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Abstract. We obtain optimal lower and upper bounds for the (additive) integrality
gaps of integer knapsack problems. In a randomised setting, we show that the inte-
grality gap of a “typical” knapsack problem is drastically smaller than the integrality
gap that occurs in a worst case scenario.

1 Introduction

Given an integer m× n matrix A, integer vector b ∈ Zm and a cost vector c ∈ Qn, consider
the linear integer programming problem

min{c · x : Ax = b,x ∈ Zn≥0} . (1)

The linear programming relaxation to (1) is obtained by dropping the integrality constraint

min{c · x : Ax = b,x ∈ Rn≥0} . (2)

We will denote by IPc(A, b) and LPc(A, b) the optimal values of (1) and (2), respectively.
While the problem (2) is polynomial time solvable [20], it is well known that (1) is NP-

hard [14]. There are many examples, where relaxation on the integrality constraints are used
to approximate, or even to solve, integer programming problems. Prominent examples can be
found in the areas of cutting plane algorithms, such us Gomory cuts [15], and approximation
algorithms for combinatorial problems. For further details see [3], [8] and [28]. Therefore, a
natural question is to compare the optimal values IPc and LPc with each other.

Suppose that (1) is feasible and bounded. The (additive) integrality gap IGc(A, b) is a
fundamental characteristic of the problem (1), defined as

IGc(A, b) = IPc(A, b)− LPc(A, b) .

The problem of computing bounds for the additive integrality gaps has been studied by
Hoşten and Sturmfels [18], Sullivant [27], Eisenbrand and Shmonin [12] and, more recently,
by Eisenbrand et al [11]. Specifically, given a tuple (A, c) one asks for the upper bounds on
IGc(A, b) as b varies. In this setting, the optimal bound is given by the integer programming
gap Gapc(A), defined by Hoşten and Sturmfels [18] as

Gapc(A) = max
b
IGc(A, b) ,

where b ranges over integer vectors such that (1) is feasible and bounded. Note that,
Gapc(A) = 0 for all c ∈ Zn, if and only if A is totally unimodular [25, Theorem 19.2].
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Hoşten and Sturmfels [18] showed that for fixed n the value of Gapc(A) can be computed
in polynomial time. Eisenbrand and Shmonin [12] extended this result to integer programs
in the canonical form.

Eisenbrand et al [11] studied a closely related problem of testing upper bounds for
IGc(A, b) in context of a generalised integer rounding property. Following [11], the tuple
(A, c) with c ∈ Zn has the additive integrality gap of at most γ if

IPc(A, b) ≤ dLPc(A, b)e+ γ

for each b for which the linear programming relaxation (2) is feasible.
The classical case γ = 0 corresponds to the integer rounding property and can be tested

in polynomial time [25, Section 22.10]. The integer rounding property, in its turn, implies
solvability of (1) in polynomial time [7]. The computational complexity of the problem
drastically changes already for γ = 1. Eisenbrand et al [11] showed that it is NP-hard to
test whether (A, c) has additive gap of at most γ even if m = γ = 1.

A bound for the additive integrality gap in terms of A and c can be derived from the
results of Cook et al [9] on distances between optimal solutions to integer programs in
canonical form and their linear programming relaxations. Let Â be an integer d× n matrix
and let b̂ and c be rational vectors such that Âx ≤ b̂ has an integer solution and min{c ·x :

Âx ≤ b̂,x ∈ Rn} exists. Note that, in this setting b̂ is not required to be integer. Then
Corollary 2 in [9], applied in the minimisation setting, gives the bound

min{c · x : Âx ≤ b̂,x ∈ Zn} −min{c · x : Âx ≤ b̂,x ∈ Rn}
≤ n∆(A)‖c‖1 ,

(3)

where ∆(A) stands for the maximum sub-determinant of A and ‖c‖1 =
∑n
i=1 |ci| denotes

the l1-norm of c. The estimate (3) strengthened previous results of Blair and Jeroslow [4],

[5]. Given that b̂ does not have to be integer, one can show that the bound (3) is essentially
tight (see Remark 1). However, considering that we study linear integer programming, it is

natural to assume that also b̂ is integer, but then it is not clear whether (3) remains optimal.
By studying linear integer programming problems in standard form we naturally require b
and respectively b̂ to be integer.

