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Abstract 25 

Genetic studies have revealed the involvement of hundreds of gene variants in autism. Their risk effects are 26 

highly variable, and they are frequently related to other conditions besides autism. However, many different 27 

variants converge on common biological pathways. These findings indicate that aetiological heterogeneity, 28 

variable penetrance and genetic pleiotropy are pervasive characteristics of autism genetics. Although this 29 

advancing insight should improve clinical care, at present there is a substantial discrepancy between research 30 

knowledge and its clinical application. In this Review, we discuss the current challenges and opportunities for 31 

the translation of autism genetics knowledge into clinical practice. 32 

Introduction 33 

Tremendous progress has been made in identifying the genetic variants that have an impact on the development 34 

of autism spectrum disorders (ASDs), providing a window into the biology of this group of conditions1,2 . 35 

Variants associated with ASDs have been found in hundreds of different genes, are mostly rare and cover the 36 

entire spectrum of mutations, from alterations of individual base pairs (single-nucleotide variants (SNVs)) to 37 

the loss or gain of a thousand to millions of base pairs (copy number variants (CNVs)). In addition to inherited 38 

variants, numerous studies have shown that in individuals with an ASD the rate of de novo genetic variants — 39 

that is, variants that are detected for the first time in the proband and are not present in the parental genome 40 

— is increased. For instance, in probands, de novo CNVs occur four times as frequently as in their unaffected 41 

siblings, and de novo loss-of-function mutations are twice as common3 . It is estimated that rare genetic 42 

variants, both de novo and inherited, are causal in 10–30% of people with ASDs3–5. This represents an 43 
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enormous step forwards compared with 15 years ago, when a specific genetic contribution could be detected 1 

in only 2–3% of individuals with an ASD. For some of these rare genetic variants, strong causal effects on ASD 2 

risk have been known for a long time, such as mutations in TSC1 and TSC2 leading to tuberous sclerosis 3 

complex6 or those in fragile X mental retardation 1 (FMR1; also known as FMRP) leading to fragile X syndrome7 4 

. These examples illustrate another key point: some consider ASDs to be medical disorders with possible 5 

consequences beyond their purely behaviourally defined phenotypes. Genetic findings from the past decade 6 

indicate that ASDs can indeed exist in the context of a fast-growing list of specific, individually rare but 7 

collectively common genetic disorders with clinical manifestations outside the central nervous system (CNS). 8 

Common genetic variation also contributes to the risk of ASDs8–10. The risk increase conferred by a single 9 

common variant is very modest (the relative risk is only approximately 1.1–1.2). However, when considered 10 

cumulatively, the contribution of common inherited variants towards the aetiology of ASDs is estimated to be 11 

between 15%8 and 50%9,10. Nevertheless, unlike the findings in schizophrenia11, no common risk loci have 12 

been identified to date for ASDs. The identification of common variants of small effect requires the study of even 13 

larger cohorts than those that have been included in genome-wide association studies (GWAS) to date (Autism 14 

Spectrum Disorder Working Group of the Psychiatric Genomics Consortium, unpublished observations). 15 

Indeed, despite the considerable evidence to support a major role of common genetic variation in ASDs9 , it 16 

has been rare and de novo variants, which can typically confer a much higher risk in an individual than a 17 

common variant, that has led to the discovery of novel ASD risk genes. These rare genetic causes of autism 18 

are starting to highlight possibilities for the development of specific targeted therapies with the aim of 19 

modulating clinical outcomes and improving people’s quality of life12. The translational potential of these 20 

findings is one of the most challenging and exciting areas in our field. In this Review, we provide a brief overview 21 

of the current state-of-the-art of autism genetics, discuss the clinical importance of those genetic findings and 22 

outline what is required for a more effective translation of this research knowledge into medical practice. We 23 

focus on rare variants of large effect, as they currently have the most potential to inform clinical care. We argue 24 

that, contrary to what is generally assumed, the existing genetic findings are already able to inform our current 25 

clinical practice for some people and their families. Moreover, we make the case for how these new insights 26 

could lead to a new wave of translational studies. 27 

Increasing insight into ASD genetics  28 

New technologies  29 

Since individual chromosomes became physically identifiable in the 1970s, karyotyping has been used to 30 

delineate various clinical conditions with observable morphological hallmarks. This operator-dependent 31 

technique allows the identification of large deletions and duplications of genetic material (usually larger than 32 

5Mb in size), as well as translocations. Subsequent technical improvements over the following decades 33 

increased the resolution of the technique to enable the detection of smaller genetic imbalances. In addition, the 34 

use of labelled DNA probes hybridized to genomic targets (fluorescence in situ hybridization (FISH)) greatly 35 

improved sensitivity for the detection of small aberrations at predetermined chromosomal regions. The 36 

combination of observations obtained from karyotyping and FISH provided a first glimpse of the genetic 37 

heterogeneity of ASDs13. The next crucial breakthrough was the development of chromosome microarray 38 

(CMA) technology, which includes array comparative genomic hybridization (aCGH) and singlenucleotide 39 

polymorphism (SNP) genotyping. CMA allows for testing simultaneously across the genome, unlike the specific 40 

targeted nature of FISH, and can detect aberrations at a much higher level of detail. CMA testing has been 41 

shown to be superior to and more cost effective than karyotyping14,15. Therefore, the American College of 42 

Medical Genetics and Genomics, the International Standard Cytogenomic Array Consortium (now known as 43 

ClinGen), the American Academy of Pediatrics and the American Academy of Child and Adolescent Psychiatry 44 

all revised their guidelines to recommend CMA as part of the first-line evaluation for children with a 45 

developmental disability or an ASD14,16–18. The identification of SNVs has also greatly advanced in recent 46 

years such that whole-genome sequencing (WGS) and whole-exome sequencing (WES) have become viable 47 

alternatives to selective genotyping. Generally, most of the approximately 20,000 variants identified in the 48 



Copy of final proof post-edit Authors/Journal  

Page 3 of 27 

 

exome sequence of any individual19 are inherited and correspond to normal variation in the general population 1 

