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ABSTRACT: The chemokine receptor, CXC chemokine receptor 4 (CXCR4), is selective for CXC chemokine ligand 12
(CXCL12), is broadly expressed in blood and tissue cells, and is essential during embryogenesis andhematopoiesis.
CXCL14 is a homeostatic chemokine with unknown receptor selectivity and preferential expression in peripheral
tissues. Here, we demonstrate that CXCL14 synergized with CXCL12 in the induction of chemokine responses in
primary human lymphoid cells and cell lines that express CXCR4. Combining subactive concentrations of CXCL12
with 100–300 nM CXCL14 resulted in chemotaxis responses that exceeded maximal responses that were obtained
with CXCL12 alone. CXCL14 did not activate CXCR4-expressing cells (i.e., failed to trigger chemotaxis and Ca2+

mobilization, aswell as signaling viaERK1/2 and the smallGTPaseRac1); however, CXCL14bound toCXCR4with
high affinity, induced redistribution of cell-surfaceCXCR4, and enhancedHIV-1 infectionby>3-fold.Wepostulate
thatCXCL14 is a positive allostericmodulator ofCXCR4 that enhances the potency of CXCR4 ligands.Our findings
provide new insights that will inform the development of novel therapeutics that target CXCR4 in a range of
diseases, including cancer, autoimmunity, and HIV.—Collins, P. J., McCully, M. L.,Martı́nez-Muñoz, L., Santiago,
C.,Wheeldon, J.,Caucheteux, S., Thelen,S.,Cecchinato,V., Laufer, J.M., Purvanov,V.,Monneau,Y.R., Lortat-Jacob,
H., Legler, D. F., Uguccioni, M., Thelen, M., Piguet, V., Mellado, M., Moser, B. Epithelial chemokine CXCL14
synergizes with CXCL12 via allosteric modulation of CXCR4. FASEB J. 31, 3084–3097 (2017). www.fasebj.org
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Immune cell traffic and tissue localization is controlled by
chemokines, a large family of chemotactic cytokines that is
composed of approximately 50 members (1–3). The che-
mokine family can be broadly divided into 2 functional
subsets. Inflammatory chemokines are induced locally in
response to inflammatory stimuli, where they recruit im-
mune effector cells to the site of infection or injury. In con-
trast, homeostatic chemokines are constitutively expressed
inhealthy tissues,where they control the steady-state traffic
of immune cells during tissue immune surveillance. Some
homeostatic chemokines were found to be expressed in
ectopic lymphoid structures associated with tumors and
chronically inflamed tissues (4–6), which underscores their
dual role in homeostasis anddisease; however, the primary
function allocated to homeostatic chemokines—as shown
for CXC chemokine ligand 13 (CXCL13), CC chemokine
ligand 19 (CCL19), and CCL21—is the control of immune
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cell traffic within secondary lymphoid tissues, such as
spleen, lymph nodes, and Peyer’s patches. Another ho-
meostatic chemokine, CXCL12, controls the retention of
hematopoietic stem cells in adult bone marrow and also
plays a nonredundant role in organ development during
embryogenesis (7).CXCL12also acts as anHIV-1 suppressor
factor as it blocks theentryofvirusparticles that requireCXC
chemokine receptor 4 (CXCR4) as coreceptor, together with
CD4, for entry of target cells (8, 9). The prototype function of
homeostatic chemokines occurs in healthy tissues, which
renders them more difficult to study in humans where
healthy (disease-free) tissue specimens are not routinely
available. Body-lining tissues are extremely diverse in terms
of histology, reparative capacity, and composition of im-
mune surveillance cells—macrophages, dendritic cells
(DCs), T cells, innate lymphocytes andNK cells—and it
is safe to assume that local chemokines play an important
role in governing tissue health (10, 11).

Such a role in the control of immune surveillance in epi-
thelial tissues, as well as other sites that undergo frequent
tissue remodeling, may be fulfilled by CXCL14 (12, 13). We
(14–16) and others (17–21) have reported that CXCL14 is
ubiquitously and abundantly expressed in various normal
epithelial tissues, including the digestive and urinary tract,
placenta, tongue, breast, kidney, and skin. CXCL14 pro-
duction ismost frequentlyassociatedwithepithelial cells and
local macrophages (14–16). Its expression is usually down-
regulated in inflammatory settings, which indicates that
CXCL14plays an important role in themaintenanceof tissue
homeostasis (14, 22). Its function has not been fully eluci-
dated; however, candidate target cells, which have been
shown to migrate in response to CXCL14, include blood
monocytes (14), neutrophils (20), immature DCs (20, 23–25),
andNKcells (26, 27).TandBcells, in contrast,donotmigrate
toward CXCL14. Expression of CXCL14 in diverse types of
cancer is variable and its role in tumor progression remains
controversial (reviewed in ref. 28).CXCL14-KOmicedisplay
a substantial breeding defect, such that the majority of
CXCL14-KOneonates donot survive the first 24 h after birth
(29–31). Our studieswith the fewCXCL14-KOmice that did
live to adulthood did not reveal gross abnormalities in the
number and locationof immune surveillance cells (29).More
recent studies have correlated CXCL14 expression with re-
cruitmentofwhiteadipose tissuemacrophages,aswellas the
development of insulin resistance and aberrant feeding be-
havior (30,31).Clearly,definite clarificationof the roleplayed
by CXCL14 in physiologic and pathophysiologic processes
requires the identificationof its receptor,which likelybelongs
to the class of GPCRs (14).

