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Highlights 1 

 EEG and eye-tracking were recorded while 8-11-month-old infants observed action 2 

sequences containing statistical regularities 3 

 Infants demonstrated sensitivity to statistical regularities in action sequences in both 4 

predictive gaze behavior and event-related potential components 5 

 Violations of statistical regularities elicited a Negative central component, a marker of 6 

infant visual attention 7 

  Infants’ depend on the presence of action-effects to detect the statistical regularities in 8 

other people’s action sequences 9 
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Abstract 1 

Infants are sensitive to structure and patterns within continuous streams of sensory 2 

input. This sensitivity relies on statistical learning, the ability to detect predictable regularities 3 

in spatial and temporal sequences. Recent evidence has shown that infants can detect 4 

statistical regularities in action sequences they observe, but little is known about the neural 5 

process that give rise to this ability. In the current experiment, we combined 6 

electroencephalography (EEG) with eye-tracking to identify electrophysiological markers that 7 

indicate whether 8-11-month-old infants detect violations to learned regularities in action 8 

sequences, and to relate these markers to behavioral measures of anticipation during learning. 9 

In a learning phase, infants observed an actor performing a sequence featuring two 10 

deterministic pairs embedded within an otherwise random sequence. Thus, the first action of 11 

each pair was predictive of what would occur next. One of the pairs caused an action-effect, 12 

whereas the second did not. In a subsequent test phase, infants observed another sequence that 13 

included deviant pairs, violating the previously observed action pairs. Event-related potential 14 

(ERP) responses were analyzed and compared between the deviant and the original action 15 

pairs. Findings reveal that infants demonstrated a greater Negative central (Nc) ERP response 16 

to the deviant actions for the pair that caused the action-effect, which was consistent with 17 

their visual anticipations during the learning phase.  Findings are discussed in terms of the 18 

neural and behavioral processes underlying perception and learning of structured action 19 

sequences. 20 

 21 

 22 

Keywords: statistical learning, infant event-related potentials, action sequences, eye-tracking, 23 
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Sensitivity to structure in action sequences: An infant event-related potential study 1 

1.0 Introduction 2 

Infants face the constant challenge of perceiving meaningful events within the 3 

complex action sequences they observe. Human actions contain inherent statistical 4 

regularities, characterized by predictable patterns that result in specific goals or outcomes. For 5 

instance, the everyday action of ‘drinking tea’ always consists of the same sequence: grasping 6 

a kettle, heating water, adding milk (if you are British), and so forth. Sensitivity to sequential 7 

regularities forms the basis for the ability to predict action goals, their outcomes, and to 8 

adaptively respond during social interactions. In fact, infant’s growing abilities to understand 9 

the social world may arise initially from their statistical learning skills (Ruffman et al., 2012).   10 

Recent studies have investigated infants’ sensitivity to different kinds of statistical 11 

information in actions they observe. Paulus and colleagues (2011) showed that 9-month-olds 12 

used frequency information from prior observations to predict where an agent would reappear 13 

along a path after disappearing (Paulus et al., 2011). In another experiment (Stahl et al., 14 

2014), 18-month-olds viewed action sequences comprised of three-step deterministic action 15 

‘units’ (example: A-B-C and D-E-F). Afterwards, they were tested on their ability to 16 

discriminate intact units (A-B-C) and ‘part-units’, which featured lower transitional 17 

probabilities (example: C-D-E). Their results showed that 18-month-olds successfully 18 

discriminated between units and part-units, indicating that they successfully segmented the 19 

action sequence according to its transitional probabilities.  20 

Further behavioral studies show that infants can detect regularities in visual events and 21 

actions from the statistical information alone, independently from physical or movement cues 22 

(Baldwin et al., 2001; Hespos et al., 2009; Kirkham et al., 2002; Saylor et al., 2007). One 23 

hypothesis arising from this evidence is that infants initially rely on statistical learning skills 24 

to predict upcoming events based on sequential regularities, and that these skills precede the 25 
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ability to form conceptual expectations about goal-directed actions (Hunnius and Bekkering, 1 

2014). In other words, infants first learn that someone grasping a mug typically pours tea 2 

before drinking, which in turn enables them to predict that the mug will be brought to the 3 

mouth, and ultimately leads to a meaningful concept of the act of ‘drinking tea’.  4 

The sensory consequences of an action—action-effects—are a central feature of goal-5 

directed action. As in the tea example, each step is associated with a change in the sensory 6 

environment such as the sound of the pouring tea. The development of infants’ understanding 7 

of goal-directed actions may primarily emerge through repeated observation of actions and 8 

their perceptual effects (Hunnius & Bekkering, 2014). Prior behavioral studies illustrate that 9 

action-effects are critical in guiding how infants perceive and learn about action events 10 

(Jovanovic et al., 2007; Klein et al., 2006; Verschoor et al., 2010). However, though they may 11 

enhance learning or induce changes in behavior, action-effects may not be necessary for 12 

infants to initially learn the regularities in observed action sequences. Some research has 13 

shown that infants and adults demonstrate neural responses to sequential events based only on 14 

their statistical likelihood (Abla & Okanoya, 2009; Teinonen et al., 2009). Given these 15 

findings there is no reason to expect infants could not do so for action sequences as well, 16 

though they might acquire a stronger association between sequential actions that cause action-17 

effects for several reasons. First, infants are drawn to contingency, and action-effects are 18 

salient sensory events that are also contingent upon the action causing them (Gergely & 19 

