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Modulation and precise control of porosity of metal-organic frameworks (MOFs) are of critical 

importance to their materials function. Here we report the first modulation of porosity for a 

series of isoreticular octacarboxylate MOFs, denoted MFM-180 to MFM-185, via a strategy of 

selective elongation of metal-organic cages. Owing to the high ligand connectivity, these MOFs 

show absence of network interpenetration, robust structures and permanent porosity. 

Interestingly, activated MFM-185a shows a record high BET surface area of 4734 m
2 
g

-1
 for an 

octacarboxylate MOF. These MOFs show remarkable CH4 and CO2 adsorption properties, 

notably with simultaneously high gravimetric and volumetric deliverable CH4 capacities of 0.24 

g g
-1

 and 163 v/v (298 K, 5-65 bar) recorded for MFM-185a due to selective elongation of tubular 

cages. Dynamics of molecular rotors in deuterated MFM-180a-d16 and MFM-181a-d16 were 

investigated by variable-temperature 
2
H solid state NMR spectroscopy to reveal the re-

orientation mechanisms within these materials. Analysis of the flipping modes of the mobile 

phenyl groups on the linkers, their rotational rates and transition temperatures, paves the way 

to controlling and understanding the role of molecular rotors through organic linker design 

within porous MOF materials. 
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Metal-organic frameworks (MOFs) are an emerging class of porous, multifunctional materials 

showing great potential in a wide range of applications.1–7 Given their metal-organic hybrid nature, 

MOFs have an exceptionally high degree of structural diversity and tailorability.8 Thus, not only is the 

on-demand design of materials that incorporate pores of precise shapes and dimensions achievable, but 

also the inner surface of these materials becomes a platform for incorporating desirable functionality 

for target applications.9,10 Within the field of gas storage, there is a strong correlation between the 

material porosity and the maximum adsorption capacity. A common strategy to increase porosity in 

MOFs consists of targeting a framework topology and systematically elongating the linkers to 

generate additional pore space. This approach has shown success in a number of MOF systems, but is 

not without drawbacks. For example, increases in porosity typically correlate to increases in pore 

diameters, which can be detrimental to the strength of host-guest interactions at low surface 

coverage.11 Also, often, simple ligand-elongation will ultimately lead to framework interpenetration 

with reduced porosity and/or stability.12-14 Powerful driver therefore exists to find the ideal 

compromise between high porosity and strong host-guest interactions over a wide range of pressures. 

The use of rigid, highly-connected linkers (e.g. with 6-8 coordinating functions) affords 

potentially a more robust and stable platform for the development of isoreticular porous materials. 

This strategy has been widely implemented for {Cu}2 paddlewheel systems with hexacarboxylate 

linkers of C3-symmetry to generate a family of  rht-type MOFs with high and predictable porosity.15-17 

In contrast, effective modulation of porosity for isoreticular MOFs based upon 8-connected linkers has 

not been achieved to date,18-26 thus representing a significant synthetic challenge. We report herein the 

first modulation of porosity in a series of isoreticular octacarboxylate MOFs. By varying the length 

and nature of the heteropolyaromatic cores of the linkers, we have selectively extended the length of 

metal-organic cages ongoing from MFM-180 to MFM-185 along one direction, effectively avoiding 

framework interpenetration. The resulting increase in porosity of the materials does not impair their 

stability towards activation, and the fixed diameter of the pores allows efficient packing of gas 

molecules across a wide range of pressures. The dynamics of molecular rotors (e.g., phenyl rings) 

within MOF materials is a key property to their functionalisation as they form part of the internal pore 

surface and are thus highly sensitive to the presence of guest molecules.27-31 In this regard, the series of 

MOFs herein offer a unique platform to probe the influence of altering the ligand structure on the 

molecular dynamics and rotational freedom within the resultant framework. To the best of our 

knowledge, only a few attempts have been made to elucidate the rotational dynamics of linkers in 

porous MOFs32-34 and none control them via linker design only. We report here the temperature-

dependent 2H NMR studies of selectively deuterated MFM-180-d16 and MFM-181-d16 to define the 

rotational and flipping modes of the phenyl groups within these structures in the solid state and the 

molecular factors that govern these dynamics. 
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RESULTS AND DISCUSSION 