Recently, it has been reported that CXCL14 is a ligand
for CXCR4 (32, 33), the specific receptor for CXCL12, al-
though this finding is still controversial (34). Of note,
CXCL14 and CXCL12 are considered to be archetypic
chemokines on the basis of their cross-species sequence
conservation and the presence of their orthologs in lower
vertebrates. In fact, both chemokines are expressed con-
stitutively in thedevelopingorgansofmouse, chicken, and
zebrafish embryos (35–38). In agreement, the CXCL12/
CXCR4 axis governs tissue development during embryo-
genesis such that homozygous deletions in the genes for
either CXCL12 or its receptor prevent the development of

viable offspring (7, 39). The striking breeding defects ob-
served in CXCL14-KO mice indicate that CXCL14 fulfils
an essential role that is similar to CXCL12 in early devel-
opment and, in addition, may govern certain aspects of
immune surveillance in adult peripheral tissues. Here, we
report a strong functional synergy between CXCL14 and
CXCL12 that was fully dependent on CXCR4 and in-
volved a direct interaction between CXCL14 and CXCR4.
CXCL14 on its own did not induce CXCR4 signaling. In-
stead, the binding of CXCL14 to CXCR4 enhanced the
sensitivity of CXCR4-expressing cells for traditional li-
gands, including CXCL12 and HIV-1 virions.

MATERIALS AND METHODS

Chemokines and other reagents

Synthetic chemokines (CXCL14, CCL2, CCL5, full-length
CXCL12a, and CXCL12a N-terminal peptide consisting of
amino acid residues 1–9) were chemically synthesized, as pre-
viously described (40). Human CXCL14 and murine CCL1—
both conjugated to the fluorochromeAlexa Fluor 647 attached to
a C-terminal lysine residue—were purchased from Almac Sci-
ences (Edinburgh, United Kingdom). For NMR study, 15N-
labeled CXCL12a was produced recombinantly and purified as
previously described (41). TheCXCR4 antagonistAMD3100was
purchased from Abcam (Cambridge, United Kingdom).

Isolation of primary human cells

All research that involved work with human venous blood sam-
ples was approved by the local research ethics commission and
informed consent was obtained from each participant. Peripheral
blood mononuclear cells (PBMCs) were prepared from the hep-
arinized blood of healthy volunteers by centrifugation over a
Lymphoprep (Axis Shield, Dundee, United Kingdom) gradient.

In vitro cell cultures

For all cultures we used RPMI-1640 medium that was supple-
mented with 10% fetal calf serum (FCS), 2 mM L-glutamine,
1 mM sodium pyruvate, 1% nonessential amino acids, and
50 mg/ml penicillin/streptomycin (complete RPMI; all from
Thermo Fisher Scientific, Waltham, MA, USA). Murine pre–B-
cell line 300.19 was cultured in the same medium that was
supplemented with 50 mM 2-ME (Thermo Fisher Scientific).
Cells were maintained in a humidified incubator at 37°C and a
mixture of 95% air, 5% CO2. 300.19 cells have been routinely
used by our group and others for stable transfection with
chemokine receptors (9). Parental (untransfected) and 300.19
cells that were stably transfected with either CXCR4 or CC
chemokine receptor 2 (CCR2) weremaintained at a cell density
not exceeding 2 3 106 cells/ml. All cell lines were routinely
tested for mycoplasma contamination by RT-PCR.

Transwell chemotaxis assay

PBMCs or 300.19 cells were spun down and resuspended in
prewarmed chemotaxis buffer [plain RPMI-1640 that contained
1%pasteurizedplasmaprotein solution (5%PPLSRK; SwissRed
Cross Laboratory, Bern, Switzerland) and 20 mM HEPES
(ThermoFisherScientific)] at 23106 cells/ml.Cellswere allowed
to rest for 30 min at 37°C before assay. Chemokine was
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resuspended in chemotaxis buffer to the desired concentration
and 235ml was placed in the lower chamber of Transwell 96-well
plates (4.26 mm, 5.0 mm pore; Corning, St. David’s Park, United
Kingdom). Awell that contained chemotaxis buffer alone (blank)
served as a negative control. Bare polycarbonate filters were
placed in wells, and the plate was placed at 37°C to equilibrate.
Cells (160,000; 80 ml) were placed in the upper chamber of the
Transwell, and the plate was then incubated at 37°C for 2–4 h.
Upon termination of the assay, filters were lifted out of the wells,
and the volume in the lower chamber that contained migrated
cells was transferred to fluorescence-activated cell sorting (FACS)
tubes. Cells were washed once in PBS that contained 2% FCS +
0.02% sodium azide (FACS buffer) before being resuspended in
75 ml FACS buffer. Accu-Check (25 ml) counting beads (Thermo
FisherScientific)wereadded toeachsample toenableabsolute cell
counts (final volume per sample = 100 ml) determined by flow
cytometry. Cell migration is expressed either as a percentage of
total input cells or as the chemotactic index,which isdefinedas the
number of cellsmigrated in response to chemokinedividedby the
number of cells that migrated in response to buffer alone (blank).

Flow cytometry

Single-cell suspensions were incubated with AQUA Live/Dead
Fixable Dye (Thermo Fisher Scientific) to allow for exclusion of
dead cells. After blocking of endogenous Fc receptors, cells were
incubated with fluorochrome-conjugated mAbs against the fol-
lowing human cell-surface markers (conjugate and clone in-
dicated inparentheses): CD3 (BrilliantViolet 421,UCHT1),CD19
[phycoerythrin (PE)-Cy5, HIB19], CD56 (PE, HCD56), CXCR4
(Brilliant Violet 421, 12G5), CCR2 (allophycocyanin, K036C2),
and CCR5 (PE, J418F1; BioLegend, London, United Kingdom);
CD16 (FITC, 3G8; BD Biosciences, Oxford, United Kingdom);
and CD14 (PE-Cy7, 61D3) and CD19 (allophycocyanin, SJ25C1;
eBioscience, Hatfield, United Kingdom). Staining with Abs was
performed in FACS buffer for 30 min at 4°C. Isotype matched
controlAbswereusedasappropriate.BindingofAF647-CXCL14
or AF647-muCCL1 (50 nM) was performed in FACS buffer for
30minat 4°C ina stepbeforeAbstaining. Sample acquisitionwas
performed by using a FACS Canto II instrument (BD Biosci-
ences). Cell aggregates were excluded according to light scatter
properties. Data were analyzed by using FlowJo software (ver.
10.04; TreeStar, Ashland, OR, USA).

