

such as zero-crossing, generalized zero-crossing, relative power and dynamic reconfiguration 

of dominant relative power within a 30 s epoch (Čić et al., 2013). Finally, applying feature 

extraction and Support Vector Machines (SVM), the authors achieved, on average, an 80%

accuracy of sleep stage classification of daytime sleep in an externally validated dataset.

However, there are many limitations in the literature regarding ASSC in neonates. The 

majority of the sleep studies focused on ASSC in neonates using small datasets to validate the 

proposed methodologies. Additionally, these analyses are usually based on a couple of EEG 

channels, ignoring the most informative channels required for the best ASSC. Complementary

sleep stage classifiers have only been developed for term infants (Paul et al., 2003; Piryatinska 

et al., 2009), but there were no classifiers available in the literature that could be used to 

automatically score sleep stages covering the whole neonatal age-range from early prematurity 

to term age. 

A recent study (Koolen et al., 2017) in this issue of Clinical Neurophysiology succeeded in

covering the aforementioned gaps in the literature regarding ASSC in neonates by proposing 

an algorithm that can be applied to the whole age range. They collected a high number of EEG 

recordings (N=231) from 67 infants ranging between 24 and 45 weeks of postmenstrual age. 

The duration of EEG collections was ten minutes from eight channel polysomnography 

(N=323). In the training set, they used both active and quiet sleep. The proposed feature 

extraction scheme revealed an informative set of 57 EEG features from spatio-temporal-

spectrum domains. Adopting a greedy algorithm for feature selection, they reduced and ranked 

the features according to their contribution to the classification accuracy. Additionally, the 

authors explored the effect of both reducing the epoch length and the number of EEG channels. 
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Performance tests demonstrated that the proposed algorithm was able to classify correctly quiet

and active sleep epochs with a high accuracy (85%), sensitivity (83%) and specificity (87%). 

Interestingly, the authors observed that the performance was stable and unaffected by reducing 

the epoch length or the number of EEG sensors. The inclusion of both healthy and ill patients 

represents a clear clinical validation and strength of the proposed algorithm.

Previous studies have attempted to classify sleep stages in neonates within narrower age 

ranges, focusing on either preterm (Kidokoro et al., 2012; Thoresen et al., 2010; Werth et al., 

2016) or term (Paul et al., 2003; Piryatinska et al., 2009; Scher et al., 2005b, 2005c) infants. 

The present work (Koolen et al., 2017) overcomes and extends prior attempts by developing a 

classifier that performs well across a wide range of preterm development. Additionally, the

authors have provided a proof of concept for clinical implementation and a novel 

synchronization index for the visualization of the fluctuating brain stages. It would be 

interesting in the near future to apply the proposed classification scheme to different sub-

populations, such as severely abnormal EEG records.
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