(that is, they are SNPs). Approximately 75 de novo SNVs arise per genome per generation, the vast majority 2 

of which occur in non-coding sequence. It is estimated that on average each newborn carries one or two 3 

de novo SNVs affecting coding regions20–22. Although coding variants are likely to have the most potential for 4 

inducing phenotypic variation, possible functional effects of non-coding variants on processes such as gene 5 

regulation and 3D chromatin folding are becoming increasingly appreciated23. In addition to confirming a 6 

diagnosis when a genetic disorder is suspected, sequencing is increasingly used to identify a specific genetic 7 

cause in patients with unexplained developmental disorders24. The emerging use of WES and WGS has already 8 

led to the identification of many novel rare variants with a large effect size (including small insertions or 9 

deletions), and along with the previously identified CNVs, such novel variants have important implications for 10 

risk prediction, diagnosis and treatment of ASDs and other neuropsychiatric disorders25. These current 11 

technologies also have limitations. The exact resolution of CMA depends on the platform used, and regardless 12 

of the platform and unlike karyotyping, CMA cannot detect truly balanced translocations or inversions. When 13 

using WES or WGS, identifying CNVs is challenging. The standard protocols and quality control measures for 14 

sequencing-based genetic tests are still evolving, and the detection of events varies with the read lengths of 15 

the method used. In addition to these technical issues, it can sometimes be difficult to establish or exclude the 16 

clinical relevance of each variant identified by CMA and sequencing results despite the use of considerable 17 

bioinformatics resources. As a consequence, the proportion of variants of unknown significance (VUS) 18 

identified through genome-wide testing is high relative to targeted genetic testing, which poses formidable 19 

challenges for clinical interpretation and practice. In addition, genome-wide approaches can identify incidental 20 

findings that are clinically relevant: that is, genetic variants of clinical significance that are not directly related 21 

to the phenotype under study. A recent study reported incidental ‘medically actionable’ findings in 4.6% of 22 

consecutive patients referred to a clinical laboratory for WES26. The majority of these patients were children 23 

with neurological or developmental disorders. One strategy to reduce the likelihood of both VUS and incidental 24 

findings is the use of predesigned gene testing panels. However, this should be weighed against the limitation 25 

inherent to restricting the test scope to a limited set of a priori defined, clinically relevant candidate genes. The 26 

use of WES and WGS is more advanced in cancer genetics than in other health care settings27. For ASDs, 27 

sequencing shows promise, but a better understanding of the clinical implications of many genetic variants is 28 

required before we can gauge the potential of sequencing to improve the clinical care of people with an ASD. 29 

ASD risk variants converge in biological mechanisms.  30 

As of December 2016, more than 800 genes have been included in the AutDB, a database of genes implicated 31 

in ASDs28. The strength of the evidence supporting each of these observations varies greatly. One challenge 32 

resides in the fact that the mere occurrence of a rare CNV or SNV affecting a gene does not inevitably equate 33 

to causation. To gain insights into the potential genetic mechanisms driving risk for ASDs, different types of 34 

affected families have been studied, including those with consanguinity, those with a single affected person (a 35 

simplex family) and those with multiple people with an ASD, sometimes across many generations. Using WES 36 

in families enriched for ASDs owing to consanguinity, specific mutations were identified in AMT, MECP2, 37 

NLGN4X, PAH, PEX7, POMGNT1, SYNE1 and VPS13B24; of these genes, MECP2, NLGN4X and SYNE1 have 38 

previously been associated with ASDs. The increased access to CMA and WES technologies has now also 39 

opened the way to the discovery of rare and private mutations in larger clinical cohorts. A recent study of 2,147 40 

individuals with an ASD, by the Autism Genome Project (AGP), reported that 4.6% (n=99) carried a de novo 41 

rare CNV29. Studies of the Simons Simplex Collection show that the rate of de novo rare CNVs increases to 42 

more than 10% when restricting to simplex cases5 . Similarly, the study of 1,532 families with multiple affected 43 

individuals from the Autism Genetic Resource Exchange (AGRE) showed that both rare de novo and inherited 44 

CNVs contribute to the development of ASDs. Although the rate of de novo CNVs identified in the AGRE study 45 

was lower than that of the simplex families (as expected, considering the study design), there was a higher 46 

burden of large, rare CNVs, including inherited variants, in individuals with an ASD when compared with their 47 

unaffected siblings30. Interestingly, in more than two-thirds of the families in which a known high-risk ASD-48 

associated CNV was identified, the CNV was not shared by all affected siblings, highlighting the intrafamilial 49 
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genetic heterogeneity of ASDs30. Recurrent inherited and de novo CNVs have been shown to affect regions of 1 

the genome that are important in known genomic disorders (for example, 1q21 duplication and 15q11–q13 2 

duplication syndromes) as well as to occur in known genes that are implicated in ASDs or intellectual disability 3 

(for example, NRXN1, SHANK3 and PTEN). When data from the AGP were combined with those from the 4 

Simons Simplex Collection, 12 such loci (false discovery rate (FDR) < 0.1) associated with ASDs were identified, 5 

including 1q21, 2p16 (NRXN1), 3q29, 7q11.23, 15q11–q13, 15q12, 15q13 (in 3 nonoverlapping microregions), 6 

16p11, 16q23 and 22q11 (REF. 5). When data from small single-gene de novo CNVs and WES were 7 

incorporated, a further 65 genes were identified (FDR<0.1)5. 8 

One of the strongest discoveries propelled by WES has been the role of chromodomain helicase DNAbinding 8 9 

(CHD8) in ASDs. CHD8 is a transcriptional repressor that binds to β-catenin and negatively regulates WNT 10 

signalling. Interestingly, the CHD8 binding targets are strongly enriched for other ASD risk genes, suggesting 11 

that the disruption of these genes is working through a common biological process31. In addition to WES, 12 

targeted resequencing approaches have further implicated CHD8 in children with an ASD or ‘developmental 13 

delay’ (that is, disordered development). In a recent study of 3,730 children with ASD or developmental delay, 14 

a total of 15 independent CHD8 truncating mutations were observed compared with the absence of observed 15 

truncating events in 8,792 controls, including 2,289 unaffected siblings32. As CHD8 mutations were observed 16 

in less than 0.5% of cases and many of the other genes discovered are likely to be altered in even smaller 17 

proportions of patients, a more appropriate strategy may be to focus on aberrant processes, beyond 18 

specific genes. Therefore, to better understand the pathophysiology of ASDs, it is pertinent to ask whether 19 

identified genes are involved in common processes, or are active within discrete cells types or at specific 20 

developmental stages. Gene set enrichment approaches indicate that the known genes and loci involved in ASD 21 

risk converge into distinct biological processes: disruptions to synaptic functioning, chromatin remodelling, 22 

WNT signalling, transcriptional regulation, interactions with FMR1 and, more broadly, MAPK signalling29,33–23 

37. Moreover, the relationship of ASD-implicated genes with gene co-expression networks further points 24 

towards the importance of WNT signalling and synaptic functioning38, early transcriptional regulation and 25 

synaptic development39, cell adhesion and chromatin remodelling40, and midfetal deep (layer 5 or 6) cortical 26 

projection neurons41. Many of these approaches use weighted gene co-expression network analysis (WGCNA), 27 

which is a method to identify highly interconnected groups (known as modules) of genes from gene expression 28 

data. The genes in these expression modules offer insight into the biological processes underlying ASDs and 29 

the extent to which these processes may be inter-related (reviewed elsewhere in detail in relation to 30 

neurodevelopmental disorders42). In addition to ASD-implicated genes being used to identify risk modules, 31 

these data can be further leveraged to predict a broad family of ‘associated’ genes that are ‘guilty by association’ 32 

or, more specifically in this context, ‘guilty by co-expression’. Applying machine-learning approaches, 33 

information from 594 ‘ASD-associated’ genes can be modelled to predict a role in ASDs for 2,500 genes 34 

clustered within nine brain-specific functional modules, including synaptic functioning, chromatin remodelling 35 

and MAPK signalling, alongside genes involved in processes including ion transport and cell signalling43.  36 

