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Abstract. Lensing of the Cosmic Microwave Background (CMB) changes the morphology
of pattern of temperature fluctuations, so topological descriptors such as Minkowski Func-
tionals can probe the gravity model responsible for the lensing. We show how the recently
introduced two-to-two and three-to-one kurt-spectra (and their associated correlation func-
tions), which depend on the power spectrum of the lensing potential, can be used to probe
modified gravity theories such as f(R) theories of gravity and quintessence models. We
also investigate models based on effective field theory, which include the constant-Ω model,
and low-energy Hořava theories. Estimates of the cumulative signal-to-noise for detection
of lensing-induced morphology changes, reaches O(103) for the future planned CMB polar-
ization mission COrE+. Assuming foreground removal is possible to ℓmax = 3000, we show
that many modified gravity theories can be rejected with a high level of significance, mak-
ing this technique comparable in power to galaxy weak lensing or redshift surveys. These
topological estimators are also useful in distinguishing lensing from other scattering secon-
daries at the level of the four-point function or trispectrum. Examples include the kinetic
Sunyaev-Zel’dovich (kSZ) effect which shares, with lensing, a lack of spectral distortion. We
also discuss the complication of foreground contamination from unsubtracted point sources.
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1 Introduction

The all-sky multi-frequency Cosmic Microwave Background (CMB) missions, such as WMAP1,
Planck2[1] and further in future the proposed Experimental Probe of Inflationary Cosmology
(EPIC) survey or ESAs Cosmic Origin Explorer (COrE, [2]), a fourth generation CMB satel-
lite mission concept, are very important in furthering our knowledge of the Universe. The
current generation of ground-based observations, namely the Atacama Cosmology Telescope

1http://map.gsfc.nasa.gov/
2http://www.rssd.esa.int/index.php?project=Planck
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(ACT; see ref.[4] for ACTPol)3 as well as the South Pole Telesecope (SPT; see ref.[5] for
SPTPol)4 are already providing important clues especially of the CMB secondary anisotropy
at smaller angular scales, below a few arc minutes. Secondary anisotropies, such as the ther-
mal Sunyaev-Zel’dovich (tSZ) effect and Integrated Sachs-Wolfe (ISW) effect, tell us about
the low-redshift Universe and can be a valuable source of cosmological information. In this
paper, we focus on another secondary effect, the gravitational lensing of the CMB by the
intervening matter. On the one hand, lensing is a source of nuisance for probing B-mode
polarization arising from inflationary gravity waves[6, 7], but on the other hand, lensing of
the CMB allows us to probe the matter distribution at an intermediate redshift (z ≈ 2),
beyond the typical reach of galaxy lensing surveys. The study of CMB lensing can tighten
constraints on the contents and dynamics of the Universe, including the dark energy equation
of state, neutrino mass hierarchy [8–11] and modified theories of gravity [12]. It is the last
effect that is the subject of this paper.

Lensing does not change the total power, but it redistributes power preferentially to-
wards smaller angular scale [13], and the effects are most prominent below a few arc minutes.
It is challenging to detect since the lensed field has the same spectrum as the unlensed CMB,
and detection through the angular power spectrum is difficult. There are other ways to detect
the lensing signal, for example through cross-correlation with external data sets[14, 15], and
more recently internally using CMB data alone [16–18], and the most recent results from
the Planck collaboration include a 40σ detection of the lensing potential[19]. The lensing
has a quantitatively similar effect on CMB polarization spectra which may however be sig-
nificant at larger angular scales for magnetic or B-mode polarization and is of considerable
observational interest [20, 21]; a map of B-mode polarization has recently been released [22].

In addition to introducing a characteristic B-mode polarization, lensing generates sec-
ondary non-Gaussianity (non-Gaussianity) in temperature and polarization. While primor-
dial non-Gaussianity can help to constrain inflation theory[23], similar studies for secondaries
can provide useful clues to structure formation scenarios. In the absence of any frequency in-
formation, information from non-Gaussianity is helpful in separating out lensing. Early works
in this area were carried out in real-space [24–26] or in the harmonic domain using multispec-
tra [27, 28]. In the case of an ideal experiment, with infinite resolution, one-point statistics
such as the PDF, lower-order moments will not change due to lensing. This too is related
to the fact that lensing does not create power but simply redistributes it. However, experi-
mental beam smoothing, or any other artificial smoothing, can introduce non-Gaussianity in
even multispectra. For a Gaussian lensing potential, non-Gaussianity is introduced by lens-
ing alone only the trispectrum at lowest order, whereas coupling of lensing with secondary
anisotropies such as the ISW and SZ effects induces a non-zero bispectrum[29–32].

Minkowski Functionals (MFs) are morphological descriptors that are commonly used in
studying non-Gaussianity in cosmological datasets [33, 34]. In the CMB, they have already
been applied for the analysis of WMAP 3-year data [35], Boomerang [36], and more recently
to WMAP 7-year data [37]. These studies use a perturbative expansion to express MFs in
terms of the multi-spectra [38]. In general the MFs can be expressed as a function of one-
point (generalised) skewness parameters or their higher order analogues. In recent papers
the concept of one-point moments such as skewness and kurtosis, was generalised to related
power-spectra, skew-spectra and kurt-spectra, which carry more information[39–41]. This
extra information is valuable in separating out individual contributions to the MFs at a given

3http://www.physics.princeton.edu/act/
4http://pole.uchicago.edu/
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order, as well as to keep a control on systematics. The aim of this paper is to extend the
results of recent work [42, 43] where lensing-induced mode-coupling of the lensing potential
and secondaries were considered, as well as their effect on the morphology of CMB maps to
the next order, i.e. to the level of the trispectrum. In this paper, we apply these statistics
to study their ability to constrain modified gravity (MG) theories and the dark energy (DE)
equation of state. For motivation and other cosmological probes of MG theories [see e.g. ref.
44, and references therein].

Following ref.[45], we will generalise the concept of kurt-spectrum and show how they
can be used to reconstruct the MFs up to the fourth order. Kurt-spectra are useful as they can
be used to separate lensing from the other secondaries such as the kinetic Sunyaev-Zel’dovich
(kSZ) effect [46]. Similar analysis for frequency-cleaned tSZ maps and weak lensing obser-
vations were recently reported in ref.[47] and ref.[48] respectively. Reconstructing MFs from
individual contributions is also important from a different perspective: the MFs are model-
independent statistics and hence care must be taken to avoid any serendipitous detection
from yet unexplored source of non-Gaussianity. Throughout, we will use spherical harmonics
as basis as lensing of CMB is sensitive to lensing potential fluctuations at large angular scale
ℓ < 100 and high ℓ (Limber’s) approximation is not adequate.

This paper is organized as follows. In §2 we review modified theories of gravity in the
context of Effective Field Theory. In §3 we discuss the theoretical aspects of lensing-induced
secondary non-Gaussianity in CMB maps. In §4 we provide details of MFs and related kurt-
spectra for CMB lensing. In §5 estimators are developed, that can work with realistic mask,
noise and beam. Finally §6 is reserved for discussion of our results and the conclusions are
presented in §7. In Appendix A we provide explicit derivations of the two estimators as
well as their Gaussian counterparts. In Appendix B we show how the one-point kurtosis are
recovered from both kurt-spectra. In Appendix C we discuss the possibility of constructing
sub-optimal estimators for lensing reconstruction.

2 Modified Gravity Scenarios in an Effective Field Theory Framework

The effective field theory (EFT) approach to dark energy/modified gravity (DE/MG) was
recently proposed [49, 50]. An action is built in the Jordan frame and unitary gauge by
considering the operators which are invariant under time-dependent spatial diffeomorphisms.
It is able to unify all of the viable single scalar field theories of DE/MG which have a well
defined Jordan frame representation, such as f(R) gravity, quintessence, Horndeski models,
etc. (see ref.[51] for a review of the models). In this approach, the additional scalar degree
of freedom representing DE/MG is eaten by the metric via a foliation of space-time into
space-like hyper-surfaces. Up to the quadratic order, the action reads

SEFT =

∫

d4x
√−g

{

m2
0

2
[1 + Ω(τ)]R+ Λ(τ)− c(τ) a2δg00

+
M4

2 (τ)

2

(

a2δg00
)2 − M̄3

1 (τ)

2
a2δg00 δKµ

µ − M̄2
2 (τ)

2

(

δKµ
µ

)2

− M̄2
3 (τ)

2
δKµ

ν δK
ν
µ +m2

2(τ) (g
µν + nµnν) ∂µ(a

2g00)∂ν(a
2g00)

+
M̂2(τ)

2
a2δg00 δR+ . . .

}

+ Sm[gµν , χm], (2.1)
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where R is the four-dimensional Ricci scalar, δg00, δKµ
ν , δKµ

µ and δR are respectively
the perturbations of the upper time-time component of the metric, the extrinsic curvature
and its trace and the three dimensional spatial Ricci scalar. Finally, Sm is the matter
action. Since the choice of the unitary gauge breaks time diffeomorphism invariance, each
operator in the action can be multiplied by a time-dependent coefficient; in our convention,
{Ω,Λ, c,M4

2 , M̄
3
1 , M̄

2
2 , M̄

2
2 , M̄

2
3 ,m

2
2, M̂

2} are unknown functions of the conformal time, τ , and
we will refer to them as EFT functions. We can read that up to the quadratic order, we
only have 9 functions. Furthermore, three of them, namely {Ω, c,Λ}, are the only functions
contributing both to the dynamics of the background and of the perturbations, while the
others play a role only at level of perturbations. Due to the theoretical degeneracies at the
kinematic background level, the philosophy of EFT is to fix the cosmic background evolution
in a priori manner, then focus on the linear perturbation dynamics which are consistent with
the given background history. Fixing the time evolution of H(z) and Ḣ(z) helps us to reduce
two of the background EFT functions, normally chosen to be c,Λ, thus reducing the total
number of independent EFT functions to seven.

