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 Ca2+ overload is responsible for initiation of pancreatic pathology in AP 

 Mechanism of Asparaginase-induced AP is similar to alcohol- and bile- induced AP 

 Pharmacological interventions in pancreatic stellate cells provide additional opportunities 

for developing of AP treatments 

 

 

Abstract 
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In spite of significant scientific progress in recent years, acute pancreatitis (AP) is still a 

dangerous and in up to 5% of cases deadly disease with no specific cure. It is self-resolved in the 

majority of cases, but could result in chronic pancreatitis (CP) and increased risk of pancreatic 

cancer (PC). One of the early events in AP is premature activation of digestive pro-enzymes, 

including trypsinogen, inside pancreatic acinar cells (PACs) due to an excessive rise in the 

cytosolic Ca2+ concentration, which is the result of Ca2+ release from internal stores followed by 

Ca2+ entry through the store operated Ca2+ channels in the plasma membrane. The leading 

causes of AP are high alcohol intake and biliary disease with gallstones obstruction leading to 

bile reflux into the pancreatic duct. Recently attention in this area of research turned to another 

cause of AP - Asparaginase based drugs – which have been used quite successfully in treatments 

of childhood acute lymphoblastic leukaemia (ALL). Unfortunately, Asparaginase is implicated 

in triggering AP in 5-10% of cases as a side effect of the anti-cancer therapy.  The main features 

of Asparaginase-elicited AP (AAP) were found to be remarkably similar to AP induced by 

alcohol metabolites and bile acids. Several potential therapeutic avenues in counteracting AAP 

have been suggested and could also be useful for dealing with AP induced by other causes. 

Another interesting development in this field includes recent research related to pancreatic 

stellate cells (PSCs) that are much less studied in their natural environment but nevertheless 

critically involved in AP, CP and PC. This review will attempt to evaluate developments, 

approaches and potential therapies for AP and discuss links to other relevant diseases. 

 

 

Introduction 

Acute pancreatitis (AP) is a disease usually caused by alcohol abuse or bile reflux due to gallstones. 

Other causes include some type of antibiotics, chemotherapy, infections, certain rare conditions and 

others [1]. One of the complications that can result from AP is chronic pancreatitis (CP) that 

significantly increases risk of pancreatic cancer [2-5]. AP is a severe disease and has a significant 



mortality of about 5% [1, 3]. However, in severe cases, the mortality rate can rise to 30% [6], with 

significant pancreatic acinar cell (PAC) necrosis followed by a damaging inflammatory response. The 

leading causes of AP have been identified as gallstone biliary disease and high alcohol intake, while 

abnormality in calcium signalling in PACs was found to be one of the first events in the initiation of 

AP [3].  

 

Physiological calcium signalling in PACs 

Calcium signalling plays a fundamental role in regulation of digestive enzymes and fluids secretion 

by the exocrine pancreas [7]. A range of endogenous stimuli such as the neurotransmitter 

acetylcholine (ACh) [8] produced by the vagal nerve endings and the hormone cholecystokinin (CCK) 

secreted by enteroendocrine I cells of the small intestine [9,10] serve as triggers in the activation of 

the calcium signalling machinery. Binding of ACh to the muscarinic receptor type 3, which is a G-

protein-coupled receptor, results in activation of phospholipase C and production of the second 

messenger inositol trisphosphate (IP3) that induces Ca2+ release from the internal stores through IP3 

receptors [11]. In fact, in the absence of IP3 receptors or type 2 and 3 (double-knockout), carbachol -

induced secretion is completely abolished in PACs [12]. Similarly, Ca2+ release in PACs elicited by 

physiological doses of CCK, also in the human pancreas [13,14], is primarily mediated by nicotinic 

acid adenine dinucleotide phosphate (NAADP). In this case the action depends on functional 

ryanodine receptors (RyRs) and two-pore channels (TPCs) and also involves acid Ca2+ stores 

[15,16,17,18]. Calcium response then further amplified by calcium induced calcium release (CICR) 

from the acid stores and the ER [17,18]. While the exact mechanism of the NAADP production and 

action remains elusive, in PACs NAADP-induced calcium responses are linked to both ER and acidic 

stores, and is highly depend on RyR type 1 and TPC type 2 [18]. A hypothesis that takes into account 

practically all published data suggests a mechanism involving 3 stores: an initial, virtually 

undetectable, NAADP-elicited Ca2+release via TPCs from endosomes/lysosomes triggers the 

detectable Ca2+-induced Ca2+ release via RyR1 and RyR3 occurring from the granules and the ER. 