Emerging complexity of genotype–phenotype architecture. 37 

Estimates of the penetrance and expressivity of well-established risk variants for ASDs vary widely, reflecting 38 

the fact that little clinically relevant information is known about many variants. Both penetrance and expressivity 39 

are highly relevant for a given genetic variant because they allow us to know the frequency at which people 40 

with a given genetic variant show a phenotype on a population level (penetrance), and the severity of its clinical 41 

manifestation in a given individual (expressivity). Penetrance estimates for ASDs vary from 5% to 8% for 42 

mutations in the dystrophin gene (DMD; associated with Duchenne muscular dystrophy) and the neurofibromin 43 

gene (NF1; associated with neurofibromatosis type 1), to approximately 80% for mutations in the synaptic 44 

scaffold gene SHANK3 (associated with Phelan–McDermid syndrome) or the calcium ion channel gene 45 

CACNA1C (associated with Timothy syndrome)1 . In addition, penetrance can be influenced by gender, as 46 

discussed below. An alternative approach to the concept of penetrance has gained increasing traction in recent 47 

years. This approach is applicable to proband–parent trios in a family with a de novo variant: it characterizes an 48 
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individual proband on continuous traits (for example, IQ and social abilities), compares the proband with his or 1 

her parents and estimates how far these traits deviate from what would be expected for the proband given the 2 

family’s context44. This provides an estimate of the neuropsychiatric effect of the genetic variant studied and 3 

gives a clearer understanding of its expression, independent of whether formal criteria are met for a specific 4 

diagnosis such as intellectual disability or an ASD45,46. This strategy is likely to enable a more accurate 5 

investigation of additional modifiers, which may include both genetic and environmental factors. Mechanisms 6 

of action for genetic modifiers include various types of compound heterozygosity, in which two different loss-7 

of-function variants occur at the same locus47,48; the influence of gender (females have a higher resilience to 8 

ASD-linked mutational load49); oligogenic heterozygosity, in which mutations in more than one risk gene occur 9 

in the same individual (this occurs at a higher rate in autistic individuals than in unaffected individuals)50; and 10 

possibly the cumulative effect of common variants on the remainder of the genome. In addition to variable 11 

penetrance, it is also increasingly clear that many established ASD risk variants are associated with other 12 

phenotypes, including intellectual disability, epilepsy, schizophrenia and attention deficit hyperactivity disorder 13 

(ADHD), as well as various somatic phenotypes, even within the same individual. Aetiological heterogeneity, 14 

variable penetrance and a broad phenotypic pleiotropy are thus now recognized as pervasive characteristics of 15 

ASD genetics. These phenomena affect our ability to interpret and reliably use genetic findings in clinical 16 

practice51 as well as the way we conceptualize ASDs themselves.  17 

Genetic knowledge in clinical practice 18 

ASDs as part of broader medical (genetic) conditions.  19 

Early in the 1990s, Gillberg proposed that additional somatic conditions were identified in many individuals with 20 

autism52. Since then, numerous studies have shown increased rates of a range of somatic phenotypes in 21 

individuals with an ASD, including gastrointestinal53, immunological54 and sleep55 abnormalities. Findings 22 

from genetic studies confirm these early clinical observations (TABLES 1,2). For example, in addition to an 23 

ASD, the 1q21.1 duplication can also lead, amongst others, to intellectual disability, epilepsy and 24 

schizophrenia56,57,133. Phenotypic pleiotropy is not restricted to CNVs57,58, but is also associated with many 25 

SNVs that lead to ASDs. For instance, in addition to increasing the risk for an ASD59, SNVs in SCN2A are 26 

associated with higher rates of intellectual disability60, schizophrenia61, epilepsy62 and episodic ataxia62. 27 

Importantly, pleiotropy may extend beyond CNS-related phenotypes. For example, the 3q29 deletion is also 28 

associated with increased rates of gastrointestinal problems and heart defects63. Although it will be challenging, 29 

identifying the full range of phenotypes that are affected by a genetic variant will be crucial because it presents 30 

a valuable opportunity to enhance the clinical management of coexisting conditions for individuals with an ASD. 31 

Potential clinical interventions relate to specific body systems (BOX 1). First, genetics can lead to active 32 

surveillance and early intervention for conditions before they develop in individuals who are at risk because of 33 

a known risk association with a genetic abnormality. Second, the knowledge of the genetic cause may indicate 34 

the involvement of a specific biological mechanism. In some cases, this can enable targeted pharmacological 35 

interventions with already available compounds. In other cases, it can guide the choice of medication based on 36 

known somatic comorbidities, either those currently present or those for which people are at risk. Finally, as 37 

genetic disorders may be associated with specific cognitive and behavioural profiles64, genetic information can 38 

direct the avenues of behavioural treatment. A recent study of CMA results of 1,780 subjects over a 3-year 39 

period showed that 55% of 187 genetic findings prompted changes in clinical management. The vast majority 40 

of those management decisions involved referral to additional specialty services65. Risk variants for ASDs may 41 

also exert pleiotropic effects on the risk of other psychiatric disorders66 and on cognitive ability in the general 42 

population67. Substantial challenges remain, especially in the context of VUS and incidental findings, but 43 

genetic information can have a direct immediate impact in current clinical management and can afford clinical 44 

practitioners the opportunity to improve the health, quality of life and lifespan of some people with an ASD; this 45 

is especially important in the context of recent studies showing premature mortality in individuals with an ASD, 46 

in part due to coexisting conditions68,69. These findings highlight how, in many circumstances, an ASD is part 47 

of a broader medical condition. In the clinical context, this perspective would automatically prompt careful 48 
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clinical assessments of other organ systems (for example, gastrointestinal, cardiovascular and endocrine) that 1 

currently receive limited clinical attention70. In this regard, a distinction is often made between ‘syndromic’ 2 

versus ‘non-syndromic’ autism, in which syndromic refers to the presence of somatic symptoms in addition to 3 

autism, mostly in association with a known genetic cause (for example, a TSC1 mutation). However, the 4 

emerging picture of genetic risk variants for ASDs indicates that high rates of diverse somatic symptoms are 5 

the rule rather than the exception for variants reported in ASDs (TABLES 1,2). In addition, it is likely that ASDs 6 

associated with many of the rare genetic variants are currently considered non-syndromic because too few 7 

people with those variants have been observed to enable the recognition of somatic comorbidity patterns. 8 