After writing down the generic formula Eq.(2.1), we can see that the only unknown
parts of this action are these EFT functions. There are basically two ways to parametrize
them, namely covariant mapping parametrization and phenomenological parametrization.
The former one is suitable for studying well-known models, which are written in the covariant
formalism, while the latter can be used to study the phenomenological models which are
inspired by observation.

In the action Eq.(2.1), the extra scalar degree of freedom is hidden inside the metric
perturbations. However, in order to study the dynamics of linear perturbations and inves-
tigate the stability of a given model, it is more convenient to make it explicit by means
of the Stükelberg technique i.e. performing an infinitesimal coordinate transformation such
that τ → τ + π, where the new field π is the Stükelberg field, which describes the extra
propagating degree of freedom. Varying the action with respect to the π-field one obtains a
dynamical perturbative equation for the extra degree of freedom which allows direct control
of the stability of the theory, as discussed at length in ref. [52].

In refs. [52, 53] the EFT framework has been implemented into CAMB/CosmoMC5 [54,
55] creating the EFTCAMB/EFTCosmoMC patches, which are publicly available6 (see ref. [56]
for technical details). EFTCAMB evolves the full equations for linear perturbations without
relying on any quasi-static approximation. In addition to the standard matter components
(i.e. dark matter, baryon, radiation and massless neutrinos), massive neutrinos have also
been included [57]. As mentioned above, EFTCAMB allows the study of perturbations in a
phenomenological way (usually referred to as pure EFT mode), investigating the cosmological
implications of the different operators in action Eq.(2.1). It can also be used to study the ex-
act dynamics for specific models, after the mapping of the given model into the EFT language
has been worked out (usually referred to as mapping mode). In the latter case one can treat
the background via a designer approach, i.e. fixing the expansion history and reconstructing
the specific model in terms of EFT functions; or full mapping approach, i.e. one can solve
the full background and linear perturbation equations of a particular model. Furthermore,
the code has a powerful built-in module that investigates whether a chosen model is viable,
through a set of general conditions of mathematical and physical stability. In particular,
the physical requirements include the avoidance of ghost and gradient instabilities for both

5http://camb.info
6http://wwwhome.lorentz.leidenuniv.nl/~hu/codes/
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the scalar and the tensor degrees of freedom. The stability requirements are translated into
viability priors on the parameter space when using EFTCosmoMC to interface EFTCAMB
with cosmological data, and they can sometimes dominate over the constraining power of
data [53].

In this paper, we select a few models both from the pure EFT mode and also mapping
mode described above. We choose, for the former, the constant-Ω [58] models, and for the
latter, the designer quintessence [56], f(R) model [52, 59] and low-energy Hořava gravity [60,
61]. In the rest part of this section, we will briefly describe these models.

2.1 Pure EFT models

For the pure EFT models, we select the constant-Ω model, which consist in taking a constant
value for the conformal coupling Ω(a) = ΩEFT

0 and requiring the expansion history to be
exactly that of the ΛCDM model. This requirement will then fix, through the Friedmann
equations, the time dependence of the operators c and Λ. We emphasize here that the
constant-Ω model is not a simple redefinition of the gravitational constant. In fact the
requirement of having a ΛCDM background with a non-vanishing Ω, that would change the
expansion history, means that a scalar field is sourced in order to compensate this change.
This scalar field will then interact with the other matter fields and modify the behaviour
of cosmological perturbations and consequently the CMB power spectra and the growth of
structure. For instance, it is easy to show that in the constant-Ω model, c(τ) = Ω(ρm+Pm)/2,
which is vanishing in general relativity, is non-zero.

Another general remark we would like to make on the models that we consider here,
is that they display a radically different cosmology, as they correspond to two different
behaviours of the perturbation’s effective gravitational constant. Viable models, in the f(R)
case, correspond to an enhancement of the gravitational constant which in turn results in
the amplification of the growth of structure that enhances substantially the lensing of the
CMB. In the constant-Ω model, if Ω is negative, the model will have an enhanced effective
gravitational constant with a phenomenology similar to that of f(R) models. Hereafter, we
dubbed it as “EFT1”. On the other hand, if Ω is positive the model will be characterized
by a smaller effective gravitational constant resulting in a suppression of the growth and
consequently a suppression of the CMB lensing. In this paper, we dubbed it as “EFT2”. In
details, we fix ΩEFT

0 = −0.1 and +0.1 for “EFT1” and “EFT2”, respectively.

2.2 Mapping models

For the mapping models, we select three models, namely the designer quintessence, f(R)
model and low-energy Hořava gravity. As demonstrated above, one of the advantages of the
EFT approach is its ability to unify the languages which describe the linear dynamics of most
of the viable single scalar field DE/MG models.

Via the mapping procedure, we are allowed to design the functional form of the quintessence
potential (with canonical kinetic term) to reproduce the input background evolution. Gener-
ally speaking, in the minimally-coupled quintessence model, the effect on the growth factor
from the quintessence field is sub-dominant compared with its modification to the back-
ground expansion. Physically, this is because the Jeans length of the quintessence field is
a super-horizon scale, so, there is no significant clustering effect from the scalar degree of
freedom. We suggest ref.[56] for readers who are interested in the details of this model. In
the following calculation, we fix w0 = −0.9 and wa = 0.25 and refer to it as the “Q” model.
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On the other hand, in the f(R) gravity, the linear perturbation dynamics are more im-
portant than its background kinematics. This is because the effective gravitational constant
is enhanced by a factor 4/3 on the scales which are smaller than the Compton wavelength,
B0 ∼ 6fRRH

2/(1 + fR), of the scalar field. This will magnify the lensing effect significantly,
as we will show later. In the following calculation, we fix B0 = 0.1.

The last modified gravity models we selected are the low-energy Hořava models. The
basic model was first proposed in ref.[60] to solve the UV complete problem of quantum
gravity, then it was embedded in the EFT approach in ref.[61] to study cosmic late-time
acceleration. Basically, its phenomenology on the background is simply rescaling the Hubble
parameter; and on the perturbation level, due to the strong coupling with the gravity sector,
the scalar field perturbations could suppress the linear structure formation rate substantially.
In this paper, we select two Hořava models, one with three parameters (λ = 1.4, ξ = 0.9,
η = 1.0), the other with two (λ = 1.4, η = 1.0). Hereafter, we dubbed them as “H3” and
“H2” models, respectively. Compared with the “H3” model, the “H2” are designed to evade
the PPN constraint.

Finally, we take the ΛCDM model (“Λ”) as the baseline model, and all the vanilla
cosmological parameters are the same as the ones from the Planck-2015 [62] data release.

3 Lensing induced non-Gaussianity in CMB Temperature Maps

In this section we will briefly review certain aspects of lensing of the CMB [27, 63, 64]. For
a full review see ref.[13].

3.1 Lensing in Temperature Maps

In the context of CMB lensing, the surface of last scattering can be thought of as a single
source plane. The projected lensing potential φ(Ω̂) towards an angular direction Ω̂ = (θ, φ)
can be expressed in terms of a line of sight integration of the 3D potential Φ(r) = Φ(r, Ω̂):

φ(Ω̂) = −2

∫ r0

0
dr

dA(r − r)

dA(r)dA(r0)
Φ(r, Ω̂). (3.1)

Here r0 is the comoving conformal distance to the surface of last scattering and dA(r) is the
comoving angular diameter distance out to r. Lensing effectively redistributes the tempera-
ture Θ(Ω̂) = [δT (Ω̂)/T0] on the surface of the sky through the angular deflections resulting
along the photon path, α(Ω̂) = ∇φ(Ω̂) such that Θ(Ω̂) = Θ̄(Ω̂ + α), where Θ is the lensed
CMB sky and Θ̄ corresponds to the temperature distribution in the absence of lensing, and
∇ is the covariant derivative on the surface of the unit sphere. For the following discussion
we will ignore the secondary contribution. Coupling of lensing with secondaries and result-
ing impact on morphological properties of CMB maps have been discussed in detail in [42].
Expanding the above expression in a Taylor series we can write [31, 32]:

Θ(Ω̂) = Θ̄(Ω̂ + α) ≈ Θ̄(Ω̂) +∇iφ(Ω̂)∇iΘ̄(Ω̂) +O(φ2); (3.2)

δΘ(Ω̂) = Θ(Ω̂)− Θ̄(Ω̂) ≈ ∇iφ(Ω̂)∇iΘ̄(Ω̂). (3.3)

In the harmonic domain, using spherical harmonics Ylm(Ω̂) as the basis function, we can
express the multipole of lensing induced temperature anisotropy δΘlm in terms of multipoles
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of lensing potential φLM and multipole of the unlensed CMB temperature anisotropy Θ̄lm

respectively:

δΘℓm =

∫

dΩ̂Y ∗
ℓm(Ω̂)∇iφ(Ω̂)∇iΘ̄(Ω̂)

=

∫

dΩ̂Y ∗
ℓm(Ω̂)∇i

[

∑

LM

φLMY ∗
LM (Ω̂)

]

∇i

[

∑

ℓ′m′

Θ̄ℓ′m′Y ∗
ℓ′m′(Ω̂)

]

=
∑

LM

∑

ℓ′m′

(−1)mφLM Θ̄ℓ′m′ 0Fℓℓ′L

(

ℓ ℓ′ L
m −m′ −M

)

; (3.4)

where we have used the Gaunt integral [65] to arrive at the last line. The following notations
were introduced:

±sFℓLℓ′ ≡
1

2
±sIℓℓ′LΛℓℓ′L =

1

2
±sIℓℓ′L[ΠL +Πℓ′ −Πℓ]; (3.5)

±sIℓℓ′L =

√

ΠℓΠℓ′ΠL
4π

(

ℓ ℓ′ L
±s ∓s 0

)

, (3.6)

where Πℓ ≡ ℓ(ℓ + 1) and the last matrix is a Wigner 3j symbol. The function ±sFl1Ll2
encodes the rotationally-invariant part of the coupling between three multipoles (l1, l2, L).
To simplify our notation, as is common in the literature, we will denote 0Iℓℓ′ℓ′′ as Iℓℓ′ℓ′′ by
dropping the s index.

