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ABSTRACT: 

A novel hydrophilic imidazolium fluorescent chemosensor has been utilized to prepare water 

soluble fluorescent graphene complex via a facile ion exchange strategy, which gives a 

relatively very high quantum yield (0.87). The highly fluorescent graphene complex displays 

a close resemblance with the water soluble fluorescent chemosensor as the chemisorbed 

imidazolium hinders the electron transfer between the naphthalene moiety and the graphene. If 

the imidazolium is simply physisorbed on graphene by physical mixing, it does not show high 

quantum yield because the π-π stacking between the naphthalene moiety and graphene leads to 

fluorescence quenching. The fluorescent chemosensor selectively detects RNA by turn-on 

fluorescence at physiological pH in aqueous solution. The fluorescent chemosensor as well as 

thefluorescent graphene complex would yield potential applications as photoresponsive 

materials and biomedical probes. 
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INTRODUCTION 

In recent times there has been a drastic increase of interest in graphene and functionalized 

graphene.1-3It is all due to its unique physicochemical properties with high surface area, strong 

mechanical strength, excellent electrical, thermal and optical properties,4as well as its potential 

uses in electronics,5-6 energy materials,7-10environmental remediation,11-15and bio-

applications.16-21Fluorescent graphene complexes have attracted more attention because of 

their promising nanoscale applications, while the photoluminescence properties of  graphene 

complexes can be realized by functionalizing graphene with fluorescent materials22-26through 

covalent or non-covalent interactions. Liu et al. described  indicator displacement assay (IDA)-

based fluorescence method for detection of heparin and protamines27-28 where fluorescent 

probe was used as an indicator. Upon addition of graphene based material the fluorescence of 

molecules on graphene via π-π stacking interaction is quenched due to the effective energy and 

electron transfer between them which leads to a challenge to prepare highly fluorescent 

graphene based material towards numerous applications.29-30 However, the target molecules 

(heparin or protamines) were selectively detected due to fluorescence turn on pathway. Liu et 

al also prepared water dispersible functionalized graphene oxide (GO) nanocomposite and used 

for waste water remediation.31 Imidazolium based ionic liquids can interact with graphene to 

prepare stable dispersions in various matrices.32-33Carbon nanotubes with imidazolium based 

salts via ion exchange showed stable dispersion and strong visible fluorescence.34 

Fluorescent probes have been widely used for biomolecular recognition, disease diagnosis and 

environmental pollution detection35-38 but still the detection of a specific bioanions by water 

soluble fluorescent molecule at physiological pH is challenging as there are a large number of 

important biomolecules in cells. Biomolecule detection through ionic hydrogen bonding is a 

challenging task in aqueous solution due to potential interference from the solvent. In the case 

of RNA and DNA, it is particularly more so due to the electronegative potentials. However, 

before functionalizing graphene with water soluble acyclic naphthimidazolium based 
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fluorescent probe 1, we analyzed potential sensing application of 1 for biomolecules at 

physiological pH and obserbed selective turn-on fluorescence for RNA over other 

biomolecules. We anticipate that the present fluorescent probe could serve as a new tool in 

biological studies that aids in the future rational molecular and drug design by using simple 

cationic molecules directed to RNA. Naphthimidazolium salt 1 was synthesized in a simple 

one step reaction (Scheme 1) and further was attached to carboxyl functionalized graphene 

nanosheets to produce fluorescent graphene complex with high quantum yield via simple ion 

exchange strategy.  

RESULTS AND DISCUSSION 

The fluorescent water soluble acyclic naphthimidazolium salt, 1,1’-methylene bis[3,3’-di(2-

naphthylmethyl)imidazolium] dibromide, ([Bnbim][2Br])was synthesized by the reaction of 2-

(bromomethyl)naphthalene with 1-(1H-imidazol-1-ylmethyl)-1Himidazole in dried CH3CN 

followed by recrystallization (ethanol) in 76% yield (Scheme1). 