[Ca2+]i rise

Pre-B 300.19-CXCR4+ cells (0.23 106) in 200ml were loadedwith
FURA 2-AM (final concentration 1 mM) on poly-D-lysine–coated
slides (MatTek, Ashland, MA, USA). Loaded cells were washed
with buffer that contained 136 mM NaCl, 4.8 mM KCl, 20 mM
HEPES, 1mMCaCl2, and 10mMglucose. Imagingwas recorded
with a 340 oil-immersion objective on an inverted microscope
(Axiovert 200; Carl Zeiss, Jena, Germany) with excitation at 340
and 380 nmusing the PolychromV illumination system fromTill
Photonics GmbH (Munich, Germany). Chemokine was injected
after 50 s of recording, and recording continued up to 300 s. The
340/380 ratio provides a relative measure of cytoplasmic free
Ca2+ concentration.

ERK phosphorylation and Rac1 activation

Pre-B 300.19-CXCR4+ cells (106/ml) were starved in complete
RPMI without FCS for 8 h, then stimulated with CXCL12 6
CXCL14 for 2, 10, or 20 min at 37°C in a total volume of 200 ml.
Reaction was stopped by addition of 200 ml 20% TFA and phos-
phorylated ERK was determined (42). For Rac1 activation studies,
human peripheral blood CD3+ T cells, either untreated or treated

with inhibitors (2 h with 40 mM PP2 or 15 min with 10 mM
AMD3100), were stimulated for 3 min with the indicated concen-
trations of CXCL12 and/or CXCL14. Cells were then fixed in 4%
paraformaldehyde, stained for intracellular active Rac1 (Rac1-GTP),
and analyzed by flow cytometry or confocal microscopy.

NMR experiments

All NMR experiments were performed on a Bruker 850-MHz
spectrometer equippedwith a CryoProbe (Bruker, Billerica, MA,
USA). The putative interaction of CXCL14 with CXCL12 was
investigated by comparing the [15N,1H]-HSQC spectra recorded
on 15N-labeledCXCL12at 77mM(dissolved in 20mMphosphate
buffer, 100 mM NaCl, pH 6), either alone or mixed with an
equimolar concentration of unlabeled CXCL14 (dissolved in
standard PBS). The combined chemical shift perturbation of the
ith residue of CXCL12 upon CXCL14 addition was calculated by
using the following equation (43):that resulted in

D∂NH
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih
dHi 2 dHi;ref

i2
þ
h
0:14ðdNi 2 dNi;refÞ

i2r

with dHi and dNi , the
1H and 15N chemical shifts, respectively, of

the ith residue; dHi;ref and dNi;ref, the
1H and 15N chemical shifts,

respectively, of the ith residue in the reference spectrum.

Surface plasmon resonance experiments

For CXCL14 and CXCL12 binding analysis to CXCR4, we pro-
duced and characterized lentiviral particles (LVPs) by cotrans-
fection of HEK293T cells that overexpressed CXCR4 (44). LVPs
were analyzed for CXCR4 expression by flow cytometry (44).
Several batches of LVPs were standardized for CXCR4 expres-
sion, aliquoted, and stored at280°C. Surface plasmon resonance
(SPR) experiments were performed on a Biacore 3000 (GE
Healthcare, Pittsburgh, PA,USA). Flow cells of a CM5 sensorchip
were functionalized with 8000–8500 resonance units of LVP as
described in Vega et al. (44). CXCL12 or CXCL14 (12.5–200 nM)
diluted in HBS buffer (100 mM HEPES, 150 mM NaCl, 0.005%
polyoxyethylene sorbitan P20, pH 7.4) were injected over
immobilized LVPs (30ml/min, 2min, 25°C; association phase),
followedbya 4-min injectionperiodofHBSbuffer aloneover the
surface (dissociation phase). Sensorgrams were corrected for
signals obtained in reference flow channels (sensorchips that
contained immobilized LVPs obtained from CXCR4-negative
HEK293T cells or no LVPs). Sensorchip regeneration involved
washing with 5 mM HCl. All steps were performed by using
system robotics. Sensorgrams were recorded in real time and
expressed in relative units. Sensorgrams were used to calculate
(simple 1-site interactionmodelwith Biaevaluation 4.1 software;
Biacore) kinetic parameters.

Förster resonance energy transfer experiments

HEK293T cells (93 106 cells)were transiently cotransfectedwith
9 mg CXCR4–cyan fluorescent protein (CFP) and 15 mg
CXCR4–yellow fluorescent protein (YFP) for assays at fixed ra-
tios. After 48 h, cells were washed twice in HBSS that was sup-
plemented with 0.1% glucose and distributed into black 96-well
microplates for fluorescence measurements (Wallac Envision
2104 Multilabel Reader; PerkinElmer, Waltham, MA, USA). To
calculate Förster resonance energy transfer (FRET) efficiency,we
separated the relative contribution of fluorophores to the de-
tection channels for linear unmixing (45). When required, cells
were stimulated with ligands for 30 min at 37°C. To determine
the fluorescence emitted by each fluorophore, we applied the
following formulas:CFP=S/(1+1/R)andYFP=S/1+R,where
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S=ChCFP+ChYFP;R= (YFP530Q –YFP510)/(CFP510 –CFP530Q);
andQ =ChCFP/ChYFP. ChCFP andChYFP represent the signal
in the 510- and 530-nm detection channels (Ch); CFP510, CFP530,
YFP530, andYFP510 represent thenormalized contributions ofCFP
and YFP to channels 510–530, as determined from spectral sig-
natures of fluorescent proteins. Results were analyzed by using a
1-wayANOVA followed byKruskall-Wallis test and a posttest of
Dunn’s multiple comparison. We used GraphPad Prism 5.0
(GraphPad Software, La Jolla, CA, USA).