Instead of the syndromic versus non-syndromic dichotomy, a more valid approach would be to cluster patients 9 

according to whether or not additional phenotypes are observed and whether a genetic contribution or cause 10 

has been identified. These observations of broad medical consequences associated with ASDs are likely to 11 

affect our research strategies, as the observed high rate of psychiatric, cognitive and somatic comorbidity in 12 

ASDs could indicate shared genetic aetiologies between these different phenotypes. Conversely, genetically 13 

defined subgroups within the autism spectrum seem to be more phenotypically homogeneous than the 14 

unstratified ASD population64,71–73. A molecular taxonomy, based on specific genetic variants and their 15 

associated phenotypic profile, may provide a useful new perspective. Similar taxonomies have proved valuable 16 

in clinical neurology, for instance for the classification of the spinocerebellar ataxias and prion diseases74,75. 17 

These concepts may eventually have long-term consequences on the classifications described in the Diagnostic 18 

and Statistical Manual of Mental Disorders (DSM) and the International Classification of Diseases (ICD). 19 

Although these classifications, which are currently based on distinguishable behavioural phenotypes, are very 20 

helpful for standardizing observed phenotypes and facilitating communication among health care professionals, 21 

they lack a direct relationship with putative biological causes76,77.  22 

Gain of knowledge for the family.  23 

For many caregivers, knowing the cause of the ASD in their child is frequently important in itself, regardless of 24 

any potential benefits regarding treatment options78. In keeping with other conditions diagnosed in childhood, 25 

many parents question whether they have caused their child’s ASD through their activities or the environment. 26 

In a study of 50 parents receiving genetic test results, almost two thirds reported that the result had been 27 

helpful for the child and family79. Such knowledge prevents extended searches for answers that may be 28 

unproductive, expensive and disruptive of the treatment relationship. In particular, for patients with de novo 29 

CNVs, the exposed attributable risk (essentially a measure of the causality of the variant) has been estimated 30 

to be greater than 80%80. In addition, finding a specific genetic cause of an ASD in a family can give them an 31 

opportunity to connect with other families with that same genetic profile, providing a strong source of 32 

understanding, support and networking.  33 

Genetic counselling. 34 

Many families of children with an ASD are actively making reproductive decisions regarding future pregnancies 35 

or have questions about the development of a sibling (these decisions should be seen in the context of variable 36 

views about genetic testing for ASDs (BOX 2)). The background rate of ASDs within the general population is 37 

approximately 1%. In the absence of specific genetic test results, only general recurrence rate (also known as 38 

recurrence risk) estimates can be made; the recurrence rate with one previously affected sibling is around 10–39 

15%81. If there are two affected siblings in the family, the estimated rates predicted by a theoretical model are 40 

around 50% and 12% in subsequent newborn boys and girls, respectively3 . The recurrence rate varies as a 41 

function of the gender of the previously affected sibling, with higher recurrence rates in the case of a female 42 

affected sibling 82. This difference in recurrence rate has been attributed to the Carter effect; that is, a higher 43 

quantitative burden of genetic susceptibility in females versus males (females need to have more ASD-44 

associated variants to be affected than do males) predicts a higher likelihood of an ASD in the relatives of a 45 

female affected proband compared with relatives of a male affected proband83,84. However, in a recent large 46 

prospective study, striking differences were found in development between males and females generally85, 47 

suggesting that these differences observed in males and females with an ASD reflect typically occurring sex 48 
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differences seen in children without an ASD. Access to genetic counselling may be particularly relevant to 1 

unaffected female family members given the overall lower penetrance of risk variants in females49. As ASDs 2 

are more common in males, the same genetic factors do not always result in ASDs in females (the ‘female 3 

protective effect’). Findings from genetic assessment can provide more specific genetic counselling information 4 

in a substantial minority of cases (FIG. 1). The information for parents of children with an inherited variant may 5 

have immediate relevance, as it may allow the clinician to be more precise about recurrence rate. For example, 6 

when an inherited 22q11.2 duplication is identified in a proband with an ASD, the chance that the next-born 7 

child from the same parents will also carry a 22q11.2 duplication is 50%. In addition, the determination of family 8 

members who carry the same variant may also affect family planning decisions. Although counselling in the 9 

context of a known inherited variant leads to quantifiable risk, accurately predicting recurrence rates in the 10 

context of an identified de novo variant is more challenging when the penetrance of the identified variant is low 11 

or unknown, when genetic background plays an important modifying part or when a seemingly de novo variant 12 

results from parental germline mosaicism22. Questions about recurrence and inheritance delineate a rapidly 13 

expanding area in which findings from genetics research are clearly affecting clinical practice. Large-scale 14 

longitudinal studies involving clinical genetics services are needed to provide additional information that can be 15 

used in counselling.  16 

Genetic-testing recommendations and current implementation in clinical practice.  17 

At present, the multiple guidelines proposing genetic testing of all individuals with an ASD14,18 are not 18 

implemented consistently in clinical practice, even within well-funded health care systems. Although in clinical 19 

settings genetic testing of children with an ASD has increased in the past 15 years86,87 , a recent study in 20 

Texas, USA, found that more than 80% of parents of children with an ASD reported never having received any 21 

information regarding the possibilities of genetic testing in their child88. A common policy for services is to 22 

select people with an ASD for testing only when there is also somatic comorbidity, intellectual disability and/or 23 

dysmorphism — the strategy that had been adopted for karyotyping previously. Such an approach is likely to 24 

lead to the identification of only a small proportion of the clinically useful variants related to ASDs. The 25 

consequences are twofold: first, potentially relevant information will not be identified for some children and 26 

their families; second, the essential worldwide accumulation of genotype–phenotype information is 27 

slowed down.  28 

There may be several reasons why clinical implementation is lagging despite strong recommendations for 29 

genetic testing in individuals with an ASD, even in countries with substantial clinical genetic testing capacity. 30 

First, the medical and specialty training of many clinicians includes only sparse exposure to genetics, often 31 

lagging behind cutting-edge research. Consequently, health care professionals may consider that they do not 32 

have the knowledge needed to explain genetic results. If this is the case, in a disorder with a complex inheritance 33 

pattern such as an ASD, clinicians may be reluctant to propose genetic testing. Second, clinicians may feel that 34 

the currently available clinical rationale and justification for genetic testing in individuals with an ASD is 35 

insufficient. This notion underscores the need to disseminate to clinicians the data showing that genetic results 36 

can already improve recurrence rate quantification and reproductive decision-making. More translational 37 

research is needed to elucidate how these genetic results can improve quality of life, therapeutic options and 38 

clinical management for people with an ASD. Third, it is likely that genetic testing is often unavailable owing to 39 

a scarcity of resources, especially in low-income countries89. Even in developed countries, there are financial 40 

barriers to testing for some people with an ASD. In the United States, testing is often, but not universally, 41 

covered by American third-party payers. Insurance status (private, Medicaid or Medicare, or none) affects the 42 

likelihood of utilization of genetic services90. In Canada and Europe, these tests are generally undertaken as 43 

part of universally available health care, free at the point of delivery, although national guidance may not support 44 

testing of all children (for example, in the United Kingdom91).  45 

Bridging the gap between research and the clinic  46 

The potential of new therapeutic strategies.  47 
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Arguably, the most important goal of genetic studies in ASDs may be to provide much needed clues about the 1 

underlying neurobiology of these disorders. With increasing insight into the genetic aetiologies of ASDs, the 2 

potential clinical use of genetic stratifiers may come within reach92. The fundamental premise is that stratifying 3 

individuals with an ASD into subgroups based on shared genetic aetiology, reflecting a shared underlying 4 

biological mechanism, may display clinically relevant differences between the subgroups with regard to 5 

treatment response and risk of side effects; this is the concept of ‘personalized’ or ‘precision’ medicine75. Over 6 

the past few years, an increasing number of studies have confirmed the potential clinical value of this approach. 7 