 

Scheme 1. Synthesis of [Bnbim][2Br] (1) 

The preparation of hydrophilic fluorescent graphene complex is illustrated in Scheme 2. The 

graphene oxide (GO) sheet as prepared by modified Hummer’s method 39contains a range of 

reactive oxygen functional groups, such as carboxylic acid groups at their edges while epoxy 

and hydroxyl groups on the basal planes.40 To prepare carboxyl functionalized chemically 

converted graphene nanosheets (CF-GNS), the epoxy and hydroxyl groups of GO were 

converted to carboxylate groups,21 followed by reduction with glucose in aqueous 

ammonia.41Unfunctionalized chemically converted graphene nanosheets (U-GNS) were also 

prepared by reduction method1,39 without carboxylation step. The aqueous solution of CF-GNS 

was reacted with aqueous fluorescent naphthimidazolium based salt [Bnbim][2Br] to prepare 
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aqueous stable dispersion of fluorescent graphene complex CF-GNS-[Bnbim] by ion-exchange 

strategy.The simultaneous formation of sodium bromide (NaBr) was removed by repeatedly 

washing with water and dialysis as shown in Scheme 2b. Moreover, polydispersibility in water 

and several organic solvents will make CF-GNS-[Bnbim] an ideal candidate for various 

applications. 

 

Scheme 2 (a) Synthesis of [Bnbim][2Br] (1). (b) Synthesis of fluorescent graphene complex 

CF-GNS-[Bnbim] by ion-exchange strategy and synthesis of non-fluorescent graphene 

material U-GNS-[Bnbim][2Br]  by physically grinding. (c) Photographs of aqueous solutions 

of [Bnbim][2Br], U-GNS, U-GNS-[Bnbim][2Br] and CF-GNS-[Bnbim] material (from left to 

right). 
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The unfunctionalized chemically converted graphene complex U-GNS-[Bnbim][2Br] was 

prepared as a control material by physically grinding the U-GNS with [Bnbim][2Br], followed 

by washing and dialysis to remove excess naphthimidazolium based salt (Scheme 2b) . 

X-ray diffraction (XRD) analysis (shown in Figure. 1) was carried out in order to investigate 

and compare the exfoliation of GO and CF-GNS-[Bnbim].A characteristic strong and sharp 

peak observed for GO at 2θ=11.8o corresponds to an interlayer spacing of ~ 0.76 nm.41The 

XRD analysis exhibits a diffraction peak of graphite at 2θ=26.6° which corresponds to an 

interlayer spacing of ~ 0.34 nm. However, it is worthwhile to note that no obvious peaks 

regarding graphite or GO could be found for CF-GNS-[Bnbim], indicative of the complete 

reduction and exfoliation to the CF-GNS-[Bnbim] which was successfully obtained in this 

work.42 

 

Figure 1.  XRD of Graphite (black line), GO (blue line) and CF-GNS-[Bnbim] (pink line). 

Fourier-transform infrared (FTIR) transmission spectra of CF-GNS and CF-GNS-[Bnbim] 

materials were recorded using KBr pellets (Figure 2). The FTIR spectrum of CF-GNS-[Bnbim] 

shows an absorption band at 2917 cm-1 due to C–H vibrations in the [Bnbim]2+ cation. The 

spectrum at 2851 cm-1 exhibits C–H…O hydrogen bonds between [Bnbim]2+cation and CF-

GNS material,43,44 which verifies that the [Bnbim]2+ cations are linked with the CF-GNS. The 

absorption bands at 1714 and 1060 cm-1 attributed to C=O and C–O bonds in the carboxylate 

groups, while that at 1562 cm-1 corresponds to the C=N bonds of imidazolium cation. The 
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broadening of the spectrum is possibly due to the overlap of C=N bond vibrations with that of 

C=C bond.The linkage of the CF-GNS to the [Bnbim]2+ cation modifies the C=N stretching 

displacement, in which the absorption band is red shifted to 1562 cm-1 from 1571 cm-1.The 

absorption band at 1175 cm-1 corresponds to C–N bond and perhaps also overlaps with the 

vibration band of the GNS at 1155 cm-1. 

 

Figure 2.  FT-IR spectra of CF-GNS (black line) and CF-GNS-[Bnbim] (pink line). 