In vitro HIV-1 infection assays

In theHIV-1 luciferase assay, TZM-bl cells were pretreatedwith
eitherCXCL12 (0–1000 nM),CXCL14 (0–1000nM), orCXCL14+
CXCL12 (0.1 nM) for 1 h before infection. Cells were infected
with 3 ng of either R8-Bal R5-tropic or pNL4.3 X4-tropic HIV-1
virions for 3 h, washed, and cultured in 100 ml chemokine-
containing medium for 48 h. After culture, 100 ml SteadyGlo
reagent (E2510; Promega, Madison, WI, USA) was added to
wells and allowed 5min to lyse cells before being analyzed on a
luminometer. In theHIV-1 GHOST-R5 infection assay, GHOST-
R5 (AIDS Reagent Program, Frederick, MD, USA) cells were
pretreated 1 h before infection with CCL5/CXCL14 (0–1000
nM), spinoculatedwith250pgR8-BalR5-tropicHIV-1 for2.5hat
37°C, washed with 13 PBS, and cultured for 48 h at 37°C in
chemokine-containing medium. Cells were fixed in 4% para-
formaldehyde for 30 min, stained for intracellular p24 HIV-1
core antigen (RD1, 6604667, Coulter Clone; Beckman Coulter,
Brea, CA, USA), and analyzed by using flow cytometry (FACS
Canto II; BD Biosciences).

Statistical analyses

For chemotaxis assays, statistical significancewas determined by
using a 1-way ANOVA followed by Bonferroni post hoc testing.
Results were considered significant at P , 0.05, P , 0.01, or
P , 0.001. Statistical analyses were performed by using Prism,
ver. 6.0 (GraphPad Software).

RESULTS

Direct binding of CXCL14 to CXCR4

We first set out to readdress the CXCL14 binding studies
reported by Tanegashima and colleagues (32, 33), which
were not supported by functional studies carried out by
another group (34). We have developed an SPR-based
binding assay that can be applied tomeasuring the on- and
off-rates, in real-time, of chemokines interacting with their
receptors (44). In brief, CXCR4-expressing LVPs are
immobilized on an SPRbiosensor chip, and SPR signals are
recorded after injection of chemokine. In agreement with
previousresults (44),wedeterminedtheon-rate (kon=1.223
105M21 · s21) andoff-rate (koff=4.2831023 s21)ofCXCL12
interaction with CXCR4, which resulted in a dissociation
constant (KD) of 3.53 1028 M. Substituting CXCL12 with
CXCL14 revealed strong binding of CXCL14 for immobi-
lized CXCR4 with on-rate (kon = 3.963 105 M21 · s21) and
off-rate (koff = 3.17 x 1023 s21) that resulted in aKD of 8.03
1029 M (Supplemental Fig. 1A), which is similar to
the published KD value of 1.47 3 1028 M obtained by
Tanegashima’s group using [125I]-CXCL14 (32). In addi-
tion, CXCL14 efficiently displaced bound CXCL12 as

assessed by the sequential injection of increasing concen-
trations of CXCL14 to SPR sensor chips that were
pretreated with a single concentration of CXCL12
(Supplemental Fig. 1B). In the reverse experiment,CXCL12
was consistently less efficient in displacing bound
CXCL14.We conclude thatCXCL14, indeed, is a ligand for
CXCR4; however, as suggested by displacement binding
experiments, the 2 chemokines differ in the way they in-
teract with CXCR4 which may be explained by distinct
and, in part, nonoverlapping binding sites on the receptor.

CXCL14 synergizes with CXCL12 in mediating
CXCR4-dependent cell migration

We next examined the ability of CXCL14 to induce
chemokine-typical responses in the mouse pre–B-cell line
300-19 that was stably transfected with CXCR4. CXCL14
was completely inactive up to a concentration 1000 nM in
inducing chemotactic migration, whereas CXCL12 was
active with maximal migratory responses observed at
100 nM (Fig. 1A). We expected that CXCL14 may inhibit
CXCL12activity, but to our surprise,weobserved a strong
cooperativity between CXCL14 and CXCL12. Combina-
tion of a low (subactive) concentration of CXCL12 [0.1 nM
(not shown) or 1 nM], which by itself does not induce
chemotaxis, with CXCL14 resulted in a strong migratory
response thatpeakedat 300nMCXCL14.Theresponse to1
nM CXCL12 + 300 nM CXCL14 even exceeded maximal
responses obtained with 100 nM CXCL12 alone (Fig. 1A).
In the presence of CXCL14, CXCL12 exhibited .10-fold
enhanced potency in the migration response (Fig. 1B).

CXCR4 is widely expressed in primary cells, including
tissue cells and PBMCs; therefore, we tested the syner-
gistic activity between CXCL14 and CXCL12 in freshly
isolated T, B, and NK cells that uniformly expressed
CXCR4 but did not respond to CXCL14 alone (Fig. 2).
Lymphocytes were functionally competent, as evidenced
by their robust chemotaxis responses to CXCL12, consis-
tently displaying maximal responses at 100 nM CXCL12
(Fig. 2). Of note, the combination of a subactive concen-
tration [0.1 nM (not shown) or 1 nM] of CXCL12 with
increasing concentrations of CXCL14 resulted in robust
cell migration that peaked at 300 nM CXCL14, which
compares well with our results with CXCR4-transfected
cells (Fig. 1).As typicallyobservedwith chemoattractants,
CXCL14 became inhibitory at high (.300 nM) concen-
trations. The robustness of the observed synergy between
these2primordial chemokinespromptedus to investigate
this phenomenon in greater detail. To confirm that the
synergy between CXCL14 and CXCL12 occurred via
CXCR4, the primary receptor for CXCL12 (8, 9), we per-
formed the same experiments by using PBMCs that
were pretreated with the CXCR4-specific antagonist,
AMD3100 (46). Similar to CXCL12 alone (not shown), T-,
B-, and NK-cell migration in response to 1 nMCXCL12 +
300 nM CXCL14 was completely abrogated after pre-
treatment with 1–10 mMAMD3100, which indicated that
the synergy response did indeed depend on CXCR4 (Fig.
3A). CXCL14 is highly selective for bloodmonocytes (14),
and, in fact, recent examinations revealed that the CD14hi
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subset of primary human monocytes is the major target
(not shown). Of interest, migration of monocytes toward
CXCL14 alone was not affected by pretreatment with
AMD3100 (Fig. 3B), which suggested that monocyte re-
sponses toward CXCL14 are mediated by a receptor that
is unrelated to CXCR4.