Design and synthesis of octa-connected ligands and isoreticular MOFs. The series of octa-

connected linkers, ranging from 19 to 30 Å in dimension, are shown in Figure 1 and their syntheses 

are described in details in SI. H8L
0, H8L

3 and H8L
5 were synthesized by direct Suzuki-Miyaura 

coupling of diethylisophthalate-5-boronic acid with the corresponding tetrahalides: 1,1,2,2-tetrakis(4-

bromophenyl)ethane, 2,3,7,8-tetrakis(4-bromophenyl)pyrazino[2,3-g]quinoxaline, and 2,3,9,10-

tetrakis(4-bromophenyl)-[1,4]dioxino[2,3-g:5,6-g']diquinoxaline for H8L
0, H8L

3, and H8L
5, 

respectively. In the case of H8L
1 and H8L

2, we employed a different strategy where the extended 3',5'-

bis(ethoxycarbonyl)biphenyl-4-ylboronic acid was coupled with 1,2,4,5-tetrabromobenzene and 

2,3,6,7-tetraiodonaphthalene, respectively. Attempts to prepare H8L
4 from naphthalene-2,3,6,7-

tetraamine failed, and therefore the target MOF MFM-184 was analysed in silico based upon the 

isoreticular nature of this series of materials in this study. Solvothermal reactions of H8L
0, H8L

1, H8L
2 

or H8L
3 with CuCl2 in a mixture of DEF/ethanol/0.1M aqueous HCl (2/2/1, v/v/v) at 80 °C for 16 h 

afforded the solvated materials [Cu4(L
n)(H2O)4]∞·solv or MFM-18n (n = 0, 1, 2, 3). Due to the 

insolubility of H8L
5 in the above solvent mixture, the synthesis of MFM-185 was conducted in a 

mixture of DMF/DMSO/2M aqueous HCl (40/20/1, v/v/v) with Cu(NO3)2.2.5H2O for 4 days. The 

“indirect” synthesis of [Cu4(L
0)(H2O)4]∞ has been reported via transmetallation of the iso-structural 

[Zn4(L
1)(H2O)4]∞ complex, in which Zn(II) ions are gradually replaced by Cu(II) ions.35 

Analysis of the crystal structures. The X-ray single crystal structures of MFM-180, -181, -182, -183 

and -185 confirm the formation of square planar [Cu2(O2CR)4] nodes bridged by the octacarboxyate 

linkers to afford 3D open structures. MFM-180 crystallizes in the tetragonal space group I4̅2m with a 

= 18.6924(2) Å and c = 35.9196(4) Å. The octacarboxylate linker [L0]8- is comprised of a central 

tetraphenylethylene core bearing four isophthalate moieties in 4,4',4'',4''' positions and acts as a 4-

connected node (Figure 1). Each isophthalate arm is orthogonal to the main plane of the molecule and 

acts as a 3-connected node. Each linker connects to eight [Cu2(O2CR)4] paddlewheels, and each 

paddlewheel connects to four independent linkers. As a result, the MFM-180 framework can be 

regarded as a 3,3,4-c tbo net (Figure S1) of stoichiometry (3-c)4(4-c)3 with the corresponding point 

symbol of {62.82.102}3{63}4.
36 The metal-ligand linkage affords three types of metal-organic cages (A, 

B, and C with a ratio of 2:1:1), the smallest of which is an elongated octahedral cage A comprising 

two ligands and four [Cu2(O2CR)4] paddlewheels (Figure 2). The [Cu2(O2CR)4] moieties occupy the 

four equatorial vertices while two ethylene groups from the ligands occupy the apical vertices. The 

overall structure results from the corner-sharing assembly of these octahedral cages A via ethylene 

groups along the c axis and [Cu2(O2CR)4] paddlewheels along the a/b axis. This arrangement 

generates two types of elongated cuboctahedra cages, each one comprising four ligands and eight 

[Cu2(O2CR)4] paddlewheels (Figure 2). The largest spheres that can fit within these cages taking into 

account the van der Waals radii of surface atoms have diameters of 3.0, 13.2 Å and 10.4 Å for cages 
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A, B and C, respectively. In Cage B, the open metal sites of the paddle-wheels point to the centre of 

the cavity, whereas in cage C they are tangential to the cavity.  