Both pathways result in feeding of Ca2+ to the cytosol and subsequent exocytosis of zymogen granule 



content into the acinar lumen that, together with fluid supplemented with bicarbonate, is transported 

via the pancreatic duct system to the duodenum under physiological conditions [17,18]. 

Pathological calcium signalling in PACs 

In AP, the pancreatic proenzymes such as trypsinogen become prematurely activated intracellularly, 

resulting in the molecular cannibalism that digests pancreas and its surroundings [3,6]. There is 

overwhelming evidence, collected during last two decades, implicating abnormal cytosolic Ca2+ 

overload in the initiation and development of AP [3,19-23]. The most damaging are the sustained 

elevations in [Ca2+], from high concentrations of some secretagogues, as well as from ductal 

hypertension, alcohol, hypoxia, hypercalcaemia, hyperlipidaemia, viral infection, and various drugs—

all factors known to precipitate acute pancreatitis [19, 24]. These factors cause either excessive 

release of acinar [Ca2+]i, or damage to the integrity of mechanisms that restore low resting levels of 

[Ca2+]i, and the consequent calcium toxicity become the key trigger of acute pancreatitis [19,20]. 

Aberrant calcium signalling, as the main initiation event in AP, has been proposed more than two 

decades ago and became the widely accepted mechanistic explanation [19,20,25]. Pathological 

stimuli, such as bile and alcohol, are capable of triggering massive Ca2+ release from intracellular 

stores through IP3Rs and RyRs followed by excessive Ca2+ entry through Ca2+ release activated Ca2+ 

(CRAC) channels that are the most important mechanisms of Ca2+ overload in pancreatic acinar cells 

[3,26].  

It has been shown that long lasting Ca2+ responses with a development of a sustained elevated 

cytosolic Ca2+ plateau component result in destabilisation of the secretory zymogen granules and 

conversion of them into empty looking vacuoles [27].  Intracellular vacuolisation [4], causes another 

calcium-dependent process, intracellular protease (trypsin) activation [5]. As a result, the inactive 

pancreatic pro-enzymes stored in zymogen granules (ZG) become active enzymes inside the PACs 

[21,27], inducing mitochondrial malfunction [25, 28-30], cell necrosis, digestion of pancreas and its 

surroundings [19-21].  



AP is known to involve reactive oxygen (ROS) and reactive nitrogen (RNS) species, that together 

with calcium overload leads to abnormal mitochondrial Ca2+ uptake [25,30] and opening of the 

mitochondrial permeability transition pore (MPTP) [32,33] resulting in reduction of ATP production. 

The lack of ATP together with calcium overload and protease activation leads to acinar cells necrosis 

generating the damaging inflammatory response [5].  

Asparaginase-induced pancreatitis 

Recently another form of AP has been studied in detail, a well-known complication of the treatment 

of childhood acute lymphoblastic leukaemia (ALL). The incidence of AP following childhood ALL 

treatment is between 7- 18% [34]. Whilst numerous anti-leukemic medications have been reported, 

the most important are based on Asparaginase [34]. The development of AP is one of the commonest 

causes for stopping Asparaginase treatment, because re-exposure is associated with recurrence of 

pancreatitis [35]. However, stopping the scheduled Asparaginase treatment because of previous 

pancreatitis has been linked to an increased relapse rate [36]. While significant progress has been 

made in characterizing the effects of alcohol and bile acids on pancreas [5,23,37,38], the 

Asparaginase-induced pancreatic pathology was largely unknown.  

Findings presented recently [39] provide the first mechanistic insight into the process by which 

Asparaginase treatment of ALL may cause Asparaginase-induced AP (AAP). Pancreatic acinar cells 

can respond to a very low dose (0.1IU/ml, Fig. 2A) and in practically all cases to higher doses of 

Asparaginase (Fig.2B). The most accessible therapeutic target in Asparaginase-elicited toxicity is the 

Ca2+ release activated Ca2+ (CRAC) channel in pancreatic acinar cells (PACs) [23,40]. The 

Asparaginase-induced Ca2+ elevations (plateau) depend on CRAC channels and were markedly 

diminished by the inhibitor GSK-7975A [39]. Consequently, Asparaginase-induced necrosis was 

dramatically reduced by GSK-7975A to near control levels (Fig. 3A). The protective effects of CRAC 

channel inhibitors against alcohol-induced pancreatitis in isolated pancreatic acinar cells [23,26] and 

in pancreatic stellate cells [41,42] have been confirmed by in vivo studies [43]. Therefore, this 

approach is also likely to succeed against AAP [39] and the next step would be to test the 

effectiveness of CRAC channel blockade against AAP using an in vivo mouse model.  