CXCL14 enhanced CXCL12-mediated signal
transduction in CXCR4-expressing cells

Chemokines—upon activation of their corresponding
receptor—induce intracellular signaling cascades that re-
sult in cell activation and motility that includes G-
protein–mediated and –independent pathways (47, 48).
As expected from its failure to induce chemotaxis, CXCL14
alone did not induce transient elevations of intracellular
Ca2+ concentrations, which are typically observed in
chemokine receptors coupling to Gai proteins, whereas
CXCL12 alone showed expected response profiles (Fig.
4A). Again, combination of 0.5 nM (not shown) or 3 nM
CXCL12 (concentrations below the threshold of Ca2+

mobilization) with 300 nM CXCL14 resulted in clear and
transient Ca2+ spikes, even after sequential addition of the
2 chemokines, which indicated that CXCL14 synergized
with CXCL12 in a prototypic Gai-protein–mediated
signaling event.

SmallGTPases, includingRho,Cdc42, andRac isoforms,
control cell polarization in the front and rear (uropod),
which is a prerequisite for cell migration (48). Primary hu-
man T cells that were exposed to 1 nM CXCL12 already
inducedT-cell polarization as evidenced byF-actin staining
(Fig. 4B), despite the fact that this concentration was below
the threshold for in vitro chemotaxis (Figs. 1 and 2). By
contrast, 300 nMCXCL14didnot induceT-cell polarization
anddidnot inhibit this responsewhen added togetherwith
1 nM CXCL12 (Fig. 4B). Synergistic responses between
CXCL14 and CXCL12 in T-cell polarization were not sig-
nificant. In addition, 1 nM CXCL12 or 300 nM CXCL14
alone did not induce significant GTPase Rac1 activation in

primary T cells asmeasured by flow cytometrywith anAb
that specifically recognized active GTP-bound Rac1 (Fig.
4C). Of note and in agreement with chemotaxis and
Ca2+ mobilization responses, synergy between 1 nM
CXCL12 and 300 nM CXCL14 resulted in significant
elevation in intracellular Rac1-GTP, which was partially
blocked by CXCR4 inhibitor, AMD3100, and Src-family
kinase inhibitor, PP2 (Fig. 4C).

Finally, because of its prominent contribution to biased
(G-protein–independent) agonism (49), we examined the
MAPK/ERK signaling pathway by Western blot. Stimu-
lation ofCXCR4-transfectedpre–B cellswith 100–1000nM
CXCL14 alone over short (2 min) or long (10 and 20 min)
periods of time did not induce pERK generation (Fig. 4D).
CXCL12, in contrast, generated strongpERKsignals,which
was in keepingwith previous results (50). The combination
of 300nMCXCL14witheither 0.1or 1nMCXCL12 induced
a mild but consistent synergism that did not exceed 2-fold
compared with 0.1 or 1 nM CXCL12 alone. Of note, excess
(1000 nM) CXCL14 significantly reduced maximal pERK
responses, which resembled synergistic cell migration re-
sponses observed at the highest CXCL14 concentrations
(Figs. 1 and 2). Collectively, we have demonstrated that
CXCL14alonedidnot activateCXCR4-associated signaling
events, nor did it inhibit CXCL12-mediated responses. In-
stead,CXCL14 synergized tovariousdegreeswithCXCL12
in CXCR4-mediated intracellular signal transduction.

Mechanism underlying observed
CXCL14-CXCL12 synergism

Heterodimerization has been identified as a major mech-
anism that underlies the synergistic activity of various
chemokine pairs (51, 52), as well as chemokines with
other inflammatory mediators (53). By comparing 2-
dimensional 15N[1H] chemical shift correlation NMR
spectra of 15N-labeled proteins before and after addition
of partner proteins, it is possible to confirm protein–
protein interactions, even between low-affinity binding
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partners. Furthermore, it is alsopossible todeducewhich
residues are involved in the observed interactions (54).
We have previously applied this technique to demon-
strate that high mobility group box 1 protein (HMGB1)
and CXCL12 synergized in the recruitment of immune
cells by means of a direct physical interaction (53). Here,
however, our recordings of [15N,1H]-HSQC spectra of
15N-labeled CXCL12 and CXCL14 did not reveal such
CXCL12–CXCL14 protein interactions, even at very high
concentrations (77mM/each; Supplemental Fig. 2A). We
next used SPR biosensormeasurements inwhich soluble
CXCL12 or CXCL14 were flowed over CXCL14 or
CXCL12 immobilized on biosensor chips. In agreement
with the above-described results, no significant interac-
tions were revealed (Supplemental Fig. 2B), whereas in
control experiments, both chemokines bound strongly to
immobilized heparan sulfate (Supplemental Fig. 2C).

In addition to the overall diversity in primary amino
acid sequences (23.4% sequence identity), CXCL14 and

CXCL12 differ fundamentally in 3 regions of their tertiary
structures (Fig. 5A). Their respectiveC-terminal helices do
not align; however, as this region in chemokines does not
directly interact with cognate receptors, this structural
difference is unlikely to explain the observed CXCL14–
CXCL12 synergism. Compared with CXCL12 and all
other chemokines, the 40s loop that connects theb2 andb3
strands in theb-pleated sheet of CXCL14 contains an extra
5-aa (VSRYR) insertion that may affect the selectivity of
CXCL14 for its cognate (as yet unknown) receptor. The
most noticeable difference, however, lies in their
N-terminal sequences that precede the first of 4 conserved
Cys residues (Fig. 5A, B). The N terminus in CXCL14 is
restricted to 2 aa (Ser-Lys), whereas in CXCL12 it is com-
posed of 8 aa that are critical for CXCL12 activity (55).
Indeed, residues in the unstructured N terminus of
CXCL12 were proposed to bind to the minor binding
groove (site 2) within CXCR4, which enabled step 2 in the
2-step binding model that leads to G-protein activation
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(Fig. 5A) (56, 57). Of interest, N-terminal peptides of
CXCL12 were able to trigger responses in CXCR4-
expressing cells at $10 mM concentrations (40). As
CXCL14 is missing an equivalent N terminus, we
reasoned that CXCL14 binding to CXCR4 would pri-
marily occupy site 1 on CXCR4while leaving site 2 free
for binding of a different ligand. Synthetic CXCL12
(N-terminal residues 1–9) peptide induced chemotaxis
in CXCR4-transfected pre–B cells at micromolar con-
centrations; however, synergy between CXCL14 and
CXCL12(1–9) peptide was not observed (Supplemen-
tal Fig. 3).