Watson, 1999, 1996). Second, action-effects may be perceived as goals and draw attention to 20 

the actions that precede them, as action goals have a powerful influence on how infants 21 

subsequently process observed actions (Henderson & Woodward, 2011). In the current study, 22 

we compared event-related potential (ERP) responses, as described below, to sequential 23 

actions that either did or did not cause a salient visual effect.  24 
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The ERP technique has made it possible to explore the neural mechanisms that support 1 

action processing in infants. ERPs are voltage oscillations in the electroencephalography 2 

(EEG) signal that are time-locked to the onset of perceived events (Luck, 2014). Components 3 

can be identified in the ERP waveforms that mark specific stages of perceptual and cognitive 4 

processes in infants (for a review, see de Haan, 2007). Two ERP components are particularly 5 

relevant for research on infant action processing: the Negative central (Nc) and the N400, 6 

which reflect visual attention and semantic processing, respectively (Kaduk et al., 2016; Pace 7 

et al., 2013; Reid et al., 2009).  8 

The Nc component has been interpreted as a marker of attention orientation towards 9 

salient stimuli and is typically larger in response to novel or unexpected stimuli (for a review, 10 

see Reynolds, 2015). The Nc emerges shortly after birth (Karrer & Monti, 1995), and between 11 

3 to 6 months infants begin to show a stable Nc response that is larger for novel compared to 12 

familiar stimuli (except in certain cases, such as a mother’s face or emotionally salient 13 

stimuli; (de Haan & Nelson, 1997). An increased negative amplitude is thought to reflect 14 

increased allocation of attention towards the stimulus (Courchesne et al., 1981; Richards, 15 

2003). The Nc manifests as a negative deflection in the ERP waveform at central and midline 16 

electrodes, peaking between 250 and 750ms following stimulus onset (de Haan, 2007). The 17 

neural generators of the Nc are presumed to be prefrontal and frontal regions related to 18 

attention and memory systems, reflecting cortical allocation of attention resources (Reynolds 19 

et al., 2010).  20 

The N400 component is observed in both adults and infants during processing of 21 

‘meaningful’ stimuli; that is, stimuli that grant access to semantic, or conceptual, knowledge 22 

(e.g., Reid & Striano, 2008; van Elk et al., 2014, 2009). The N400 is characterized by a 23 

negative peak with a parietal scalp distribution that is sensitive to semantic incongruence (for 24 

a review, see (Kutas & Federmeier, 2011). N400 effects have been reported in infants as 25 
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young as 9 months of age, with a peak latency that is delayed relative to the adult component 1 

(Kaduk et al., 2016; Parise & Csibra, 2012; Reid et al., 2009). By 14 months of age, N400 2 

effects become more robust and are elicited in a broader range of modalities and conventional 3 

paradigms (Friedrich & Friederici, 2005, 2004). Infants display an N400 response following 4 

an action outcome that is strange within the semantic context, such as bringing a spoonful of 5 

food to one’s forehead and is thus thought to be functionally similar to the adult N400. N400 6 

effects during action observation indicate a violation of an expected action outcome (Kaduk et 7 

al., 2016; Reid et al., 2009).  8 

The current experiment used ERPs to investigate learning during observation of action 9 

sequences containing statistical regularities. Infants of 8-11 months of age experienced a 10 

learning and test phase. The learning phase consisted of a continuous video of an action 11 

sequence, featuring two deterministic pairs embedded within an otherwise random sequence. 12 

At test, infants observed another sequence that included two novel ‘deviant’ pairs, which 13 

should violate their predictions if they had successfully learned the pairs. If infants perceive 14 

these deviants as violations of the expected sequential order, this should result in an enhanced 15 

Nc response to the deviant, relative to the original pairs, due to increased attention following 16 

the violation. We further hypothesized that these responses would be stronger for the pair 17 

associated with the action-effect. Finally, sequence violations might also elicit an N400 18 

response, which would indicate that statistical regularities could provide the contextual 19 

information needed for storing semantic knowledge about the expected action sequence.  20 

The current study implemented eye-tracking in addition to EEG measurements to 21 

assess whether infants also made predictive eye movements towards upcoming actions prior 22 

to their onset as the action sequence unfolded. Specifically, we examined whether infants 23 

looked toward the second action of a pair—or the action effect, for the Effect pair—during the 24 

first action of the pair. This measure provided a behavioral indicator of learning and extended 25 
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results from prior research with 18-month-old infants (Monroy et al., 2017). As an 1 

exploratory measure, we related the eye-tracking to the EEG measures to further clarify the 2 

neural correlates of learning. 3 

In sum, our primary aim in the current study was to identify novel electrophysiological 4 

evidence for statistical learning during observation of action sequences and identify whether 5 

they relate to behavioral indicators of learning. Our second goal was to identify the presence 6 

of ERP components associated with specific attention and/or semantic processes during action 7 

observation.   8 

2.0 Method 9 

2.1 Participants 10 

Fourteen infants were included in the final sample for the ERP analysis (M = 10.9 11 

months, range: 8.9-11.9 months, 9 males). Of these, seven infants were included in the final 12 

sample for the eye-tracking analysis (M = 10.4 months, range: 9.1-11.9 months, 3 males). An 13 

additional 8 infants contributed complete datasets from eye-tracking but not EEG 14 

measurements (N = 15, M = 10.3 months, range: 9.0-11.9 months, 6 males). All infants were 15 

recruited from a database of families interested in participating in developmental research. 16 