To investigate further the interaction between [Bnbim]2+ cation and CF-GNS, the resulting CF-

GNS and CF-GNS-[Bnbim] materials were characterized by Raman spectroscopy. The Raman 

spectra of the CF-GNS and CF-GNS-[Bnbim] (Figure 3) illustrate broad peaks that correspond 

to the D band at 1308 and 1322 cm-1, respectively, and the G band at 1592 and 1606 cm-1, 

respectively. These peaks are significantly shifted by 14 cm-1 in the CF-GNS-[Bnbim] material 

as compared to those in CF-GNS, most likely due to charge-transfer between the CF-GNS and 

[Bnbim]2+ cation, which provides further evidence for the formation of the CF-GNS-[Bnbim] 

material. In addition, compared to CF-GNS, the decrease in intensity ratio of D/G for the CF-

GNS-[Bnbim] material indicates that the functionalization of CF-GNS with the [Bnbim]2+ 

cation increases the G band intensity of the graphene sheets.45 
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Figure 3. Raman spectra of CF-GNS (black line) and CF-GNS-[Bnbim] (pink line). 

Figure 4 shows atomic force microscopy (AFM) analysis of CF-GNS and CF-GNS-[Bnbim]. 

The single-layered CF-GNS with a thickness of about 0.71 nmhas a relatively smooth 

surface,46,47whereas the attachment of the [Bnbim]2+ cations results in much rougher surface of 

CF-GNS-[Bnbim] sheets. AFM analysis depicted that the thickness of the [Bnbim] layer is ~ 

0.82 nm, which is almost similar to the thickness of surfactant adsorbed on the surface of 

graphene.48The AFM image of U-GNS shows thickness of ~ 0.70 nm (Supporting Information 

S3).  

 

Figure 4. AFM images of (a) CF-GNS and (b) CF-GNS-[Bnbim] with their respective height 

profiles. 
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Figure 5.  XPS survey scans of (a) CF-GNS-[Bnbim]  and (b) U-GNS-[Bnbim][2Br]. 
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X-ray photoelectron spectroscopy (XPS) analysis confirms the exchange of the sodium ions in 

the CF-GNS by the [Bnbim]2+ cation via ion exchange strategy (Figure 5a). The XPS spectra 

of CF-GNS shows a peak corresponding to sodium, which is absent in XPS analysis of the CF-

GNS-[Bnbim] (Supporting Information S4). This indicates that sodium cations have been 

removed from CF-GNS as NaBr, which confirms the ion exchange process. The survey of the 

XPS analysis of the CF-GNS-[Bnbim] material does not show peaks corresponding to bromide 

(Br 3d, 69.1 eV), indicating that the bromide anion in the [Bnbim][2Br] precursor has been 

removed as NaBr, while it illustrates the peak of nitride (N1s, 401.2 eV).34 In contrast, the XPS 

analysis of the U-GNS-[Bnbim][2Br] sample displays the presence of bromide and nitride  

(Figure 5b). 

Transmission electronic microscopy (TEM) was used to characterize the morphology of the 

CF-GNS-[Bnbim] material. Figure 6 shows graphene sheets with some overlapping,49while the 

corresponding selected-area electron diffraction (SAED) pattern displays a typical six-fold 

symmetry diffraction patterns, which is assigned to graphene (inset in Figure 6).50,51 

 

Figure 6.  TEM image of  CF-GNS-[Bnbim] and its SAED pattern (Inset). 

The UV-Vis absorption spectrum of the U-GNS-[Bnbim][2Br] material is broader compared 

to those of [Bnbim][2Br] and CF-GNS-[Bnbim] (Figure 7). The spectra of both CF-GNS-
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[Bnbim] and U-GNS-[Bnbim][2Br] show a peak at 265 nm, which corresponds to graphene. 

The broadening in the spectrum of U-GNS-[Bnbim][2Br] reveals π–π interactions52 between 

the naphthalene ring plane in the [Bnbim]2+ cation and the surface of U-GNS, which are 

prevented to a greater extent in the CF-GNS-[Bnbim] material. Due to similar spectral shape 

in UV/Vis spectroscopic analysis it is possible to suggest that the [Bnbim]2+ cation in the ionic 

CF-GNS-[Bnbim] composite adopts the same electronic structure as that in the 

naphthimidazolium salt [Bnbim][2Br]. 

 

Figure 7.  UV/visible absorption spectra of [Bnbim][2Br] (black line), CF-GNS-[Bnbim] (pink 

line) and U-GNS-[Bnbim][2Br] (blue line). ([Bnbim]2+ = 10µM in all samples). 