The AAP mechanism is apparently fundamentally different from the therapeutic action of 

Asparaginase on lymphoblastic cells in ALL [44]. The Asparaginase effect on cancer cells relies on 

depletion of asparagine, which the malignant cells cannot produce themselves, in contrast to normal 

cells [44], whereas the side-effect of Asparaginase, namely AAP, is owing to activation of a signal 

transduction mechanism involving PAR2 (Fig. 3A,C) but independent of asparagine [39]. Hence, 

several potential intervention points are available for treating the side effect of Asparaginase (Fig.3C). 

The key initiation site of Asparaginase action on PACs seems to be PAR2. This receptor has 

previously been implicated in AP, although its exact role is still debated [45,46]. Blocking PAR2 has 

inhibited both the pathological [Ca2+]i elevations and the Asparaginase-induced necrosis (Fig.3A) 

[39], suggesting that PAR2 inhibitors could be a useful tool to supplement Asparaginase ALL 

treatment in AAP cases. Both Ca2+ entry and extrusion were significantly affected by Asparaginase 

while sustained elevation of [Ca2+]i is responsible for the necrosis [39]. The simplest explanation for 

this is the reduction in the intracellular ATP level, limiting energy supply and, therefore, inhibiting 

plasma membrane Ca2+ ATPase [39]. Restoring energy supply by the addition of pyruvate (Fig.3A) 

provided a high degree of protection against pancreatic necrosis. The established mechanism of action 

of Asparaginase (Fig.3B) has been confirmed for several sources of Asparaginase, including the drug 

ELSPAR and PEG-Asparaginase and including Asparaginase from both E Coli and Erwinia 

chrysanthemi (Fig. 3B). These findings should allow the start of designing new treatments for AAP. 

 

 

How to save PACs from Ca2+ overload and necrosis?   

Interestingly, AAP and AP induced by other more common causes are not so much different [39]. 

Calcium overload, loss of ATP and massive necrosis are also the main features of AP induced by 

alcohol and bile. Therefore, current developments in AP field are undoubtedly applicable to AAP 

[39]. It has been shown previously that pharmacological inhibition of IP3Rs in pancreatic acinar cells 

or knock out of IP3Rs of type 2 and 3 in mice significantly diminished POAEE-elicited intracellular 

trypsin activity rise [37]. These data indicate that these intracellular channels are involved in critical 

steps of cytosolic Ca2+ overload, necrosis and AP progression. Attempts to protect acinar cells against 



Ca2+ overload by inhibition of Ca2+ release from the internal stores are problematic due to the lack of 

specific inhibitors of IP3Rs and RyRs. 

The intracellular Ca2+ sensor calmodulin is known as a regulator of many intracellular targets 

including intracellular Ca2+ receptor channels and this ability can be exploited to reduce Ca2+ overload 

[38]. Calmodulin activator Ca2+like peptides 3 (CALP-3) at a concentration of 100 M was shown to 

be effective in regulation of alcohol-induced Ca2+ release and cell necrosis [38] without affecting the 

physiologically relevant ACh and CCK-induced oscillations [38,47]. A much more potent analogue of 

CALP-3 was recently developed [48], which is effective at much lower concentrations starting from 

0.1 M and therefore, has a good potential for cytosolic Ca2+ regulation.  

Another recently published finding is based on the ability of high concentrations of caffeine to inhibit 

IP3Rs [49]; however, this development is still in its early stages. Alternatively, Bcl-2 family proteins 

have been shown to regulate Ca2+ release via binding to the intracellular Ca2+ channels, inhibiting Ca2+ 

release and regulating Ca2+ homeostasis. These Bcl-2 proteins therefore provide an additional 

therapeutic avenue in controlling intracellular Ca2+ overload in acute pancreatitis. The BH4 domain of 

Bcl-2 was shown to inhibit IP3Rs and RyRs at low concentrations [50,51]. Inhibition of NAADP-

induced signalling, e.g. Ned-19 is also worth considering particularly for bile acid induced AP [52].  