This paper will focus on the problem (1) with m = 1, to which we refer to as the integer
knapsack problem. Note that, usually the integer knapsack problem is defined in the literature
as min{c̄ · x : Āx ≤ b,x ∈ Zn≥0}. However, this problem can be brought into standard form

(1), by lifting the polytope by one dimension and defining A = (Ā 1) and c =
(
c̄
0

)
. We will

assume that the entries of A are positive. For the integer knapsack problem the positivity
assumption guarantees that the feasible region of its linear programming relaxation (2) is
bounded (or empty) for all b. Conversely, for m = 1 any linear problem (2) with bounded
feasible region can be written with A satisfying the positivity assumption. Without loss of
generality, we also assume that n ≥ 2 and the entries of A are coprime. That is the following
conditions are assumed to hold:

(i) A = (a1, . . . , an) , n ≥ 2 , ai ∈ Z>0 , i = 1, . . . , n ,
(ii) gcd(a1, . . . , an) = 1 .

(4)

For A ∈ Z1×n we denote by ‖A‖∞ its maximum norm, i.e., ‖A‖∞ = maxi=1,...,n |ai|.
Applying (3) with

Â =

 A
−A
−In

 , b̂ =

 b
−b
0

 ,
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where In is the n× n identity matrix and 0 is the n dimensional zero vector, we obtain the
bound

Gapc(A) ≤ n‖A‖∞‖c‖1 . (5)

How far is the bound (5) from being optimal? Does Gapc(A) admit a natural lower
bound? To answer these questions we will establish a link between the integer programming
gaps, covering radii of simplices and Frobenius numbers. Our first result gives an upper
bound on the integer programming gap that improves (5) with factor 1/n. We also show
that the obtained bound is optimal.

Theorem 1

(i) Let A satisfy (4) and let c ∈ Qn. Then

Gapc(A) ≤ (‖A‖∞ − 1) ‖c‖1 . (6)

(ii) For any positive integer k there exist A with ‖A‖∞ = k satisfying (4) and c ∈ Qn such
that

Gapc(A) = (‖A‖∞ − 1) ‖c‖1 . (7)

We will say that the tuple (A, c) is generic if for any positive b ∈ Z the linear program-
ming relaxation (2) has a unique optimal solution. An optimal lower bound for Gapc(A)
with generic (A, c) can be obtained using recent results [1] on the lattice programming gaps
associated with the group relaxations to (1).

A subset τ of {1, . . . , n} partitions x ∈ Rn as xτ and xτ̄ , where xτ consists of the
entries indexed by τ and xτ̄ the entries indexed by the complimentary set τ̄ = {1, . . . , n}\τ .
Similarly, the matrix A is partitioned as Aτ and Aτ̄ . Assume that (A, c) is generic and (4)
holds. Then, let τ = τ(A, c) denote the unique index of the basic variable for the optimal
solution to the linear relaxation (2) with a positive b ∈ Z. The index τ is well-defined. We
also define l(A, c) = cτ̄ − cτA

−1
τ Aτ̄ . Note that the vector l = l(A, c) is positive for generic

tuples (A, c).
Let ρd denote the covering constant of the standard d-dimensional simplex, defined in

Section 2.