Although no demographic information was collected, the families were representative of the 17 

population of the small European city in which the data was collected (i.e., largely Caucasian 18 

and middle-class). Written informed consent was acquired from all parents, and families 19 

received a thank-you gift of 10£ for participation. Fourteen additional infants were excluded 20 

from the ERP analysis due to insufficient artifact-free trials (given a minimum criterion of 21 

three trials per condition, N = 9) or excessive fussiness (N = 5). This attrition rate (50%) is 22 

typical for EEG experiments with young infants (cf. Hoehl & Wahl, 2012; Meyer et al., 23 

2015). An additional eighteen infants visited the lab but were unable to participate in the 24 

experiment due to equipment failure.  25 
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2.2 Stimuli  1 

2.2.1 Learning Phase 2 

Infants were first shown a video of an adult agent performing an action sequence with 3 

a novel toy, in which only the actor’s hand was visible on screen (Figure 1). The toy featured 4 

six unique objects and a central star-shaped light. An action was defined as the manipulation 5 

of one object. Stimulus movies were filmed with a Sony HandyCam video camera and edited 6 

using Adobe Premiere Pro Cs5 software. All stimuli were presented on a screen with a 7 

resolution of 600 x 800 pixels, and a visual angle of 35 x 20 degrees. 8 

 9 

Figure 1. A: Example frames depicting each action. B: Sequence structure and action 10 

pairs. Numbers represent the transitional probabilities between actions. In (B) images are 11 

enlarged for clarity; infants actually observed the stimuli as in (A). 12 

 13 

The sequence structure was defined according to the transitional probabilities between 14 

action steps. Two action pairs featured deterministic transitions (i.e. action ‘A’ followed 15 

action ‘B’ with 100% predictability), whereas transitions between unpaired actions had a 16 

0.167 (1/6) probability. One of the deterministic pairs caused a light to turn on during the 17 
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second action; the second pair did not cause any effect. We refer to these, respectively, as the 1 

‘Effect’ and ‘No-effect’ pairs. For both pairs, the second actions were defined as target 2 

actions, as these were the events that became predictable during the unfolding of the 3 

sequence. We constrained the sequence such that no action or pair occurred more than three 4 

times consecutively, and such that all events occurred with equal frequency for a total of 12 5 

repetitions of every action and pair. Importantly, target actions also occurred elsewhere in the 6 

sequence outside of their pairs, to ensure that infants would need to learn the two-step pair 7 

structure rather than only associating the effect with the target action. The actions that defined 8 

the Effect and No-effect pairs were counterbalanced in two sets of videos, and infants were 9 

randomly assigned to one stimuli set.  10 

For each action, the actor’s hand entered the screen near the object, performed the 11 

action, and exited the screen in the same place. A brief pause occurred between actions, 12 

during which the object was viewed with no hand present. The onset of the light (effect) 13 

occurred at a natural mid-point of the target action during the Effect pair and ended when the 14 

action was completed. For example, during the target action ‘open’, the light went on the 15 

moment the small yellow door was fully open, and went off again as the hand closed the door.  16 

Each video was divided into four blocks of 24 actions (with approximately 3 trials of 17 

each pair in each block) with the viewing angle oriented from a different side of the toy box in 18 

each block to ensure that the object location on the screen did not become a predictable cue. 19 

At the beginning of a block, one still frame of the object was presented with no hand visible to 20 

help the infant reorient to the new perspective. In total, the entire learning phase lasted 21 

approximately six minutes. Engaging, upbeat music was played throughout the entire 22 

sequence that did not correspond in any way to the unfolding action sequence.  23 
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2.2.2 Test Phase 1 

Still frames were selected from the videos that were representative of the mid-point of 2 

each action for the test phase. The test phase consisted of one block of 144 images, in which 3 

the target action of each pair was replaced on half of the trials by a different action. For 4 

example, if the Effect pair during the learning phase was bend-open, infants saw bend-open 5 

and bend-slide, with both target images open and slide featuring the effect (Figure 2).  6 

 7 

Figure 2: Test conditions: examples of the original and deviant action pairs (images enlarged 8 

for clarity; infants observed the display as they had seen it during the learning phase). 9 

 10 

2.3 Procedure  11 

Parents and infants were invited into the lab and first given the opportunity to become 12 

comfortable with the new surroundings. After the procedure was explained, parents provided 13 

written informed consent. Infants sat on their parent’s lap throughout all phases of the study. 14 

After preparing the EEG net, parents were instructed to refrain from influencing their child 15 

during the experiment. The entire session was videotaped with the camera positioned behind 16 

and to the right of the presentation screen, with full view of the child and parent. Although we 17 

only analyzed the eye-tracking data from the learning phase, both EEG and eye-tracking data 18 
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were recorded throughout both phases of the experiment in order to avoid disrupting the 1 

experiment and the eye-tracking calibration for the EEG preparation.  2 

2.3.1 EEG Acquisition and Processing 3 

EEG was recorded continuously with the Electrical Geodesics Incorporated (Eugene, 4 

Oregon, USA) 128-channel recording system (Net Station 4.1.1). The EEG signal was 5 

referenced to the vertex and recorded with a 0.1-100 Hz band-pass filter and a sampling rate 6 

of 500Hz. Data was preprocessed using Net Station 4.3 Waveform Tools. Recordings were 7 

digitally filtered with a 0.3-Hz high-pass filter and a 30-Hz low-pass filter, and were 8 

segmented from 200ms before to 1000ms after the stimulus onset (the test image) for each 9 

trial. Segments were visually inspected to exclude EEG artifacts such as noisy channels and 10 

artifacts caused by eye and body movements. Any segments in which infants were not 11 

attending to the screen based on video recordings of the session were rejected. Participants 12 

were required to have at least three artifact-free trials per experimental condition (Figure 2) to 13 

be included in further analyses. This trial inclusion criterion was selected based on previous 14 

evidence that reliable Nc and N400 effects with infants are found with as few as three to 15 

seven trials per condition (Kaduk et al., 2013, 2016; Missana et al., 2014; Stets and Reid, 16 