To compare the fluorescence behavior of [Bnbim][2Br], U-GNS-[Bnbim][2Br] and CF-GNS-

[Bnbim] materials, the photoluminescence spectra were measured (Figure 8). Similar but 

somewhat weaker emission peaks are observed for CF-GNS-[Bnbim] material compared to 

[Bnbim][2Br], while U-GNS-[Bnbim][2Br] does not show any fluorescence even at a series of 

concentrations. The [Bnbim]2+ cation interacts with the graphene surfaces predominantly  

through electrostatic interactions which lead to high fluorescence of the ionic CF-GNS-

[Bnbim]. In addition, most naphthalene moieties are prevented from interacting with the sheet 
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due to the carboxyl groups protruded from the graphene sheet (Figure 9a). Simultaneously there 

is another possibility that some naphthalene moieties interact with the sheet through π-

πinteraction (Figure 9). The proportion of those π-πinteractions is, however, small compared 

to the total number of the fluorescent probes, and thus the fluorescence peak shows only small 

reduction, instead of the complete quenching. On the other hand, the quenching of the 

fluorescence of [Bnbim][2Br] in U-GNS-[Bnbim][2Br] material suggests π–π stacking (Figure 

10) which is indicative of electronic communication between the π-systems of U-GNS and the 

[Bnbim][2Br]. The linkage in CF-GNS-[Bnbim] connecting the naphthalene rings to CF-GNS 

efficiently prevents electron transfer from naphthalene in excited state to CF-GNS. As a 

consequence, it maintains the electronic states of [Bnbim][2Br] to a greater extent, which is in 

accordance with the result of fluorescence emission and UV absorption spectra.23-26 

 

Figure 8. Fluorescnce emission spectra of [Bnbim][2Br] (black line), CF-GNS-[Bnbim] (pink 

line)  and U-GNS-[Bnbim][2Br] (blue line) (a), while the florescence images of CF-GNS-

[Bnbim] (left) and U-GNS-[Bnbim][2Br] (right) (b). ([Bnbim]2+ = 10µM in all samples). 

The difference in fluorescence of materials can be evaluated from their relative quantum yields 

(Φ). The concentration independent value of Φ at the steady-state was measured as 

[Bnbim][2Br] (1.00) > CF-GNS-[Bnbim] (Φ = 0.87) > U-GNS-[Bnbim][2Br] (Φ is negligible)  
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Figure 9.Top and side views of two optimized structures (a, b) of CF-GNS with 

naphthimidazolium probe 1 [Bnbim][2Br]. The graphene sheet is represented as tube model, 

while probe 1and carboxyl groups are depicted as ball-and-stick model.The ionic interactions 

between the naphthalene moieties and carboxylates are indicated by red dotted lines. (Red: 

oxygen; crimson red: grey: carbon; white: hydrogen; blue: nitrogen). 
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whereas by using naphthalene as a standard, Φ of [Bnbim][2Br] and CF-GNS-[Bnbim] are 0.86 

and 0.53 repectively in ethanol.34Some π–π interactions between the naphthalene rings and the 

graphene sheets are probable to exist, and graphene can absorb or scatter the excitation light 

which results in a decrease of the quantum yield of CF-GNS-[Bnbim]. 

Fluorescence titrations were carried out in aqueous solution at pH 7.4 (10 mM phosphate 

buffer). Figure 10a shows visual features, while Figure 10b displays the fluorescence emission 

changes in naphthimidazolium probe 1 [Bnbim][2Br] in the presence of 1 equivalent of DNA, 

RNA, glucose, heme, TBA salts of F−, Cl−, NO3
-  and sodium salts of phosphate anions 

(ATP,GTP, CTP, TTP, UTP, pyrophosphate (PPi)). As shown in Figure 10b, there was unique 

change in the emission spectrum upon addition of RNA. The blue color enhancement of the 1-

RNA solution (Figure 10b) can be attributed to turn-on fluorescence in the emission spectrum 

due to formation of more stable complex with RNA, while it displays no particular response to 

other bioanions.53 The enhancement of fluorescence with increasing concentration (0 to 5 

equivalents) of RNA was noted (Figure Figure 10c, d. The most important driving force for the 

increase in fluorescence in the presence of RNA could be ascribed to the electrostatic 

interaction of the positively charged probe 1 with the phosphate and hydroxyl groups of RNA. 