The analytical modelling of higher-order correlation functions is most naturally done
in the harmonic domain where they are represented by the multi-spectra. It is known that
lensing of CMB only induces even-order multi-spectra. Thus the lowest-order departure
from Gaussianity, in case of CMB lensing, is characterized by the connected part of the four-
point correlation function (or equivalently the trispectrum in the harmonic domain) defined
through the relation:

〈Θℓ1m1
Θℓ2m2

Θℓ3m3
Θℓ4m4

〉 = 〈Θℓ1m1
Θℓ2m2

Θℓ3m3
Θℓ4m4

〉c + 〈Θℓ1m1
Θℓ2m2

Θℓ3m3
Θℓ4m4

〉G;(3.7)

where the subscripts G and c correspond to Gaussian and non-Gaussian (or connected) con-
tributions to the four-point correlation function. The connected part of the four-point cor-
relation function in real-space is related to the trispectrum T ℓ1ℓ2ℓ3ℓ4

(ℓ) through the following
relation:

〈Θℓ1m1
Θℓ2m2

Θℓ3m3
Θℓ4m4

〉c =
∑

ℓm

(−1)mT ℓ1ℓ2ℓ3ℓ4
(ℓ)

(

ℓ1 ℓ2 ℓ
m1 −m2 −m

)(

ℓ3 ℓ4 ℓ
m3 −m4 −m

)

. (3.8)

To impose the symmetry inherent in the trispectrum it is expressed in terms of its “pairing
matrix” P ℓ1ℓ2

ℓ3ℓ4
(ℓ).

T ℓ1ℓ2ℓ3ℓ4
(ℓ) = P ℓ1ℓ2

ℓ3ℓ4
(ℓ) +Ξℓ

[

∑

l′

(−1)ℓ2+ℓ3
{

ℓ1 ℓ2 ℓ
ℓ4 ℓ3 ℓ′

}

P ℓ1ℓ3
ℓ2ℓ4

(ℓ′)

+
∑

ℓ′

(−1)L+L
′

{

ℓ1 ℓ2 ℓ
ℓ3 ℓ4 ℓ′

}

P ℓ1ℓ4
ℓ3ℓ2

(ℓ′)
]

, (3.9)
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Figure 1. CMB Lensing potential power sepctrum Cφφ
ℓ as a function of ℓ for various Modified Gravity

theories. In left panel we show two Hořava theories denoted as H2 (dot-dashed line) and H3 (dashed
line). The standard ΛCDM prediction is depicted as a solid-line in each panel. In the middle panel we
compare results for a quintessence model (dot-dashed) and f(R) theory (dashed) results. In the right
panel we show results from two different EFT caclulations EFT1 (dot-dashed) and EFT2 (dashed).
See text for more details.

where Ξℓ ≡ 2ℓ+1, and the matrices in curly brackets are Wigner 6j-symbols which are defined
in terms of 3j symbols (see ref.[65]). The “pairing matrix” can be further decomposed in
terms of the reduced trispectrum τ ℓ1ℓ2ℓ3ℓ4

(ℓ):

P ℓ1ℓ2
ℓ3ℓ4

(ℓ) = τ ℓ1ℓ2ℓ3ℓ4
(ℓ) + (−1)ΣU τ ℓ2ℓ1ℓ3ℓ4

(ℓ) + (−1)ΣLτ ℓ1ℓ2ℓ4ℓ3
(ℓ) + (−1)ΣL+ΣU τ ℓ2ℓ1ℓ4ℓ3

(ℓ);

ΣL = ℓ1 + ℓ2 + ℓ; ΣU = ℓ3 + ℓ4 + ℓ. (3.10)

In the case of weak lensing of CMB the reduced trispectrum τ depends only on the power-
spectrum of the lensing potential Cφφℓ = 〈φℓmφ∗

ℓm〉 and the power spectrum of temperature
anisotropy CTℓ :

τ ℓ1ℓ2ℓ3ℓ4
(ℓ) = Cφφℓ C̄Tℓ2 C̄

T
ℓ4 0Fℓ1ℓℓ2 0Fℓ3ℓℓ4 (3.11)

Previous studies have already shown that the pairing matrix P ℓ1ℓ2
ℓ3ℓ4

(ℓ) can very accurately

describe the trispectrum τ ℓ1ℓ2ℓ3ℓ4
(ℓ):

T ℓ3ℓ4ℓ1ℓ2
(ℓ) ≈ P ℓ3ℓ4

ℓ1ℓ2
(ℓ) = Cφφℓ

(

C̄Tℓ20Fℓ1ℓℓ2 + C̄Tℓ10Fℓ2ℓℓ1
) (

C̄Tℓ40Fℓ3ℓℓ4 + C̄Tℓ30Fℓ4ℓℓ3
)

(3.12)

= Cφφℓ fℓ1ℓℓ2fℓ3ℓℓ4 (3.13)

This is the approximation which we will use in our study.

3.2 Gaussian Component

The Gaussian component of the four-point correlation function defined in Eq.(3.7) can also
be expressed as follows:

〈Θℓ1m1
Θℓ2m2

Θℓ3m3
Θℓ4m4

〉G

=
∑

ℓm

(−1)mGℓ1ℓ2
ℓ3ℓ4

(ℓ)

(

ℓ1 ℓ2 ℓ
m1 −m2 −m

)(

ℓ3 ℓ4 ℓ
m3 −m4 −m

)

(3.14)
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Figure 2. CMB temperature power spectra for the models shown in Figure-1. The line styles
representing various models remain the same.

The Gaussian component of the trispectrum defined above Gℓ1ℓ2
ℓ3ℓ4

(ℓ) representing the
disjoint contribution to our-point correlation function is determined completely by the (un-
lensed) CMB power spectrum C̄Tℓ :

Gℓ1ℓ2
ℓ3ℓ4

(ℓ) = (−1)ℓ2+ℓ3
√

Ξℓ1Ξℓ3CTℓ1C
T
ℓ3δℓ1ℓ3δℓ2ℓ4δℓ0

+Ξℓ CTℓ1C
T
ℓ2

[

(−1)ℓ1+ℓ2+ℓδℓ1ℓ3δℓ2ℓ4 + δℓ1ℓ4δℓ2ℓ3

]

(3.15)

Henceforth, we will ignore the ℓ = 0 mode as it does not contribution to the deflection of
photons.

3.3 Foregrounds

In addition to cosmological sources of non-Gaussianity both primary and secondary, fore-
ground such as the unsubtracted point-sources can also make a significant contribution.

The bispectrum and trispectrum from extragalactic radio and infra-red sources with
fluxes F smaller than a certain detection threshold Fd is simple to estimate if Poisson dis-
tributed. The trispectrum for the unsubtracted point source distribution then has a constant
amplitude tps:

T ℓ3ℓ4ℓ1ℓ2
(ℓ) = tps Iℓ1ℓ2ℓIℓ3ℓ4ℓ. (3.16)

Following the procedure outlines in ref.[23] we obtain the following expression for tps:

tps =
(2− β)2

β(4− β)
[n(< Fd)]

−1[Cps]2. (3.17)

Here Cps is the ℓ independent power spectrum for the point sources which has the following
expression:

Cps = g2(x)
β

2 − β
n(< Fd)F

2
d . (3.18)
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Here dn/dF is the differential source count per unit solid angle and we have defined n(< Fd) =
∫ Fd

0 dFdn/dF . It is generally assumed to be a power-law, dn/dF ∝ F−β−1. For example, for
Euclidean source counts β = 3/2. We have defined x = hν/kBT ≈ (ν/56.80GHz)(T/2.726)−1

and g(x) = 2 (hc)2/(kBT)
3[sinh(x/2)/x2]2. For the 217 GHz assuming n(< Fd) = 100 we

obtain tps ≈ 2× 10−38 and for 90 GHz assuming n(< Fd) = 7 we get tps ≈ 2× 10−34. These
results should only be considered a very crude order of magnitude estimates.

4 Morphological Estimators

We outline our estimators in this section and relate them to morphological statistics such as
the Minkowski Functionals.

4.1 Minkowski Functionals

The MFs are well known morphological descriptors which are used in the study of random
fields. Morphological properties are the properties that remain invariant under rotation and
translation (see ref.[66] for more formal introduction). They are defined over an excursion
set Σ for a given threshold ν. The three MFs that we will use for two dimensional (2D)
temperature anisotropy Θ(Ω̂) defined on the surface of the sky can be expressed as:

V0(ν) =

∫

Σ
da; V1(ν) =

1

4

∫

∂Σ
dl; V2(ν) =

1

2π

∫

∂Σ
κdl; ν =

Θ

σ0
. (4.1)

Here da, dl are the elements for the excursion set Σ and its boundary ∂Σ. The MFs Vk(ν)
correspond to the area of the excursion set Σ, the length of its boundary ∂Σ as well as the
integral curvature along its boundary which is related to the genus g and hence the Euler
characteristics χ.