             In previously reported examples of octacarboxylate MOFs with tbo or scu nets,18-26 the linkers 

presented a central four-connected node with increasing distances between the central node and four 

isophthalate moieties. Although this strategy produced isoreticular MOF structures, no increase of 

porosity was observed, presumably because of flexibility issues and/or highly strained frameworks. As 

an alternative approach to simply extending the linker length along all directions, we sought to target 

the extension of specific dimensionalities and lengths to better control the porosity of resultant MOFs. 

The distance l1 (Figure 1) is crucial for the formation of the octahedral cages A because it codes for the 

overall structural assembly. In contrast, the distance l2 defines the length of cages B and C, and thus 

we sought to design linkers in which l1 remains constant but l2 is augmented. For this purpose, we 

replaced the four-connected ethylene bond from the ligand H8L
0 with a series of extended aromatic 

cores. The targeted isoreticular MOFs (except for MFM-184) were obtained as single crystals and 

their structures confirmed by single crystal X-ray diffraction. 

Replacement of the ethylenyl core in MFM-180 with a benzene ring affords MFM-181 which 

crystallizes in a different tetragonal space group I4/mmm. The change in space group is due to the 

presence of structural disorder in MFM-181, in which the free rotating phenyl rings are disordered 

over two positions generated by the mirror symmetry. Nonetheless, MFM-181 exhibits the same tbo 

topology as MFM-180 (Figure S1) when the phenyl core is considered as a four-connected node. The 

octahedral cage A in MFM-181 is retained as expected. Cages B and C in MFM-181 are elongated 

along the c axis by 2.65 Å in comparison with MFM-180. The size of linkers [L2]8-, [L3]8- and [L5]8- is 

further increased by incorporating central cores with naphthalene, three- and five-fused heteroacenes, 

respectively. The corresponding MOFs, MFM-182, MFM-183 and MFM-185, all crystallize in the 

space group I4/mmm with the same structure. Given the extension of the polyaromatic cores of [L2]8-, 

[L3]8- and [L5]8-, the most accurate topological description of the underlying nets of MFM-182, MFM-

183 and MFM-185 reflects a process called "decoration" in which a net vertex is replaced by a group 

of vertices. Thus, MFM-182, MFM-183 and MFM-185 present the same previously unreported 3,3,4-c 

net with point symbol: {6.102}{62.82.102}{63}2 which is derived from the tbo net by decoration of half 

of its 4-c vertices by a pair of 3-c vertices (Figure S1). The calculated accessible voids (PLATON) are 

71.5%, 71.2%, 73.3 %, 75.4 % and 76.7 % for MFM-180, MFM-181, MFM-182, MFM-183 and 

MFM-185, respectively. 

Modulation of porosity and gas adsorption property. Prior to activation (involving removal of both 

the free and coordinating solvents from the pores), the materials were exchanged with methanol. This 

was followed by heating the solvent-exchanged samples at 100 °C under dynamic vacuum to give 

activated MFM-180a and MFM-181a. In order to prepare activated MFM-183a and -185a, 

supercritical CO2 drying was employed to maximise the retention of their pore structure. MFM-180a, -

181a, -183a, and 185a show BET surface areas of 2610, 3100, 4130 and 4730 m2 g-1, respectively, as 
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determined from N2 adsorption at 77 K. The BET surface areas for MFM-182a and MFM-184a are 

predicted by GCMC methods to be 3557 and 4289 m2 g-1, respectively, because of the difficulty in 

their bulk synthesis (see SI). Analysis of the N2 isotherms using a nonlocal density functional theory 

(NLDFT) model revealed the pore size distribution centered around 13.3, 13.7, 14.3, and 16.3 Å for 

MFM-180a, -181a, -183a and 185a, respectively. Total pore volumes of 1.00, 1.36, 1.45 and 1.65 cm3 

g-1 were obtained from the N2 isotherms, and compare favourably with that calculated based upon 

single crystal structure (1.09, 1.19, 1.40 and 1.59 cm3 g-1 for MFM-180a, -181a, -183a and -185a). 

Additionally, there is a good agreement between experimental and predicted BET surface areas 

(Figures S4-S15) and overall, the results confirm the complete activation of these MOFs and are 

consistent with the increasing pore dimensions across the series. To the best of our knowledge, MFM-

185a possesses the highest BET surface area and pore volume among octacarboxylate MOFs. 

