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Resonant-state expansion of light propagation in non-uniform waveguides

S. V. Lobanov,1, ∗ G. Zoriniants,1 W. Langbein,1 and E. A. Muljarov1, †

1School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA, United Kingdom
(Dated: April 5, 2017)

A new rigorous approach for precise and efficient calculation of light propagation along non-
uniform waveguides is presented. Resonant states of a uniform waveguide, which satisfy outgoing-
wave boundary conditions, form a natural basis for expansion of the local electromagnetic field.
Using such an expansion at fixed frequency, we convert the wave equation for light propagation in a
non-uniform waveguide into an ordinary second-order matrix differential equation for the expansion
coefficients depending on the coordinate along the waveguide. We illustrate the method on several
examples of non-uniform planar waveguides and evaluate its efficiency compared to the aperiodic
Fourier modal method and the finite element method, showing improvements of one to four orders
of magnitude. A similar improvement can be expected also for applications in other fields of physics
showing wave phenomena, such as acoustics and quantum mechanics.

PACS numbers: 03.50.De, 42.25.-p, 03.65.Nk

I. INTRODUCTION

Uniform optical waveguides (WGs), such as a dielec-
tric slab in vacuum, are translationally invariant systems
which support bound states of light called WG modes [1].
These modes present a small, though significant subgroup
of a larger class of resonant states (RSs) of an optical
system, among which there are also unbound solutions,
such as Fabry-Perot (FP) and anti-WG modes [2]. For-
mally, RSs are the eigenmodes of an open optical system,
which satisfy either incoming or outgoing wave boundary
conditions (BCs), and describe, with mathematical rigor,
optical resonances of different linewidth which exist in
the system. WG modes correspond to infinitely narrow
resonances, representing stable propagating waves.

Non-uniform WGs have a varying cross-section along
the main propagation direction. An electromagnetic
(EM) wave, initially excited in a WG mode of a uniform
region, is scattered on WG inhomogeneities and can thus
be transferred into other WG modes, see an example in
Fig. 1. However, some part of the EM energy leaks out of
the system, an effect which is often treated using a con-
tinuum of radiation modes [1]. This treatment does not
make use of the natural unbound RSs, and is numerically
costly, as an artificial discretization of the continuum has
to be introduced. Using instead the contributions to the
EM field of all RSs, including the unbound ones, the role
of the radiation continuum can be minimized or even
fully eliminated. This is achieved by modifying the con-
tour of integration over the continuum in the complex
wave number plane, as was suggested e.g. in Ref. [3, 4],
or by making a transformation from the frequency to the
wave number plane [2].

Several numerical methods of computational electro-
dynamics are presently employed for modelling of light

∗Electronic address: LobanovS@cardiff.ac.uk
†Electronic address: egor.muljarov@astro.cf.ac.uk

propagation in non-uniform WGs. One popular approach
is the aperiodic Fourier modal method (a-FMM) [5–8], a
generalization of the standard FMM [9–11], which allows
to treat an open WG by introducing an artificial periodi-
city and a perfectly matched layer (PML) [6, 12]. Other
approaches include the finite difference in time domain
method [13, 14] or the finite element method [15], both
using a PML to mimic the outgoing wave BCs. Furt-
hermore, the multimode moment method [16], the mode
matching technique [17], and the eigenmode expansion
method [18] use the eigenmodes of homogeneous WG re-
gions explicitly, expanding the EM field in each uniform
region into its own WG and radiation modes and then
matching the field at inhomogeneities. Typically such
expansions are limited to only WG modes [19, 20] neg-
lecting the radiation continuum, which simplifies the cal-
culation but results in systematic errors which are hard
to control.

In this paper, we present the waveguide resonant-state
expansion (WG-RSE), a new general method, based on
the concept of RSs, for calculating light propagation in
WGs with varying cross-section. Similar to some of the
methods mentioned above, we expand the EM field into
a complete set of eigenmodes of a homogeneous WG. Ho-
wever, we introduce two major advances: (i) we minimize
the contribution of the radiation continuum by replacing
it with the discrete unbound RSs, and (ii) we expand the
field in all regions of the WG into the same basis RSs,
in this way automatically fulfilling the mode matching
conditions, which enables also treating continuous inho-
mogeneities. Both features are unique to our approach
and make it orders of magnitude more efficient than other
available methods.

II. FORMULATION OF WG-RSE

The formalism of RSs has been recently applied to a
uniform planar WG, and all types of RSs, including WG,
anti-WG, and FP modes were calculated for an infini-
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FIG. 1: (a) Sketch of the scattering geometry and the con-
sidered planar dielectric waveguide with a rectangular hole.
(b) Electric field amplitude for excitation with WG mode 1
at ~ω = 3 eV from the left, on a linear color scale as given,
overlaid with the WG outline. (c) Relative power transmis-
sion Tij , from incoming left WG mode j to outgoing right
WG mode i, as function of the photon energy ~ω.

tely extended dielectric slab surrounded by vacuum [2].
It has also been shown that in spite of their exponential
growth outside the WG, unbound RSs naturally discre-
tize the continuum of radiation modes and are suited for
expansion of the EM field inside the WG.