In addition, π-stacking of the aromatic part of probe 1 in the major groove region of RNA, 

allows turn-on selective detection of RNA, while it displays no particular response to other 

bioanions. Positively charged molecules interact with the electronegative region of RNA/DNA. 

Therefore noncovalent interactions for RNA fluorescence sensing by positively charged 

molecules would be governed by the more electronegative potential on the surface of the RNA 

major groove, besides shape complement to the major groove of RNA.  
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Figure 10. (a) Fluorescence (slit width = 5 nm; excitation at 274nm) of [Bnbim][2Br] 1 (10 

µM) upon addition of DNA, RNA, glucose, heme, TBA salts of F−, Cl−, NO3
-  and sodium salts 

of ATP,GTP, CTP, TTP, UTP, PPi, (1 equiv each) at pH 7.4 (10 mM phosphate buffer) and 

(b) the corresponding visual fluorescence features. (c, d) Emission spectra (slit width = 5 nm; 

excitation at 274nm) of [Bnbim][2Br] 1 (10 μM) upon addition of sodium salt of RNA at pH 

7.4 (10 mM phosphate buffer).  
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COMPUTATIONAL RESULTS 

The computational results show that the imidazolium moieties of probe 1 are captured by 

two Br- with ionic interaction at a distance of 2.3~2.4 Å. The naphthalene moieties interact 

with a U-GNS sheet through π-π interaction at a distance of about 3.2~3.5 Å (Figure 11). On 

the other hand, probe 1 is captured by carboxyl groups on the CF-GNS through ionic interaction 

at a distance of 1.8~2.6 Å. Besides the ionic interaction between imidazolium moieties and 

carboxylic oxygen atoms, there is also π-π interaction between naphthalene moieties and CF-

GNS sheet at a distance of 3.3~3.6 Å (Figure 9a) or 3.3~3.7 Å (Figure 9b). 

 

Figure 11. Top and side views of the optimized structure of U-GNS with probe 1. The graphene 

sheet is represented as tube model, while the probe 1, Br- and ether groups are depicted as ball-

and-stick model. The ionic interactions between the naphthalene moieties and two Br- are 

indicated by red dotted lines.(Red: oxygen; grey: carbon; white: hydrogen; blue: nitrogen). 
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EXPERIMENTAL SECTION 

Materials: Graphite (325 mesh, Alfa Aesar), hydrogen peroxide (30% wt, Aldrich), sulphuric 

acid, hydrochloric acid, hydrazine (80%, Aldrich), glucose (Aldrich), 2-

(bromomethyl)naphthalene (Aldrich), imidazole (Aldrich), acetonitrile(Aldrich), ethanol 

(Aldrich). Sodium salts of pyrophosphate (PPi), ATP, GTP, CTP, TTP, UTP, hemoglobin from 

bovine blood cells (heme), Ribonucleic acid, transfer from baker’s yeast (S-cerevisiae), DNA 

from calf thymus (CT DNA) and n-TBA salts of F− and Cl− were purchased from Aldrich and 

used for titrations without further purification. 

Characterization and Instrumentation:X-ray diffraction patterns (XRD) were carried out using 

a Riguka, Japan, RINT 2500 V  X-ray diffraction-meter with Cu Kα irradiation (λ = 1.5406 Å). 

Fourier transformed infrared (FTIR) spectra were measured in KBr pellets with a Bruker FTIR. 

Raman spectra were recorded using a Senterra Raman Scope system with a 532nm wavelength 

incident laser light and power 20 mW. Transmission electron microscopy (TEM) and high-

resolution transmission electron microscopy (HRTEM) observations were performed on a 

JEM-2100F (Cs corrected STEM) electron microscope with an accelerating voltage of 200 kV. 

XPS analysis was carried out with an ESCALAB-220I-XL (THERMO-ELECTRON, VG 

Company) device. Photoemission was stimulated by a nonmonochromatized Mg Kα source 

(1253.6 eV) for all samples. Absorption (UV-Vis) spectra were recorded at room temperature 

using a Shanghi 756 MC UV-Vis spectrophotometer. Fluorescence spectra were measured at 

room temperature on Shimadzu RF-5301 PC spectrofluorophotometer. 1H NMR and13C NMR 

spectra were performed on a Bruker Advance DPX500 (500 MHz) spectrometer at 298 K.  