Although we have demonstrated that binding of
CXCL14 to CXCR4 does not trigger chemotaxis and other
receptor signaling events, binding of CXCL14 to CXCR4
could modulate the distribution of CXCR4 on the cell sur-
face. Incubation with 300 nM CXCL14 at 37°C led to a
modest (approximately 50%) but clear cell-surface de-
pletion of CXCR4, which was equivalent to the receptor
internalization obtained with 1 nM CXCL12 (Fig. 6A). In-
cubation with 300 nM CXCL14 and 1 nM CXCL12 simul-
taneously depleted surface CXCR4 levels even further
(.75%) and was comparable to the effect observed with
100 nM CXCL12 (the optimal concentration required for
induction of chemotaxis; Figs. 1 and 2). It has been dem-
onstrated that the clustering of receptors at the cell surface
precedes clathrin-mediated receptor endocytosis; thus, we
carried out FRET experiments by usingHEK293T cells that
were transiently transfected with CXCR4 fused to the
fluorescence tags, CFP, and YFP. This powerful technique
has been previously applied to the study of cell-surface in-
teractions between chemokine receptors, revealing the dy-
namic formation of homo- and heterodimers and the
conformational changes that are triggered by their ligands
(45). To set up FRET experiments, receptor transduction
conditions that yielded optimal CXCR4-YFP/CXCR4-CFP
ratios were determined (Supplemental Fig. 4A). In agree-
mentwith previous results (58), we detected positive FRET
signals in the absence of ligands, which indicated the

presence of CXCR4 homodimers under nonactivated con-
ditions. These base-level FRET signals increasedwhen cells
were stimulated with 100 nM CXCL12, whereas 1 nM
CXCL12was inactive (Fig. 6B).Of interest, 300nMCXCL14
also promoted significant increase of FRET signals, which
wasnot further enhancedby the additionof 1nMCXCL12.
In control experiments with CCR2-YFP/CCR2-CFP–
expressingHEK293Tcells (Supplemental Fig. 4B),CXCL14
did notmodify basal FRET efficiencywhen added alone or
in combinationwithCCL2,which confirmed the specificity
of CXCL14 for CXCR4 (Fig. 6C). In agreement, we did not
detect synergistic interactions betweenCXCL14 andCCL2
in the induction of chemotactic responses in CCR2-
transfected 300.19 cells (not shown). We conclude that the
observed functional synergism between CXCL14 and
CXCL12correlateswithCXCL14-induced changes in the
conformation and/or dimer formation of cell-surface
CXCR4.

Modulation of HIV-1 infection by CXCL14

Having established thatCXCL14 synergizeswithCXCL12
bymeans of direct interactionwith CXCR4, we decided to
investigate the influence of CXCL14 on HIV infection.
Envelope glycoprotein gp120 of HIV-1 is the second
known natural ligand of CXCR4. HIV-1 entry requires
CD4, as main receptor, in addition to either one of the 2
coreceptors, CXCR4 and CCR5, on target cells, and viral
species aredefinedby their coreceptorusage (i.e.,X4-tropic
and R5-tropic viruses infect CD4+ target cells that coex-
press CXCR4 and CCR5, respectively) (59). Chemokines
that bind to eitherCXCR4orCCR5were shown toprevent
infection by X4 and R5 HIV-1 particles, respectively, and,
hence, are referred to asHIV suppressor factors (59). In an
in vitro single-round HIV-1 entry assay that employs a
luciferase reporter readout as ameasure of viral entry into
the HeLa-derived target cell line TZM-bl, CXCL12, as
expected (8, 9), hadapotent inhibitory effect on entry ofX4
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HIV-1 (pNL4.3) particles (Fig. 7A). Similar towhat has been
reported previously, the IC50 of CXCL12 was approxi-
mately 1 nM. As a result of its binding to CXCR4, we rea-
soned that CXCL14 may also inhibit entry of X4 HIV-1
viruses or even synergizewithCXCL12 in thepreventionof
HIV-1 entry intoCD4+CXCR4+ target cells. To our surprise,
however, treatment of TZM-bl cells with 10–1000 nM
CXCL14alone resulted inup to.3-fold enhancement of X4
HIV-1 infection (Fig. 7B). Furthermore, CXCL14 did not
synergize with CXCL12 in inhibition of HIV-1 entry, as the
suboptimal HIV-1 inhibition observed with 0.1 or 1 nM
CXCL12 was not further potentiated. On the contrary,
combination of the 2 chemokines resulted in a similar en-
hancement ofHIV-1 entry asmeasuredwithCXCL14alone
(Fig. 7B). Inclusion of increasing concentrations of CXCL12
seemed to diminish the enhancement of X4HIV-1 infection
by CXCL14, which is in agreement with the critical role
played by CXCR4 in this process. By using the same assay,
we next examined the ability of CXCL14 to modulate the

entry of R5-tropicHIV-1 (pR8Bal) particles. Pretreatment of
TZM-bl cells, which coexpress CD4, CXCR4, and CCR5,
withCXCL14again led toa.3-fold increase inviral entryat
thehighest concentration tested (Fig. 7C).As expected (8, 9),
CXCL12 was completely inactive in the prevention of R5
HIV-1 infection. The observed enhancement of R5 HIV-1
entry byCXCL14wasdependent onCXCR4, as infection of
CXCR4-deficient GHOST cells that were engineered to
coexpress CD4 andCCR5 by R5HIV-1was not affected by
CXCL14 (Fig. 7D).Weconclude thatCXCL14wasunable to
synergizewithCXCL12 in the inhibition ofHIV-1 infection,
but, instead, substantially enhanced the infection of CD4+

target cells with both X4 and R5 HIV-1 particles.