2011). The mean number of artifact-free EEG trials contributed by infants across conditions 17 

was 6.27 (range = 3–11). For each condition, the mean number of trials contributed was as 18 

follows: DeviantEffectpair = 5.57 (SD = 1.55), OriginalEffectpair = 6.07 (SD = 2.53), 19 

DeviantNoneffectpair = 6.43 (SD = 2.1), OriginalNoneffectpair = 7.07 (SD = 2.1).  20 

2.3.2 Eye-Tracking 21 

Eye movements were recorded using a Tobii TX300 eye-tracker (Tobii, Stockholm, 22 

Sweden) at 120Hz with a spatial filter of 40 pixels and a temporal filter of 100ms. First, a 5-23 

point calibration sequence was repeated until valid calibration data was acquired for at least 24 

four points or a maximum of three attempts. Following calibration, infants watched the 25 
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learning video and then were immediately shown the test phase following a brief (<1s) pause 1 

during which they observed a blank screen. During the test phase, the experimenter could 2 

initiate attention-grabbers when the infant looked away from the stimuli, or a pause if the 3 

infant became distressed. Attention-grabbers were only implemented during the test phase—4 

thus, the learning phase was never interrupted by them—and they could only be initiated 5 

during a fixation image so as not to further disrupt the sequence. Following attention-6 

grabbers, the sequence resumed from where it had left off. Video stimuli were presented using 7 

Psychtoolbox for Matlab and a custom-made application written using Python. Sounds were 8 

played through external speakers. 9 

During the test trials, infants were assigned to either a gaze-contingent or automatic 10 

presentation group. This was due to the sample also being used for a separate, unrelated 11 

methodological study (in the final ERP sample, there were 8 infants in the gaze-contingent 12 

condition and 6 infants in the automatic condition). In both groups, each test trial began with a 13 

fixation image presented at a size of 3º x 3.7º in the location of the upcoming action (Figure 14 

3). We chose to present the fixation image in the target location in order to avoid eye 15 

movements towards the target because eye movements could distort the EEG signal and 16 

interfere with ERP components (Hoehl and Wahl, 2012). In the gaze-contingent condition, the 17 

test image was immediately presented only if the infant was looking at the fixation image. If 18 

the child was looking away, the fixation image would wiggle and play a jingling sound until 19 

the infant looked at the target location, or for a maximum of 4s. Trial duration thus ranged 20 

from 2s to a maximum of 6s. In the automatic condition, the fixation image remained for 1s 21 

before the next image automatically appeared. Each trial thus lasted for a total fixed duration 22 

of 2s. In both conditions, the test image was presented for an identical duration (1s); only the 23 

duration of the fixation image varied.  24 
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 1 

Figure 3: Two example trials from the test phase. 2 

 3 

3.0 Data Analysis 4 

3.1 ERP Analysis: Test Phase 5 

To identify the presence of an Nc component during the test trials, mean minimum 6 

amplitude of the ERP was calculated in selected channel groups (Figure 4) from 250-750ms 7 

post-stimulus, consistent with prior work on this component (Reid et al., 2009; Richards, 8 

2003). There is a lack of consistency among the infant studies that report an Nc effect; thus, 9 

we attempted to select a time window a priori that was consistent with most studies featuring 10 

a paradigm closest to our own. As the prefrontal cortex and anterior cingulate cortex have 11 

been suggested as the cortical source of the Nc, we expected to find a widespread frontal and 12 

central topography in our participant group (Reynolds & Richards, 2005). We confirmed our 13 

time window and channel group selection by visual inspection of the grand average 14 

waveforms. Mean amplitude was analyzed via a 2 (Pair: Effect, No-effect) x 2 (Condition: 15 

Deviant, Original) x 4 (Channel Location: Central, Frontal Midline, Frontal Left, Frontal 16 
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Right) ANOVA. Interactions were followed up with pairwise comparisons of estimated 1 

marginal means. 2 

 3 

Figure 4: An illustration of the EGI 128-channel groups selected for the ERP analysis. Central 4 

and frontal channel groups (blue and green) were selected for the Nc analysis; parietal 5 

channels (purple) were selected for the N400 analysis. 6 

 7 

For identification of the N400 component, we selected a priori the procedure outlined 8 

by Reid and colleagues (2009) that suggests a time-window analysis as a more appropriate 9 

statistical method when there is a defined peak in one condition but not the other. This method 10 

analyzes the variation in ERP amplitude across time-window samples between conditions and 11 

reveals the ERP effect of interest as an interaction between condition and time (for full 12 

details, see Hoormann et al., 1998). Though the N400 has a broader topography in adults, in 13 

infants it has been only observed in parietal regions most likely due to masking by the Nc 14 

component (Reid et al., 2009). For our analysis, we selected a time window from 500-700 15 

after stimulus onset in parietal channels, as suggested in Reid et al. (2009). After normalizing 16 

the data as suggested in Hoorman et al. (1998), variance of the ERP amplitude was analyzed 17 
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using a 2 (Pair: Effect, No-effect) x 2 (Condition: Deviant, Original) x 17 (Time: one sample 1 

per 12ms) ANOVA.  2 

3.2 Eye Tracking Data: Learning Phase 3 

Eye movement data from the learning phase were analyzed to assess anticipatory gaze 4 

