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STOCHASTIC REPRESENTATION OF FRACTIONAL

BESSEL-RIESZ MOTION

V.V. ANH, N. N. LEONENKO, AND A. SIKORSKII

Abstract. This paper derives the stochastic solution of a Cauchy problem

for the distribution of a fractional diffusion process. The governing equation

involves the Bessel-Riesz derivative (in space) to model heavy tails of the
distribution, and the Caputo-Djrbashian derivative (in time) to depicts the

memory of the diffusion process. The solution is obtained as Brownian motion

with time change in terms of the Bessel-Riesz subordinator on the inverse
stable subordinator. This stochastic solution, named fractional Bessel-Riesz

motion, provides a method to simulate a large class of stochastic motions with
memory and heavy tails.

1. Introduction

Bochner (1949) and Feller (1952) demonstrated the connection between the sta-
ble distribution and fractional calculus. Specifically, Bochner (1949) proposed the
Cauchy problem

(1.1)
∂

∂t
p (t, x) = − (−∆)

α/2
p (t, x) , p (0, x) = δ (x) ,

where α ∈ (0, 2] , δ (x) is the Dirac delta function. The solution is the density of
the symmetric α-stable distribution. Feller (1952) extended (1.1) to a more general

situation by replacing the fractional Laplacian − (−∆)
α/2

by a pseudodifferential
operator with symbol − |λ|α exp (i sign (λ) θπ/2) , λ ∈ R, α being the index of sta-
bility, θ the index of skewness (asymmetry). The corresponding solutions generate
all stable distributions.

Extending this class, Anh and McVinish (2004) proposed the Bessel-Riesz dis-
tribution, which is the solution to the Cauchy problem

(1.2)
∂

∂t
p (t, x) = −κ (−∆)

α/2
(I −∆)

γ/2
p (t, x) , p (0, x) = δ (x) , κ > 0,

where (−∆)
α/2

and (I −∆)
γ/2

are the inverses of the Riesz potential and the
Bessel potential respectively. They showed that the solution of (1.2) defines a
strongly continuous bounded holomorphic semigroup of angle π/2 on Lp (Rn) for
α > 0, α + γ ≥ 0 and any p ≥ 1. This solution is the characteristic function of
a type G distribution for all t ≥ 0 if and only if α ∈ (0, 1], α + γ ∈ [0, 1]. This
type of distribution, together with its relevance and significance, is elaborated on
in Section 3. The resulting stochastic solution of (1.2), named the Bessel-Riesz
motion, is then represented as W (Lα,γ (t)) , where W (t) is Brownian motion and
Lα,γ (t) is the Bessel-Riesz Lévy subordinator. The exponent α indicates how often
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large jumps occur, while the combined effect of α and γ describes the small-scale
behavior of the process. Depending on the sum α+ γ, the Bessel-Riesz motion will
be either a compound Poisson process, a pure jump process with jumping times
dense in [0,∞) or the sum of a compound Poisson process and an independent
Brownian motion. Thus the two-parameter model (1.2) is able to generate a range
of behaviors for the stochastic solution.

In this paper we extend the above setting to incorporate memory into the Bessel-
Riesz motion. Specifically, we follow Anh and Leonenko (2001) and propose the
Cauchy problem

(1.3)
∂β

∂tβ
p (t, x) = −κ (−∆)

α/2
(I −∆)

γ/2
p (t, x) , p (0, x) = δ (x) , κ > 0,

where t > 0, x ∈ Rn, β ∈ (0, 1], α ∈ (0, 2], γ ∈ [0,∞), and ∂β/∂tβ is the Caputo-
Djrbashian derivative defined in (4.2) below. See also Saichev and Zaslavsky (1997)
for γ = 0. Nigmatullin (1986) was among the earlier papers on diffusion in a porous
medium with fractal geometry, specifically, Koch-tree type fractional structure. The
aim of this paper is to show that the stochastic solution of (1.3) can be represented
as W (Lα,γ(Yβ(t)), where W is the n-dimensional Brownian motion, Lα,γ (t) is the
Bessel-Riesz Lévy subordinator, and Yβ is the inverse stable subordinator. All three
processes W, Lα,γ , Yβ are assumed to be independent. This stochastic solution,
named fractional Bessel-Riesz motion, provides a method to simulate a large class
of (modified) Lévy motions with memory governed by Eq. (1.3). We will follow the
approach of Baeumer and Meerschaert (2001), which derives the stochastic solution
of the fractional diffusion equation. For convenience, an outline of this approach is
given in the Appendix.