The CH4 adsorption capacities of MFM-181a, -183a, and 185a are among the highest reported 

values for the best behaving MOFs at 35 bar, 298 K (Figure 3). Interestingly, the intrinsic trade-off 

between gravimetric and volumetric capacities is minimised in this series of MOFs owing to the high 

framework connectivity and thus relatively high crystal density in comparison to other highly porous 

MOFs. For example, both gravimetric and volumetric CH4 adsorption capacities of MFM-181a, -183a, 

and 185a are higher than those reported for the more porous octacarboxylate MOF PCN-80a (17.7 wt 

%, 142 v/v) under same conditions.1 CH4 adsorption in MFM-181a is saturated at 55 bar, whereas 

MFM-183a and 185a can accommodate more CH4 molecules at higher pressures owing to their 

extended pore space. At 65 bar, the total gravimetric uptake of MFM-185a is sufficiently high (29.0 wt 

%) to compensate for its low crystal density and hence it displays the highest volumetric CH4 uptake 

(198 v/v) of the series. Since MFM-181a, 183a and 185a have almost identical CH4 uptakes at 298 K 

and 5 bar, the desirable improvement of the materials porosity through elongation of the metal-organic 

cages affords an increase in both gravimetric and volumetric "working capacities" (defined as the 

difference in total uptake between 65 and 5 bar). For example, MFM-185 shows the highest 

deliverable CH4 capacity in both gravimetric and volumetric terms among all octacarboxylate MOFs 

(Table S6). 

The CO2 adsorption isotherms were recorded at 298 K up to 20 bar for MFM-180a, -181a, -

183a, and 185a (Figure 3). The isosteric heats of CO2 adsorption were estimated to be around 23 kJ 

mol-1 for all MOFs (Table S7). At low pressure (1 bar), both gravimetric and volumetric CO2 uptakes 

are higher for the less porous frameworks, ranging from 13.0 wt % (32.2 v/v) for MFM-185a to 15.0 

wt % (54.9 v/v) for MFM-180a, which suggests that a high density of open metal sites is crucial to 

maximise the low pressure CO2/framework interactions. For pressures higher than 10 bar, the larger 

pore volume of MFM-185a allows it to reach the highest gravimetric uptake (107.3 wt % at 20 bar) of 

the series whereas MFM-181a shows the highest volumetric CO2 uptake (292.4 v/v at 20 bar) due to 

its combination of large surface area and moderately low density. These uptakes compare favourably 
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with other octacarboxylate MOFs presenting higher (PCN-80a25 : 72.8 wt % at 20bar, 293 K) or 

similar  (MFM-14018 : 91.2 wt % at 20 bar, 298 K) porosities. 
2
H NMR studies on dynamics of molecular rotors. Solid-state 2H NMR technique was applied to 

investigate the molecular dynamics of the rotational aromatic rings in this series of MOFs. MFM-180a 

and MFM-181a were partially deuterated by selectively introducing D-atoms on the rotational 

aromatic rings in the ligands to give MFM-180a-d16 and MFM-181a-d16 (see SI). Variable temperature 
2H NMR spectroscopic studies for MFM-180a-d16 and MFM-181a-d16  (Figure 4 and SI for full 

spectral data) show that the mobility of the phenyl groups for both materials evolves with temperature 

starting from a Pake-powder pattern with quadrupolar coupling parameters (Q0 = 176 kHz, η = 0) 

typical for static phenyls C-D groups at low temperature (100 K). The evolution of the line shape with 

rising temperature depicts a re-orientation mechanism similar for both MOFs with three regimes. (i) 

From low temperatures (100 K) up to T1, the line shape evolves to a typical two-site exchange 

pattern.37 (ii) Above T1, the line shape remains stable up to T2, and (iii) above T2 it evolves to yield a 

narrowed uniaxial Pake-pattern (Q1 = 21 kHz ~ Q0/8, η = 0), indicating that the phenyl fragments 

rotate homogeneously around the C2 axis. Although the uniaxial ligand rotation in MOFs has been 

reported35, the complex dynamic behavior in MFM-180a-d16 and MFM-181a-d16 has not been 

observed previously.  

The striking difference between MFM-180a-d16 and MFM-181a-d16 lies in the temperatures of 

transition from one motional mode to another, from two-site flipping to continuous rotation. For 

MFM-180a-d16, T1 is ~ 310 K and T2 is ~ 330 K, while in MFM-181a-d16, T1 is ~ 200 K, and T2 

remains at 330 K. This result indicates that changes in the ligand core affect only one of the two 

rotational modes, with the flipping mode that evolves below T1 being notably faster for MFM-181a-

d16. Significantly, this is the first time such observation has been made in MOFs and opens up the 

possibility to design the rotational potential of mobile fragments within such porous materials.   