Based on the concept of RSs, a rigorous approach in
electrodynamics called resonant-state expansion (RSE)
has recently been developed [21], enabling accurate cal-
culation of RSs in photonic systems [22–26]. The RSE
calculates RSs of a given optical system using RSs of a
basis system which is typically analytically treatable, as
a basis for expansion, and maps Maxwell’s wave equation
onto a linear matrix eigenvalue problem. This approach
has been applied to uniform WGs [2] for the case of a
fixed real in-plane propagation wavevector. For the des-
cription of propagation along a waveguide, we consider
here instead RSs for a fixed real frequency, having in
general complex in-plane wavevectors, and use them to
formulate a fixed-frequency RSE for homogeneous parts
of WGs. To treat non-uniform WGs, we expand the EM
field into the basis RSs, with expansion coefficients va-
rying along the WG. The propagation along the WG is
then simply expressed by an ordinary second-order ma-
trix differential equation for the expansion coefficients,

which is the main result of the WG-RSE.
Let us now develop the general formalism of the WG-

RSE, using as example a non-uniform planar WG in va-
cuum, translationally invariant in y-direction and having
a varying cross-section in the z-direction, as sketched in
Fig. 1(a). The light propagation in this system is descri-
bed by Maxwell’s equations, which are reduced to a 2D
scalar wave equation(

∂2

∂x2
+

∂2

∂z2
+ ω2ε(x, z)

)
E(x, z) = 0 (1)

in the case of a TE-polarized electric field of the form
E(r, t) = ŷe−iωtE(x, z), oscillating with a fixed frequency
ω > 0, where ε(x, z) is the permittivity of the WG, ŷ is
the unit vector along the y-axis, and the speed of light
in vacuum c = 1 is used.

To solve Eq. (1) we introduce a basis waveguide (BWG)
which is defined as an infinitely extended homogeneous
dielectric slab in vacuum, having a constant permittivity
ε and a thickness 2a including all variations of the permit-
tivity ε(x, z) along the non-uniform WG. The solution of
Eq. (1) outside the BWG is known to be a superposition
of plane waves exp(ipz ± ikx) with real wavenumbers p,

and k =
√
ω2 − p2 positive real for |p| < ω (outgoing

propagating waves) and positive imaginary for |p| > ω
(evanescent waves). This allows us, using Maxwell’s BCs,
to reduce the problem Eq. (1) to the BWG region |x| 6 a
only, supplemented by the two BCs(

i
d

dx
±
√
ω2 − p2

)
Ẽ(x, p) = 0 at x = ±a (2)

for the Fourier transform (FT) Ẽ(x, p) of the field E(x, z)
with the respect to z. Equation (1) is then Fourier trans-
formed in the same manner, yielding(

d2

dx2
+ ε ω2 − p2

)
Ẽ(x, p) = −ω2Ṽ (x, p) ∗ Ẽ(x, p) , (3)

where Ṽ (x, p) is the FT of V (x, z) = ε(x, z) − ε, the
perturbation of the permittivity inside the BWG region,
and ∗ denotes the convolution over p. We solve Eqs. (2)
and (3) using the Green’s function (GF) G of the BWG
for |x| 6 a, satisfying the equation(

d2

dx2
+ ε ω2 − ξ

)
G(x, x′; ξ) = δ(x− x′) (4)

and the BCs Eq. (2) at x = ±a, where we have defined
ξ = p2. This yields the integral equation

Ẽ(x, p) = −ω2

a∫
−a

dx′G(x, x′; p2)
(
Ṽ (x′, p) ∗ Ẽ(x′, p)

)
.

(5)
Being considered in the complex ξ-plane, G(x, x′; ξ) has

simple poles at ξn = ω2−k2
n, corresponding to RSs of the

BWG, and, owing to the square root in the BCs Eq. (2),
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FIG. 2: (a) RS wave numbers – poles of the GF of the BWG
in the complex k-plane. The red line splits the k-plane into
physical and unphysical half-planes, according to the cut Γ in
the ξ-plane. (b) Poles on the physical (circles) and unphysical
(crosses) Riemann sheet and the cut (red line) of the GF in
the complex ξ-plane, calculated for a photon energy ~ω of
3 eV (ωa ≈ 3.04).

a cut Γ, going from ξ = ω2 to infinity, and splitting the
ξ-plane into two Riemann sheets. The GF has to be
single valued and thus it is defined using only one of the
Riemann sheets. This “physical” sheet should respect
the before mentioned outgoing boundary condition that

k =
√
ω2 − ξ is positive real or positive imaginary on the

real half-axis ξ > 0. This requires that Γ does not cross
the ξ > 0 half-axis, since if Γ would cross the half-axis at
ξc > 0, the right and left limits of k(ξ) towards ξc have
opposite signs, such that the condition to be positive real
or positive imaginary cannot be fulfilled simultaneously
for both limits.