2. Symmetric α-stable Lévy process

In this section we recall some basic definitions and properties of symmetric α-
stable Lévy process, the subordinator, and inverse subordinator. These will be
used to construct the Bessel-Riesz motion and its fractional version in the next two
sections. Let X (t) , t ≥ 0 be an Rn-valued Lévy process with characteristic function

(2.1) Eei〈z,X(t)〉 = e−tψ(z), z ∈ Rn, t > 0,

and Lévy triple (a, Q, ν) , where a ∈ Rn, Q is a non-negative definite (n× n)-

matrix, and ν is a measure on Rn − {0} such that
∫
Rn min

(
1, ‖z‖2

)
ν (dz) < ∞.

The Lévy exponent ψ (z) is given by the Lévy-Khintchin representation

(2.2) ψ (z) = i 〈a, z〉+
1

2
〈z,Qz〉+

∫
Rn

(
1− ei〈z,λ〉 + i

〈
λ,1{‖x‖<1}x

〉)
ν (dλ) .

The infinitesimal generator of the above Lévy process is given by

Gf (x) = −〈a,∇f (x)〉+
1

2

∑
i,j

Qijfij (x)

+

∫
Rn

(
f (x+ y)− f (x)−

〈
1{‖y‖<1}y,Of (x)

〉)
ν (dy) .

For a = 0, Q = 0, ν (dλ) = c/ ‖λ‖n+α
for some constant c and some α ∈ (0, 2], we

have ψ (z) = c1 ‖z‖α from (2.2) for some constant c1. The corresponding Lévy pro-
cess is called the symmetric α-stable Lévy process in Rn. Its infinitesimal generator



STOCHASTIC REPRESENTATION OF FRACTIONAL BESSEL-RIESZ MOTION 3

G is the fractional Laplacian − (−∆)
α/2

, α ∈ (0, 2]. This is a Markov process, and
its transition density pα (t, x, y) = pα (t, x− y) , t > 0, x, y ∈ Rn, is determined by
its Fourier transform

(2.3) e−t‖z‖
α

=

∫
Rn
ei〈z,y〉pα (t, y) dy, t > 0, z ∈ Rn,

that is, pα (t, x, y) satisfies the fractional Laplace equation

(2.4)
∂

∂t
pα (t, x, y) = − (−∆)

α/2
p (t, x, y) , pα (0, x− y) = δ (x− y) .

The process has right-continuous sample paths, and the transition density satisfies
the scaling property

pα (t, x, y) =
1

tn/α
pα

(
1,

x

t1/α
,
y

t1/α

)
.

When α = 2, X (t) , t ≥ 0 is the usual n-dimensional Brownian motion, but runs
at twice the speed. That is, if α = 2, then X (t) = W (2t) , t ≥ 0 and

p2 (t, x, y) = (4πt)
−n2 exp

{
−‖x− y‖

2

4t

}
, t ≥ 0, x, y ∈ Rn.

When α = 1, X (t) , t ≥ 0 is the Cauchy process in Rn, whose transition density is
given by the Cauchy distribution or Poisson kernel:

p1 (t, x, y) =
cnt(

t2 + ‖x− y‖2
)n+1

2

, t > 0, x ∈ Rn, cn =
Γ
(
n+1

2

)
π
n+1
2

.

Since we concentrate on the symmetric case in this paper, we will write the transi-
tion density as p (t, x) for p (t, x− y) from now on.