fixations to upcoming target actions during predictive time windows. These were defined as 5 

the frame when the agent’s hand appeared in order to perform the first action of a 6 

deterministic pair until immediately before it reappeared for the target action (Figure 5). This 7 

corresponds to the time in which the observer has enough information about what the next 8 

action will be to make a prediction about the upcoming location before the subsequent action 9 

occurs (Monroy et al., 2017). For both action pairs, we excluded the first trial for each pair, as 10 

infants should not be able to make a prediction based on prior information during the first 11 

trial. Thus, 11 trials were included in the final analysis for each deterministic pair. Infants 12 

observed an average of 6.5 (SEM = 0.63) repetitions of the Effect pair and 6.08 (SEM = 0.64) 13 

repetitions of the No-effect pair during the learning phase. We did not apply an inclusion 14 

criterion for the test phase based on looking time from the learning phase. 15 

 16 

Figure 5: Example frames illustrating the predictive time window during the learning videos. 17 

Red arrows indicate the first frame in which the agent’s hand appears. 18 

 19 

Regions of interest (ROI) of equal size were defined around each stimulus object. 20 

Fixations to the ROI of the target action during the predictive time window were counted as 21 

correct, and fixations to any other ROI were incorrect. Fixations to the object currently being 22 
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manipulated were excluded from calculations. For the Effect pair, fixations to the star were 1 

counted as correct; for the No-effect pair, they were excluded (Eqs. 1-4).  2 

If infants learned the pair associations, they should look more to the target object of 3 

each pair than to all other objects during the first action. For each pair, we calculated the 4 

proportion of correct or incorrect fixations, out of the sum of all fixations within predictive 5 

time windows. For incorrect fixations, we summed the total fixations to the four alternative 6 

locations and divided by four to yield the average number of fixations to an incorrect region.  7 

Effect Pair: 8 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡 =  
# 𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛𝑠 𝑡𝑜 𝑡𝑎𝑟𝑔𝑒𝑡 & 𝑒𝑓𝑓𝑒𝑐𝑡

𝑡𝑜𝑡𝑎𝑙 # 𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛𝑠 𝑡𝑜 𝑎𝑙𝑙 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 & 𝑒𝑓𝑓𝑒𝑐𝑡 
    ( 1 ) 9 

𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 =  
# 𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛𝑠 𝑡𝑜 𝑜𝑡ℎ𝑒𝑟 4 𝑜𝑏𝑗𝑒𝑐𝑡𝑠/4

𝑡𝑜𝑡𝑎𝑙 # 𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛𝑠 𝑡𝑜 𝑎𝑙𝑙 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 & 𝑒𝑓𝑓𝑒𝑐𝑡 
    ( 2 ) 10 

No-effect Pair: 11 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡 =  
# 𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛𝑠 𝑡𝑜 𝑡𝑎𝑟𝑔𝑒𝑡

𝑡𝑜𝑡𝑎𝑙 # 𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛𝑠 𝑡𝑜 𝑎𝑙𝑙 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 
     ( 3 ) 12 

𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 =  
# 𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛𝑠 𝑡𝑜 𝑜𝑡ℎ𝑒𝑟 4 𝑜𝑏𝑗𝑒𝑐𝑡𝑠/4

𝑡𝑜𝑡𝑎𝑙 # 𝑓𝑖𝑥𝑎𝑡𝑖𝑜𝑛𝑠 𝑡𝑜 𝑎𝑙𝑙 𝑜𝑏𝑗𝑒𝑐𝑡𝑠 
     ( 4 ) 13 

Equations 1-4. Calculations of the proportion measures. For the effect pair, the effect ROI was 14 

included for the number of correct looks and the total number of looks (‘all ROIs’) while for 15 

the No-effect pair it was not included in the total number (‘all objects’). 16 

 17 

4.0 Results 18 

4.1 Event-related potentials 19 

4.1.1 Negative central 20 

The Nc component was found as a clear negative peak located in frontal and central 21 

electrodes, peaking at approximately 400ms following stimulus onset (Figure 6). Latency and 22 

amplitude of the peak were analyzed separately. No significant effects were found for Nc 23 

latency, indicating that the ERP peak amplitude featured a similar time course across 24 
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conditions and pairs. For peak amplitude, the ANOVA analysis revealed a significant 1 

interaction between Pair and Condition, F(1, 13) = 7.09, p = .02, p
2 = .35. For the Effect pair, 2 

Nc amplitude was significantly greater following the deviant compared to the original targets 3 

(mean difference = 4.23μV, SE = 1.26, p = .005). For the No-effect pair, no differences were 4 

found between deviant and original targets (mean difference = -0.47μV, SE = 1.57). As can be 5 

seen in Figure 6 (top), the response elicited by deviants of the Effect pair featured a clear peak 6 

that was more negative in amplitude relative to original actions; this pattern does not vary 7 

across frontal and central electrodes.  8 

 9 

Figure 6: The grand average event-related potential (ERP) waveforms over frontal and central 10 

channels. The larger plots (left) display the average across all channel groups selected for 11 

analysis. Gray rectangles indicate the time window of analysis for the Nc component (250-12 
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750ms). The smaller plots (right) display the waveforms for each of the four channel groups 1 

(see Figure 4). Shaded regions indicate standard errors. Negative is plotted up. 2 

 3 

Data were collapsed across the automatic and gaze-contingent groups. To verify there 4 

were no differences in the Nc amplitude because of stimulus presentation during the test 5 

phase, the ANOVA was repeated with Presentation (Gaze-contingent vs. Automatic) as a 6 

between-subjects factor. There were no significant main effects or interactions with 7 