Fig. 2 shows a resulting mapping of the complex k-
plane onto the complex ξ-plane. The cut Γ is chosen here
as a vertical half-axis (red line in Fig. 2(b), corresponding
to the red line in Fig. 2(a)) which divides the k-plane
into two half-planes, one of them corresponding to the
physical sheet. The k-plane contains all possible values
kn of RSs of the BWG, which include WG (ikn < 0),
anti-WG (ikn > 0) and FP (Re(kn) 6= 0) modes [2]. For
the chosen BWG they are roots of the secular equation

(qn − kn)e2iqna = (−1)n(qn + kn), (6)

where qn =
√

(ε− 1)ω2 + k2
n and n is integer, see Ap-

pendix A for details. Only a subset S of the RSs with
kn values located on the physical half plane contributes
as poles to the GF G(x, x′; ξ). Using the properties of
the GF and applying the residue theorem we obtain the
spectral representation of the GF (see Appendix B for
derivation):

G(x, x′; ξ) =
∑∫
n

En(x)En(x′)

ξn − ξ
(7)

≡
∑
n∈S

En(x)En(x′)

ξn − ξ
+

∫
Γ

dξ′
∑
ν=±

Eν(x; ξ′)Eν(x′; ξ′)

ξ′ − ξ
,

where

En(x) =
1

2in

√
kn

kna+ i

(
eiqnx + (−1)ne−iqnx

)
, (8)

E±(x; ξ) =

√
k

4π[α2 cos(2qa)∓ (q2 + k2)]

(
eiqx ± e−iqx

)
,

(9)

α = ω
√
ε− 1, k =

√
ω2 − ξ, q =

√
ε ω2 − ξ, and the

integration is performed along the cut Γ, from the branch
point ξ = ω2 to infinity (ξ = ω2 + i∞).

Equation (7) determines a complete set (see Appen-
dix B) of basis functions inside the BWG, which consists
of all the RSs on the physical sheet and a continuum of
cut states. Here, the cut continuum is the remainder of
the radiation continuum not taken into account by the
FP modes on the physical sheet. Expanding the electric
field E(x, z) inside the region |x| 6 a,

E(x, z) =
∑
n

∫
An(z)En(x) , (10)

and substituting it into Eq. (5) along with the spectral
representation Eq. (7), we obtain∑
n

∫ (
Ãn(p) + ω2 1

p2
n − p2

∑
m

∫
Ṽnm(p) ∗ Ãm(p)

)
En(x) = 0,

(11)

where Ṽnm(p) =
∫ a
−aEn(x)Ṽnm(x, p)Em(x)dx, p2

n = ξn,

and Ãn(p) is the FT of the expansion coefficient An(z).
To satisfy Eq. (11), it is sufficient to require that

p2Ãn(p) = p2
nÃn(p) + ω2

∑
m

∫
Ṽnm(p) ∗ Ãm(p) . (12)

The inverse FT of this equation yields the key equation
of the WG-RSE method:

− d2

dz2
An(z) = p2

nAn(z) + ω2
∑
m

∫
Vnm(z)Am(z) (13)

in which the matrix elements of the perturbation Vnm(z)
are functions of z only, the coordinate along the non-
uniform WG, and are defined by

Vnm(z) =

a∫
−a

En(x)
(
ε(x, z)− ε

)
Em(x)dx . (14)

Notably, Eq. (13) is expected to be applicable also to
WGs with a two-dimensional cross-section, such as fibres,
for which the perturbation in Eq. (14) has to be integra-
ted over the BWG cross section, and ε and pn referring to
a suited BWG, such as a fibre with circular cross-section
which is analytically treatable.

The formalism of the WG-RSE is also applicable in its
present form to WGs with frequency dispersive inhomo-
geneities. Indeed, since the light frequency ω is fixed, the
perturbation ε(x, z)−ε of the permittivity in Eq. (14) can
be taken as frequency dependent and complex, as illus-
trated in the example in Sec. III C.
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III. APPLICATIONS OF THE WG-RSE

The main equation of the WG-RSE, Eq. (13), is an or-
dinary second-order matrix differential equation for the
vector An(z) of the amplitudes of the field expansion into
the basis functions, which can be integrated analytically
or numerically. For numerical integration, one can use a
highly accurate finite-difference scheme, such as a fourth-
order linear multistep algorithm [27], recently implemen-
ted for solving a one-dimensional matrix Schrödinger’s-
like equation [28].

The analytic integration of Eq. (13) is possible in ho-
mogeneous regions of the non-uniform WG, in which Vnm
do not depend on z. In this case An(z) become superpo-
sitions of e±iκzcn, where κ and cn are respectively the
eigenvalues and eigenvectors of the linear matrix problem∑

m

∫
(p2
nδnm + ω2Vnm)cm = κ2cn , (15)

which is the matrix equation of the fixed-frequency RSE
for homogeneous planar WGs. Its convergence is studied
in Appendix D. The expansion coefficients of the eigen-
vectors in the propagation follow from Maxwell’s BCs
and can be found using the scattering matrix (S-Matrix)
method, as it is done in the present work, see Appendix E
for details.

For the examples presented in this work, the permitti-
vity and consequently the functions Vnm(z) have a step-
like form, defining regions of constant cross-section. The-
refore the fixed-frequency RSE determines the propaga-
tion wavevectors κ and the corresponding eigenvectors
cn in each homogeneous region, while the S-Matrix sol-
ves Eq. (13) over the whole structure.

Since there is a freedom in choosing the cut Γ, we defi-
ned it in such a way that its contribution is about minimi-
zed. Considering the analytic form of the cut functions,
Eq. (9), it is clear that their normalization constants have
the quickest exponential decrease if the cut starts from
the branch point perpendicular to the real ξ-axis. While
the cut path can be further optimized, e.g. by keeping a
distance to FP modes which cause large cut amplitudes,
in the present work we choose it simply along the imagi-
nary ξ-axis as shown in Fig. 2(b). As a result, the conti-
nuum of radiation modes is replaced by the FP modes in
S, offering a natural discretization, while the cut contri-
bution is minimized. The remaining total pole weight of
the cut, if treated as a stretched pole, is C = C+ + C−,
where

C± =

∫
Γ

∣∣∣∣dξ ka+ i

π[α2 cos(2qa)∓ (q2 + k2)]

∣∣∣∣ , (16)

resulting in values of 1.51, 0.48, and 0.69 for energies of
1 eV, 3 eV, and 5 eV, respectively, for the BWG used in
this work, see Sec. III A.