Let us next obtain a stochastic representation of the process defined by the
Cauchy problem (2.4) using the concept of time change by a subordinator. A
subordinator is a non-negative non-decreasing Lévy process starting from 0,. A
subordinator L (t) , t ≥ 0 is characterized by its Laplace exponent

(2.5) φ (s) = as+

∫ ∞
0

(
1− e−sλ

)
ν (dλ) ,

where a ≥ 0, and ν is its Lévy measure, that is, E exp {−sL (t)} = exp {−tφ (s)} , t ≥
0, s > 0, and ∫ ∞

0

(1 ∧ λ) ν (dλ) <∞.

A function φ : (0,∞) → (0,∞) is the Laplace exponent of some subordina-
tor if and only if it is the Bernstein function, which is defined by φ (0+) = 0,
and (−1)

m
φ(m) (s) ≤ 0,m = 1, 2, .... Thus, if ν has a Lévy density µ, then

(−1)
m
µ(m) (s) ≥ 0,m = 1, 2, ..., or µ (s) is a completely monotone function, i.e.,

for some finite measure ρ on (0,∞)

(2.6) µ (s) =

∫ ∞
0

e−sudρ (u) .

If φ (s) = sα/2, α ∈ (0, 2) , we call L (t) the α-stable subordinator and denote it as
Lα (t).

Let W (t) , t ≥ 0 be the n-dimensional standard Brownian motion, and L (t) , t ≥
0 be a subordinator independent of W . Then the process X (t) = W (L (t)) , t ≥ 0
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has Lévy exponent ψ (z) = φ
(
‖z‖2

)
, and its infinitesimal generator is −φ (−∆) .

In the case that L (t) is the α-stable subordinator Lα (t) with Laplace exponent
φ (s) = sα/2, α ∈ (0, 2) , independent of W, then the infinitesimal generator of

the process X (t) = W (Lα (t)) , t ≥ 0 is − (−∆)
α/2

, 0 < α < 2. It is therefore a
symmetric α-stable Lévy process.

3. The Bessel-Riesz motion

In this section we derive a stochastic representation for the Bessel-Riesz motion
defined by the Cauchy problem

(3.1)
∂p (t, x)

∂t
= −κ (−∆)

α/2
(I −∆)

γ/2
p (t, x) , p (0, x) = δ (x) ,

t > 0, x ∈ Rn, κ > 0, α ∈ (0, 2], γ ∈ [0,∞). The spatial Fourier transform of the
Green function of (3.1) is

(3.2) Ĝ (t, z) = exp

{
−κt ‖z‖α

(
1 + ‖z‖2

)γ/2}
, z ∈ Rn,

see Angulo et al. (2000).

We recall that a random vector X ∈ Rn is said to be of type G if X
d
=
√
V Z,

where V ≥ 0 is an infinitely divisible random variable, and Z is the normal random
vector Nn (0,Σ) independent of V. It is known that X is infinitely divisible and
E exp {i 〈z,X〉} = exp

{
−g
(

1
2z
′Σ−1z

)}
, z ∈ Rn, where g (u) = − logE exp {−V u} .

Since V ≥ 0 and V is infinitely divisible, its Laplace exponent has the spectral
representation (2.5) with Lévy measure ν, and µ is the Lévy density of ν, represented
by (2.6).

We need a result from Kelker (1971), which is formulated in Theorem 1 below.

Theorem 1. The function φ : (0,∞) → (0,∞) is the Laplace exponent of some
infinitely divisible distribution on R+ if and only if φ (s) is a function with a com-
pletely monotone derivative and φ (0) = 0.

Theorem 2. Assume that

(3.3) α ∈ (0, 2], α+ γ ∈ [0, 2] .

Then,
(1) there exists a Lévy subordinator Lα,γ (t) , t ≥ 0 with Laplace exponent

(3.4) φ (s) = κsα/2 (1 + s)
γ/2

, s > 0;

(2) the distribution with characteristic function (3.2) for t = 1 is of type G, hence
is infinitely divisible.