These early findings require replication, but they highlight, among other insights, the fact that specific genetic 8 

variants in people with an ASD can moderate the clinical response of the patients to treatment with 9 

methylphenidate93, or their risk of weight gain with risperidone94–96. At present, two central characteristics 10 

of the available pharmacological strategies limit their efficacy in people with an ASD. First, although medications 11 

are successfully used to treat some of the frequently coexisting conditions (for example, hyperactivity anxiety 12 

and sleep difficulties), none of the available medications directly targets the core domains of ASDs (note that 13 

some in the autism community would not want this: see BOX 2 for relevant community perspectives). Second, 14 

none of the currently available medications was developed with a clear a priori defined ASD-linked molecular 15 

target97. Converging biological insights derived from genetic studies are beginning to reveal potential targets 16 

for the development of pharmacological compounds12,98. These novel insights give a strong impetus to the 17 

development of medication strategies for ASDs, which historically have always been under-represented in 18 

pharmacological trials in comparison with other mental disorders99. Currently, more than 30 compounds are 19 

being studied in clinical trials for their treatment potential in ASDs; this number excludes existing compounds 20 

that are frequently used in the treatment of ASDs, such as atypical antipsychotics, selective serotonin reuptake 21 

inhibitors (SSRIs) and stimulants. In fact, in addition to the clear increase in the number of registered medication 22 

trials for ASDs over the past 15 years, the proportion of studies examining the therapeutic effects of novel 23 

compounds on ASDs has dramatically increased from 44% between 2001 and 2003 to 81% in the studies 24 

initiated between January 2013 and December 2015 (FIG. 2). Interestingly, the proportion of studies in which 25 

genetic findings have contributed to the rationale for the novel compound under study (albeit often partly and 26 

not exclusively) has increased over the same time period (from 25% to 59%, respectively; FIG. 2). These studies 27 

often constitute the first step towards the development of new therapeutic avenues that may need additional 28 

refinement, as is exemplified by the recent negative results of clinical trials with agonists targeting metabotropic 29 

glutamate receptor 2 (mGluR2) and mGluR3 for schizophrenia (for example, REF. 100). This is to be expected, 30 

however, given the biological complexity of psychiatric illnesses and does not refute the potential of initiating 31 

genetically informed clinical trials. Two well-established examples of such novel compounds in ASDs — that is, 32 

compounds for which the study rationale is at least partly based on genetic findings — are the mechanistic 33 

target of rapamycin (mTOR) inhibitors (for which the biological rationale is derived from studies of TSC1, TSC2, 34 

PTEN and NF1) and mGluR antagonists (on the basis of studies of FMR1), which have been extensively 35 

discussed elsewhere12. Other examples of novel compounds for which selection for clinical trials is at least 36 

partly informed by genetic studies include glutathione, memantine and riluzole. Glutathione is a peptide that 37 

plays a part in intracellular detoxification and maintenance of redox balance. Its involvement in ASDs arises 38 

from studies linking glutathione metabolism genes and this disorder101. Memantine is an NMDA receptor 39 

antagonist, whereas riluzole is thought to inhibit glutamate release and enhance its reuptake pre-synaptically. 40 

The target of both memantine and riluzole is thus glutamatergic neurotransmission, which has been deemed 41 

relevant for ASDs through the association of variants in several glutamate receptor and glutamate transporter 42 

genes, as well as through the evidence of glutamatergic deficits in genetic disorders related to ASDs (including 43 

fragile X syndrome, tuberous sclerosis complex and the 22q13 deletion that causes hemizygous loss of 44 

SHANK3 as a form of Phelan–McDermid syndrome)102.  45 

Education of health care professionals about genetics.  46 

The number of people for whom testing is performed is steadily increasing. Expert and non-expert health 47 

professionals are increasingly confronted with inheritance questions from patients and their families103. 48 

Clinicians are being called upon more often to have informed discussions with individuals and families about 49 
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genetic results. If genetic testing were available for all individuals with an ASD, the number of potentially 1 

important genetic findings would outstrip the capacity for reliable and valid interpretation and counselling. In 2 

the coming years, expanding the role and size of the genetic counselling workforce to accommodate testing 3 

across health services will be essential, but even this will not be sufficient to fill the demand104, as frontline 4 

professionals in mental health care will also need to acquire the relevant genetic knowledge and skills. Several 5 

educational strategies can be used in parallel in order to achieve a better baseline knowledge about ASD 6 

genetics among providers of mental health care. First, clinical genetic reasoning should be added to basic 7 

genetic principles in medical and specialist training. Second, teaching modules with this focus should be made 8 

available for continuing medical education programmes for specialist and family clinicians. The likely result of 9 

this will be a better availability of advice to families, accepting that novel identified variants and complex cases 10 

will remain within the domain of clinical geneticists.  11 

Collaborative genotype–phenotype databases.  12 

CMA and sequencing can identify a high number of genetic variants in any given individual, thereby spawning 13 

an entirely novel challenge: how to distinguish the variants of no significance from those that are potentially 14 

relevant to the phenotype under examination. Given the rarity of some genetic variants and the complexity of 15 

some of the associated phenotypes, this obstacle can be overcome only if such observations are collected 16 

collaboratively, on a global scale, and preferably including the possibility of longitudinal data collection. An 17 

important aspect of such global initiatives would be the inclusion of developing countries in these programmes, 18 

at the level of both data collection and knowledge accessibility. Some recent initiatives are listed in Further 19 

information at the end of this article. However, large, longitudinal studies tend to be unpopular with funding 20 

agencies owing to the time taken to gather definitive results. An increasing amount of detailed patient-related 21 

data is being collected over time in electronic health records (EHRs), and integrating these data with genomic 22 

data is central to personalized and precision medicine initiatives105,106. With large enough samples, this will 23 

allow the identification of genetic contributions to specific phenotypes and the delineation of clinical syndromes 24 