The line shape interpretation is based on the following general considerations. The position of 

mobile phenyl groups in the framework leaves freedom only for rotation or flipping about the C2 axis 

and the angle between the rotation axis and the C-D bond is naturally fixed to be θph = 60° (Figure 5a). 

Therefore, the simplest model that can describe the line shape evolution is the four-site jump-exchange 

rotation for the torsional angle φ covering the whole 360° range (Figure 5b). In such a scheme each of 

the two C-D bonds flips between two sites (φ1 <> φ2 and φ3 <> φ4) displaced by a jump angle Δφ1. 

When the temperature conditions are met and the phenyl ring is able to overcome the second rotational 

barrier between the sites φ1 <> φ3 and φ2 <> φ4 each C-D bonds begins to perform the full 360○ 

rotation. In each pair only the highest barrier is relevant, and thus the motion can be described by the 

two independent rate constants k1 and k2. This model is evidenced by its excellent fit of the 

experimental data for both samples (Figure 4). The two-site exchange motion governing the line shape 

below T2  allows the determination of the exact position for C-D bond sites. For MFM-180a-d16, the 

jump angle Δφ1
I = 71°, while for MFM-181a-d16, Δφ1

II = 68°. The second jump angle can then be 
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readily computed as Δφ2
i = 180○ - Δφ1

i. This shows that the equilibrium positions are displaced 

compared to an ideal C4 symmetry. The line shape evolution above T2 fully supports the four sites 

exchange model and excludes any other interpretation of the observed spectra. Most intriguing are the 

potential barriers and collision factors involved. In all cases, the rotation rates follow the standard 

Arrhenius law (Figure 6). For k1 in MFM-180a-d16 the parameters are E1 = 26 kJ mol-1 and k10 = 

1.6x1011, and for MFM-181a-d16 E1 = 20 kJ mol-1 and k10 = 9x1011. For k2 in MFM-180a-d16 E2 = 28 kJ 

mol-1 and k20 = 3x107, while for MFM-181-d16 E2 = 34 kJ mol-1 and k20 = 4.6x108. Additional analysis 

suggests that intramolecular steric interactions in MFM-180a-d16 are stronger. In both cases these 

interactions are maximized when all phenyls lie in one plane, with three interaction sites and H-D or 

D-D distances governing the strength of interaction (Figure 5c and 5d). For MFM-180a-d16 Site I 

shows the interaction of two mobile phenyl groups in 1,1’ positions of the ethylene core, while for 

MFM-181a-d16 it is the interaction of the mobile fragment with the hydrogen of the aromatic core 

fragment. Sites II and III are geometrically similar for both materials and the shortest distance is 

realized for site II (marked blue on Figures 5c and 5d) The rates of the slowest motion k2 (Figure 6) 

are almost superimposable for both frameworks and we can thus attribute k2 to the torsional barrier 

that rises from electrostatic interaction between neighboring hydrogens in site II. Hence the rate 

constant k1 must be governed by site I because the shortest possible distance at the site III is d3 ~ 1.9 Å 

and is identical in the two linkers, while for site I for MFM-180a-d16 d1 ~ 1.6 Å and for the MFM-

181a-d16 d1 ~ 1.9 Å.  The comparison of the first motion rates k1 for the two materials confirms that 

they are indeed considerably different: k1 is much greater in MFM-181-d16 than in MFM-180-d16. 

Interestingly while the flipping mode k1 in both cases is characterized by a collision factor typical for 

flipping motion in MOFs ~ 1011 Hz,34 for k2 it is ~ 3 orders of magnitude smaller at ~ 108 Hz, which 

reflects the strong influence of the steric restrictions on the axial rotation of the phenyl groups in these 

linkers. This 2H NMR study has revealed that the complex dynamic behavior of the molecular rotors in 

MOFs in solid state can be elucidated and thus controlled by establishing a strong correlation between 

the ligand design and the rotational dynamics, the latter of which is a key property of MOF 

functionalities.  

CONCLUSION 

The first series of isoreticular MOF materials based on a family of octacarboxylate linkers has been 

developed. The rigid, heteropolyaromatic linkers were designed to self-assemble with [Cu2(O2CR)4] 

paddlewheels to afford frameworks with elongated nano-tubular cages of fixed diameter. The 

isoreticular design results in systematically increased pore volumes and surface areas for the MOFs. 