Proof. Without loss of generality, we assume that κ = 1. According to Theorem 1,
we have to show that the function

h (u) =
d

du

[
u
α

2 (1 + u)
γ

2

]
= u

α

2 −1 (1 + u)
γ

2−1

(
α

2
+

1

2
(α+ γ)u

)
is completely monotone for all u > 0. For m ≥ 1

h(m) (u) = u
α

2 −m−1 (1 + u)
γ

2−m−1

×
[
Pm (x)

((
α

2
−m

)
+

(
α+γ

2
− 2m

)
u

)
+ P ′m (u)u (1 + u)

]
,
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where Pm (u) =
∑m
r=0 C

r
mu

r is a polynomial of degree m. By mathematical in-
duction, one can prove that the coefficients Crm satisfy the following recurrence
relations:

(3.5) C0
m+1 =

(α
2
−m

)
C0
m;

(3.6) Crm+1 =
(α

2
+ r −m

)
Crm +

(
α+ γ

2
+ r − 2m− 1

)
Cr−1
m ;

(3.7) Cr+1
m+1 =

(
α+ γ

2
−m

)
Cmm ,

with

C0
1 =

α

2
, C1

1 =
α+ γ

2
.

Also

(3.8) Cm+1
m = Cm−1

m

(
α+ γ

2
−m

)
.

From (3.5) to (3.8), it follows that all non-zero coefficients of the polynomial Pm (u)

have the sign (−1)
m+1

if (3.3) hold. Hence h (u) has a completely monotone deriv-
ative. Then both (1) and (2) follow. �

Consider the standard n-dimensional Brownian motionW (t) , t ≥ 0 and the Lévy
subordinator with Laplace exponent (3.4) independent of W ; then the process

(3.9) X (t) = W (Lα,γ (t)) , t ≥ 0

is a Lévy process with Lévy exponent (3.2) if (3.3) holds. The infinitely divisible
n-dimensional distribution with characteristic function (3.2) for t = 1 is called the
Bessel-Riesz distribution.

The Lévy process (3.9) is Markovian, and its transition density satisfies (3.1).
The Lévy measure ν of the subordinator Lα,γ (t) , t ≥ 0 with Laplace exponent
(3.4) can be computed by inverting the Laplace transform in terms of Kummer’s
confluent hypergeometric function

1F1 (a; b; z) =

∞∑
m=0

(a)m
(b)m

zm

m!
, z ∈ C,

where (a)m = a (a+ 1) ... (a+m+ 1) . It has the form

ν (dλ) = κ

[
α+ γ

2Γ
(
1− α+γ

2

) 1

λ
α+γ

2

·1 F1

(
1− γ

2
; 2− α+ γ

2
;−λ

)

(3.10) +
α+ γ

2Γ
(
1− α+γ

2

) 1

λ
α+γ

2 −1
·1 F1

(
1− γ

2
; 1− α+ γ

2
;−λ

)]
dλ.

For α = 2 it can be simplified to

ν (dλ) =
κ

Γ
(
−γ2
) ( e−λ

λ1+ γ
2

+
e−λ

λ2+ γ
2

1

1 + γ
2

)
dλ.

It follows that, with α = 2, the subordinator Lα,γ (t) , t ≥ 0 is the sum of a com-
pound Poisson process with intensity λ and gamma distributed jumps, and an
exponentially tempered stable subordinator.
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For α+ γ = 0

ν (dλ) =
α

2
κ.1F1

(
1 +

α

2
; 2;−λ

)
dλ;

thus Lα,γ (t) , t ≥ 0 is a compound Poisson subordinator and also a generalized
gamma convolution.

For α+ γ = 2, one can show that

ν (dλ) = κt

( ∞∑
k=0

1

λ1−k
1

k!

(
c
(
k + 1,−α

2

))
+
α

2
c
(
k,−α

2

))
dλ,

where

c
(
k,−α

2

)
= (−1)

k

(
α
2

)
k

(1)k
,

or

ν (dλ) = κt

(
α

2λ

∞∑
k=0

(−λ)
k

k!
k − 1

λ

∞∑
k=0

(−λ)
k

k!