While inhibition of Ca2+ release is rather difficult to utilise and none of the directions mentioned 

above is in the clinical trial stage, inhibition of store operated Ca2+ entry as a potential tool for AP 

therapy is much more developed [26, 43]. CRAC channel blockers GSK7579A (GlaxoSmithKline, 

UK) and CM_128 (CalciMedica, US) have been remarkably successful in in vitro and in vivo models 

of AP, inhibiting all major disease hallmarks (Fig. 3C) [26,43].  Therefore, the developments of 

CRAC channel blockers might lead to a first specific therapy for AP. 

Early observation that cells supplied with ATP can tolerate even high stress from AP-related 

pathologies [28], could eventually become an important part in future AP treatment. A systematic 

review by Mosztbacher et al 2017 [53] concluded that restoration of energy level can help in some 

forms of AP. While pyruvate is very effective for in vitro experiments in protecting acinar cells 



against L-Asparaginase-triggered damage [39], a simple derivative of pyruvic acid, namely, ethyl 

pyruvate has been found useful for treatment of bile-induced AP in a rat model [54].  Ethyl pyruvate 

is also known as a ROS scavenger and, in addition, has other anti-inflammatory effects [55]. The role 

of ROS in AP remains controversial [30, 56,57, 58], while a recent study has shown an important 

contribution of nitric oxide [31] in pancreatic pathology, justifying the use of NO synthase inhibitors 

as a potential AP treatment [59,60]. In spite of a number of developments, some more advanced than 

others and it is possible that combination of drugs will have to be used eventually while their target 

might not be limited to the PACs. 

 

Potential role of pancreatic stellate cells in AP 

PSC research has recently received increasing attention due to our growing understanding of this cell 

type’s involvement in pancreatic health and disease [41,42,61,62]. 

The first discovery of PSCs 35 years ago, [63] was followed by the development of PSC culturing 

techniques in the 90’s [64]. Recent pioneer studies using pancreatic lobules preparation have 

introduced new possibilities for investigating PSCs in their natural environment [41,42,61]. The 

advantage of lobule research is the unique opportunity to study the contribution and communication 

of different pancreatic cell types in response to physiological and pathological stimuli.   

It has been generally accepted that under physiological conditions PCSs show characteristics of the 

normal quiescent state (qPSCs); however, their function in the pancreas is largely unknown. It has 

been suggested that qPSCs regulate the normal architecture of pancreatic tissue by regulating the 

synthesis and degradation of extracellular matrix (ECM) by the production of matrix 

metalloproteinase (MMPs) and tissue inhibitors of MMPs (TIMP) [65]. qPSCs can be recognised as 

small elongated cells located in the peri-acinar space with retinol/vitamin A-containing lipid droplets 

that can be visualized by intrinsic multiphoton fluorescence [41]. They also express a cytoskeletal 

protein desmin (Fig. 4A) and glial fibrillary acid protein (GFAP) [41,61].      

Fluo-4 



During pancreatic injury, or culturing, qPSCs can be transformed to their activated state (aPSCs) that 

is highly implicated in fibrosis and desmoplastic reactions in chronic pancreatitis (CP) and pancreatic 

cancer, respectively [66-69]. 

However, our recently published data have disputed the accepted general concept of the quiescence of 

normal PSCs [41]. On the contrary, this cell type shows an extraordinary sensitivity to very small 

changes in the blood pressure-lowering nonapeptide bradykinin (BK) while PACs are completely 

insensitive to BK (Fig. 4B, C) [41]. 

BK was discovered for the first time in the late 40’s and described as a plasma protein that induced a 

slow delayed muscle contraction in isolated guinea pig ileum (brady means slow; kinein means to 

move, to stimulate in Greek) [70,71]. Along with other kinins, BK belongs to a family of bioactive 

peptides produced from plasma protein kininogens by endogenous proteolytic enzymes kallikreins of 

kallikrein–kinin system (KKS) that controls many physiological and pathological functions. The BK 

normal plasma level was found within the range of 40-70 pM [72,73]. 