DISCUSSION

We report here an unexpected and strong synergistic co-
operation between CXCL14 and CXCL12 in controlling
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chemokine functions in CXCR4+ immune cells. The im-
portance of chemokines in the localization of immune cells
is underscored by countless studies that have demon-
strated a correlation between defects in chemokine ex-
pression (or function) and inflammatory diseases (1–3).
CXCL14 belongs to the category of homeostatic chemo-
kines as it is constitutively expressed in adult epithelial
(nonlymphoid) tissues (14–21); therefore, it is remarkable
that CXCL14 synergizes with CXCL12, another homeo-
static chemokine with similar steady-state expression in

adult peripheral tissues (60). As mentioned earlier,
CXCL14 and CXCL12 are the most evolutionary con-
served chemokines, and, in fact, are the only 2 chemokines
withorthologs found in lowervertebrates (38). In addition,
CXCL14 and CXCL12 show robust and complementary
mRNA expression profiles during mouse and chicken
embryogenesis (35–37), which suggests coordinated
functions in embryonic tissue development. Indeed, de-
ficiency in the expression ofCXCL12or its receptorCXCR4
is embryonically lethal (7). Similarly, we and others have
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reported previously that lack of CXCL14 results in a severe
birth defect in mice (29–31). We hypothesize that the pre-
mature death of neonates in CXCL14-KO mice might be
caused, in part, by the inability of CXCL12 to synergize
with CXCL14.

Numerous reports have been published in recent years
that describe functional synergism in the chemokine
system, with several mechanisms, including chemokine
heterodimerization, cell-surface clustering of chemokine re-
ceptors, and synergism in intracellular signaling path-
ways, put forward to explain this phenomenon (reviewed
in refs. 51–53). Several reports have succeeded in demon-
strating a positive effect of chemokine synergism in vari-
ous in vivomodels, including mouse models of monocyte
recruitment to atherosclerotic lesions (61), neutrophil re-
cruitment to the peritoneum (62), and rat models of leu-
kocyte recruitment to inflamed skin (63) and theCNS (64).
Similarly, we have recently reported that HMGB1, a
chromatin-binding protein that is released by dying cells,
was able todimerizewithCXCL12 and induce synergistic
leukocyte recruitment in several mouse models of tissue
necrosis (53). Furthermore, and more relevant to our cur-
rent study, TGF-b family member activin A has recently
been shown to induceDCmigration in vitro aswell as in an
ex vivo model of chemokine-mediated emigration of DCs
out of mouse ear tissue (25). Activin A by itself had no
chemoattractant activity but induced in immature DCs the
coordinateexpressionofCXCL14andCXCL12(butnoother
chemokine),withCXCL14exceedingCXCL12both in terms
of kinetics and quantity. Of importance, immature DC mi-
grationwas largelydependent onCXCR4,which suggests a
mechanism similar to the one discussed here in our study
with human blood lymphocytes and CXCR4+ cell lines.

Our findings support a new model of functional syn-
ergismamongchemokinesbyproposing thatCXCL14acts
as a positive allosteric modulator (PAM) for CXCR4 (Fig.
8) (65). This is in clear contrast to previous reports on
chemokine synergism, which highlighted the ability of
chemokines to form heterocomplexes or to act simulta-
neously by binding their respective chemokine receptors
on the same target cell (reviewed in refs. 51, 52). Our
negative NMR and SPR data exclude the possibility of
CXCL14–CXCL12 heterodimer formation as an explana-
tion for the observed functional synergy. In addition,
and in clear contrast to blood monocytes (14, 15),
blood lymphocytes andNKcells do not express functional
receptors forCXCL14,which eliminates thepossibilityof 2
distinct chemokine receptors working in concert. Instead,
and in agreement with previous results (32), our SPR ex-
periments clearly showed that CXCL14 bound to CXCR4
withhighaffinity,whichwascomparable towhatwehave
reported for CXCL12, the principal ligand for CXCR4 (44).
CXCL14 is remarkable in its extremely short N-terminal
sequence (Ser-Lys) that immediately precedes the first of
4 conserved Cys residues (Fig. 5). Of importance, short
truncations in theN terminus ofCXCL12 led to a complete
loss of activity, which was in keeping with the 2-step
model for chemokine–receptor interactions (55, 66, 67).
Step 1 relates to the initial binding of the chemokine to its
receptor and this step involves the globular core of che-
mokines, which includes the N loop that immediately
follows the secondCys residue and regions defined by the
3 antiparallel b strands. Step 1 by itself does not lead to
receptor activation. Step 2 involves the docking of the
unorderedNterminusof the chemokine to theminor and/
or major binding pockets in the receptor, which leads to
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Figure 7. Synergistic effect of CXCL14 on HIV-1
infection. A) Entry of CXCR4-tropic HIV-1 particles
pNL4.3 into TZM-bl cells that coexpressed CD4,
CXCR4, and CCR5 in the presence of increasing
concentrations of CXCL12. Viral infection is
represented by expression of a luciferase reporter
and is normalized to infection in the absence of
CXCL12 (medium only = 100% infection). Data
are means + SEM of 3 independent experiments.
*P , 0.05, **P , 0.01 compared with 0 nM
CXCL12 (1-way ANOVA plus Bonferroni posttest).
B) Entry of pNL4.3 into TZM-bl cells in the
presence of 0–1000 nM CXCL14 alone (black
bars) or CXCL14 in combination with 0.1 nM
CXCL12 (open bars); 100% luminescence corre-
sponds to luciferase reporter activity in the absence
of chemokines. Data are means + SEM of 3
independent experiments. C) Entry of CCR5-tropic
HIV-1 particles pR8Bal into TZM-bl cells in the
presence of 0–100 nM CXCL12 or 0–1000 nM
CXCL14 as indicated. Data are means + SEM of 3
independent experiments. D) Entry of pR8Bal into
GHOST cells that coexpress CD4 and CCR5 (but
not CXCR4) as well as green fluorescent protein
(GFP) under the control of viral long terminal
repeat promoter; 100% GFP+ cells refers to
fluorescence signals obtained after viral infection
of GHOST cells in the absence of chemokines.
Ns, not significant. Data are means + SEM of 3
independent experiments.
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allosteric changes in the receptor and subsequent G-
protein activation. Altogether, the high-affinity binding
of CXCL14 toCXCR4 is remarkable and, on thebasis of the
missing N terminus in CXCL14, its inability to trigger
CXCR4-mediated signaling events seems obvious. We
propose that the observed synergy between CXCL14 and
CXCL12 is not a result of to their simultaneous action on
single-receptor molecules but, instead, involves both re-
ceptors inCXCR4homodimers (or oligomers) as illustrated
in Fig. 8.