Theorem 2

(i) Let A satisfy (4) and let c ∈ Qn. Suppose that (A, c) is generic. Then for τ = τ(A, c)
and l = l(A, c) we have

Gapc(A) ≥ ρn−1(|Aτ |l1 · · · ln−1)1/(n−1) − ‖l‖1 . (8)

(ii) For any ε > 0, there exists a matrix A, satisfying (4) and c ∈ Qn such that (A, c) is
generic and, in the notation of part (i), we have

Gapc(A) < (ρn−1 + ε)(|Aτ |l1 · · · ln−1)1/(n−1) − ‖l‖1 . (9)

The only known values of ρd are ρ1 = 1 and ρ2 =
√

3 (see [13]). It was proved in [2], that
ρd > (d!)1/d > d/e. For sufficiently large d this bound is not far from being optimal. Indeed,
ρd ≤ (d!)1/d(1 +O(d−1 log d)) (see [10] and [21]).

How large is the integer programming gap of a “typical” knapsack problem? To tackle
this question we will utilize the recent strong results of Strömbergsson [26] (see also Schmidt
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[24] and references therein) on the asymptotic distribution of Frobenius numbers. The main
result of this paper will show that for any ε > 2/n the ratio

Gapc(A)

‖A‖ε∞‖c‖1

is bounded, on average, by a constant that depends only on dimension n. Hence, for fixed
n > 2 and a “typical” integer knapsack problem with large ‖A‖∞, its linear programming
relaxation provides a drastically better approximation to the solution than in the worst case
scenario, determined by the optimal upper bound (6).

For T ≥ 1, let Q(T ) be the set of A ∈ Z1×n that satisfy (4) and

‖A‖∞ ≤ T .

Let N(T ) be the cardinality of Q(T ). For ε ∈ (0, 1) let

Nε(t, T ) = #

{
A ∈ Q(T ) : max

c∈Qn
Gapc(A)

‖A‖ε∞‖c‖1
> t

}
. (10)

In what follows, �n will denote the Vinogradov symbol with the constant depending on
n. That is f �n g if and only if |f | ≤ c|g|, for some positive constant c = c(n). The notation
f �n g means that both f �n g and g �n f hold.

Theorem 3 For n ≥ 3

Nε(t, T )

N(T )
�n t

−α(ε,n) (11)

uniformly over all t > 0 and T ≥ 1. Here

α(ε, n) =
n− 2

(1− ε)n
.

From (11) one can derive an upper bound on the average value of the (normalised) integer
programming gap.

Corollary 4 Let n ≥ 3. For ε > 2/n

1

N(T )

∑
A∈Q(T )

max
c∈Qn

Gapc(A)

‖A‖ε∞‖c‖1
�n 1 . (12)

The last theorem of this paper shows that the bound in Corollary 4 is not far from being
optimal. We include its proof in the Appendix.

Theorem 5 For T large

1

N(T )

∑
A∈Q(T )

max
c∈Qn

Gapc(A)

‖A‖1/(n−1)
∞ ‖c‖1

�n 1 . (13)

Hence, the optimal value of ε in (12) cannot be smaller than 1/(n− 1).

Remark 1.
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(i) An example due to L. Lovász [25, Section 17.2], with ∆(A) = 1, shows that the bound
(3) is best possible in this particular case. We would like to point out that by a small
adaptation of Lovász’s example one can show that this bound is, in all its generality,
best possible up to a constant factor, i.e., the upper bound for the additive integrality
gap is in Θ(∆(A)n). Let δ ∈ Z>0 and 0 < β < 1. We define

A =


1
−1 1

. . .

−1 1
−δ 1

 , b =

β...
β

 and c =

−1
...
−1

 .

By construction ∆(A) = δ. The unique solution of the linear relaxation is xT =
(β, 2β, . . . , (n − 1)β, (δ(n − 1) + 1)β) and the unique optimal integer solution is zT =
(0, . . . , 0). Thus ‖x− z‖∞ = (δ(n− 1) + 1)β ≈ n∆(A).

(ii) In the proof of Theorem 1 (and, subsequently, Theorem 3) we estimate the integrality
gap using a covering argument that guarantees existence of a solution to (1) in an (n−1)-
dimensional simplex of sufficiently small diameter, translated by a solution to (2). Here
the diameter of the simplex is independent of c. The argument allows us, in particular,
to restate Theorem 1 (i) in terms of the infinity norm:

Gapc(A) ≤ 2 (‖A‖∞ − 1) ‖c‖∞ .