It has been show previously that in pancreatic tissue kallikrein is mainly stored as the pro-enzyme pre-

kallikrein in the acinar cell zymogen granules [74]. In acute pancreatitis, kallikrein would leak from 

damaged necrotic cells leading to a rise in BK production from the basal level in plasma to up to ∼140 pM [72,73]. 

We have found that application of BK at concentrations from as low as 100 pM to a maximum effect 

at 1 nM reliably evoked cytosolic Ca2+ signals in PSCs by activating bradykinin type 2 receptors (B2 

receptors) [41]. These data demonstrate that any increase in the BK plasma level above the normal 

range would induce a robust Ca2+ response in PSCs that has a direct link with acute pancreatitis 

development. 

Recently published data have shown that BK-induced Ca2+signals in PSCs do not evoke any change in 

[Ca2+]i in neighbouring PACs (Fig. 4B,C) [41]. There are, of course, possibilities for the involvement 

of alternative pathways. The beneficial effect of pharmacological blockade of the B2 receptor to 

supress acute pancreatitis has been shown previously [73,75-78]. Using the model of isolated 



pancreatic lobules, it was shown that B2 receptor blockade markedly reduced the level of acinar 

necrosis induced by major pancreatitis-inducing agents such as ethanol, FAEEs or bile acids [41]. 

However, the exact pathway(s) that link the functions of PACs and PSCs in pancreatic health and 

disease remains unclear. 

Conclusion 

There are very promising developments in this area. Several approaches are now competing, but in the 

end, a combination of approaches might be needed to successfully treat AP. On the other hand, 

different treatments might be better suited for different causes of AP, rather than one for all. Further 

research in this area is necessary to utilise the findings and move to the development of potential 

drugs. 
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Figure legends 

Figure 1. Model of the NAADP-induced Ca2+ release in pancreatic acinar cells. A very small primary 

Ca2+ release from an acid store (endosomes, lysosomes) being amplified very substantially by further 

Ca2+ release from both larger acid stores (zymogen granules) and the ER (Modified from [16]). 

 



Figure 2. Asparaginase induces calcium responses in PACs in dose-dependent manner. A. 

Representative trace of Asparaginase (0.1IU/ml)-induced calcium spikes in PACs. B. The average 

trace of 200IU/ml Asparaginase-induced cytosolic calcium plateau response. Traces were averaged 

and shown with error bars. Cells were loaded with Fluo-4 AM.  

 

 



Fig. 3. Asparaginase-induced necrosis can be inhibited using three different approaches. A. 

Asparaginase (200 IU/ml) induces a substantial level of necrosis in PACs. The CRAC channel 

inhibitor GSK-7975A (10 µM) essentially abolished Asparaginase-induced necrosis to the control 

level (p>0.24), but significantly (p<0.0001) lower than that caused by 200 IU/ml of Asparaginase 

alone. PAR2 inhibitor (10 M FSLLRY-NH2) significantly blocked the Asparaginase-induced 

necrosis (p<0.0001). Pyruvate (1 mM) also significantly (p<0.0001) reduced the Asparaginase-

induced necrosis to practically control level [34]. B. Asparaginase from different sources induce 

comparable level of necrosis. Abcam (number of tested cells n=1124), Elspar (n= 1708) and 

PEGylated Asparaginase (n=1317), all induce significant necrosis as compared to control (p<0.0001 

for all three sources). C. Schematic diagram illustrating the effects of Asparaginase on PACs. 

Potential sites for therapeutic intervention (PAR2, calcium release, calcium entry, and ATP depletion) 

are also indicated. 

 

 



Figure 4. A. The representative image of staining of pancreatic lobule with desmin antibody, detected 

by conjugated secondary antibody IgG-CruzFluor 594 (CFL594), overlaid with transmitted light 

image and with DAPI stained nuclei. B. Fluorescent image of freshly isolated mouse pancreatic 

cluster loaded with Fluo-4 in AM form. PSCs are shown as small elongated cells highlighted with red 

arrow; blue arrow is pointing to location of a neighbouring PAC. C. A representative cytosolic Ca2+ 

traces from PSC and PAC indicated in B: red trace from the PSC and blue trace from the PAC. 

Application of 1 nM BK results in a typical biphasic Ca2+ elevation in the PSC but not in the 

neighbouring PAC. Subsequent additions of 10 μM ACh and 10 μM CCh induce Ca2+ signals only in 

the PAC with no effect on PSCs. (Modified from [36]). 

 

 