at a low cost. However, ASDs are often not well captured in EHRs, with confirmation rates between 33%107 25 

and 43%108. Using broader criteria, validation rates increased to 74% and 81%, respectively. Large consortia 26 

of ASD clinics and centres will be required to generate data sets based on an agreed set of diagnostic 27 

criteria109. Considering the lifetime costs associated with ASDs110, one could ask whether governments and 28 

funders can afford not to do more to understand ASDs and develop effective treatments to reduce comorbidity 29 

and early mortality. To date, there have been limited systematic collaborative longitudinal efforts to capture 30 

detailed information from clinical ASD genetic testing. Considering the annual worldwide number of CMAs 31 

undertaken clinically in individuals with an ASD, this is a missed opportunity, as such efforts would probably 32 

lead to a much better understanding of known and new causal variants. Although databases such as DECIPHER 33 

and ClinGen111 are of great utility, autism-specific initiatives are now required to provide rich information from 34 

clinical services about very large numbers of people, at minimal cost to research funding agencies. Initiatives 35 

relating to specific CNVs have shown the utility of this method112,113, but a broader approach, possibly funded 36 

per person reported, is needed to collect detailed genetic and phenotypic information about a wide range of 37 

rare variants, while also contributing to gene discovery. 38 

Conclusions  39 

The recent progress in our knowledge derived from genetic studies of ASDs is such that, at present, the 40 

question is not so much when these findings will start to influence our clinical practice but rather how we can 41 

optimally use the knowledge we already have and what is required to use its full clinical potential in the future. 42 

TABLE 3 provides an overview of strategies discussed in this Review that are likely to help bridge the gap 43 

between current research insights and clinical needs in the realm of autism genetics. Already, in our daily 44 

practice, genetic knowledge can have a relevant clinical impact; in up to one-third of individuals with an ASD, a 45 

genetic aetiology can be identified, which in some instances leads to the identification of treatable somatic 46 

comorbidities. In addition, knowing the causative genetic variant or variants can provide decisive information 47 

for genetic counselling. Guidelines of major European and American health associations concur on the 48 
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importance of genetic testing in ASDs. However, despite the steady increase of the number of genetic tests 1 

performed, no policy regarding genetic testing in ASDs is uniformly implemented across countries. In addition 2 

to variability in financial resources, it is likely that clinicians’ reluctance to consider genetic testing is also a 3 

relevant variable. The only way to overcome the latter would be to invest in the education of clinicians working 4 

in the ASD field regarding their relevant knowledge of genetic principles. The identification of risk genes for 5 

ASDs has also led, for the first time, to rapidly emerging insights into the neurobiology underlying autism 6 

pathophysiology. The impact on pharmaceutical research can no longer be considered speculative, given the 7 

evident increase in clinical trials using novel compounds and/or using genetic information for treatment 8 

stratification. Finally, evolving genetic insights are bound to gradually alter the scientific and clinical 9 

conceptualization of ASDs from exclusively behaviourally defined disorders towards broader medical conditions 10 

with the possibility — or even likelihood — of comorbidity of other CNS-related and CNS-unrelated somatic 11 

phenotypes. Accordingly, a careful broad assessment of such phenotypes may be more useful than the 12 

dichotomy between syndromic and non-syndromic ASDs. Clinicians need to shift from a narrow focus on the 13 

behavioural deficits that are characteristic of ASDs to a broader view that encompasses not only psychiatric 14 

but also somatic comorbidity. From a classification standpoint, it may be necessary to evolve towards a 15 

taxonomy using genetic aetiology as the ordering principle. The high-resolution methods that are currently 16 

available to investigate the human genome appear to have outpaced our ability to adequately handle the results 17 

in a clinical setting. To resolve this, we urgently require longitudinal research protocols that can be implemented 18 

in multiple large clinical academic sites simultaneously, with appropriate consent for data sharing. An integrated 19 

approach to autism genetics and phenotyping, and improved clinical understanding and management is needed, 20 

requiring unprecedented international cooperation between autism researchers, the autism community and 21 

research funders. 22 

Box#1: How can genetic information lead to actionable clinical interventions? 23 

Opportunities for active surveillance of ASD comorbidities  24 

Genetic findings could have an impact on the clinical management of individuals with an autism spectrum 25 

disorder (ASD). Arguably, the first area of impact of recent genetic findings is the identification of treatable 26 

somatic comorbidities. The examples discussed here (and see the figure) represent a non-exhaustive list of 27 

comorbidities observed in individuals harbouring ASD-related genetic variants. Screening of individuals with an 28 

ASD can lead to the identification of a causal variant associated with additional phenotypes, for example, the 29 

22q11.2 deletion114. This should prompt referral to the relevant specialties to screen for additional medical 30 

comorbidities, such as cardiovascular or velopharyngeal abnormalities, immune deficiency and calcium 31 

metabolism problems in individuals with the 22q11.2 deletion115. In addition, active surveillance of 32 

neurodevelopment is warranted, particularly regarding early signs of psychotic disorders, as 25% of individuals 33 

with 22q11.2 deletion syndrome will eventually develop a psychotic disorder in late adolescence or early 34 

adulthood115. Similarly, the detection of a paternal 15q11–q13 deletion (Prader–Willi syndrome) warrants 35 

endocrine evaluation along with neuropsychiatric screening116. Such implications are not limited to CNVs. 36 

For instance, a deleterious PTEN variant in someone with an ASD and macrocephaly has implications for cancer 37 

screening for the individual and their family117, whereas a mutation in the gene encoding activity-dependent 38 

neuroprotector homeobox protein (ADNP)118 in an individual with an ASD warrants screening for heart defects, 39 

vision impairment, epilepsy and immune status118.  40 

Genetics can inform choice of pharmacotherapy 41 

Currently, there is a growing list of genetic disorders for which emerging evidence indicates that genetically 42 

based management decisions would potentially affect neuropsychiatric status. For example, a detailed case 43 

report suggests that people with severe aggressive behaviour and deletions of 15q13.3 from breakpoint 4 (BP4) 44 

to BP5, which include cholinergic receptor nicotinic α7 (CHRNA7), appear to benefit significantly from 45 

galantamine treatment119. Galantamine is both an allosteric modulator of the CHRNα7 protein and an 46 

acetylcholinesterase inhibitor. Additional examples include dietary treatment for phenylketonuria and 47 
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S-adenosyl methionine treatment for Lesch–Nyhan syndrome120,121. Genetic information can also be relevant 1 

with regard to potential drug side effects. For instance, a person with an ASD and comorbid psychotic disorder 2 

and mood symptoms may require mood-stabilizing and antipsychotic medication. A 17q12 deletion would not 3 

only explain the psychiatric diagnosis in this individual (it has previously been associated with ASDs 4 

and schizophrenia122), but would also lead to clinically actionable recommendations, as this copy number 5 

variant (CNV) is also associated with renal cysts and subsequent renal failure, and maturity-onset diabetes 6 

of the young type 5 (MODY5)122. Given the nephrotoxicity of lithium and the association of olanzapine with 7 

weight gain and metabolic syndrome, the genetic results would highlight the need to choose a different 8 

medication regimen for this patient.  9 

Choosing the right behavioural interventions 10 

 Genetic findings in ASDs can also help to direct behavioural intervention strategies. For instance, people with 11 