Conversely, when choosing the cut along the real axis,
going to−∞, S contains WG modes only, whereas the cut

weight C [see Eq. (16)] actually diverges logarithmically.
This case corresponds to using WG and radiation modes
only. Then the expansion Eq. (10) is valid in the entire
space, both inside and outside the BWG, and Eq. (13)
can be obtained by substituting Eq. (10) directly into the
wave equation (1) and using the standard orthonormality
of modes given by the Hermitian inner product. Taking
furthermore the limit ε→ 1 removes the WG modes from
the expansion Eq. (10), leaving only the harmonic functi-
ons exp(ikx) ± exp(−ikx) of the cut. This corresponds
to the FMM.

A. Waveguide with hole

We now illustrate the WG-RSE on an example of a pla-
nar dielectric WG with a hole of length L = 900 nm and
width W = 130 nm, at a distance D = 160 nm from the
edge of the WG, as shown in Fig. 1(a). As BWG we take
the homogeneous part of this WG, with a = 200 nm and
ε = 2.4. For the numerical calculations, we use a finite
basis with N = NWG + NFP + Ncut basis states, which
includes WG, FP, and cut modes, respectively. The sub-
set of FP modes is chosen by truncating the full set of
FP modes on the physical sheet to |kn| < kmax, with a
suitably chosen cut-off kmax while the subset of cut mo-
des is produced by a discretization of the cut, as detailed
in Appendix C.

To demonstrate the efficiency of the WG-RSE, we cal-
culate the S-Matrix Ŝ [11] containing the matrix ele-
ments Sij giving the complex amplitudes of scattering
from incoming WG mode j to outgoing WG mode i.
The examples used in this work have equal WG modes
on both sides, such that we can enumerate them using
i, j = 1, 2, . . . , 2NWG with the lower (higher) half refering
to the modes on the left (right) side of the structure, re-
spectively. The S-matrix determines the power scattering
matrix Pij = |Sij |2. Since the structures considered in
this work have a mirror symmetry plane at z = 0, we
can write the power scattering matrix P̂ as a symmetric
matrix

P̂ =

(
R̂ T̂

T̂ R̂ ,

)
(17)

which contains transmission Tij and reflection Rij coef-
ficients with i, j = 1, 2, . . . , NWG with the WG modes
enumerated with decreasing pn. The calculated trans-
mission coefficients Tij are shown in Fig. 1(c) versus pho-
ton energy ~ω. We can see that the asymmetric hole in
this WG allows up to 25% power conversion from the
fundamental (even) WG mode to the first excited (odd)
mode. The electric field for excitation with the funda-
mental mode is given in Fig. 1(b), illustrating this con-
version.

Since no analytical solution for Ŝ is available, we define
the relative error [31] of the S-matrix as ‖Ŝ − Ŝ0‖/‖Ŝ0‖,
with respect to Ŝ0 calculated using the WG-RSE with
the largest basis considered, N = 20000. Fig. 3 shows
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FIG. 3: Relative error of the S-matrix Ŝ versus computati-
onal time on a CPU Intel Core i7-5830K. Data is shown for
WG-RSE, a-FMM and ComSol, and ~ω of 1, 3, and 5 eV, as
labelled. The basis size N is indicated for the 3 eV WG-RSE
data.

a comparison of the relative error of the WG-RSE with
calculations using a-FMM and ComSol (see Appendix F
for details). We see that the WG-RSE is typically one to
two orders of magnitude more efficient than ComSol and
a-FMM. It is important to note that this conclusion does
not depend on the choice to use Ŝ0 calculated by the WG-
RSE. All methods eventually reach an error below 10−6,
so that for errors � 10−6 the results are independent of
this choice. We show this explicitly later in Fig. 7.

B. Waveguide with double hole

As a second example for the calculated transmission
using the WG-RSE method, we show here the results for
a double hole perturbation of a waveguide. The struc-
ture is shown in Fig. 4(a), having mirror symmetry about
the x = 0 plane. The resulting transmission in Fig. 4(d)
shows selection rules as no conversion between WG mo-
des of different parity is occurring, e.g. T12 = 0. For
a photon energy of 4.8 eV, a nearly complete conversion
between modes 1 to 3 is found (note that Tij = Tji for
systems with mirror symmetry about the z = 0 plane).
This is illustrated by the field distributions for excita-
tion with WG mode 1 in Fig. 4(b) and WG mode 3 in
Fig. 4(c).