(
α
2

)
k+1

(1)k+1

)
dλ.

Thus Lα,γ (t) , t ≥ 0 is again a compound Poisson process with drift κt, since this
Lévy measure is finite for α+ γ = 2.

A subordinator for L is self-decomposable if

E exp {−sL (t)} = exp

{
−cts+ t

∫ ∞
0

(
e−λs − 1

) κ (λ)

λ
dλ

}
,

where c ≥ 0, and κ (λ) is a non-negative function, decreasing and right-continuous
on (0,∞) , and such that

(3.11)

∫ ∞
0

(1 ∧ λ)
κ (λ)

λ
dλ <∞.

It follows that for α + γ = 0 or α + γ = 2, the subordinator Lα,γ (t) , t ≥ 0 is not
self-decomposable, while for α = 2, the function

κ (λ) =
κ

Γ
(
−γ2
) ( e−λ

λγ/2
+

e−λ

λ1+ γ
2

1(
1 + γ

2

))
has derivative

κ′ (λ) = −κ 1

Γ
(
−γ2
) e−λ

λ2+ γ
2

(
λ2 + (1 + γ)λ+

(
1 +

γ

2

)2
)
.

Thus κ (λ) is decreasing if and only if

4
(

1 +
γ

2

)2

− (1 + γ)
2
> 0.

Hence Lα,γ is self-decomposable if γ > − 3
2 for the case α = 2, see Anh and McVinish

(2004) for more details.
In general, the function κ (λ) satisfies (3.11), and it follows that if κ (λ) = h (λ),

then ∫ ∞
0

e−λx (λκ′ (λ)) dλ = − (h (x) + xh′ (x)) .

From Bernstein’s Theorem (see Feller 1971, Theorem 1a of Chapter XIII-5), Lα,γ
is self-decomposable if and only if the function

x
α
2−1 (1 + γ)

α
2−2

[(α
2

)2

+

(
α

(
α+ γ

2

)
+
γ

2

)
x+

(
α+ γ

2

)2

x2

]
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is completely monotone. The latter function is non-negative for α > 0 if γ < 0 and

α

4

(
(α+ γ)

2
+ γ
)2

− α2

4
(α+ γ) ≥ 0.

Since the Bessel-Riesz process (3.9) is a subordinated Brownian motion, its Lévy
measure is of the form

(3.12) ν̃ (dλ) =

∫ ∞
0

exp

(
−‖λ‖

2

4s

)
1

(4πs)
n/2

ν (ds) dλ, λ ∈ Rn,

where the Lévy measure ν of the subordinator Lα,γ is given by (3.10). It is self-
decomposable if α = 2, γ > − 3

2 . As with the Lévy subordinator Lα,γ (t) , t ≥ 0,
the qualitative behavior of the paths of the Bessel-Riesz process W (Lα,γ (t)) , t ≥ 0
changes with the value of α+γ. For α+γ < 2, Lα,γ (t) , t ≥ 0 and W (Lα,γ (t)) , t ≥
0 display similar behavior. For α + γ = 2, W (Lα,γ (t)) , t ≥ 0 is the sum of a
compound Poisson process and an independent Brownian motion.

4. The fractional Bessel-Riesz motion

We now consider the Cauchy problem

(4.1)
∂β

∂tβ
p (t, x) = −κ (−∆)

α/2
(I −∆)

γ/2
p (t, x) , p (0, x) = δ (x) ,

where t > 0, x ∈ Rn, κ > 0, 0 < β ≤ 1, α ∈ (0, 2], γ ∈ [0,∞), and ∂β/∂tβ is the
Caputo-Djrbashian fractional derivative:

(4.2)
∂β

∂tβ
p (t, x) =

{
∂
∂tp (t, x) , if β = 1

1
Γ(1−β) [ ∂∂t

∫ t
0

(t− τ)
−β

u (τ, x) dτ − p(0,x)
tβ

], if 0 < β < 1

(see, e.g., Anh and Leonenko (2001), Mainardi (2010), Meerschaert and Sikorskii
(2012)).