Presentation (ps > .24) confirming that the Nc amplitude during experimental trials of interest 8 

were not different between infants who observed gaze-contingent and automatic conditions.  9 

4.1.2 N400 10 

We found no clear evidence for an N400 effect in the grand averaged waveforms 11 

based on either statistical analyses or visual inspection of the expected channel region (Figure 12 

7). During the time window of interest, there was no interaction effect between Pair, 13 

Condition, and Time (p = .37), confirming that the variation in ERP amplitude across time 14 

window samples did not differ between conditions and this was consistent across pairs. There 15 

were no other interaction effects with time or condition (ps > 0.27). To confirm this null 16 

finding, we also repeated this analysis using the standard technique commonly reported in the 17 

adult literature. We extracted the mean amplitude during the time window of interest (500-18 

700ms) over the same channel groups and performed a 2 (Condition: Deviant, Original) x 3 19 

(Channel: Pz, P3, P4) ANOVA, that also indicated no main effects or interactions with 20 

Condition (ps > .25). 21 
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 1 

Figure 7. The grand average event-related potential (ERP) waveforms over parietal channels. 2 

The larger plots (left) display the average across all electrodes selected for analysis. Gray 3 

rectangles indicate the time window of analysis for the N400 component (500-700ms). 4 

Shaded regions indicate standard errors. Negative is plotted up.  5 

 6 

4.2 Eye Tracking Results: Learning Phase 7 

 Data were collapsed across the automatic and gaze-contingent groups, as there were no 8 

differences in the stimulus presentation between these groups during the learning phase. 9 

Across pairs, predictive fixations accounted for 60.22% of all gaze fixations and the 10 

remaining 39.78% were fixations to the action currently occurring on screen. There were no 11 

significant differences between the mean percentage of predictive looks for the Effect and No-12 

effect pairs (p = .88). A 2 (Pair: Effect, No-effect) x 2 (Location: Correct, Incorrect) ANOVA 13 
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yielded a marginal interaction effect between Location and Pair, F(1, 14) = 3.34, p = .09, p
2 1 

= .19. As can be seen in Figure 8A, this effect was due to a greater proportion of correct 2 

relative to incorrect fixations for the Effect pair (mean difference = .18, SE = .08; p = .05), 3 

and no difference for the No-effect pair (mean difference = -.02, SE = .03, p = .51). A t-test 4 

comparing fixations to the effect alone during Effect and No-effect pairs revealed a 5 

marginally significant difference between pairs (t(14) = 1.75, p = .10), suggesting that gaze 6 

fixations to the effect itself were more frequent during the first action of the Effect pair 7 

compared with the No-effect pair (Figure 8B).  8 

 9 

Figure 8. A: Proportions of fixations as a function of ROI and pair. B: Proportion of fixations 10 

to the action-effect location during the first action of each pair. Bars represent standard errors. 11 

†p<.10; * p<.05. 12 

 13 

4.3 Relating Behavioral and Neural measures 14 

In order to test for consistency between behavioral and ERP measures, we explored 15 

whether infants who demonstrated higher rates of correct predictions during the learning 16 
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phase were also those who demonstrated a robust Nc effect at test. Using a method similar to 1 

Reynolds et al. (2010), infants who contributed both eye-tracking and EEG data 2 

measurements (N = 7) were divided into two groups based on the mean amplitude difference 3 

between conditions across all electrodes. Infants with an Nc difference greater than the group 4 

mean (-4.23mV; N = 5) received a score of 1 and infants below the mean (N = 2) were 5 

assigned a 0. We then conducted an ANOVA analysis of gaze fixations as before, with Nc 6 

Difference (above or below mean) as an additional between-subjects factor. This revealed a 7 

main effect of Nc Difference, F(1, 5) = 9.53, p = .03, p
2 = .66. Infants who had a larger Nc 8 

effect also made a greater proportion of correct relative to incorrect fixations (mean difference 9 

= .27, SE = .07, p = .01) than those infants with a weaker Nc effect (mean difference = .01, SE 10 

= .11, p = .93).  11 

5.0 Discussion 12 

The central aim of this study was to investigate the ERP components associated with 13 

violations of prediction based on the statistical structure in action sequences. Specifically, we 14 

asked whether deviant action events, which violated a previously learned association, altered 15 

infants’ ERP responses. We tested for the presence of two potential components, the Nc and 16 

N400, which are known to index perceptual and semantic cognitive responses, respectively. 17 

Second, during the learning phase of the experiment, we investigated whether infants made 18 

predictive eye movements to upcoming actions.  19 

5.1 Nc Findings and Interpretation 20 

To investigate the response to a violation of predictions built up on the basis of 21 

statistical learning, we examined the ERP responses following deviant actions that were 22 

inconsistent with previously learned sequential regularities. Our results illustrate an enhanced 23 

Nc component in response to deviant action pairs, relative to original action pairs, when they 24 

were associated with a salient effect. Prior studies have found an Nc effect for repeated 25 



SENSITIVITY TO ACTION STRUCTURE: AN ERP STUDY     23 

observations of single action events, such as bringing a spoon to the mouth (Kaduk et al., 1 

2016; Reid et al., 2009). Our study extends these prior findings, by showing that an Nc effect 2 

can occur for individual action steps occurring within longer sequences, and is modulated by 3 

their congruency within the learned sequential structure. 4 

The topographical distribution of the Nc component we observed is consistent with 5 

previous findings (Reynolds &Richards, 2009, 2005). Reynolds and colleagues (2005) 6 

showed that the Nc is greater during periods of sustained attention and is likely to reflect 7 

activity from distinct brain areas involved in information processing that are independently 8 

influenced by attentional state. Likely cortical sources of the infant Nc include the inferior and 9 

superior prefrontal cortex and the anterior cingulate cortex, which are neural regions that 10 

modulate sustained attention and recognition memory (for a review, see Duncan & Owen, 11 