C. Waveguide with gold bar

As example for a strongly dispersive and absorptive
material as perturbation, we fill the hole in the waveg-
uide of Sec. III A with gold. Since the WG-RSE uses a
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FIG. 4: As Fig. 1 but for a double hole as sketched in (a).
The structure has mirror symmetry with respect to the plane
x = 0. (b,c) Electric field amplitude for excitation with WG
mode 1 (b) and 3 (c), at ~ω = 4.783 eV from the left, on
a linear color scale as given, overlaid with the WG outline.
(d) Relative power transmission Tij , from left WG mode j to
right WG mode i, as function of the photon energy.

fixed frequency, the dispersion of the susceptibility is not
relevant for the results. However, replacing vacuum with
gold creates a very strong and absorptive perturbation.
The resulting field distribution and transmission coeffi-
cients of the S-Matrix are shown in Fig. 5. The data was
calculated at the spectral points for which the suscep-
tibility was measured in Ref. [29]. We can see that the
gold bar leads to a significant reflection, visible by the
standing wave pattern in Fig. 5(b) and in the reflection
coeffcient R11 shown in Fig. 5(c). The transmission of the
fundamental mode is accordingly low, in the 10% range.
The second order mode instead has a higher transmission
as it has a node in the region of the gold bar.

The corresponding convergence is shown in Fig. 6 and
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Fig. 7, using as Ŝ0 the highest accuracy WG-RSE or Com-
Sol calculation, respectively. both display similar featu-
res as the air hole example Fig. 3. Again, we find that the
WG-RSE has a 1-2 orders of magnitude higher numerical
efficiency.
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FIG. 7: As Fig. 6, but using as reference Ŝ0 the ComSol solu-
tions with m = 6 (see Appendix F).

D. Waveguide with resonant cavity

As an example of an extended non-uniform WG, we
chose a cavity structure with two Bragg mirrors of 100
periods each, shown in Fig. 8(a). Each period consists
of the hole in the waveguide of Sec. III A filled with a
material of ε = 2.6, close to the ε = 2.4 of the waveg-
uide, followed by a waveguide section of equal length L.
The cavity is formed by a waveguide section of length
2L, surrounded by the Bragg mirrors. Choosing such a
small perturbation reduces the scattering losses. This
structure has a cavity resonance at 1.24585 eV, for which
the waveguide is single-moded, i.e. it supports only one
waveguide mode. The calculated electric field for three
photon energies is shown in (b). Outside the Bragg stop
band (~ω = 1.23 eV), the field is rather homogeneous,
inside the Bragg stop band (~ω = 1.245 eV) the field is
decaying as it gets reflected, and at resonance with the
cavity mode at ~ω = 1.24585 eV a resonant enhancement
in the cavity is observed. The calculated transmission
T11, reflection R11, and losses L1 = 1−T11−R11, are gi-
ven in (c) for the WG-RSE using N = 2000. The Bragg
stop band of about 5 meV width is evident, hosting a
resonance at 1.24585 eV with a Q-factor of about 6000.

The loss L1 is significant, about 30%, reducing to 11%
in the stop band and increasing to 54% at resonance. The
loss results from scattering into non-WG modes by the
large number of interfaces present. The observed loss re-
duction in the stop-band is due to the lower penetration
of the light into the structure, and the enhancement at
resonance is due to the increased field inside the struc-
ture.

We emphasize that the total length of this structure is
about 360µm, corresponding to 363 free-space resonant
wavelengths, a large simulation space for FEM solvers,
making them inefficient. This is exemplified in the com-
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FIG. 8: As Fig. 1, but filling the hole in the waveguide with
ε = 2.6, and creating a cavity structure made of two 100
period Bragg mirrors of this perturbation with a period of
2L = 1800 nm, surrounding a cavity of length 2L. (a) Sche-
matic of the structure. (b) Electric field amplitude for exci-
tation with WG mode 1 propagating from the left, on a li-
near color scale as given, overlaid with the WG outline. Data
outside the stop-band at ~ω = 1.23 eV, in the stop-band at
~ω = 1.245 eV, and at the cavity resonance ~ω = 1.24585 eV.
(c) Relative power transmission T11, reflection R11, and loss
L1 = 1 − T11 − R11, as function of the photon energy ~ω.
(d) as (c), but restricting the S-Matrix calculation to the WG
mode.
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FIG. 9: As Fig. 3, but for the waveguide cavity structure and
the three photon energies outside the stop-band at 1.23 eV, in
the stop-band at 1.245 eV, and on resonance at 1.24585 eV, see
Fig. 8. The reference 2×2 scattering matrix Ŝ0 was calculated
using the WG-RSE with the largest basis considered, N =
20000.

parison of the errors of the WG-RSE, a-FMM and Com-
Sol in Fig. 9. We observe that the ComSol calculation
times are around 5 orders of magnitude longer than the
WG-RSE for equal errors. This time is dominated by
the time to create the calculation grid, but even with the
grid already build (not shown) the computation is still
about 4 orders of magnitude longer than the WG-RSE.
This exemplifies the advantage of the WG-RSE in cal-
culating such extended structures containing fine detail.
For the a-FMM we find for large errors a similar result
as before, being about 1 order of magnitude slower than
the WG-RSE. For small errors however, the a-FMM con-
vergence slows down dramatically. We note that these
results were obtained using the same PML distance and
width settings as function of basis size as for the previ-
ous examples. It is possible to optimize, specific to each
energy, the PML parameters to provide a faster conver-
gence, which in some cases can become comparable to
the WG-RSE. However, such an approach is computatio-
nally inefficient as a dependence on the PML parameters
needs to be explored in each case, and the convergence
behaviour is not uniform. For example, relying only on
the a-FMM results in the present example, one could be
mislead to the conclusion that the results were converged
at about 0.1 s cpu time, since the a-FMM results remain
effectively constant over the next two orders of cpu time.
However, at this point the actual errors are still amoun-
ting to a few percent.

