
 1

Workshop

Statistical Computing: descriptive statistics
with R
Andy Buerki

Overview
Descriptive statistics aim to describe a data set, typically a sample of a larger
population of interest, by summarising and visualising selected trends and
features. Deriving descriptive statistics can be the goal of an analysis or, more
often, a vital step in understanding the structure of data before the application
of inferential statistics. The clear and accurate presentation of descriptive
statistics is also of key importance in write-ups of research that features
quantitative aspects.
 This workshop focuses on using R to produce descriptive statistics
from data sets, including high-quality plots and graphs that are of the right
quality for submission to journals. The advantage of using R is that once the
basics are mastered, it is very quick and easy to produce an array of high
quality measures and graphs. R is today the tool of choice for quantitative
linguists due to its power, flexibility and expandability. In this workshop we are
going to use R through an interface called R Studio which facilitates an
enhanced user experience.

Aims
By the end of the workshop,

• participants will have produced a set of key descriptive statistics
measures and visualisations for an example data set provided.

• Using guidance on handouts provided, participants should be able to
apply similar techniques to produce descriptive statistics for their own
data sets.

• Participants will be in a position to judge the potential of R and
therefore whether they wish to invest in learning more about using R
for descriptive statistics.

Topics
Basics • Elements of the R Studio interface

• Importing and exporting data into and out of R
• Data manipulation in R: displaying, partially displaying,

copying and creating data objects
Descriptive
statistics I

• Data summarisation functions
• central tendency and dispersion
• checking distributions
• frequency tables
• layout, size formatting and file formats for graphs

 2

Descriptive
statistics II

Figures:
• scatterplots, bar plots, histograms, line graphs, pie

charts, boxplots, interaction plots, etc.
• adjusting scales, adding axis labels and legends, titles,

regression lines, dot shapes and colours, etc.

Prerequisites
No prior knowledge of R is assumed, but good computer skills and previous
knowledge of basic descriptive statistics will be very helpful.

Software installation
For the workshop, university laptops with R and R Studio pre-installed will be
supplied. To install R and R Studio on other university-owned computers
running Windows, there is an installer in Cardiff Apps > Cardiff Apps > School
Applications > ENCAP . To install the software on any other computer,
download and install, in this order, R (http://www.stats.bris.ac.uk/R/) and R
Studio (http://www.rstudio.com/). Both R and R Studio are free.

Reading List
No preparation is required for the workshop, but for keen participants, I would
recommend chapters 2, 3 & 4 of Levshina (2015) as and introduction before
the workshop, and Chang (2013) as a follow-up and resource for further
learning.

Levshina, N. (2015). How to do Linguistics with R: Data exploration and

statistical analysis, Amsterdam: Benjamins.
Chang, W. (2013). R Graphics Cookbook, Farnham: O’Reilly.

 3

R Basics

First off, R is unforgiving about typos, so unless names of objects and everything
else is typed exactly right, we will get errors or unexpected results.

1 Creating copying, importing and removing objects,
Objects are created using arrows to a name
AGE<-c(37,24,30,46) or c(8,6,5,10)->SCORES
c("m","f","m","f")->GENDER
The most useful data format is a data frame in R. To make a data frame out of
existing variables:
our.data<-data.frame(GENDER, AGE, SCORES)
To import an existing data set (e.g. from an Excel spreadsheet, saved/exported
as .csv file), use R Studio’s Import Dataset button (in the ‘Environment’ pane) or, if
the file is local:
our.data<-read.csv("path/to/file/location")
if the file is remote:
our.data<-read.csv("https://goo.gl/KK4qQ4")
to copy an object we do this: name_of_object -> name_of_object_copy
We remove objects like this: rm(X)
where 'X' is the object to be removed. The object disappears irretrievably after this
command.

2 Exporting data frames
write.csv(X, file="FILENAME.csv",col.names=F)
X is the name of the data frame, FILNAME.csv is the name of the file you want to
create.

3 Editing data frames
If you feel more confident doing this in Excel, that's fine, just export and re-import the
data frame into R as seen above. Within R, the following command can be used to
make minor changes:
fix(X)
where X is the name of the data frame. Make changes in the window that comes up,
save and close. You can change the name of variables by clicking on them. Some
edits (like removing or re-ordering columns or rows) cannot be done with fix(). See ‘6
change data frames' below for how to do such things.

4 Navigating data frames
Often we want to display only certain parts of a data
frame, either because the whole thing is too big or
because we want to use data in a sub-part in a certain
function. Here's how to pick out subsets of values from a
data frame (all commands are relative to the data frame
our.data displayed on the right)

 AGE GENDER SCORES

1 37 m 8
2 24 f 6
3 30 m 5
4 46 f 10

 4

Picking out values WITHOUT column names and row numbers (this only picks out
the values themselves and this is usually what you want if you use the values as
input to a function):
- we use the '$' sign after the name of data frame to specify the column name
- we can further specify the rows to be displayed in square brackets []
our.data$AGE displays the values of the variable AGE inside our.data
our.data$AGE[c(1,4)]
 displays the values in row 1 AND 4 of the variable AGE inside our.data
our.data$AGE[1:3]
 displays the values in row 1 TO 3 of the variable AGE inside our.data
our.data$AGE[our.data$GENDER == "m"]
 displays the values of AGE where GENDER is 'm'
We can now put those values we pick out into a function like mean():
mean(our.data$AGE[our.data$GENDER == "f"])
 displays the mean age of males in our data

5 Copy data frames (it's a good idea to make a backup copy before changing data
frames)
To copy a data frame (for backup for example) we can export it (see above) or just
put it it under a new name
our.data->bkup.our.data
now 2 identical data frames exist under our.data and bkup.our.data