The MFs for a random Gaussian field are well known and given by Tomita’s formula
[67] and are completely defined by the corresponding power spectrum Cℓ. A perturbative
analysis was suggested to go beyond the Gaussian distribution in ref.[38]:

Vk(ν) =
1

(2π)(k+1)/2

ω2

ω2−kωk
exp

(

−ν2

2

)(

σ1√
2σ0

)k

vk(ν); (4.2)

vk(ν) =
[

v
(0)
k (ν) + v

(1)
k (ν)σ0 + v

(2)
k (ν)σ2

0 + · · ·
]

; (4.3)

σ2
j =

1

4π

∑

ℓ

ΞℓΠ
j
ℓ Cℓb2ℓ(θ0); (4.4)

Πℓ = ℓ(ℓ+ 1); bℓ(θ0) = exp
[

−Πℓθ
2
b

]

; θb =
θ0√
16 ln 2

. (4.5)

H−1(ν) =

√

π

2
eν

2/2erfc
(ν

2

)

; (4.6)

H0(ν) = 1; H1(ν) = ν; H2(ν) = ν2 − 1; (4.7)

H3(ν) = ν3 − 3ν; H4(ν) = ν4 − 6ν2 + 3; (4.8)

Hn(ν) = (−1)n exp

(

ν2

2

)

dn

dνn
exp

(

−ν2

2

)

. (4.9)
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We have assumed a Gaussian beam bℓ(θ0) with FWHM = θ0. The constant ωk introduced
above is the volume of the unit sphere in k-dimension. wk = πk/2/Γ(k/2 + 1) in 2D we will

only need ω0 = 1, ω1 = 2 and ω2 = π. For a purely Gaussian distribution v
(0)
k (ν) = Hk−1(ν)

and all higher order terms vanish. We notice that σ2
0 = 〈δΘ2〉 and σ2

1 = 〈|∇Θ|2〉.

4.2 Kurtosis Spectra

The leading order terms that signify non-Gaussianity of MFs depend on the bispectrum or
equivalently a set of three generalised skewness parameters. The next to the leading order
order correction terms depend on a set of four generalised kurtosis parameters K(i) that are
fourth order statistics. In general the kurtosis parameters are collapsed fourth order one-
point cumulants and probe the trispectrum with varying weights [68]. The four different
kurtosis parameters that are related to the MFs are a natural generalisation of the ordinary
kurtosis K(0) which is routinely applied in many cosmological studies. We will denote these
generalised kurtosis parameters by K(i); i = 1, 2, 3. These parameters are constructed from
the derivative field of the original map Θ(Ω̂) and its derivatives |∇iΘ(Ω̂)|2 = [∇iΘ(Ω̂)∇iΘ(Ω̂)]
and [∇2Θ(Ω̂)].

K(0) ≡ 〈Θ4〉c
σ6
0

; K(1) ≡ 〈Θ3∇2Θ〉c
σ4
0σ

2
1

; (4.10)

K(2) ≡ K(2a) +K(2b) ≡ 2
〈Θ|(∇Θ)|2(∇2Θ)〉c

σ2
0σ

4
1

+
〈|(∇Θ)|4〉c

σ2
0σ

4
1

; K(3) ≡ 〈|∇Θ|4〉c
2σ2

0σ
4
1

.(4.11)

The subscript c correspond to the connected components which indicates that all Gaussian
unconnected contributions are subtracted out, these include both noise as well as the signal
contribution.

If we ignore lensing-secondary coupling contributions discussed in ref.[42] and contribu-
tion from primordial non-Gaussianity[68], the next-to-leading order corrections to the MFs
involve tri-spectral contributions K(i)s which can be derived following ref.[38].

v
(4)
0 (ν) =

K(0)

24
H3(ν); (4.12)

v
(4)
1 (ν) =

K(0)

24
H4(ν)−

K(1)

12
H2(ν)−

K(3)

8
(4.13)

v
(4)
2 (ν) =

K(0)

24
H5(ν)−

K(1)

6
H3(ν)−

K(2)

2
H1(ν). (4.14)

Next, we will introduce three additional trispectra that are constructed using different weights
to the original beam-smoothed trispectra T and differ in the way they weight various modes,
which are specified by a particular choice of the quadruplet of angular harmonics {ℓi}:

T (0) =
T

σ6
0

; (4.15)

T (1) = − 1

4σ4
0σ

2
1

[Πℓ1 +Πℓ2 +Πℓ3 +Πℓ4 ]T ; (4.16)

T (2) =
1

4σ2
0σ

4
1

[

Π2
L − (Πℓ1 +Πℓ2)(Πℓ3 +Πℓ4)

]

T ; (4.17)

T (3) =
1

4σ2
0σ

4
1

[(Πℓ1 +Πℓ2 −ΠL)(Πℓ3 +Πℓ4 −ΠL)]T ; (4.18)

T ≡ T ℓ1ℓ2ℓ3ℓ4
(L)bℓ1(θ0)bℓ2(θ0)bℓ3(θ0)bℓ4(θ0) (4.19)
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Figure 3. The kurtosis spectra KA,i
ℓ defined in Eq.(4.22) for smoothing angular scale θ0 = 10′ and

ℓmax = 103. From left they correspond to KA,1
ℓ through to KA,4

ℓ . In each panel the base GR+ΛCDM
model is shown along with five other modified gravity theories. The two effective field theory models
are depicted by dashed line. The thick dotted lines correspond to the EFT1 and the thin dotted lines
correspond to EFT2 respectively. The two dashed lines correspond to the Hořava models. The thick
(thin) solid lines correspond to H2(H3). The doted lines correspond to the f(R) model (see text for
the description of these models). We haven’t included the σ0(θ0) and σ1(θ0) dependent normalisations
in these plots to isolate the effect of MG theories on trispectrum.

Table 1. Survey Parameters [69]

Mission Frequency (GHz) Sensitivity (µK-arcmin) fsky FWHM

COrE+ 145 5.0 70% 5.8′

ACTPol 150 9.8 50% 1.3′

Planck 143 44.0 50% 7.3′

We can define similar expressions for the Gaussian component simply by replacing the con-
nected part of the trispectrum T ≡ T ℓ1ℓ2ℓ3ℓ4

(ℓ) (defined in Eq.(3.8)) with the disconnected part

of the trispectrum G ≡ Gℓ1ℓ2
ℓ3ℓ4

(ℓ) (defined in Eq.(3.15)) which will be useful for construct-
ing the disconnected part of the kurt-spectra that we need to subtract to retain only the
non-Gaussianity part.

These results are based on the following properties of the spherical harmonics:

∫

∇iYℓ1m1
(Ω̂)∇iYℓ2m2

(Ω̂)YLM (Ω̂)dΩ̂ =
1

2
(Πℓ1 +Πℓ2 −ΠL)Iℓ1ℓ2L

(

ℓ1 ℓ2 L
m1 m2 M

)

(4.20)

∇2Yℓm(Ω̂) = −ΠℓYℓm(Ω̂) (4.21)

Following the prescriptions in ref.[68] and ref.[70], the four generalised kurtosis K(i),
which are one-point statistics, the concept of two-to-two KA,i

ℓ and three-to-one KB,i
ℓ kurt-
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Figure 4. Same as previous figure but for the power-spectra KB,i
ℓ as defined in Eq.(4.23).

spectra can now be introduced in terms of the generalised tri-spectra T (i) as follows:

KA,i
ℓ =

∑

ℓi

[T (i)]ℓ1ℓ2ℓ3ℓ4
(ℓ)Jℓ1ℓ2ℓJℓ3ℓ4ℓ; (4.22)

KB,i
ℓ =

∑

ℓi

∑

L

[T (i)]ℓ1ℓ2ℓ3ℓ
(L)Jℓ1ℓ2LJLℓ3ℓ; (4.23)

Jℓ1ℓ2ℓ3 =
1

Ξℓ3
Iℓ1ℓ2ℓ3 . (4.24)

These estimators generalises the optimized version of KA,0
ℓ that has already been used in

ref.[18] to constrain the projected mass exploiting the fact that the estimators KA,0
ℓ and its

higher order analogues are directly proportional to the lensing power-spectrum Cφφℓ .

The main advantage of using two-point estimators such as KA,i
ℓ and KB,i

ℓ is in the ad-
ditional information contained in the shape of these spectra, which is useful in differentiating
them from other secondary contributions e.g. kSZ. The one-point statistics which are used
as an input in Eq.(4.13) and Eq.(4.14) to construct the MFs, can be computed from their
two-point counterparts:

K(i) ≡ 1

4π

∑

ℓ

ΞℓK
A,i
ℓ =

1

4π

∑

ℓ

ΞℓK
B,i
ℓ . (4.25)

The physical meaning of these kurt-spectra can be understood more easily in the harmonic
domain. Each individual mode of the trispectrum is characterized by a specific choice of
set of modes ℓi that defines it. These modes each constitute the sides of a quadrilateral
whose diagonal is specified by the harmonics ℓ. The kurt-spectra KA,i

ℓ considered here take
contributions from all possible configurations of the quadrangle representing trispectrum
while keeping its diagonal ℓ fixed. The kurt-spectra KB,i

ℓ on the other hand represent the
sum over all possible configurations of the quadrangle while keeping one of its side ℓ fixed.

The estimation of the kurt-spectra from real data is relatively easy and follows the same
methodology as that of the skew-spectra. The first of these kurt-spectra K(0) is extracted
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by cross-correlating the squared field [Θ2(Ω̂)] with itself. The spectra K(1) is constructed by
cross-correlating [Θ2(Ω̂)] against [Θ(Ω̂)∇2Θ(Ω̂)]. The other two kurt-spectra can likewise be
constructed. In each such construction a scalar map from a product field is generated before
it is cross-correlated with another such map. The explicit expressions for the estimators K̂A,i

ℓ

are as follows:

K̂A,0
ℓ = A0 K̂

Θ2,Θ2

ℓ ; K̂A,1
ℓ = A1 K̂

Θ2,Θ∇2Θ
ℓ (4.26)

K̂A,2
ℓ = A2 (2K

Θ∇2Θ,∇Θ·∇Θ
ℓ +K∇Θ·∇Θ,∇Θ·∇Θ

ℓ ); K̂A,3
ℓ = A3 K

∇Θ·∇Θ,∇Θ·∇Θ
ℓ ; (4.27)

A0 = σ−6
0 ; A1 = σ−4

0 σ−2
1 ; A2 = A3 = σ−2

0 σ−4
1 . (4.28)

For current-generation surveys with small sky coverage, the correlation functions asso-
ciated with the kurt-spectra may have some practical advantages. These are

KA,i
12 [θ] ≡ 1

4π

∑

ℓ

ΞℓPℓ(cos θ)K
A,i
ℓ (4.29)

KB,i
12 [θ] ≡ 1

4π

∑

ℓ

ΞℓPℓ(cos θ)K
B,i
ℓ . (4.30)

Here Pℓ is a Legendre polynomial of order ℓ. These two-point correlation functions (also
known as cumulant correlators) are defined on the surface of the sphere between two line-
of-sight directions separated by an angle θ. For the special case of θ = 0 they both collapse
to the same one-point cumulants defined in Eq.(4.25). However, in real space, correlation
functions at two different angular scales are highly correlated, thus making error-analysis
much more involved, even for all-sky coverage.