A simple approach used in the literature to treat such
long structures is reducing the calculation only to the
WG modes of the constant sections. To show the result
of such a treatment, we have limited the S-Matrix cal-
culation to the only bound mode which exists in each
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part of the structure for the frequency range considered.
Specifically, after solving eigenvalue problem Eq. (15), we
replace the expansion Eq. (10) by only one element – the
WG mode of the BWG, and leave only WG modes in
the scattering matrix Ŝ Eq. (E8). The result is shown in
Fig. 8(d). While the cavity resonance and the stop band
width is reproduced well, the losses are not treated cor-
rectly – they are not present in this model. Accordingly,
we find L1 = 0 and a sharper cavity resonance, with a
Q-factor of about 9000. This is expected, as the missing
non-WG modes are disabling the losses, so that the re-
sonance width is solely determined by the Bragg mirror
reflectivities.

IV. CONCLUSIONS

In conclusion, we have developed a waveguide
resonant-state expansion (WG-RSE), a new general met-
hod, based on the concept of resonant states, for calcula-
ting light propagation in waveguides with varying cross-
section. We have shown the fundamental importance of
resonant states which provide a natural discretization of
the continuum of light waves scattered by the waveguide
inhomogeneities, thus building an optimal basis for ex-
pansion of the electromagnetic field. As a result, the
WG-RSE can be orders of magnitude more computatio-
nally efficient than present state of the art methods, such
as the aperiodic Fourier modal or finite element method,
as we have demonstrated on several examples of non-
uniform planar waveguides.

In the present work, we use for simplicity an isotropic
permittivity and unity permeability. However, we be-
lieve that the approach can be extended to anisotropic
materials by using the relevant tensors of permittivity
and permeability in the wave equation. The extension
to anisotropic permittivity can be introduced directly in
the equations given in the present work. Note, however,
that this would in general mix TE and TM modes, such
that the basis used in the present example would need to
be expanded to TM modes.

More generally, we note that the WG-RSE approach
is transferable to other fields of physics showing wave
phenomena, such as acoustics and quantum mechanics,
enabling a wide application perspective.
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APPENDIX A: RESONANT STATES OF THE
BASIS WAVEGUIDE

Resonant states (RSs) of the basis waveguide (BWG)
are solutions of the wave equation(

d2

dx2
+ α2 + k2

n

)
En(x) = 0 for |x| < a (A1)

with outgoing or incoming BCs(
i
d

dx
± kn

)
En(x) = 0 for x = ±a , (A2)

where α = ω
√
ε− 1 and n is the integer index which

labels the RSs. The electric field of the n-th RS has the
form

En(x) = Cn
(
eiqnx + (−1)ne−iqnx

)
, (A3)

where qn =
√
α2 + k2

n, and the RS wave numbers kn
are determined by the secular equation Eq. (6), following
from Mawxell’s BCs. Note that the solutions of Eq. (6)
with kn = ±iα, qn = 0, and odd n should be excluded
from the set of the eigenvalues since they corresponds to
zero electric field. The normalization constants Cn are
given by

Cn =
1

2in

√
kn

kna+ i
(A4)

and are found from the orthonormality of RSs, which for
the fixed frequency problem treated here is given by

a∫
−a

En(x)Em(x)dx

− En(a)Em(a) + En(−a)Em(−a)

i(kn + km)
= δnm , (A5)

where δnm is the Kronecker symbol. Note that Eq. (A5) is
obtained following the general procedure for normalizing
RSs as outlined in [21, 24]. Interestingly, the normaliza-
tion condition Eq. (A5) for RSs at a fixed frequency does
not contain in the volume term the permittivity of the
system ε(x) as a weight function, unlike RSs of a planar
systems defined at a fixed in-plane wave vector [2, 21].

APPENDIX B: GREEN’S FUNCTION OF THE
BASIS WAVEGUIDE

The Green’s function (GF) G(x, x′; ξ) of the BWG sa-
tisfies the wave equation(

d2

dx2
+ ε ω2 − ξ

)
G(x, x′; ξ) = δ(x− x′) for |x| < a

(B1)
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and the BCs(
i
d

dx
±
√
ω2 − ξ

)
G(x, x′; ξ) = 0 for x = ±a . (B2)

It has the analytic form

G(x, x′; ξ) = −eL(x<, k)eR(x>, k)

W (k)
, (B3)

where x< = min(x, x′), x> = max(x, x′), and eL(x, k)
and eR(x, k) are solutions of the corresponding homoge-
neous wave equation satisfying, respectively, the left (at
x = −a) and the right (at x = a) BC. For the constant
permittivity ε of the slab these solutions have the explicit
analytic form

eL,R(x, k) = ± e+(x)

N+(k)
+
e−(x)

N−(k)
, (B4)

where

e±(x, q) = eiqx ± e−iqx , (B5)

N±(k) = (q − k)eiqa ∓ (q + k)e−iqa , (B6)

k =
√
ω2 − ξ , (B7)

q =
√
α2 + k2 , (B8)

and the Wronskian W (k) is given by

W (k) = e′L(x)eR(x)− eL(x)e′R(x) =
−8iq

N+(k)N−(k)
.