Notably, in the case of CH4 adsorption, extension of the linker causes no uptake loss in the low 

pressure region, and both gravimetric and volumetric uptakes are simultaneously enhanced at high 

pressure. This affords an impressive CH4 “working capacity” of 0.24 g g-1 and 163 v/v (298 K, 5-65 

bar) for activated MFM-185a. We attribute this behaviour to the efficient packing of gas molecules in 

the tubular pores and the high connectivity (and thus suitably high crystal density) of the framework. 
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In addition, for the first time, a rational synthetic design has allowed control of the torsional dynamics 

of linkers in MOF solids. The high predictability of the linker/metal self-assembly combined with their 

pore shape make this series of MOFs a unique platform for exploring further the tuning of porosity, 

decoration of pores, and development and control of new molecular rotors in functional MOFs. 
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Methods Summary 

The ligands H8L
0, H8L

1, H8L
2, H8L

3 and H8L
5 were all synthesized using a Suzuki-Miyaura coupling 

reaction between the corresponding tetrahalogenated core and boronic acid, followed by hydrolysis of 

the ester functions. The synthesis of H8L
1 is described in detail in SI. The selectively deuterated 

linkers were synthesised following the same procedures but starting from deuterated building blocks. 

Synthesis of MFM-180, 181, 182, and 183: H8L
0-3 (0.30 mmol) and CuCl2 (0.19 g, 1.40 mmol) were 

dissolved in N,N'-diethylformamide (30 mL). EtOH (30 mL) and an aqueous solution of HCl (0.1M, 

15 mL) were added to the resulting solution, which was placed in a tightly capped 250 mL Duran® 
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pressure plus laboratory bottle (cat. n° 1092234). The solution was heated at 80 °C in an oven for 16 h, 

and a large amount of crystalline product precipitated. The crystal plates of the correspondind MOF 

were isolated by filtration while the mother liquor was still warm. 

Due to the poor solubility of H8L
5, MFM-185 was synthesized following slightly different conditions, 

see SI. 

Detailed synthesis procedures and characterizations of the linkers and MOFs, along with 

crystallographic data and description of gas sorption and solid state 2H NMR experiments can be 

found in supporting information. 
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Figure 1. Chemical structures for the octacarboxylate linkers H8L
0 to H8L

5 used for the synthesis of 

MFM-180 to MFM-185, representation of the cage assembly in MFM-180, MFM-181, MFM-182, 

MFM-183, MFM-184 (*predicted structure) and MFM-185, and corresponding BET surface areas 

(*computed). 
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Figure 2. View of a) polyhedral representations of the three types of cages A (octahedral), B and C 

(cuboctahedral) and b) their three-dimensional assembly in MFM-180. 
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Figure 3. High pressure CH4 sorption isotherms for MFM-181a, -183a and -185a at 298 K and CO2 

sorption isotherms for MFM-180a, -181a, -183a and -185a up to 20 bar at 298 K. Top: gravimetric 

uptake; bottom: volumetric uptake. 
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Figure 4. Comparison of the 2H NMR line shape temperature dependence for phenyl fragments in 

MFM-180a-d16 and MFM-181a-d16 (experimental – black, simulation - red).  
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Figure 5. a) Representation of the linker in MFM-180a-d16 with its four mobile phenyl rings; b) 

Scheme of rotation sites for phenyl groups in MFM-180a-d16 and MFM-181a-d16. The reorientation 

scheme comprises a four site exchange motion with two different rate constants: k1 (Δφ1) and k2 (Δφ2). 

The green arrow represents the barrier associated with k1, the blue arrow represents the barrier 

associated with k2, and the red arrows are associated with barriers in the Δφ1 and Δφ2 regions 

associated with minor steric restrictions. c) and d) Scheme of interaction sites that might influence the 

rotational potential for phenyl groups in MFM-180a-d16 and MFM-181a-d16, respectively. Parameter 

d2 is the shortest achievable distance for the electrostatic interaction between the phenyl hydrogens 

and is similar in both materials. 
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Figure 6. Arrhenius plots of the rotational rate constants k : (○) k1 and (□) k2 for MFM-180a-d16; (●) k1 

and (▲) k2 for MFM-181a-d16. 
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