Two of the four three-to-one kurt-spectra KB,2
ℓ and KB,3

ℓ cannot be constructed using
(cubic) combinations of scalar fields, as they involve gradients ∇Θ, and their co-ordinate
independent constructions involve spinorial harmonics. From the point of view of construc-
tion of MFs KA,i

ℓ and KB,i
ℓ carry equivalent information. Also, as the spectra KA,i

ℓ are not

expressible as normalized lensing power spectrum Cφφℓ , they are less appealing for numerical
implementation.

5 Estimators, Mask, Noise and Covariances

We have so far derived results for an ideal noise-free all-sky survey. In reality partial sky
coverage and instrumental noise (possibly inhomogeneous) need to be dealt with. Partial sky
coverage introduces mode-mode coupling in the harmonic domain in such a way that individ-
ual masked harmonics become linear combinations of all-sky harmonics. The coefficients for
this linear transformation depend on specific choice of mask through its own harmonic coeffi-
cients. Based on the pseudo-Cℓ (PCL) method devised in ref.[71] for power spectrum analysis,
unbiased estimators for skew-spectra and kurt-spectra were later developed in ref.[39] and
ref.[68] that can handle realistic data.

5.1 Estimators

Consider two generic fields U(Ω̂) and V (Ω̂) and denote their harmonic decompositions in the
presence of a generic mask w(Ω̂) as Ũℓm and Ṽℓm. The fields U and V may correspond to any
of the fields we have considered above and the harmonics Ũℓm and Ṽlm will correspond to any
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of the harmonics listed in Eq.(4.26)- Eq.(4.28) i.e., [Θ2]ℓm, [∇Θ · ∇Θ]ℓm and [∇2Θ]ℓm. The
pseudo-harmonics of the masked fields are linear combinations of the ordinary harmonics:

ŨLM =

∫

dΩ̂ Y ∗
LM (Ω̂) [w(Ω̂) U(Ω̂)]; (5.1)

ŨLM =
∑

ℓimi

(−1)m ILℓ1ℓ2

(

ℓ1 ℓ2 L
m1 m2 −M

)

wℓ1m1
Uℓ2m2

; (5.2)

wlm =

∫

dΩ̂ Y ∗
ℓm(Ω̂) w(Ω̂). (5.3)

The construction of the pseudo kurt-spectra K̃U,V
ℓ simply involves cross-correlating the rele-

vant pseudo harmonics Ũ and Ṽ :

K̃U,V
L (θb) =

1

ΞL
ℜ
[

∑

m

ŨLM Ṽ ∗
LM

]

; K̃U,V
L (θb) =

∑

ℓ′

MLℓ′K
U,V
ℓ′ (θb). (5.4)

The mixing matrix M is a function of the power spectrum wℓ of the mask w(Ω̂):

MLL′ =
1

ΞL

∑

ℓ

I2LL′ℓ|wℓ|2; K̂U,V
L (θb) =

∑

ℓ′

[M−1]Lℓ′K̃
U,V
ℓ′ (θb); (5.5)

wℓm =

∫

w(Ω̂)Y ∗
ℓm(Ω̂)dΩ̂; wℓ =

1

Ξℓ

∑

m

wℓmw
∗
ℓm. (5.6)

The estimator K̂U,V
L (θb) constructed from pseudo-Cℓs is unbiased as 〈K̂U,V

L (θb)〉 = KU,V
L (θb).

The scatter from the ensemble mean δK̂U,V
L and its covariance 〈δK̂U,V

L δK̂U ′,V ′

L 〉 can be com-
puted using the expressions given below:

〈K̂U,V
L (θb)〉 = KU,V

L (θb); δKU,V
L (θb) = K̂U,V

L (θb)− 〈KU,V
L (θb)〉; (5.7)

〈δK̂U,V
L (θb)δK̂

U,V
L′ (θb)〉 =

∑

LL′

M−1
Lℓ 〈δK̃

U,V
ℓ (θb)δK̃

U,V
ℓ′ (θb)〉M−1

ℓ′L′ ; (5.8)

{U, V } ∈
{

Θ,Θ2, (∇Θ · ∇Θ),∇2Θ
}

. (5.9)

For small sky-coverage the matrix Mℓℓ′ is singular and broad binning in the ℓ space may be
required before the inversion.

5.2 Error Covariance

The derivation of the covariance depends on a Gaussian approximation i.e. we ignore higher-
order non-Gaussianity in the fields. Cℓ is the ordinary CMB power spectra it also includes
the effect of instrumental noise and beam Ctℓ(θb) = CSℓ b2ℓ(θb) + nℓ. Such an approximation
is suitable for noise-dominated surveys. Moreover, for a survey with homogeneous noise, we
can write nℓ = Ωpσ

2
N where Ωp is the pixel area and σN is the noise r.m.s. The relations

listed below, constructed using Wick’s theorem, will be useful in derivation of scatter for our
estimators:

〈δKU,V
L (θb)δK

U,V
L (θb)〉c =

1

ΞL

[

KU,U
L (θb) K

V,V
L (θb) + [KU,V

L (θb)]
2
]

; (5.10)

〈δKU1,V1
L (θb)δK

U2,V2
L (θb)〉c =

1

ΞL

[

KU1,U2

L (θb) K
V1,V2
L (θb) +KU1,V2

L (θb) K
U2,V1
L (θb)

]

.(5.11)
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The explicit expressions for the scatter and covariance that we will require are listed below:

〈δKA,0
L δKA,0

L′ 〉 ≡ δLL′

2f−1
sky

ΞL
A2

0

[

KΘ2,Θ2

L

]2
; (5.12)

〈δKA,1
L δKA,1

L′ 〉 ≡ δLL′

f−1
sky

ΞL
A2

1

[

KΘ2,Θ2

L KΘ∇2Θ,Θ∇2Θ
L + [KΘ2,Θ∇2Θ

L ]2
]

; (5.13)

〈δKA,2
L δKA,2

L′ 〉c = δLL′

f−1
sky

ΞL
A2

2

[

4KΘ∇2Θ,Θ∇2Θ
L K∇Θ∇Θ,∇Θ·∇Θ

L + 4 [KΘ∇2Θ,∇Θ·∇Θ
L ]2

+4KΘ∇2Θ,∇Θ·∇Θ
L K∇Θ·∇Θ,∇Θ·∇Θ

L + 2 [K∇Θ·∇Θ,∇Θ·∇Θ
L ]2

]

; (5.14)

〈δKA,3
L δKA,3

L′ 〉 ≡ δLL′

2f−1
sky

ΞL
A2

3

[

K∇Θ·∇Θ,∇Θ·∇Θ
L

]2
. (5.15)

Note that K̂A,2
ℓ gets contributions from two separate terms. Here fsky is the fraction of sky-

coverage for the survey under consideration. Notice that unlike the skew-spectra and their
generalisations introduced in ref.[43] kurtosis-spectra are not correlated in the limiting case
of all-sky coverage. In this respect they are similar to the ordinary power spectrum. The
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individual expressions depends on the power spectrum:

KΘ2,Θ2

L = 2
1

ΞL

ℓmax
∑

{ℓi}=2

I2ℓ1ℓ2LC
t
ℓ1C

t
ℓ2 ; (5.16)

KΘ∇2Θ,Θ∇2Θ
L =

1

ΞL

ℓmax
∑

{ℓi}=2

I2ℓ1ℓ2L [Πℓ1 +Πℓ2 ] Πℓ2Ctℓ1 C
t
ℓ2 . (5.17)

KΘ2,Θ∇2Θ
L = − 1

ΞL

ℓmax
∑

{ℓi}=2

I2ℓ1ℓ2L [Πℓ1 +Πℓ2 ] Ctℓ1C
t
ℓ2 (5.18)

K∇Θ·∇Θ,∇Θ·∇Θ
L =

1

2

1

ΞL

ℓmax
∑

{ℓi}=2

I2ℓ1ℓ2L [Πℓ1 +Πℓ2 −ΠL]
2 Ctℓ1C

t
ℓ2 (5.19)

KΘ∇2Θ,∇Θ·∇Θ
L = − 1

ΞL

ℓmax
∑

{ℓi}=2

I2ℓ1ℓ2L [Πℓ1 +Πℓ2 −ΠL] Πℓ2 Ctℓ1C
t
ℓ2 ; (5.20)

KΘ2,∇Θ·∇Θ
L =

1

ΞL

ℓmax
∑

{ℓi}=2

I2ℓ1ℓ2L [Πℓ1 +Πℓ2 −ΠL] Ctℓ1C
t
ℓ2 , (5.21)

where Ctℓ is the total power spectrum, including contributions from detector noise. The
expressions are symmetric under exchange of indices that are summed over i.e. ℓ1 and ℓ2 and
we can restrict the summation to the upper triangular matrix

∑ℓmax

{ℓi}
= 2

∑ℓmax

ℓ1=2

∑ℓmax

ℓ2=ℓ1
. We

have included the expression in Eq.(5.21) will be required for the calculation of covariances.
The signal-to-noise [S/N] for individual modes for a given spectrum on the other hand can
be expressed as:

[S/N]
A,(i)
L (θb) =

√

〈[KA,(i)
L (θb)]2〉/〈[δKA,(i)

L (θb)]2〉 i ∈ {0, 1, 2}. (5.22)

In our estimates of scatter we neglect contributions from terms describing higher-order non-
Gaussianity such as the trispectrum. Thus, our results provide accurate results in the noise-
dominated regime. For high sensitivity experiments Monte-Carlo simulation is the only
way to evaluate the scatter. Also, we have assumed a uniform white noise, whereas in
real experiments the noise will be non-uniform. Such complications can only be dealt with
by running simulations. The parameters for a few ongoing and planned experiments are
tabulated in Table 1, and the corresponding cumulative S/N for various estimators are listed
in Table 2.