6 Change the order of variables or cases in data frames
While this can be done within R, it is often easier to export to a spreadsheet
application and re-importing into R. Here are some functions that can easily be
performed within R:
To add a new column, we just tell R what data to put where, e.g.
our.data$AGE*2 we display each value in AGE, multiplied by 2
our.data$AGE*2->our.data$DBL.AGE we put it into a column called
DBL.AGE in our.data
our.data[order(our.data$AGE),] -> our.data_ordered_by_age this
orders the data frame our.data by AGE

7 Converting variables between character, factor, ordered factor and numeric
Here is how we can make certain R uses the correct type for a variable
c(1,2,3,4,5)-> a
This creates a vector with numbers 1 to 4. This will automatically be a numeric type
as.character(a)-> a now the type is changed to character
as.factor(a)-> a now the type is changed to factor (= categorical variable)
as.numeric(a)-> a now the type is changed back to numeric (= interval
variable)
To create an ordinal variable, we might do this
ranks=c("first","third","second","first","third") this created a

 5

vector of character type
ordered(ranks,c("first","second","third"))
created a vector of type ordered factor (=ordinal variable). The ‘ordered’ function
takes the data vector first, then then you need to indicate the ordering after the
comma.

As a reminder, here are the levels of measurement:
Levels of measurement

• ratio scale (for present purposes no different from interval scale)
represented in R as numeric variables

• Interval scale (values are scaled with equidistant intervals, e.g. 4 is
twice as much as 2) represented in R as numeric variables

• Ordinal scale (values are ordered but not necessarily w/ equal intervals,
e.g. 4th place is not (necessarily) twice 2nd place) represented in R as
ordered factors

• Nominal / categorical scale (values cannot be ordered, just different,
e.g. ‘male’ vs. ‘female’) represented in R as factors

• Frequencies: typically need to be treated as frequencies of categories,
but can occasionally be abstracted into a ‘measure’ of an interval scale,
e.g. number of letters in the orthographic form of a word as a measure
of the length of a word. Represented in R as numeric variables.

8 Getting an overview
These functions give an overview of a data frame:
length(X) gives the number of columns (or other elements) in X
str(X) displays information about the data frame X
summary(X) displays a summary of the data frame X

9 Obtaining basic descriptive metrics
mean(X) the mean of the variable X
median(X) the median of the variable X
sort(table(X)) the mode of the variable X can be read off the output
range(X) or diff(range(X)) the range of the variable X
quantile(X) the quartiles of variable X
quantile(X)[4]-quantile(X)[2] the interquartile range of X
sd(X) the standard deviation of the variable X
var(X) the variance of the variable X
table(X) / table(X,Y) / prop.table(table(X,Y)) frequency tables

 6

Figures
The following are some of the most often used graphs

a) scatter plot – for two interval/ratio variables
b) bar graphs – for (frequencies of) categorical variables
c) histograms – for interval/ratio variables
d) line graphs – to plot progressions over time of central tendencies of an

interval/ ratio variable or frequencies of categorical variables
e) pie chart – for categorical variables
f) box plots – for interval/ratio variables

Fr
eq
ue
nc
y

200 800 1600

0
20

60

female

male

20
30

40
50

f m

0
1

2
3

4

0 10 20 30 40 50 60

0
2

4
6

8
10A B C

D
E F

 7

R code for graphs

Figure Use R command
scatterplot

typically two interval/ratio
variables, although ordinal
variables can be plotted
here as well you can add a
prediction line using
abline(lm())

plot(X, Y)
abline(lm(Y~X))

barplot one or more categorical
variables

barplot(table(X,Y), beside=T,
legend=c("a","b"))

histogram

one interval/ratio variable
that is continuous

hist(X, breaks=10)

line graph on the x-axis you need a
variable at least on an
ordinal level, typically
involving time periods
on the y-axis you can either
have the values of an
interval/ratio variable for
frequencies of a categorical
one

plot(type="l", X,Y)
lines(type="l",X,Z)

pie chart

one categorical variable pie(table(X),
labels=c("a","b"))

boxplot one or more interval ratio
variables

boxplot(X,Y,Z)
text(1:3, c(mean(X),
mean(Y),mean(Z)),c("+","+","+")

R commands to adjust graphs
xlim=c(0,10), ylim=c(0,10) to set the minimum and maximum values for x-axis (xlim) or y-
axis (ylim)
xaxt="n", yaxt="n" suppress the drawing of x-axis (xaxt) or y-axis (yaxt); usually because we
want to add those later using axis(), see below
main="main title" to supply a main title for the graph
xlab="name", ylab="name" to name the x-axis (xlab) or y-axis (ylab)
col=c("white", "grey20", "grey60", "grey80", "black") to define the colours
with which variables are drawn. Include as many colours as you have variables)
In combination with plot(): type="l" this indicates: "l" = line (as opposed to points), "b" = both
lines and points, "s" = stairs, "h" = histogram-type lines
In combination with plot(): pch=1 point character; try out values 1 to 25 to see the different styles
 lty=1 line type, you can try out different values and see what they look like
 lwd=1 # the weight of lines drawn, a higher number draws a bolder line
To add an axis: (while drawing the plot, use xaxt="n" / yaxt="n" to suppress the automatic axes)
axis(1, at=c(1,2,3), labels=c("a","b","c"))

1=x-axis, 2=y-axis where (at which values) on the axis to place tick marks labels the
tick marks with the labels provided
with any plot, the tick marks can be changed by using yaxp=c(0,3,3) or (xaxp for the x-axis)
where the first number is the first (normally 0) and the second number the last tick mark, and the third
number is the number of tick marks you’d like.