2000). This suggest that the deviant targets in our paradigm triggered additional visual 12 

processing, indicating that this attention system was modulated by changes in the rules 13 

governing the sequential structure. There are two interpretations for explaining the presence 14 

of the Nc component in our study. The first interpretation, supported by our eye-tracking 15 

results, is that infants encoded the predictive relation between the actions of the effect pair 16 

during the learning phase and perceived the deviant pair as surprising or unexpected. In other 17 

words, the Nc effect that we observed may reflect the recognition of a violation of perceptual 18 

predictions for how the following events should unfold. 19 

A second interpretation of our findings for the Nc component is that infants 20 

recognized the association between the deviant second action and the effect, rather than 21 

surprise at observing this event contingent upon the first action of the pair. In our study, 22 

deviant items were both statistically unlikely and visual novelties. Future research aimed at 23 

dissociating the separate contributions of stimulus novelty and probability could clarify 24 

whether the Nc response reflects the buildup of stored information about stimulus probability 25 
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or whether it is limited to the detection of familiar versus novel items. However, infants 1 

seemed to make correct visual predictions only for the Effect pair, an indication that learning 2 

may have only occurred when there was an upcoming salient effect. This finding, coupled 3 

with its relation to the strength of the observed Nc effect, suggests that visual novelty alone is 4 

not sufficient to explain our pattern of findings.  5 

Though both deviant Effect and No-effect events violated the action sequence, only 6 

the deviant event co-occurring with the effect elicited the enhanced Nc peak. Previous 7 

research has shown that action-effects influence infants’ learning and imitation as measured in 8 

their behavioral responses (Hauf & Aschersleben, 2008; Verschoor et al., 2010). One 9 

explanation provided in the literature is that bidirectional action-effect associations can be 10 

established through observation, which results in motor representations of the effects 11 

themselves. From this perspective, the effect may have resulted in a corresponding 12 

representation of the action ‘unit’ (i.e., the two-step pair) preceding it, which infants did not 13 

acquire for the No-effect pair. A second explanation is that action-effects are salient 14 

perceptual cues that make the structure easier for infants to attend to and maintain in working 15 

memory. Accordingly, several prior studies have provided evidence that the influence of 16 

action-effects on infant behavior is due to a bias towards perceiving actions in terms of their 17 

goal structure (Buresh & Woodward, 2007; Cannon & Woodward, 2012; Klein et al., 2006). 18 

In line with this notion, it is possible that the effect was perceived as a goal or intentional 19 

outcome of the activity stream, and thus biased attention toward that particular action pair 20 

because of its temporal relation with the effect. A third possible explanation, drawn from the 21 

literature on reinforcement learning, is that the action-effect was perceived as a rewarding 22 

sensory change in the environment. Evidence from adult studies suggests that external 23 

rewards are crucial for observers to update their internal representations of the environment 24 

(Gläscher et al., 2010). Infants might have selectively updated their model of the action 25 
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sequence only when observing a perceptible external reward, provided by the light turning on. 1 

Whether observing the light was rewarding to the infants or perceived as a potential reward or 2 

goal of the actor is a novel question that could be empirically tested. 3 

Our findings are consistent with a large body of literature examining the development 4 

of causal learning, which explains how children achieve increasingly sophisticated theories 5 

about the social and physical world from noisy and limited data (see for a review, Gopnik & 6 

Wellman, 2012). This work has shown that Bayesian concepts of inference can also apply to 7 

children’s learning of the causal structure of the world. Bayesian inference refers to the 8 

process of combining prior evidence with current incoming data and forming a prediction 9 

about what will occur next, resulting in a probabilistic model of the world. Of relevance for 10 

the current study, probabilistic models also provide one of the most elegant explanations for 11 

how the motor system can predict the actions of other people (Kilner, 2011). Our data show 12 

that, at 10 months of age, infants can use statistical information from observation alone to 13 

generate expectations about the actions and their effects. This step may reflect the initial 14 

building of prior knowledge about the most likely outcome of an action, a necessary 15 

prerequisite for constructing causal models of other people’s actions and their social 16 

intentions.  17 

5.2 The N400 Component 18 

Prior studies have shown that unexpected final outcomes of familiar action sequences, 19 

such as bringing a pretzel to one’s ear or a spoon with food to one’s forehead, elicits an N400 20 

effect in both infants and adults (Reid et al., 2009, Kaduk et al., 2016). Across studies, N400 21 

effects become smaller as stimulus probability increases. This explanation proposed in the 22 

literature is that processing incoming information is facilitated when it ‘fits’ with the current 23 

context, if accumulated experience from previous contexts has built up meaning (Kutas & 24 