The estimators and the scatter are not independent. To compute the cross-correlation

– 17 –



in scatter we will need the following expressions:

〈δKA,0
L δKA,1

L′ 〉c ≡ δLL′

2f−1
sky

ΞL
A0A1

[

KΘ2,Θ2

L KΘ2,Θ∇2Θ
L

]

; (5.23)

〈δKA,0
L δKA,2

L′ 〉c ≡ δLL′

2f−1
sky

ΞL
A0A2

[

2KΘ2,Θ∇2Θ
L KΘ2,∇Θ·∇Θ

L + [KΘ2,∇Θ·∇Θ
L ]2

]

; (5.24)

〈δKA,0
L δKA,3

L′ 〉c ≡ δLL′

2f−1
sky

ΞL
A0A3

[

KΘ2,∇Θ·∇Θ
L

]2
; (5.25)

〈δKA,1
L δKA,2

L′ 〉c = δLL′

f−1
sky

ΞL
A1A2

[

2KΘ2,∇Θ·∇Θ
L KΘ∇2Θ,Θ∇2Θ

L

+2KΘ∇2Θ,∇Θ·∇Θ
L KΘ2,Θ∇2Θ

L +KΘ2,∇Θ·∇Θ
L KΘ∇2Θ,∇Θ·∇Θ

L

]

; (5.26)

〈δKA,1
L δKA,3

L′ 〉c = δLL′

2f−1
sky

ΞL
A1A3

[

KΘ2,∇Θ·∇Θ
L KΘ∇2Θ,∇Θ·∇Θ

L

]

; (5.27)

〈δKA,2
L δKA,3

L′ 〉c ≡ δLL′

2f−1
sky

ΞL
A2A3

[

2KΘ∇2Θ,∇Θ·∇Θ
L K∇Θ·∇Θ,∇Θ·∇Θ

L

+[K∇Θ·∇Θ,∇Θ·∇Θ
L ]2

]

. (5.28)

The terms that appear in Eq.(5.23)-Eq.(5.28) can all be expressed in terms of quantities
defined in Eq.(5.16)-Eq.(5.21). Notice that different harmonic modes of different estimators
are uncorrelated in the all-sky limit. These expressions are used to compute the cross-
correlation coefficient among various spectra which are defined below:

rijL (θb) = 〈δKA,(i)
L (θb)δK

A,(j)
L (θb)〉/

√

〈[δKA,(i)
L (θb)]2〉〈[δKA,(j)

L (θb)]2〉; i, j ∈ {0, 1, 2}. (5.29)

Throughout we have ignored mode-mode coupling. The coefficients of cross-correlation rij are
independent of the sky-coverage fsky and normalisation coefficients Ai. Cross-correlation of

generalised spectra KA,i
ℓ and KB,i

ℓ defined in Eq.(4.22)-Eq.(4.23) will vanish in the Gasussian
limit as they will involve odd-order leading terms.

Notice that in our computation of error estimates we have ignored the error in the power
spectrum Cℓ, and assumed that the variances σ2

0 and σ2
1 are known exactly.

5.3 Computation of χ2

The departure between General Relativity (GR) and a modified gravity (MG) model, from
various two-to-two estimators, can be quantified by:

χ2
φφ =

∑

ij

∑

ℓℓ′

δCφφ,(i)ℓ C
φφ
ij,ℓℓ′ δC

φφ,(j)
ℓ′ ; δCφφ,(i)ℓ = Cφφ,(i)ℓ |MG − Cφφ,(i)ℓ |GR (5.30)

We notice from Eq.(A.12)-Eq.(A.15) that we can construct an estimator for δCφφ,(i)ℓ from

each K
A,(i)
ℓ :

Cφφ,(i)ℓ = [N
(i)
ℓ ]−1K

A,(i)
ℓ ; C

φφ
ij,ℓℓ′ = [N

(i)
ℓ ]−1[N

(j)
ℓ′ ]−1〈δKA,(i)

ℓ δK
A,(j)
ℓ′ 〉 (5.31)
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Figure 6. The correlation functions ξA,i(θ) (left-panel) and ξB,i(θ) (right-panel) defined respectively
in Eq.(4.29) and Eq.(4.30) are shown as a function of θ12. A ΛCDM cosmology and GR is assumed.
The solid, dashed, dot-dashed and dotted lines in left panel correspond to (A, 0)× 10−5, (A, 1)× 101,
(A, 2) × 107 and (A, 3) × 107 respectively. In the right panel they correspond to (B, 0) × 10−5,
(B, 1)× 101, (B, 2)× 107 and (B, 3)× 107. We have assumed the smoothing angular scale as θ0 = 10′

and ℓmax = 103.

Table 2. Cumulative [S/N]/fsky for various surveys

KA,3
ℓ KA,2

ℓ KA,1
ℓ KA,0

ℓ

ACTPol 1400 570 6.0 1.0

COrE+ 2300 720 10.0 3.0

Planck 4.0 2.0 8× 10−2 2× 10−2

Using these relations we can directly evaluate the χ2 using the covariance of K
A,(i)
ℓ (which

we will denote as CAij,ℓℓ′) presented in Eq.(5.12)-Eq.(5.15) and Eq.(5.23)-Eq.(5.28). :

χ2
φφ =

∑

ij

∑

ℓ

δKA,i
ℓ [CA]−1

ij,ℓℓ δK
A,j
ℓ′ ; (5.32)

C
A
ij,ℓℓ = 〈δKA,i

ℓ δKA,i
ℓ 〉c; δKA,i

ℓ = KA,i
ℓ |MG −KA,i

ℓ |GR (5.33)

We have used the fact that C
A,i is diagonal for an all-sky experiment. We will specialise

this expression for KA,3
ℓ as the (S/N) is considerably higher for this estimator and the other

estimators have significant correlation with KA,3
ℓ .

6 Results and Discussion

1. The kurt-spectra we have defined depend on the lensing power spectra and the CMB
temperature power spectra. In Fig.1 we show the Cφφℓ as a function of ℓ for various
MG theories. In Fig.2 the low-mulipole sector of the temperature power-spectrum Cℓ
is shown.
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Table 3. ACTPol χ for various models

H2 H3 Q EFT1 EFT2 B0

K3 65 57 17 20 30 18

K2 1.5 1.0 3.9 5.0 7.0 4.0

K1 0.15 0.15 0.04 0.02 0.06 0.05

K0 0.04 0.04 0.01 0.006 0.02 0.01

Table 4. COrE+ χ for various models

H2 H3 Q EFT1 EFT2 B0

K3 94 87 25 26 43 30

K2 17 15 4.3 5.3 7.8 4.8

K1 0.4 0.4 0.1 0.05 0.18 0.13

K0 0.16 0.16 0.04 0.02 0.07 0.05

Table 5. Planck χ for various models

H2 H3 Q EFT1 EFT2 B0

K3 1.7 1.5 0.4 0.5 0.8 0.5

K2 .40 .36 0.1 0.01 0.19 0.1

K1 0.02 0.02 0.006 0.004 0.01 0.008

K0 0.008 0.008 0.002 0.001 0.003 0.003

2. The two-to-two and three-to-one estimators: The two-to-two and three estima-
tors for various theories of gravity are shown in Fig.3 and Fig.4. The expressions in
Eq.(4.22) and Eq.(4.23) define these two spectra. In our construction of these we have
used the approximation T = P, see e.g. Eq.(3.9), thereby ignoring the terms that
involve computation of 6j coefficients. This approximation is commonly used in the lit-
erature and produces results which are reasonably accurate [18, 63]. This simplified our
analytical results. Use of this approximation makes all two-to-two estimators directly
proportional to the lensing potential power-spectra Cφφℓ . The normalisation coefficients
depend on the harmonics ℓ and can be computed once the background cosmology is
known. For the two-to-two spectra the individual ℓ modes are uncorrelated for all-sky
surveys, which makes computation of statistics such as the χ2 statistic rather trivial. It
depends only on the fiducial temperature power spectra. The two-to-two kurt-spectra
for the unresolved point sources can be constructed equally easily. The correlation func-
tions that we can define from these spectra Eq.(4.29) and Eq.(4.30) are shown in Fig.6.
To compute the correlation functions we have included harmonics up to ℓmax = 103

and a FWHM of θ0 = 10′.

The three-to-one spectra defined in Eq.(A.18)-Eq.(A.21) on the other hand depend on
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the lensing spectra through a convolution, which makes their interpretation compli-
cated. Indeed, unlike the two-to-two estimators, the error-covariance of three-to-one
spectra includes off-diagonal terms, even in the absence of any mask or non-uniform
noise. In fact, it can be shown that all higher-order spectra at even order which are
constructed by cross-correlating same combination of fields will have diagonal covari-
ance matrix e.g. the ordinary power spectra which is one-to-one. At sixth order, the
three-to-three spectra share the property of the two-to-two spectra, in having diagonal
covariance, with an fsky prescription being used to take into account the mode-mode
coupling. However, any other spectra such as the two-to-one skew-spectra or the three-
to-one kurt spectra will exhibit off-diagonal elements, as they are not an auto-spectra
of a quadratic [Θ2] or cubic [Θ3] combination.