SHANK3 deletions tend to have more advanced receptive communication skills than expressive (verbal) 12 

language ability123. This implies that they may benefit from assistive communication strategies that may not 13 

have been an intervention focus had the genetic cause of their ASD not been known. 14 

<INSERT FIGURE - Somatic pleiotropy of ASD-related genetic variants - ABOUT HERE> 15 

Box#2 - Insight into perspectives in the autism community 16 

Advances in autism spectrum disorder (ASD) genetics and the translation of those advances into clinical 17 

settings should be seen in the context of community views regarding the opportunities and challenges involved. 18 

This is particularly relevant because some parents, individuals with an ASD and professionals consider the 19 

autism spectrum to be a ‘difference’ between people rather than a disorder. In that context, some people would 20 

prefer that the term risk is not used when discussing genetic factors and recurrence within families, as risk 21 

implies a negative connotation. Similarly, some people are concerned that genetic testing may lead to 22 

terminations of pregnancy or lead to interventions that are specifically designed to change the core features of 23 

ASDs. There may be less concern about the utility of genetic findings in the treatment of health or mental health 24 

conditions. These views are in keeping with the findings from UK research priority-setting exercises (see 25 

Further information), which suggest that many within the community would like more focus on research about 26 

diagnosis, intervention and services124–126, rather than biological understanding. The emphasis may therefore 27 

be too heavily on parent reproductive decisions, whereas efforts to examine the utility of genetic information 28 

to improve the health and quality of life of people with an ASD are receiving little discussion. It is important to 29 

understand and respect the perspectives from all those involved in the debate about genetics research and the 30 

resulting translational opportunities. This process has already started: some initiatives have focused on 31 

identifying the differing views of parents about clinical genetic testing. A US-based survey among 397 parents 32 

of children with an ASD demonstrated that 86% of parents agreed or somewhat agreed with the statement “I 33 

am interested in finding out if genetic factors are a cause of my child’s ASD” (REF. 90). A UK-based survey of 34 

380 parents regarding theoretical opinions about clinical genetic testing found that most parents favoured the 35 

availability of testing that might lead to knowledge about the cause of their child’s ASD127. Some parents were 36 

keen on testing for the following reasons, as shown by these quotes: “To find out if there was a high risk of 37 

ASD for future children” and “To prepare ourselves for what difficulties may lay ahead, and to seek early 38 

intervention”. Importantly, some British parents disagreed with testing or would not have testing, stating that it 39 

would not alter their reproductive decisions127. Some parental responses were: “The outcome [of genetic 40 

testing] wouldn’t change my wish to have another child. My daughter who has ASD is wonderful” and “Autistic 41 

kids may take quite a bit of extra hard work, but they are also amazing in the way they see the world around 42 

them, the world would be boring if we all got perfection.” The British survey also found that improved parental 43 

education of ASD genetics is important. Half of parents in the UK study said that having a child with an ASD 44 

had affected their reproductive decision-making, but there was evidence that they overestimated the chance of 45 

recurrence, as three-quarters of parents estimated that their risk of having another child with an ASD was 46 

above 10–15%, and one-third of parents considered that the risk was greater than 50%. This is in line with the 47 
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US study showing that the median recurrence rate estimate by parents of children with an ASD was 50%90. In 1 

addition, there may be concerns about ambiguous interpretation of results and psychological burdens related 2 

to genetic testing. To families, it may not be clear to what extent genetic testing can improve the health outcome 3 

of individuals, as evinced by statements from British parents, such as “The test may not give a definite answer” 4 

or “How accurate would the information be?” These findings are in keeping with clinical experience, which 5 

shows that some parents turn down the opportunity for CMA testing despite the knowledge that this may lead 6 

to new information about recurrence rates for any future pregnancies. Further quantitative and qualitative 7 

research is needed to give insights into views about clinical genetic testing from the parents and siblings of 8 

individuals with an ASD, from people on the autism spectrum who have one or more children with an ASD, and 9 

from all adults with an ASD. 10 

Key Definitions  11 

DECIPHER (Database of Genomic Variation and Phenotype in Humans Using Ensembl Resources).  12 

An interactive web-based database that incorporates a suite of tools designed to aid in the interpretation of 13 

genomic variation. 14 

Exposed attributable risk  15 

The difference in the rate of an outcome in an exposed and an unexposed population, expressed as a fraction 16 

of the exposed population. In genetics, the exposure is the genotype. 17 

Gene set enrichment approaches  18 

Analytical strategies to investigate whether there is enrichment in association signals attributed to a 19 

predetermined group of genes.  20 

Incidental findings 21 

Genetic discoveries that have an effect on the individuals in which they occur but are not directly relatable to 22 

the disease under investigation. An example would be the discovery of a genetic alteration with relevance to 23 

familial cancer while interrogating the genome for mutations associated with an autism spectrum disorder. 24 

Machine-learning approaches 25 

Research strategies in which a predictive model is trained using data. Examples of machine-learning 26 

approaches include neural nets, support vector machines and decision trees.  27 

Penetrance 28 

The proportion of individuals with a particular genetic variant who display a particular phenotype. Expressivity 29 

The extent to which an individual exhibits a given trait or phenotype 30 

Pleiotropy 31 

The association of two or more independent phenotypes with one gene, or variation in that one gene 32 

Private mutations  33 

Rare or unique mutations in the DNA sequence that are restricted to an individual, family or population.  34 

Somatic phenotypes  35 

Variations in or symptoms of the body (soma) or bodily functions. Somatic phenotypes can be distinguished 36 

from psychiatric phenotypes, which refer to variation in or symptoms of behaviour, cognition, perception and 37 

feelings.  38 

Taxonomy 39 
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Classification based on a priori defined shared characteristics. The current classification of psychiatric disorders 1 

(as used in the Diagnostic and Statistical Manual of Mental Disorders (DSM) and International Classification of 2 

Diseases (ICD)) is based mainly on observed symptoms and disease course.  3 

Truncating mutations 4 

Variations in the genetic code that alter the transcripts in such a way that the resultant proteins are shortened 5 

and incomplete, or not formed.  6 

Variants of unknown significance (VUS) 7 

Genetic variants for which a phenotypic effect is unknown. 8 

Weighted gene co-expression network analysis (WGCNA) 9 

An analytical approach that clusters genes into modules according to the strength of the correlations between 10 

their expression values.  11 

Figure Legends 12 

Figure 1- The potential contribution of genetic assessment.  13 

On the left side of the figure are the recurrence rate estimates for offspring in three different scenarios in the 14 

absence of any specific genetic information. On the right side of the figure are the same families but with 15 

genetic findings. Estimates of recurrence rates of ASDs are evolving with the collection of samples from large 16 

numbers of families (simplex, multiplex and multigenerational), and figures given are based on the currently 17 

available knowledge. a | A mother is affected with an autism spectrum disorder (ASD) and intellectual disability 18 