Depending on c this gives a stronger bound.

2 Coverings and Frobenius numbers

In what follows, Kd will denote the space of all d-dimensional convex bodies, i.e., closed
bounded convex sets with non-empty interior in the d-dimensional Euclidean space Rd.

By Ld we denote the set of all d-dimensional lattices in Rd. Given a matrix B ∈ Rd×d
with detB 6= 0 and a set S ⊂ Rd let BS = {Bx : x ∈ S} be the image of S under linear map
defined by B. Then we can write Ld = {B Zd : B ∈ Rd×d, detB 6= 0}. For Λ = B Zd ∈ Ld,
det(Λ) = |detB| is called the determinant of the lattice Λ.

Recall that the Minkowski sum X + Y of the sets X,Y ⊂ Rd consists of all points x+ y
with x ∈ X and y ∈ Y . For K ∈ Kd and Λ ∈ Ld the covering radius of K with respect to Λ
is the smallest positive number µ such that any point x ∈ Rd is covered by µK +Λ, that is

µ(K,Λ) = min{µ > 0 : Rd = µK + Λ} .

For further information on covering radii in the context of the geometry of numbers see e.g.
Gruber [16] and Gruber and Lekkerkerker [17].

Let ∆ = {x ∈ Rd≥0 : x1 + · · · + xd ≤ 1} be the standard d-dimensional simplex. The
optimal lower bound in Theorem 2 is expressed using the covering constant ρd = ρd(∆)
defined as

ρd = inf{µ(∆,Λ) : det(Λ) = 1} .

We will be also interested in coverings of Zd by lattice translates of convex bodies. For
this purpose we define

µ(K,Λ;Zd) = min{µ > 0 : Zd ⊂ µK + Λ} .
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Given A = (a1, . . . , an) satisfying (4) the Frobenius number g(A) is least so that every
integer b > g(A) can be represented as b = a1x1 + · · · + anxn with nonnegative integers
x1, . . . , xn.

Kannan [19] found a nice and very useful connection between g(A) and geometry of
numbers. Let us consider the (n− 1)-dimensional simplex

SA =
{
x ∈ Rn−1

≥0 : a1 x1 + · · ·+ an−1 xn−1 ≤ 1
}

and the (n− 1)-dimensional lattice

ΛA =
{
x ∈ Zn−1 : a1 x1 + · · ·+ an−1 xn−1 ≡ 0 mod an

}
.

Kannan [19] established the identities

µ(SA, ΛA) = g(A) + a1 + · · ·+ an

and
µ(SA, ΛA;Zn−1) = g(A) + an. (14)

3 Proof of Theorem 1

The proof of the upper bound in part (i) will be based on two auxiliary lemmas. First we
will need the following property of µ(K,Λ;Zn−1).

Lemma 1. For any y ∈ Zn−1 the set µ(K,Λ;Zn−1)K contains a point of the translated
lattice y + Λ.

Proof. By the definition of µ(K,Λ;Zn−1) we have Zn−1 ⊂ µ(K,Λ;Zn−1)K + Λ. Therefore
for any integer vector y we have (y + Λ) ∩ µ(K,Λ;Zn−1)K 6= ∅. ut

The next lemma gives an upper bound for the integer programming gap in terms of the
Frobenius number associated with vector A.

Lemma 2. For A satisfying (4) and c ∈ Qn

Gapc(A) ≤ (g(A) + ‖A‖∞)‖c‖1
mini ai

. (15)

Proof. Let b be a nonnegative integer. Consider the knapsack polytope

P (A, b) = {x ∈ Rn≥0 : Ax = b} .