The implementation of three-to-one spectra is also difficult, since to decompose a cubic
combination involving partial derivatives we have to use spinorial spherical harmonics.

3. The variance and cross-correlation: The variance of the estimators is presented
in Fig.7. Of all the estimators we have studied the estimator KA,3

ℓ has the maximum

(S/N) followed by KA,2
ℓ . The (S/N) is typically high for ℓ = 102 − 103. The other two

estimators lack the (S/N) needed to be useful. The expressions in Eq.(5.12)-Eq.(5.15)
gives the expressions for the variance in these estimators. This is in qualitative agree-
ment with ref.[25] where the ordinary kurtosis parameter was studied and was found
to lack the value of (S/N) needed for detection even in a cosmic variance dominated
survey. Eq.(5.23)-Eq.(5.28) defines the cross-correlations. To compute the scatter and
correlation of our estimators are defined in terms of quantities defined in the expressions
in Eq.(5.16)-Eq.(5.21). Computations of these expressions are based on the assumption
that the underlying CMB harmonics are Gaussian. All higher order non-Gaussianities
are ignored, and we have assumed that the noise is independent of pixel position to sim-
plify our analytical results. It is indeed possible to define more sophisticated estimators
that work directly with the Wiener-filtered harmonics [72] to improve the (S/N). For
more accurate estimates of (S/N) it is possible to employ simulation chain using software

such as the Lenspix7 that can handle inhomogeneous noise. The power-spectra Cφφℓ we
have used are based on linear theory. Numerical simulations and non-linear modelling
have been used to compute the nonlinear corrections to Cφφℓ [73]. Such calculations
are lacking at present for many of the MG theories we have considered. Construction
of our estimators do not depend on the shape of Cφφℓ and inclusion of non-linearity is
unlikely to change the qualitative results presented here.

4. MG theories and χ2: In Table 2 we find that surveys such as ACTPol or CoRE+8

should be able to detect the lensing of the CMB in temperature maps with extremely
high S/N. However, a few comments are in order, since we have used a simple model for
covariance. In practice, we will have to deal with inhomogeneous noise, the connected
part of the covariance matrix and any residuals from component separation. The χ2

φφ

defined in Eq.(5.32)-Eq.(5.33) for various survey configuration are displayed in Tables
3,4,5.

However, even if we consider our estimates as no more than an order magnitude estimate
they still are impressive. The models that we have considered are already rejected by

7http://cosmologist.info/lenspix/
8http://www.core-mission.org/
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Figure 7. The cumulative sum of the S/N is plotted as a function of ℓ. The solid, dashed, dot-dashed

and dotted lines correspond to K
(0)
ℓ , K

(1)
ℓ , K

(2)
ℓ and K

(3)
ℓ . The S/N is defined in Eq.(5.22). The

individual modes of a given kurt-spectra are uncorrelated. However, for a given ℓ the estimates of
various kurt-spctra are correlated. The correlation coefficients defined in Eq.(5.29) are plotted as a
function of ℓ in middle and right panel. The middle panel shows r01 (solid-lines), r02 (dashed-lines)
and r03 (dot-dashed lines). The right panel shows r23 (solid-lines), r24 (dashed-lines) and r34 (dot-
dashed lines) respectively. We have taken ℓmax = 3000 and the noise and beam correspond to that of
the ACTPol survey. (see text for more details).

other observational data e.g. the f(R) models. For reference, we note that the designer
f(R) gravity, the constraint on its Compton wavelength parameter (B0) from the latest
Planck-2015 data are presented in ref. [12], B0 < 0.12 (0.04) at 95% C.L. by using the
compilation of temperature and low multipole polarization data, (the number in the
parentheses is the one adding CMB lensing data).

Our study suggests that the future lensing data will further tighten the constraints and
render them comparable to constraints from the local tracers of large-scale structure of
the Universe such as the weak-lensing surveys or galaxy surveys. Also, we have focussed
on MG theories but similar results are expected for neutrino mass hierarchy (Munshi
et al. in prep.).

Inclusion of polarization data will further improve the result. In addition to the surveys
we have focussed there are many surveys that are being planned such as the EBEX9,
Simons Array10 survey or the LiteBird11 surveys.

7 Conclusions and Outlook

In this paper, we have studied how lensing of the CMB can change the topological proper-
ties of temperature and polarization maps by using morphological descriptors such as the
Minkowski Functionals. A perturbative expansion links MFs with the multispectra of the
lensed maps. Recent studies have shown how statistics such as the skew-spectra [40] can be

9http://groups.physics.umn.edu/cosmology/ebex/
10http://cosmology.ucsd.edu/simonsarray.html
11http://litebird.jp/eng/
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valuable in reconstructing MFs of frequency cleaned maps at the level of lensing-secondary
bispectrum, frequency-cleaned tSZ maps [47], maps from weak lensing surveys [48]. The pri-
mary aim of this study was to extend these results to include the lensing induced trispectrum
in the analysis. We have used the kurt-spectra introduced in ref.[70] for this purpose.

The shape of the kurt-spectra is a natural diagnostics in distinguishing different sources
of non-Gaussianity. We construct a set of four kurt-spectra based estimators that are directly
proportional to the power spectrum Cφφℓ of the projected lensing-potential φ, which is a
sensitive probe of the neutrino mass hierarchy and DE equation of state, and thus provide a
set of sub-optimal estimators for the reconstruction of lensing potential power spectrum. We
have used them to study various MG theories.

1. Component Separation using non-Gaussianity: kurt-Spectra and topology

of reionization: It was pointed out in ref.[46] that lensing (a gravitational secondary)
and kSZ (a scattering secondary) share many interesting properties. Both of these
secondaries lack any frequency information that can help them to separate from primary
CMB. These secondaries on the other hand are non-Gaussian and this information
can be used to separate them. The kurtosis is the leading order non-Gaussianity for
both kSZ and lensing of CMB as all odd order contributions vanish for both these
secondaries [74]. While lensing is an important probe of gravitational physics, kSZ
is an important probe of reionization history of the Universe. Reionization can in
principle be inhomogeneous. In ref.[46] only the three-to-one estimator was used and
the non-Gaussian contribution to lensing were ignored. The systematic analysis we
have performed for both three-to-one and two-to-two estimators show that simultaneous
analysis of these two effects is possible, and using the two set of estimators can separate
the contributions without imposing any further constraints. The topological estimators
which we have developed here Eq.(4.22)-Eq.(4.23) or its real-space analogs Eq.(4.29)-
Eq.(4.30) can be employed to understand the topology of inhomogeneous reionization
using data from next generation of experiments (Munshi et al. in prep. 2016). We
provide explicit expressions for the error-analysis of these spectra which are completely
generic and can also be used for kSZ [74].

2. Polarization and separation of gradient and curl modes: In future the measure-
ment of Cφφℓ will be able to provide much tighter constraints on cosmological parameters
using not just the temperature but polarization data. In addition to provide tighter
constraints on neutrino masses, DE models and MG theories the ultimate goal of CMB
experiments will be to detect the primordial gravity wave signals through the measure-
ment of B-polarization. The signal however is confused with lensing effect. The lensing
effect converts the dominant E-polarization to B-modes. The estimators designed here
can be used to separate the signal from primordial gravitational waves and lensing
of E-modes. We incorporated only the gradient modes in our results. However the
curl mode that can be useful also for computing contribution from gravitational wave,
cosmic strings or primordial magnetic field [75] can easily be included in our results.
Generalisation of the results discussed here to polarization will be presented elsewhere.

3. Separation of fNL and gNL: The optimized versions of two-to-two and three-to-one
estimators have been used to probe primordial non-Gaussianity beyond the lowest order
i.e. to separate contributions from τNL and gNL [18]. Although current experimental
results are consistent with null detection of non-Gaussianiy, consistency check from
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future experiments can be performed using the estimators defined here beyond the
lowest order.

The estimators can be generalised to the study of primordial trispectra using CMB
spectral distortions [76].

The pseudo-Cℓ formalism discussed above is sub-optimal but extremely fast and its error
covariance can be computed analytically as we have shown. These estimators are sub-optimal.
However, in near future large fraction of the sky will be covered by experiments which will
have very low detector noise and small FWHM, thus optimality of estimators may not be a
crucial requirement in the future.
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A Explicit Expressions for the Kurtosis-Spectra

A.1 Computation of disjoint or Gaussian contribution

The Gaussian components of the estimators are as follows:

GA,0
L = A0G(a)

L ; (A.1)

GA,1
L = −A1G(b)

L ; (A.2)

GA,2
L = −A2

[

Π2
L G

(a)
L − G(c)

L

]

; (A.3)

GA,3
L = A3

[

ΠL
2G(a)

L − 2ΠLG(b)
L + G(c)

L

]

; (A.4)

G(a,b,c)
L =

1

2π

∑

ℓ1ℓ2

Z(a,b,c) I2ℓ1Lℓ2Cℓ1Cℓ2 ; (A.5)

Z
(a)
ℓ1ℓ2

= 1; Z
(b)
ℓ1ℓ2

= Πℓ1 +Πℓ2 ; Z
(c)
ℓ1ℓ2

= (Πℓ1 +Πℓ2)
2. (A.6)

The first term in each of these expressions denotes the monopole contribution ℓ = 0, and
the second term corresponds to ℓ 6= 0. Notice these expressions depend on the total power
spectrum of both signal (beam-convolved) and noise (which is assumed Gaussian) i.e., Ctℓ =
CSℓ b2ℓ(θ0) + nℓ. The corresponding three-to-one estimators in the Gaussian limit are

GB,0
L = B0 S

(00)
L (A.7)

GB,1
L = 2B1 S

(01)
L (A.8)

GB,2
L = B2 [S

(20)
L − S

(02)
L ] (A.9)

GB,3
L = B3 [S

[20]
L + S

[02]
L − 2S

[11]
L ], (A.10)

where we have introduced the quantities Spqℓ to simplify the expressions:

SpqL =
CL
ΞL

∑

ℓ1ℓ2

Cℓ1
Ξℓ2

ΠpL(Πℓ1 +ΠL)
qCℓ1I2ℓ1Lℓ2 . (A.11)

If we use the same normalisation as the two-to-two estimators we have Ai = Bi.