(B9)
Note that the GF is invariant with respect to the sign of
q, but changes its value if the sign of k in Eq. (B3) changes
to the opposite. Therefore the square root which appears
in the definition of k, originating from the BCs Eq. (2),
produces a cut of the GF in the complex ξ plane, going
from the branch point at ξ = ω2 (corresponding to k = 0)
to infinity. The difference in the values of the GF on
different sides of the cut is then given by

∆G(x, x′, ξ) = −eL(x<, k)eR(x>, k)

W (k)

+
eL(x<,−k)eR(x>,−k)

W (−k)
(B10)

= −2πi
∑
ν=±

σν(ξ)eν(x<, q)eν(x>, q) ,

where

σ±(ξ) =
k

4π[α2 cos(2qa)∓ (q2 + k2)]
. (B11)

In addition to the cut, the GF has simple poles in the
complex ξ plane, at ξ = ξn, determined by the equation
W (k) = 0, equivalent to Eq. (6). The residues of the
GF Eq. (B3) at these poles are

ResG(x, x′; ξn) = − (−1)nkn
4(kna+ i)

e±(x, qn)e±(x′, qn) ,

(B12)

Re(x)

Im(x) G

FIG. 10: “Physical” Riemann ξ-sheet. Symbols mark poles
of the Green’s function G(x, x′; ξ) of the BWG. The cut Γ
starting from the branch point at ξ = ω2 is shown by a red
line. Green curve marks the path of integration.

using e+(x, qn) for even n and e−(x, qn) for odd n. Now,
choosing the cut Γ as shown in Fig. 10 and selecting
the “physical” Riemann sheet, which contains the wa-
veguide (WG) modes and the Fabry-Perot (FP) modes
with Re(k) > 0, we apply the residue theorem to the
function G(x, x′; ξ′)/(ξ − ξ′), integrating it in the com-
plex ξ′ plane, along a closed contour shown in Fig. 10.
The contour consists of a large circle, two parallel lines
circumventing the cut, and a vanishing half-circle sur-
rounding the branch point. Since the GF is vanishing at
large ξ′ and is finite at the branch point, both circular
integrals vanish, and the residue theorem yields

G(x, x′; ξ) =
∑
n∈S

ResG(x, x′; ξn)

ξ − ξn
−
ω2+i∞∫
ω2

∆G(x, x′, ξ′)dξ′

2πi(ξ − ξ′)
.

(B13)
Here S includes all the poles of the GF inside the closed
contour, i.e. all poles on the selected physical sheet, and
the integration in the second term is performed along the
cut. Using Eqs. (B10) and (B12), this results in Eqs. (7)–
(9).

Note that the discrete modes En(x) and the cut mo-
des E±(x; ξ) together constitute a complete set of ba-
sis functions, suitable for expansion of an arbitrary field
within the region |x| 6 a. This can be seen by substi-
tuting the series Eq. (7) into Eq. (4) and using Eq. (A1),
valid for both discrete and cut modes, which yields the
closure relation

∑
n

∫
En(x)En(x′) = δ(x− x′) . (B14)
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APPENDIX C: DISCRETIZATION OF THE CUT

In numerical calculations, we discretize the remainder
of the continuum of radiation modes, represented by the
cut Γ in Fig. 10 (an example of the cut weight σ± is shown
in Fig. 11), by replacing the cut with a finite number of
poles which we add to the basis of RSs along with the
normal RSs included in S. This is done following a similar
procedure as described in Ref. [23]. Namely, we first split
the cut modes into even and odd subgroups, labeled by
ν = + and ν = −, respectively. Then, for each subgroup,
we divide the cut into Nν

cut intervals [ξνn, ξ
ν
n+1] with an

equal weight defined as

wν =

ξνn+1∫
ξνn

|
√
σν(ξ)| dξ , (C1)

in this way determining the points ξνn, where n =
1, 2, . . . Nν

cut, Ncut = N+
cut +N−cut, ξ

ν
1 = ω2, and ξνNνcut+1 =

ω2 + i∞. Note that the normalization constants of the
cut states Eq. (9) are given by

√
σν(ξ). Each interval

[ξνn, ξ
ν
n+1] is then replaced by a fictitious RS having the

wave function given, as in Eq. (8), by

Ẽνn(x) = C̃νn
(
eiq̃nx + νe−iq̃nx

)
, (C2)

where the coefficients C̃νn and the positions ξ̃νn of the ficti-
tious poles are defined by

C̃νn =

 ξνn+1∫
ξνn

σν(ξ) dξ


1/2

, (C3)

ξ̃νn =
1

(C̃νn)2

ξνn+1∫
ξνn

σν(ξ)ξ dξ , (C4)
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FIG. 11: Cut weight σ± along the cut Γ for a photon energy
of ~ω = 3 eV. Other parameters as in Fig. 1 of the main text

and q̃n and k̃n are given by Eqs. (B7) and (B8). The

resulting fictitious RSs produce a set of modes S̃ which
we add to the basis of RSs S and treat the resulting dis-
crete matrix problem numerically. The final basis con-
sists of N = NWG+NFP+Ncut basis states which include
WG, FP, and cut modes, respectively. In numerical cal-
culations, we use a ratio between FP and cut poles of
NFP/Ncut ≈ (ωa)/(2 logN), which we found to approxi-
mately minimize the errors for a given basis size N .