Clearly, P (A, b) is a simplex with vertices

(b/a1, 0, . . . , 0), (0, b/a2, . . . , 0), . . . , (0, . . . , 0, b/an)

and

P (A, b) ⊂
[
0,

b

mini ai

]n
. (16)

Notice also that

bSA = πn(P (A, b)) , (17)
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where πn(·) : Rn → Rn−1 is the projection that forgets the last coordinate.
Rearranging the entries ofA, if necessary, we may assume that the optimal value LPc(A, b)

is attained at the vertex v = (0, . . . , 0, b/an) of P (A, b).
If b ≤ µ(SA, ΛA;Zn−1) then (14) and (16) imply that the integrality gap is bounded by

the right hand side of (15).
Suppose now that b > µ(SA, ΛA;Zn−1). Then, in view of (17),

µ(SA, ΛA;Zn−1)SA ⊂ πn(P (A, b)) . (18)

Let Λ(A, b) = {x ∈ Zn : Ax = b} be the set of integer points in the affine hyperplane
Ax = b. There exists y ∈ Zn−1 such that

πn(Λ(A, b)) = y + ΛA . (19)

By Lemma 1, there is a point (z1, . . . , zn−1) ∈ πn(Λ(A, b)) ∩ µ(SA, ΛA;Zn−1)SA. Hence

z =

(
z1, . . . , zn−1,

b

an
− a1z1 + · · ·+ an−1zn−1

an

)
∈ Λ(A, b) ∩ P (A, b) (20)

is a feasible integer point for the knapsack problem (1).
Since (z1, . . . , zn−1) ∈ µ(SA, ΛA;Zn−1)SA, we have

||v − z||∞ ≤
µ(SA, ΛA;Zn−1)

mini ai
≤ g(A) + ‖A‖∞

mini ai
, (21)

where the last inequality follows from (14). Therefore, the integrality gap is bounded by the
right hand side of (15). ut

To complete the proof of part (i) we need the classical upper bound for the Frobenius
number due to Schur (see Brauer [6]):

g(A) ≤ (min
i
ai)‖A‖∞ − (min

i
ai)− ‖A‖∞ . (22)

Combining (15) and (22) we obtain (6).
To prove part (ii), we set A = (k, . . . , k, 1), b = k−1 and c = en, where ei denotes the i-

th unit-vector. Note that A fulfils the conditions (4). The integer programming problem (1)
has precisely one feasible, and therefore optimal, integer point, namely (k − 1) · en. Thus
IPc(A, b) = k − 1. The corresponding linear relaxation (2) has the, in general not unique,
optimal solution k−1

k · e1 with LPc(A, b) = 0. Hence, Gapc(A) ≥ IGc(A, b) = k − 1 =
(‖A‖∞ − 1)‖c‖1.

4 Proof of Theorem 2

We will first establish a connection between Gapc(A) and the lattice programming gap
associated with a certain lattice program.

For a vector w ∈ Qn−1
>0 , a (n − 1)-dimensional lattice Λ ⊂ Zn−1 and r ∈ Zn−1 consider

the lattice program (also referred to as the group problem)

min{w · x : x ≡ r( mod Λ),x ∈ Rn−1
≥0 } . (23)

Here x ≡ r( mod Λ) if and only if x− r is a point of Λ.
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Let m(Λ,w, r) denote the value of the minimum in (23). The lattice programming gap
Gap(Λ,w) of (23) is defined as

Gap(Λ,w) = max
r∈Zn−1

m(Λ,w, r) . (24)

The lattice programming gaps were introduced and studied for sublattices of all dimensions
in Zn−1 by Hoşten and Sturmfels [18].

To proceed with the proof of the part (i), we assume without loss of generality that
τ(A, c) = {n}. Then for l = l(A, c) the lattice programs

min{l · x : x ≡ r ( mod ΛA),x ∈ Rn−1
≥0 } , r ∈ Zn−1 (25)

are the group relaxations to (1).
Indeed, for any positive b ∈ Z and any integer solution z of the equation Ax = b the

lattice program (25) with r = πn(z), is a group relaxation to (1). On the other hand, for
any integer vector r the lattice program (25) is a group relaxation to (1) with b = πn(A)u
for a nonnegative integer vector u from r + ΛA.