From Anh and Leonenko (2001), the Green function of the initial-value problem
(4.1) is of the form

(4.3) G (t, x) =
1

(2π)
n

∫
R
ei〈λ,x〉Eβ

(
−κtβ ‖λ‖α

(
1 + ‖λ‖2

)γ/2)
dλ,

where

Eβ (z) =

∞∑
k=0

zk

Γ (βk + 1)
, z ∈ C, 0 < β ≤ 1,

is the one-parameter Mittag-Leffler function.
We now consider the Lévy subordinator Lβ (t) , t ≥ 0 with Laplace exponent

given by

Ee−sLβ(1) = e−s
β

, s > 0, 0 < β < 1,

and the inverse stable subordinator

(4.4) Yβ (t) = inf {u > 0, Lβ (u) > t} , t > 0.

It is known (see, e.g., Meerschaert and Sikorskii (2012), Leonenko, Meerschaert and
Sikorskii (2013a)) that

Ee−sYβ(t) = Eβ
(
−stβ

)
, s > 0,
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and the process Yβ (t) , t > 0 has density

(4.5) h (t, x) =
d

dx
P {Yβ (t) ≤ x} =

t

β

1

x1+ 1
β

gβ

(
t

x
1
β

)
,

where

(4.6) gβ (x) =
d

dx
P (Lβ (1) ≤ x) =

1

π

∞∑
κ=0

(−1)
κ+1 Γ (βκ+ 1)

κ!

1

xβκ+1
sinπκβ.

Note that

gβ (x) =
β

Γ (1− β)

1

x1+β
(1 + o(1)) , x→∞.

From (4.3) and (3.9), we obtain the following result on the stochastic solution of
(4.1)

Theorem 3. Assume that

α ∈ (0, 2], β ∈ (0, 1), γ ∈ [0,∞), α+ γ ∈ [0, 2] ,

W is the n-dimensional Brownian motion, Lα,γ is the Lévy subordinator described
in Theorem 2, Yβ is the inverse stable subordinator (4.4), and all three processes
W , Lα,γ , and Yβ are jointly independent.

Then the stochastic process

(4.7) XBR (t) = W (Lα,γ (Yβ (t))) , t > 0

is the stochastic solution of (4.1), that is, its density function (or propagator)
p (t, x), t > 0, x ∈ R satisfies the fractional Bessel-Riesz differential equation (4.1)
with the point-source initial condition.

The process Yβ is not Markovian with non-stationary and non-independent in-
crements. The process W (Lα,γ (Yβ (t))), which provides the stochastic solution to
the fractional differential equation (4.1), is not Markovian and not a Lévy process
unless β = 1, in which case it reduces to the Lévy process (3.9).

If n = 1,

(4.8) p (t, x) =
d

dx
P {XBL (t) ≤ x} =

∫ ∞
0

h (t, θ)w (θ, x) dθ,

where

w (θ, x) =
d

dx
P {W (Lα,γ (θ)) ≤ x} ,

and the function

h (t, θ) =
d

dθ
P {Yβ (t) ≤ θ}

is given by (4.5). By inverting the characteristic function (3.2) for n = 1, one has

(4.9) w (t, x) =

∫
R
eixze−κt|z|

α(1+|z|2)
γ/2

dz.

Thus, the formula (4.8) with (4.9) and (4.5) gives an explicit solution of the frac-
tional equation (4.1) for n = 1.