(ID). Without genetic testing, the risk of an ASD in the offspring can only be roughly estimated, as at present, 19 

few data are available to provide evidence-based estimates. Offspring risk is likely to be higher than the 20 

population risk of ~1% and is probably close to the sibling risk estimate (10–15%). After genetic assessment, 21 

a highly penetrant variant is identified in the mother. Note that for many genetic variants, accurate penetrance 22 

rates are still evolving with ongoing studies. For instance, with genetic knowledge in this scenario, the 23 

recurrence rate in male offspring may vary between 50% (assuming 100% penetrance) and, for example, 4% 24 

(in the case of a genetic variant with 8% penetrance). b | Unaffected parents have a daughter with an ASD. For 25 

an individual with a full sibling with an ASD, the recurrence rate (sibling risk) is estimated to be 10–15%. The 26 

risk for female siblings may be lower than for male siblings, although this is not a consistent finding82,128. 27 

After genetic assessment, a de novo variant is identified in the affected child, and the recurrence rate for the 28 

siblings can now be estimated as the population risk of ~1%. To be more precise, the recurrence rate may be 29 

somewhat higher than ~1% owing to the impact of residual risk, although probably not by much. This scenario 30 

assumes that the de novo variant occurred in a parental germ cell or the resulting zygote; if the variant occurred 31 

earlier during parental germline development it may still be present in mosaic form in the germ line of one of 32 

the parents, which will increase the recurrence risk for future offspring depending on the proportion of germ 33 

cells harbouring the variant. c | Unaffected parents have a son with an ASD. The recurrence rate for siblings is 34 

estimated to equate to standard sibling risk (10–15%). After genetic assessment, an inherited highly penetrant 35 

variant is identified in this child, transmitted by his unaffected carrier mother (this variant exhibits incomplete 36 

penetrance in females and 100% penetrance in males). The recurrence estimates are therefore 50% in male 37 

offspring (50%×the 100% penetrance in male offspring) and ~10–50% in female offspring (50%×the<100% 38 

penetrance rate in female offspring). Note that these examples are necessarily somewhat simplified and 39 

therefore do not entirely do justice to the complexity of the genetic counselling. For example, the phenomenon 40 

of assortative mating may further influence the recurrence rate (such as in the scenario depicted in part a). In 41 

addition, the female protective effect and parental age are reported to be factors of influence, but accurate 42 

estimates of their impact on recurrence rates are not well established and are likely to vary as a function of the 43 

specific causative variant involved. For instance, the penetrance of an ASD in carriers of SHANK3 deletions 44 

appears to be equal in males and females. 45 
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Figure 2 - Medication trials for people with an autism spectrum disorder. 1 

This graph summarizes numbers and types of medication trial for people with an autism spectrum disorder 2 

(ASD) during the period 2001–2015; data are from ClinicalTrials.gov. In red are the trials examining existing 3 

drugs that are typically used in the treatment of psychiatric disorders, including selective serotonin reuptake 4 

inhibitors (SSRIs), stimulants and antipsychotics. In blue are the novel trials involving compounds or existing 5 

drugs that are not typically used in psychiatric disorders, such as oxytocin and antibiotics. Within each bar, the 6 

numerator provides the number of trials of novel compounds for which genetic studies have contributed to the 7 

rationale for the choice of the compound under study; the denominator reflects the total number of trials of 8 

novel compounds in that time period. The x axis depicts 3-year time periods, starting in January 2001. For 9 

additional information on the individual trials, including ClinicalTrials.gov identifiers, see Supplementary 10 

information S1 (table). 11 

Table Legends 12 

Table 1 - Recurrent structural abnormalities consistently reported in association with ASDs.  13 

ADHD, attention deficit hyperactivity disorder; ASD, autism spectrum disorder; Del, deletion; Dup, duplication; 14 

ID, intellectual disability; OCD, obsessive–compulsive disorder. *Estimates of penetrance (the rate of ASD in 15 

carriers of each variant) are preliminary and may be influenced by ascertainment. In particular, the individuals 16 

undergoing genetic testing are likely to be enriched for people with an ASD, which will inflate penetrance 17 

estimates. Robust estimation of penetrance will require an assessment of ASD and genetic-variant frequencies 18 

in wider, unselected populations. ‡ The reported phenotypic spectrum for associated neuropsychiatric and 19 

somatic phenotypes is likely to be incomplete owing to novelty of the association and/or a paucity of broad 20 

clinical observations in people with a deleterious genetic variant (that is, mutation carriers). 21 

Table 2 - Genes associated with ASDs by sequencing studies 22 

Genes with strong evidence for ASD association (from REF. 1), as indicated by single-nucleotide variants 23 

(SNVs) identified by sequencing studies. The table provides an overview of the estimated penetrance for ASDs 24 

of each gene affected by mutation, as well as other associated neuropsychiatric phenotypes (neuropsychiatric 25 

pleiotropy) and associated somatic abnormalities (somatic pleiotropy). ADHD, attention deficit hyperactivity 26 

disorder; ADNP, activity-dependent neuroprotector homeobox protein; ANK2, ankyrin 2; ARID1B, AT-rich 27 

interactive domain-containing 1B; ASD, autism spectrum disorder; CHD8, chromodomain helicase DNA-28 

binding 8; DYRK1A, dual specificity tyrosine-phosphorylation-regulated kinase 1A; GRIN2B, glutamate 29 

ionotropic receptor NMDA type subunit 2B; ID, intellectual disability; KATNAL2, katanin p60 subunit A-like 2; 30 

POGZ, pogo transposable element with ZNF domain; SCN2A, sodium voltage-gated channel α-subunit 2; 31 

SYNGAP1, synaptic RAS GTPase-activating 1; TBR1, T-box brain 1. *Preliminary assessment may be influenced 32 

by ascertainment. In particular, the individuals undergoing genetic testing are likely to be enriched for people 33 

with an ASD, which will inflate the penetrance estimates. Robust estimations of penetrance will require an 34 

assessment of ASDs and genetic-variant frequencies in wider, unselected populations. ‡ The reported 35 

phenotypic spectrum is likely to be incomplete owing to the novelty of the association and/or a paucity of broad 36 

clinical observations in people with a deleterious genetic variant (that is, mutation carriers). 37 

Table 3 - Strategies to bridge the gap between research knowledge and clinical need 38 

ASD, autism spectrum disorder; CNS, central nervous system 39 

 40 

 41 

  42 
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