In both cases

IGc(A, b) ≥ m(ΛA, l, r)

and, consequently,

Gapc(A) ≥ Gap(ΛA, l) . (26)

Note that for n = 2 we have Gap(ΛA, l) = l1(|Aτ | − 1) and thus (26) implies (8). For n > 2,
the bound (8) immediately follows from (26) and Theorem 1.2(i) in [1].

The proof of the part (ii) will be based on the following lemma.

Lemma 3. Let A satisfy (4), c = (a1, . . . , an−1, 0)t ∈ Qn and l = (a1, . . . , an−1)t ∈ Qn−1
>0 .

Then

Gapc(A) = Gap(ΛA, l) . (27)

Proof. Observe that assumption (i) in (4) implies that the linear programming relaxation (2)
is feasible if and only if b is nonnegative. Recall that Λ(A, b) = {x ∈ Zn : Ax = b} denotes
the set of integer points in the affine hyperplane Ax = b and P (A, b) = {x ∈ R≥0 : Ax = b}
denotes the knapsack polytope. Suppose that for a nonnegative b the knapsack problem (1)
is feasible, with solution y ∈ Zn≥0. Then for r = πn(y) ∈ Zn−1

≥0

πn(Λ(A, b)) = r + ΛA .

As cn = 0, the optimal value of the linear programming relaxation LPc(A, b) = 0. Therefore,
noting that c = (a1, . . . , an−1, 0)t and l = πn(c),

IGc(A, b) = min{l · x : x ∈ r + ΛA ,x ∈ πn(P (A, b))} . (28)

Since

πn(P (A, b)) = bSA = {x ∈ Rn−1
≥0 : l · x ≤ b}

and l · r ≤ Ay = b, the constraint x ∈ πn(P (A, b)) in (28) can be removed. Consequently,
we have

IGc(A, b) = m(ΛA, l, r) .
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Hence, by (24), we obtain

Gapc(A) ≤ Gap(ΛA, l) . (29)

Suppose now that Gap(ΛA, l) = m(ΛA, l, r0). Then

IGc(A,Ar0) = m(Λ, l, r0) .

Together with (29), this implies (27). ut

As was shown in the proof of Theorem 1.1 in [1], for l = (a1, . . . , an−1)t

Gap(ΛA, l) = g(A) + an .

Thus we obtain the following corollary.

Corollary 6 Let A = (a1, . . . , an) satisfy (4) and c = (a1, . . . , an−1, 0)t. Then

Gapc(A) = g(A) + an . (30)

For n = 2, we have

g(A) = a1a2 − a1 − a2 (31)

by a classical result of Sylvester (see e.g. [22]). Hence the part (ii) immediately follows from
Corollary 6. For n > 2, noting that |Aτ | = an, the part (ii) follows from Corollary 6 and
Theorem 1.1 (ii) in [2].

5 Proof of Theorem 3

For convenience, we will work with the quantity

f(A) = g(A) + a1 + · · ·+ an

and the set

R = {A ∈ Z1×n : 0 < a1 ≤ · · · ≤ an} .

By Lemma 2, we have

Nε(t, T ) ≤ n! #

{
A ∈ Q(T ) ∩R :

f(A)

a1aεn
> t

}
. (32)

We may assume t ≥ 10 since otherwise (11) follows from Nε(t, T )/N(T ) ≤ 1. We keep

t′ ∈ [1, t], to be fixed later. Then, setting s(A) = an−1a
1/(n−1)
n and noting (32), we get

Nε(t, T ) ≤ n! #

{
A ∈ Q(T ) ∩R :

f(A)

s(A)
> t′ or

s(A)

a1aεn
>

t

t′

}
≤ n! #

{
A ∈ Q(T ) ∩R :

f(A)

s(A)
> t′

}
+n! #

{
A ∈ Q(T ) ∩R :

an−1

a1a
ε−1/(n−1)
n

>
t

t′

}
.