APPENDIX D: CONVERGENCE OF THE FIXED
FREQUENCY RSE

In this section, we present the convergence of the fixed-
frequency RSE Eq. (15) for the slot region of the waveg-
uide considered in the main text (see Fig. 1(a)), versus
basis size N . The relative error of the in-plane wavevec-
tor κ for the WG modes is shown in Fig. 12 versus basis
size N and computational time on a CPU Intel Core i7-
5830K. We find a convergence of the relative error scaling
with N−2.5, which is close to the N−3 scaling of the RSE
[21, 22]. The somewhat slower convergence can be re-
lated to the residual role on the continuum represented
by the cut, which does not allow for a natural discreti-
zation. In terms of computing time, the relative error
scales approximately as t−1 for large N , where it is do-
minated by the diagonalization of a non-sparse matrix
with a computational complexity scaling as N3.
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FIG. 12: Relative error of the in-plane wavevector κj for the
layer with the hole, for the WG modes (j = 1: solid, j =
2: dashed, j = 3: dotted) versus basis size N (a) and CPU
time (b), for different photon energies ~ω as indicated. The
approximate convergence scalings ∝ N−2.5 and ∝ t−1 are
indicated.
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APPENDIX E: S-MATRIX FOR A LAYERED
INHOMOGENEITY OF THE WAVEGUIDE

Let us suppose that the non-uniform WG is represen-
ted by L uniform regions, so that in each region l defined
as zl−1 < z < zl, the permittivity ε(x, z) = ε(x, zl) is con-
stant, where l = 1, 2, . . . , L, and z0 = −∞ and zL = ∞.
In this case, Eq. (13) has an exact analytic solution. To

find it, we introduce, for each region l, a vector ~Al(z) and

a matrix M̂l having elements

( ~Al)n(z) = An(z) , (E1)

(M̂l)nm = p2
nδnm + ω2Vnm(zl) , (E2)

respectively, given by the expansion coefficients
An(z) and z-independent matrix elements Vnm(zl).
Then Eq. (E2) becomes

− d2

dz2
~Al(z) = M̂l

~Al(z). (E3)

Its solution in region l can be written as

~Al(z) = Êl

(
eiK̂l(z−zl)~b+l + e−iK̂l(z−zl)~b−l

)
,

= Êl

(
eiK̂l(z−zl−1) ~d+

l + e−iK̂l(z−zl−1) ~d−l

)
,(E4)

where K̂l and Êl are, respectively, a diagonal matrix of
the eigenvalues and a matrix of the corresponding ei-
genvectors of the eigenvalue problem Eq. (15) which can
bewritten as

M̂lÊl = ÊlK̂
2
l , (E5)

where the eigenvalues κ form the diagonal matrix K̂l and
the eigenvectors with components cm columns the matrix
Êl.
~b+l and ~b−l (or ~d+

l and ~d−l ) in Eq. (E4) are some con-
stant vectors having the meaning of amplitudes of waves
propagating, respectively, in the positive and negative
direction of z. Maxwell’s BCs provide relations between
these amplitudes in neighboring layers:

Êl

(
~b+l +~b−l

)
= Êl+1

(
~d+
l+1 + ~d−l+1

)
, (E6)

ÊlK̂l

(
~b+l −~b

−
l

)
= Êl+1K̂l+1

(
~d+
l+1 − ~d−l+1

)
. (E7)

Using these relations and the S-matrix approach [30], we

find the S-Matrix Ŝ of the whole system, which relates

the incoming (~b+1 and ~d−L ) and outgoing (~b−1 and ~d+
L) am-

plitudes, in the left (l = 1) and the right (l = L) layers
just at their interfaces:(

~b−1
~d+
L

)
= Ŝ

(
~b+1
~d−L

)
. (E8)

For the indexes i and j corresponding to WG modes, one
can also calculate [11] the power S-Matrix Pij = |Sij |2,
which connects power fluxes in outgoing WG modes with
incoming WG modes.
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FIG. 13: Schematic of the structure used in ComSol for Fig. 3
of the main text. Blue indicates the waveguide, green indica-
tes PMLs, vertical red lines mark ports. We use one port per
waveguide mode.

APPENDIX F: A-FMM AND COMSOL MODELS

1. a-FMM

The details of the a-FMM method used for Fig. 3 of the
main text is given in Ref. [8]. We employed a quadratic
PML with a damping strength σ = 2/|x − xt,b|p and
p = 2 (see Eq. (49) in Ref. [8]). Here, xt,b = ±(a +
hair) are the coordinates of the boundaries of the top
and bottom PMLs, where hair is the distance between
the PML and the WG. To explore the convergence we
increase the number of harmonics Ng (see Ref. [8], where
Ng = 2N + 1) and simultaneously increase the thickness
hPML/2 of the PML and hair according to

hPML = hair =
a

2
logNg. (F1)

This link between the parameters was found to be close
to optimal for the convergence of the hole structure of
Sec. III A, for the energies shown.

2. ComSol

The structure used in the ComSol calculations for
Fig. 3 is shown in Fig. 13. It has two variable parame-
ters. The first one is the maximum element size of the
mesh in air ∆. The second variable parameter is the
height of air slab hair. We used

∆ = C12−m and hair = C2 + C3m, (F2)
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where C1 = 100 nm, C2 = 500 nm, C3 = 400 nm, and
m = 0, 0.1, 0.2, 0.3, . . . is parametrizing the conver-
gence. This link between the parameters was found to

be close to optimal for the convergence of the hole struc-
ture of Sec. III A.
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