GPCRsareknownto coexist inmultiple conformational
states on cell surfaces, each state being associated with a
distinct functional outcome (65). Each conformational in-
termediate (conformer) is defined by a loosely coupled
allosteric network composed of an extracellular ligand
binding site (step 2 binding pocket in chemokine recep-
tors), connector domains, and intracellular effector (G
proteins andb-arrestins) binding sites, each able to exist in
various conformational states.Receptor conformations are
also influenced by membrane context (membrane micro-
domains) as well as receptor clustering (receptor dimer/
oligomerization) (68). It has been proposed that ligands
select certain conformational states in GPCRs for binding
and/or induction of signal transduction (49, 69); therefore,
our model proposes that CXCL14, by binding to CXCR4,
shifts the balance of CXCR4 conformers in favor of those
recognized by the functional ligand CXCL12 (Fig. 8).
CXCL14, by itself, is not an agonistic PAM (i.e., the pro-
posed conformational changes induced by CXCL14
binding were not sufficient for triggering chemokine

responses in primary lymphocytes and CXCR4-transfected
cell lines). Instead, the PAM activity of CXCL14 affects
partner molecules in CXCR4 homodimers (or oligomers)
by inducing conformational changes in neighboring
(CXCL14-free) receptors (Fig. 8). Although CXCL14 dis-
placed CXCR4-bound CXCL12, our experiments did not
exclude the possibility that CXCL14-mediated conforma-
tional changes promoted changes in binding affinity be-
tween CXCL12 and its receptor. Our findings agree with a
recent study that describedhigh-affinity bindingofCXCL14
toCXCR4 (32); however, PAMactivity for CXCL14was not
reported. On the contrary, CXCL14 was either found to be
inhibitory (32) or to lack inhibitory activity on CXCR4-
expressing cells (34). The discrepancy of our study is not
clear at present but may be explained in part by several
factors, including the choice of target cells (monocytic cell
line THP-1 cells,mouse pre–B cell line BaF/3, andCXCR4-
transfected HEK293 epithelial cells), different combina-
tionsof chemokine (CXCL12andCXCL14) concentrations,
or different types of examinations that were carried out.

PAM activity of CXCL14 extends to the second
natural ligand for CXCR4, gp120 of X4-tropic HIV-1.
Here, we propose that CXCL14 stabilizes preferred
conformations of CXCR4 for HIV-1 infection, possi-
bly by promoting conformational changes in CXCR4
aggregates. The observed enhancement effect on
HIV-1 infection was substantial (3- to 4-fold). Of note,
CXCL14 did not synergize with CXCL12 in its HIV-1
suppressor activity (i.e., CXCL14 did not increase
the potency of CXCL12 to inhibit HIV-1 infection).
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Figure 8. CXCL14 is a PAM of CXCR4. The model explains how CXCL14 is able to synergize with CXCL12 in the induction of
CXCR4-mediated chemokine responses. The pool of cell-surface CXCR4 consists of a combination of individual CXCR4
conformation states, some of which are empty receptors in monomeric, dimeric, or oligomeric arrangements, whereas other
conformational states are influenced by ligand binding (shown here by shift from black to yellow conformation upon CXCL14
binding). Binding of CXCL14 to CXCR4 by itself does not generate chemokine responses. Instead, CXCL14 binding induces
allosteric changes in partner molecules that are present in CXCR4 homodimers or oligomers, thereby lowering the threshold of
receptor activation by the functional ligand CXCL12 (shown here by shift from black to blue conformation in the partner molecule).
As a result, subactive concentrations of CXCL12 become active, which leads to G-protein signaling and cellular responses.
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Instead, it seems that CXCL14 synergized with gp120
in the viral entry response, irrespective of whether
CXCL12 was present. Recent evidence suggests that
chemokine-mediated receptor oligomerization is re-
quired for efficient chemokine responses (70). Although
more experiments are needed to clarify the exact mecha-
nism, it is possible that CXCL14-mediated CXCR4 clus-
tering may facilitate gp120 binding and, thus, X4 HIV-1
infection. Surprisingly, CXCL14 had a similar enhance-
ment effect on infection by R5-tropic HIV-1, which re-
quires CCR5 as a coreceptor for entry into CD4+ target
cells. CXCL14-mediated enhancement was dependent on
the presence of CXCR4, which suggests that CXCL14
binding to CXCR4 had a positive effect on CCR5 con-
formers, possibly as a result of a shift in CCR5 conformers
within CXCR4–CCR5 aggregates. We recently reported
that CD4, CXCR4, and CCR5, when coexpressed simul-
taneously, form trimeric complexes that block HIV-1
binding and infection (58). It is thus plausible that
CXCL14 binding to CXCR4 disrupts these trimeric re-
ceptor complexes, thereby facilitating the interaction of
HIV-1 R5 viruses with CD4/CCR5. Regardless of the
mode of action, it is noteworthy that CXCL14 is consti-
tutively expressed up to very high levels in healthy mu-
cosal tissues; therefore, local CXCL14 could adversely
influence the course of HIV-1 infection by boosting the
permissiveness in CD4+ target cells at sites that are criti-
cally involved in person-to-person HIV-1 transmission.

In summary, our model predicts that CXCL14 is a
natural PAM for CXCR4, which, at present, is unique
among chemokines and, to our knowledge, among
physiologic ligands for other GPCRs (65). Our results will
help to guide the design of allosteric modulators specific
for CXCR4 to modulate tissue repair processes, cancer, or
HIV-1 infection.
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