Federmeier, 2011). From this perspective, an N400 response to action stimuli is interpreted as 25 
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a violation of predictions that are based on current semantic information and prior 1 

experiences.  2 

In the current experiment, we found no evidence for an N400 response to deviant 3 

action steps. Unlike prior studies, which have shown N400 effects for action events that occur 4 

within a familiar context (‘day-to-day’ actions such as eating), our study featured novel action 5 

sequences which were also abstract, in the sense that they did not reach an overarching goal or 6 

take place in a familiar setting. Thus, the statistical structure was the only information infants 7 

could use to build expectations about the sequence, which required them to retain six different 8 

objects and the transitional probabilities between them in memory. One simple explanation is 9 

that the brief learning phase was not sufficient for young infants to build up a semantic 10 

context for the observed action events. Perhaps infants need to sample extensive amounts of 11 

data to build up a context in which to compare new incoming information. Another possibility 12 

is that actions and their context need to become associated with a goal that the observer has 13 

experience with, before they engage the cognitive systems associated with semantics and 14 

conceptual knowledge. The factors that cause a shift from perceptual to semantic processing 15 

in action sequences during development are an intriguing question for further research. 16 

5.3 Predictive gaze fixations 17 

Infants made more predictive gaze fixations to the correct upcoming events than to 18 

other object locations during the learning phase of the experiment. This finding provides 19 

evidence they detected the pair structure of the unfolding action sequence, and used this 20 

information to guide their looking behavior. Critically, this behavior was modulated by 21 

whether or not a predictable action event was associated with a salient effect. Correct 22 

anticipations were more frequent for the Effect pair than the No-effect pair, and anticipations 23 

to the effect itself during predictive time windows were also marginally higher for Effect pairs 24 

than the No-effect pair. This finding is partially consistent with a prior experiment in which 25 
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18-month-old infants only demonstrated spontaneous, uninstructed imitation of actions that 1 

resulted in action-effects, and not of actions without a corresponding effect (Monroy et al., 2 

2017). In that study, the older infants also only demonstrated a relation between their visual 3 

anticipations during observation and their ability to imitate upcoming actions for actions that 4 

caused effects. These findings, taken together with the current study, suggest that action-5 

effects provide a learning cue that guides infant behaviors during both action perception and 6 

action control. Further, Monroy et al. (2017) also found that the 18-month-olds were able 7 

learn both pair types, even in the absence of an action-effect, which may point to interesting 8 

developmental changes in sensitivity to effect-related cues occurring between the first and 9 

second year of life.  10 

The eye-tracking data yielded marginally significant differences between experimental 11 

conditions, which may have been due to the small number of infants who yielded enough data 12 

for analysis. Alternatively, the task demands of our experiment were relatively high: infants 13 

needed to continuously attend to the screen, remember and encode the pair structure in the 14 

unfolding sequence, and make predictive eye movements towards one of many possible 15 

locations on the screen within a brief time period. Prior research has shown that under 16 

conditions of uncertainty, even adults make fewer predictive movements—which require 17 

effort and are therefore costly—and will prefer to assume a neutral position (Dale et al., 18 

2012). It is possible that our learning effects are small because infants at this age are just 19 

beginning to acquire the ability to encode the statistical relations in more complex stimuli, or 20 

that they do not always make visual predictions during ongoing observation. Future research 21 

could aim to differentiate these two possibilities. Despite this, the consistency between our 22 

eye-tracking and ERP results provides converging evidence that infants learned to predict the 23 

outcome of the sequence structure for the Effect pair.  24 
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5.4 Relation between behavioral and ERP measures 1 

 Our method for assessing the relation between behavioral and neural measures of 2 

learning was to examine infants’ predictive gaze fixations during the learning phase in 3 

relation to the magnitude of their Nc response during test trials. In a study aimed at 4 

identifying the relation between infant visual preferences and ERP responses, Reynolds and 5 

colleagues (Reynolds & Richards, 2005; 2009) provided evidence that infants aged 4.5-7.5 6 

months who demonstrated a visual preference for novel events were those that showed an Nc 7 

effect with greater amplitude. Consistent with these findings, in our study, the infants who 8 

demonstrated a greater Nc amplitude in response to a deviant target action in the action-effect 9 

condition also made a greater proportion of correct, relative to incorrect, predictive gaze 10 

fixations in this condition. This result suggests that the Nc response may reflect predictive 11 

processes based on the perception statistical regularities, which adds to the current 12 

understanding of the functional significance of the Nc in young infants. 13 

The sample size in the current study was limited due to difficulties in combining EEG 14 

and eye-tracking data collection methodologies with young infants, which is typical for 15 

developmental research and is consistent with similar studies (for a meta-analysis see Stets et 16 

al., 2012). Due to the combination of a small sample size and limited number of trials in our 17 

experimental conditions, findings from the current study should be interpreted cautiously and 18 

validated in future work. However, we also note that our main finding—the observed Nc 19 

component—is consistent with a large body of prior studies (reviewed in de Haan, 2007). 20 

Specifically, the Nc component in the current study matches previously reported findings both 21 

in terms of the experimental context in which it was elicited—that is, it reflects a response to 22 

a perceptually unexpected event—and also its characteristics such as latency and morphology 23 

of the waveform.  24 
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5.5 Conclusion 1 

 Human action naturally contains statistical regularities that define the overall 2 

predictability of upcoming action events. The ability to recruit perceptual processes for 3 

detecting these regularities is critical for making accurate predictions during action 4 

observation. The results of this experiment suggest that, by ten months of age, infants are 5 

sensitive to the sequential structure between action steps when they result in salient effects. 6 

Our study further supports a consistency between neural and behavioral measures of statistical 7 

learning in infancy. In sum, statistical regularities provide a learning cue that guides visual 8 

expectations and attention during ongoing processing of novel action sequences. The findings 9 

reported here have direct implications for our understanding of the development of social 10 

cognition in infancy. We suggest that infants initially rely on their powerful statistical 11 

learning skills to detect regularities among the actions of other people, enabling them to 12 

anticipate upcoming action goals and to eventually attain understanding of the mental states of 13 

other people.  14 
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