A.2 Lensing induced two-to-two Kurtosis-Spectra K
A,(i)
ℓ

We will specialise the kurt-spectra we have derived in the text of the paper for the special
case of lensing-induced non-Gaussianity. All of the two-to-two spectra or equivalently the
KA,i
ℓ estimators we have studied can be expressed as a product of the lensing power spectrum
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Cφφℓ , times an ℓ-dependent normalisation:

KA,0
L = A0 CφφL

1

Ξ2
L

[E(0)
L ]2; (A.12)

KA,1
L = A1 CφφL

1

Ξ2
L

E(0)
L E(1)

L ; (A.13)

KA,2
L = A2 CφφL

1

Ξ2
L

[

Π2
L[E

(0)
L ]2 − [E(1)

L ]2
]

; (A.14)

KA,3
L = A3 CφφL

1

Ξ2
L

[E(1)
L −ΠLE(0)

L ]2. (A.15)

The factors E(0)
L and E(1)

L depend only on the power spectrum of the unlensed CMB sky Cℓ
and are defined below :

E(0)
L ≡

∑

ℓ1ℓ2

fℓ1Lℓ2Iℓ1Lℓ2 ; E(1)
L ≡

∑

ℓ1ℓ2

(Πℓ1 +Πℓ2)fℓ1Lℓ2Iℓ1Lℓ2 . (A.16)

For point sources we can use the expressions Eq.(A.12)-Eq.(A.15) by redefining the E matri-
ces:

Eps,(0)
L ≡

∑

ℓ1ℓ2

I2ℓ1Lℓ2 ; Eps,(1)
L ≡

∑

ℓ1ℓ2

(Πℓ1 +Πℓ2)I
2
ℓ1Lℓ2 . (A.17)

The normalisation coefficients Ai will remain unchanged but the Cφφℓ will have to be replaced
with the amplitude for the unresolved point source trispectrum tps introduced in Eq.(3.16).

A.3 Lensing induced three-to-one Kurtosis-Spectra K
B,(i)
ℓ

In this section we will compute the three-to-one term from lensing. The construction of
the estimator follows exactly same procedure as for the two-to-two estimator. We list the
expressions below :

KB,0
L = A0

1

ΞL

∑

ℓ

Cφφℓ
Ξℓ

D(0)
ℓL E

(0)
ℓ ; (A.18)
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1
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L
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ℓL E

(0)
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ℓL E
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ℓ

]

; (A.19)
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∑
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Ξℓ

[

Π2
ℓD

(0)
ℓL E

(0)
ℓ −D(1)

ℓL E
(1)
ℓ

]

; (A.20)

KB,3
L = A3

1

ΞL

∑

ℓ

Cφφℓ
Ξℓ

[

(ΠℓD(0)
ℓL −D(1)

ℓL )(ΠℓE
(0)
ℓ − E(1)

ℓ )
]

. (A.21)

The amplitudes Ai are same as the ones for the corresponding two-to-two spectra introduced
before. We have introduced the following quantities to simplify our notation:

D(0)
ℓ L ≡

∑

ℓ′

fℓ′LℓIℓ′Lℓ; D(1)
ℓ L ≡

∑

ℓ′

(Πℓ +Πℓ′)fℓ′LℓIℓ′Lℓ. (A.22)
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Note that the D matrices are not symmetric in their indices. The quantities E(0)
L and E(1)

L

defined in Eq.(A.16) can now be expressed in terms of D(0)
ℓL and D(1)

ℓL :

E(0)
L ≡

∑

ℓ

D(0)
ℓL ; E(1)

L ≡
∑

ℓ

D(1)
ℓL . (A.23)

From Eq.(A.18)-Eq.(A.21), notice that the three-to-one estimator, unlike the two-to-two
estimators, cannot be written in terms of the lensing power spectrum times an ℓ-dependent
normalisation factor. Instead, it involves a convolution, encapsulated in the D matrices. For
point sources we have:

Dps,(0)
ℓL ≡

∑

ℓ′

I2ℓ′Lℓ; Dps,(1)
ℓL ≡

∑

ℓ′

(Πℓ +Πℓ′)I
2
ℓ′Lℓ. (A.24)

The covariances of the first two of these estimators can be computed using similar technique
as before:

〈δKB,1
ℓ δKB,1

ℓ′ 〉 = δℓℓ′ 6
1

Σ2
ℓ

CℓQℓ + CℓCℓ′
1

Ξℓ

1

Ξℓ′
RℓRℓ′ ; (A.25)

〈δKB,2
ℓ δKB,2

ℓ′ 〉 = δℓℓ′ 6
Π2
ℓ

Σ2
ℓ

CℓQℓ + CℓCℓ′
Πℓ
Ξℓ

Πℓ′

Ξℓ′
RℓRℓ′ . (A.26)

The new quantities we have introduced are

Qℓ =
∑

ℓi=2

∑

L

Cℓ1Cℓ2Cℓ3I2ℓ1ℓ2LI
2
Lℓ3ℓ (A.27)

Rℓ =
∑

ℓ2

∑

L

Cℓ2I2Lℓ2ℓ. (A.28)

We have assumed the absence of any parity-violating physics, and ignore the L = 0, as
discussed before. The results are valid for all-sky coverage. The two-to-two estimators and
their three-to-one counterparts are decorrelated in the Gaussian limit as the leading order
terms take contribution from odd-order multispectra.

B Recovery of the Generalised Kurtosis Parameters

The generalised kurtosis can be recovered using either the two-to-two or three-to-one kurt-
spectra by using the Eq.(4.25), and are given by the following expressions:

K(0) =
∑

L

CφφL
ΞL

E(0)
L

2
; (B.1)

K(1) = 2
∑

L

CφφL
ΞL

E(0)
L E(1)

L ; (B.2)

K(2) =
∑

L

CφφL
ΞL

[

Π2
L E

(0)
L

2
− E(1)

L

2
]

; (B.3)

K(3) =
∑

L

CφφL
ΞL

[

ΠL E(0)
L − E(1)

L

]2
. (B.4)
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The quantities E(0)
L and E(1)

L are given in Eq.(A.16). To compute corresponding estimates for

the point sources we have to replace CφφL by the amplitude tps and E(i)
L with their point-source

analogues Eps,(i)
L defined in Eq.(A.17).

C Kurt-Spectra as Sub-Optimal Estimators for Lensing Reconstruction

The kurt-spectra KA,i
ℓ , introduced in this paper in Eq.(4.26)-Eq.(4.28), are constructed from

a combination of cross-spectra such as KΘ2, Θ2

ℓ , KΘ2,Θ∇2Θ
ℓ , or in general K

Ψα,Ψβ

ℓ , where Ψα

and Ψβ are chosen form {Θ2,Θ∇2Θ,∇Θ · ∇Θ}. The multipole expansion of the derived
temperature maps Ψα are a set of quadratic statistics that can be used as sub-optimal
estimators for reconstruction of lensing potential φ as we will see below.

The harmonic coefficients of the lensing potential φℓm in general can be expressed in
terms of such quadratic combination Ψ with a suitable ℓ normalization through a convolution
which depends on the weight function gℓ1ℓ2ℓ:

φ̂ℓm =
1

Ψℓ
Ψ̂ℓm; Ψℓ =

∑

ℓ1ℓ2

gψℓ1ℓℓ2fℓ1ℓ2ℓ. (C.1)

φ̂ℓm =
1

Ψℓ

∑

ℓ1m1

∑

ℓ2m2

(−1)mgΨℓ1ℓℓ2

(

ℓ1 ℓ2 ℓ
m1 m2 −m

)

Θ̂ℓ1m1
Θ̂ℓ2m2

. (C.2)

For a specific choice of Ψ the resulting weights are listed below:

gΘ
2

ℓ1ℓ2ℓ = Iℓ1ℓ2ℓ; gΘ∇2Θ
ℓ1ℓ2ℓ = −Πℓ1Iℓ1ℓ2ℓ; g∇Θ·∇Θ

ℓ1ℓ2ℓ =
1

2
Iℓ1ℓ2ℓΛℓ1ℓℓ2 . (C.3)

This result is completely generic and does not depend on a specific choice of the weighting
function gℓ1ℓ2ℓ, although we have approximated T = P . Additional terms will contribute to
bias and can be removed for any practical application.

Reconstruction of individual harmonics φlm is expected to be noise-dominated so the
reconstruction is typically carried out for the power-spectrum Cφφl of the lensing potential φ.

Thus we can construct a series of estimator for Cφφℓ using the two-to-two estimators.

Ĉ(α,β),φφ
ℓ =

1

Ψ
(α)
ℓ Ψ

(β)
ℓ

K̂
(α,β)
ℓ (C.4)

The other set of estimators that we have studied i.e. K
B,(i)
l involves a convolution of Cφφ

ℓ
and temperature power spectrum C̄l. Though these estimators can not be used directly for

reconstruction of Cφl they can be used for cross-validation of results obtained using K
A,(i)
l .

For the optimal estimator presented in Ref.[64] the weight function gℓ1ℓ2ℓ takes the
following form: gℓ1ℓ2L = (fℓ1ℓℓ2/C̄ℓ1 C̄ℓ2). Though primarily designed to analyse the morpho-
logical properties, they can also work as sub-optimal estimators for lensing reconstruction and
are faster than their optimal counterpart, as they can be implemented using the pseudo-Cℓ
approach described in §5.
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