We now address the existence and asymptotic behavior of the correlation function
of XBR (t) for n = 1. The characteristic function of XBR (t) is

EeiλXBR(t) = Eβ

(
−κtβ ‖λ‖α

(
1 + ‖λ‖2

)γ/2)
,
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and it is twice continuously differentiable at λ = 0 for α ≥ 2. The application of
the parameter restrictions from (4.1) yields α = 2 and γ = 0 for the case with finite
second moment, so that the correlation function is well-defined. In this case the
stochastic solution of (4.1) is W (2κYβ(t)), the Brownian motion time-changed by
the inverse stable subordinator. The correlation function of this process has been
considered in Janczura and Wilomanska (2009) and Leonenko et al. (2014), and
for 0 < s ≤ t,

corr[Z(t), Z(s)] =
(s
t

)β/2
.

With this power-law decay, the correlation function is not integrable at infinity
for 0 < β < 1, which can be viewed as the long-range dependence of the process
W (2κYβ(t)).

5. Appendix: Cauchy problem for fractional diffusion

This appendix presents a key result of Baeumer and Meerschaert (2001) on sto-
chastic solution of the fractional diffusion equation (see also Baeumer, Meerschaert
and Nane (2001), Leonenko, Meerschaert and Sikorskii (2013a, b) for related re-
sults). We formulate their result in the context most relevant to this paper. An
Rn-valued Lévy process X (t) , t ≥ 0 is said to be a stochastic solution of the
Cauchy problem

∂

∂t
u (t, x) = Gf (x) , u (0, x) = f (x) , t > 0, x ∈ Rn,

when the Cauchy problem is solved by

u(t, x) = T (t)f(x) =

∫
p(t, x− y)f(y)dy,

where p(x, t) is the density of X(t), and operator G is the generator of the bounded
strongly continuous semigroup {T (t), t ≥ 0} in the space L1(Rn):

Gf (x) = lim
h↓0

T (h) f (x)− f (x)

h
.

This operator is defined on a dense subset of this space (see, for example, Pazy
(1983), Arendt et al. (2001)), and f belongs to its domain.

In this setting, Theorem 3.1 of Baeumer and Meerschaert (2001) gives the unique
strong solution (in the space of continuity of the semigroup) for the fractional
Cauchy problem

∂β

∂tβ
u (t, x) = Gu (t, x) , u (0, x) = f (x) .

The solution has the following form:

u(t, x) =

∫ ∫ ∞
0

p
(
(t/s)β , x− y

)
gβ(s)f(y)ds dy.

Here gβ (t) is the density (4.6) of L(1), the standard stable subordinator {Lβ (t) , t ≥
0} evaluated at t = 1. The solution of the fractional Cauchy problem can also be
written as

u (t, x) =

∫ ∫ ∞
0

p (z, x− y) gβ

(
t

z
1
β

)
1

z1+ 1
β

f(y)dz dy,
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or

u(t, x) =

∫ ∫ ∞
0

p (z, x− y)h (t, z) f(y)dz dy,

where h(t, ·) is the density of the inverse stable subordinator Yβ(t). This shows
that the density of the non-Markovian process Z (t) = X (Yβ (t)) , t > 0, where X
and Yβ are independent,

q(t, x) =

∫ ∞
0

p(z, x)h(t, z)dz,

is the fundamental solution of this fractional Cauchy problem.
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relation structure of the time changed Lévy processes, Communications in Applied
and Industrial Mathematics, 6, e-483 (22p).

Mainardi, F. (2010), Fractional Calculus and Waves in Linear Viscoelasticity,
Imperial College Press, London.

Meerschaert, M.M. and Sikorskii, A. (2012), Stochastic Models for Fractional
Calculus, De Gruyter, Berlin.

Nigmatullin, R.R. (1986), The realization of the generalized transfer equation in
a medium with fractal geometry, Physica Status Solid (b), 133, 425-430.



STOCHASTIC REPRESENTATION OF FRACTIONAL BESSEL-RIESZ MOTION 11

Pazy, A. (1983), Semigroups of Linear Operators and Applications to Partial
Differential Equations, Springer-Verlag, New York.

Saichev, A. I. and Zaslavsky, G. M. (1997), Fractional kinetic equations: solu-
tions and applications, Chaos, 7, 753–764.

Veillette, M. and Taqqu, M.S. (2011), Numerical computation of the first passage
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