(33)

The first of the last two terms in (33) can be estimated using a special case of Theorem
3 in Strömbergsson [26].
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Lemma 4.

#

{
A ∈ Q(T ) ∩R :

f(A)

s(A)
> r

}
�n

1

rn−1
N(T ) . (34)

Proof. The inequality (34) immediately follows from Theorem 3 in [26] applied with D =
[0, 1]n−1. ut

To estimate the last term, we will need the following lemma.

Lemma 5.

#

{
A ∈ Q(T ) ∩R :

an−1

a1a
ε−1/(n−1)
n

> r

}
�n

1

rT ε−1/(n−1)
N(T ) . (35)

Proof. Since A ∈ R, we have an−1 ≤ an. Hence

#

{
A ∈ Q(T ) ∩R :

an−1

a1a
ε−1/(n−1)
n

> r

}
≤ #

{
A ∈ Q(T ) ∩R : a1+1/(n−1)−ε

n > ra1

}
.

Furthermore, all A ∈ Q(T ) ∩R with a
1+1/(n−1)−ε
n > ra1 are in the set

U = {A ∈ Z1×n : 0 < a1 < T 1+1/(n−1)−ε/r, 0 < ai ≤ T, i = 2, . . . , n} .

Since #(U ∩Zn) < Tn+1/(n−1)−ε/r and N(T ) �n Tn (see e.g. Theorem 1 in [23]), the result
follows. ut

Then by (33), (34) and (35)

Nε(t, T )

N(T )
�n

1

(t′)n−1
+

t′

tT ε−1/(n−1)
. (36)

Next, we will bound T from below in terms of t, similar to Theorem 3 in [26]. The upper
bound of Schur (22) implies f(A) < na1an. Thus, using (32),

Nε(t, T ) ≤ #

{
A ∈ Q(T ) ∩R :

f(A)

a1aεn
> t

}
≤ #

{
A ∈ Q(T ) ∩R : a1−ε

n >
t

n

}
.

The latter set is empty if T ≤ (t/n)
1

1−ε . Hence we may assume

T >

(
t

n

) 1
1−ε

. (37)

Using (36) and (37), we have

Nε(t, T )

N(T )
�n

1

(t′)n−1
+

t′

t1+ 1
1−ε (ε−

1
n−1 )

. (38)

To minimise the exponent of the right hand side of (38), set t′ = tβ and choose β with

β(n− 1) = 1 +
1

1− ε

(
ε− 1

n− 1

)
− β . (39)
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We get

β =
n− 2

n(n− 1)(1− ε)

and, by (38) and (39),

Nε(t, T )

N(T )
�n t

−α(ε,n)

with α(ε, n) = β(n− 1). The theorem is proved.

6 Proof of Corollary 4

For the upper bound we observe, that the conditions n ≥ 3 and ε > 2/n imply that in (11)
α(ε, n) > 1. Consider vectors A ∈ Q(T ) with

es−1 ≤ max
c∈Qn

Gapc(A)

‖A‖ε∞‖c‖1
< es . (40)

The contribution of vectors satisfying (40) to the sum∑
A∈Q(T )

max
c∈Qn

Gapc(A)

‖A‖ε∞‖c‖1

on the left hand side of (12) is

≤ Nε(es−1, T )es �n e
−α(ε,n)sesN(T ) ,

where the last inequality holds by (11). Therefore

1

N(T )

∑
A∈Q(T )

max
c∈Qn

Gapc(A)

‖A‖ε∞‖c‖1
�n

∞∑
s=1

es(1−α(ε,n)) .

Finally, observe that the series

∞∑
s=1

es(1−α(ε,n))

is convergent for α(ε, n) > 1.
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