Preparation of [Bnbim][2Br] (1): 1-(1H-imidazol-1-ylmethyl)-1Himidazole (1 mmol, 148mg) 

and 2-(bromomethyl) naphthalene (1 mmol, 221mg) were dissolved in dried CH3CN (50mL) 

and were refluxed at 80°C for 24 hours. The resulting hot solution was filtered and the obtained 

white solid product was washed with CH3CN and then crystallized from ethanol. Afterwards, 
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the white product, [Bnbim][2Br], dried under vacuum oven and the precipitated solid product 

gave 76 % yield in this experiment.The resulting compound was characterized by NMR 

spectroscopy (1H NMR and 13C NMR) which confirmed the structure of probe (1) as shown in 

Supporting Information S1 and S2.1H NMR (500MHz, D2O,δ): 7.97-7.94 (m, 8H, -CH=), 7.80 

(s, 2H, -CH=), 7.69 (s, 2H, -CH=), 7.64 (s, 4H, -CH=), 7.48-7.46 (s, 2H, -CH=), 6.69 (s, 2H, -

CH2-), 5.63 (s, 4H, -CH2-). 
13C NMR (500MHz, D2O,δ): 130.1, 129.3, 128.5, 128.0, 127.8, 

127.4, 127.1, 125.5, 123.9, 122.2, 59.0, 53.6.Anal. Calcd for C29H26Br2N4: C 59.00, H 4.44, N 

9.49; found: C 57.56, H4.342, N 9.106. 

Preparation of CF-GNS: Carboxylated graphene nanosheets solution (CF-GNS) was prepared 

by a modified literature procedure.21First of all, GO (1mg mL-1) solution was prepared in 100 

mL distilled water using sonicator. NaOH (5 g) and ClCH2COOH (5 g) were added to the GO 

suspension and sonicated for 1-2h resulting in carboxylated functionalized graphene 

nanosheets solution which was purified by repeated washing and collected by filtration. 10mL 

of 2% Na2CO3 was added to 100mL aqueous solution of the obtained solid and the mixture 

was sonicated for a while. The resulting solution was neutralized by repeated washing and 

centrifugation. The obtained solid was dispersed in distilled water (100mL) after that glucose 

(250 mg) and ammonia solution (100 µL, 25% w/w) were added. The mixture was stirred for 

5 h at 850C after vigorously stirring at room temperature. The final product was obtained by 

centrifugation, rinsed with water (25 mL) three times and then vacuum dried. 

Preparation of U-GNS: Graphene oxide (GO) was synthesized by a modified Hummers 

method.44Unfuctionalized graphene nanosheets solid was obtained by the hydrazine reduction 

of the as obtained graphene oxide.54 

Preparation of CF-GNS-[Bnbim]: 200mL aqueous solution of CF-GNS (100 mg) was added 

to 100mL aqueous solution of [Bnbim][2Br] (3x10-3 M), and  sonicated for 2 h then the mixture 
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was heated in the dark for 12 h at 80 0C. The solid product was obtained after filtration, washed 

repeatedly with ethanol and water, and then purified by dialysis. 

Preparation of U-GNS-[Bnbim][2Br]: 100mg U-GNS was ground with 5 mg of [Bnbim][2Br] 

for 1 h during which water (10 mL) was added drop wise. The mixture was centrifuged after 

ultrasonication for 5 h. The obtained material was filtered and washed with ethanol and water, 

and then purified by dialysis. 

CONCLUSIONS 

We designed a acyclicwater soluble fluorescent probe which not only shows selective turn-on 

fluorescence for RNA butalso produced fluorescent graphene complex via ion exchange 

strategy. The fluorescent graphene complex with relatively high quantum yield (0.87) displays 

a close resemblance in the electronic state of water soluble fluorescent [Bnbim]2+ cation. The 

fluorescent graphene complex may find potential applications as photoresponsive materials and 

biomedical probes. 

Supporting Information 

The Supporting Information is available free of charge on the ACS Publications website at 

http://pubs.acs.org.  
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