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Parametric scattering of microcavity polaritons into ghost branches

Joanna M Zajac* and Wolfgang Langbein
School of Physics and Astronomy, Cardiff University,
The Parade, Cardiff CF24 8AA, United Kingdom
(Dated: April 20, 2013)

Polaritons of defined momentum and energy are excited resonantly on the lower polariton branch
of a planar semiconductor microcavity in the strong coupling regime, and the spectrally and mo-
mentum resolved emission is analyzed. We observe ghost branches from scattering within the lower
polariton branch, as well as from scattering to the middle polariton branch, showing the non-linear
mixing between different branches. Extending the theoretical treatment of spontaneous parametric
luminescence developed in Ciuti et al., Phys. Rev. B 63, 041303 (2001), the eigenmodes of the
driven polariton system and its photoluminescence are modeled. A quantitative agreement with the
measured branch positions and a qualitative agreement with the branch intensities is found.

Cavity excitons-polaritons in planar semiconductor mi-
crocavities are quasi-particles resulting from strong cou-
pling between the Fabry-Pérot cavity mode and excitonic
resonance of the semiconductor inside the cavity. Below
the exciton saturation density, polaritons can be treated
as composite bosons'. They inherit features of exciton
and photon constituents resulting in strong interactions
from the exciton and steep in-plane dispersion and prop-
agation from the cavity mode. The parametric scattering
of microcavity polaritons is described in lowest order by
the third-order susceptibility?. Given a coherent popu-
lation of ’pump’ (P) polaritons, which are scattered into
"signal’ (S) and ’idler’ (I) polaritons, the phase matching
in time and space results in the conservation of energy
2Fp = Fs+ Er, and momentum 2kp = kg+k;y, where k is
the wavevector. The scattering is resonant to the eigen-
states of the system, which in the investigated sample are
the polaritons of the lower, middle and upper branches
with the energies Frp(k), Emp(k), Eup(k). This scat-
tering enables optical parametric amplification®. Self-
seeded multiple parametric scattering into real and ghost
branches of the lower polariton branch under pulsed and
steady state pumping was reported in Ref. 4,5, respec-
tively. Transient seeded scattering into real and ghost
branches of the lower polariton was reported in Ref.6.
A theoretical model of the spontaneous parametric fluo-
rescence was developed in Ref. 7, and extended to stim-
ulated emission in Ref. 8. This model uses a Bogoliubov
formalism to describe scattering from a macroscopically
occupied pump state and neglects quantum fluctuations
of the pump state. Spontaneous parametric emission was
experimentally investigated in Ref. 9,10 showing scat-
tering into the phase-matched 8-shapes in momentum
space, which was then demonstrated to provide entangled
photon sources!%!! which was recently realized also in
one-dimensional cavity structures'?!'3., We believe that
in order to qualitatively analyze dynamics of quantum
fluids' or multiple-quantum fluids'®16 of cavity polari-
tons, real-space measurements should be accompanied by
k-resolved measurement, as discussed here, what would
undoubtedly indicate the quantum state of polariton flu-
ids.

In this letter, we report on spontaneous parametric
scattering of resonantly injected polaritons under steady
state pumping. We observe scattering from the macro-
scopically populated pump state into real and ghost

branches of the lower and middle polariton in two-
dimensional momentum space. Theoretical predictions
of the scattering using an extension of Ref. 7 show a good
agreement with the measurements.

The microcavity sample!” investigated here is a 1\
Alg.05Gag.g5As cavity with a single 15nm GaAs quan-
tum well with 5nm Alg3Gag7As barriers in its cen-
ter, providing two excitonic resonances, the heavy hole
and the light hole exciton. The cavity is surrounded
by AlAs/Aly.15Gag g5 As distributed Bragg reflectors with
25(16) periods on the bottom(top) of the epilayer. The
cavity mode energy gradient was about 1.5meV/mm,
which allowed to adjust the detuning between cavity and
heavy-hole exciton A, = E. — Epyp. The use of a wide bi-
nary GaAs well eliminates the alloy disorder found in In-
GaAs/GaAs quantum wells'8, resulting in an inhomoge-
neous exciton linewidth of'” 170 ueV. The Aly.o5Gag.95As
cavity reduces the carrier confinement and thus the car-
rier trapping and the related homogenous broadening!®.
The resulting exciton linewidth was measured here at
full-width half maximum as v, = 150 ueV using re-
flection spectroscopy. The cavity linewidth ~. of about
300 peV is limited by the reflectivity of the top Bragg
mirror.

The sample was mounted in a helium bath cryostat at a
temperature of 5 K and a vapor pressure of 200 mbar. To
measure the polariton dispersion, we used a weak pulsed
excitation with a mode-locked Ti:Sapphire laser (Coher-
ent Mira) delivering 100fs pulses at 76 MHz repetition
rate and a spectral width of approximately 20 meV. The
excitation was focused to a diffraction limited spot of
1.5 pum with a 0.5NA lens having a wavevector range of
|k|] < 4/um. To excite pump polaritons for paramet-
ric scattering, we used a linearly polarized single-mode
CW external cavity diode laser with a spectral width
of 20neV. Two-dimensional excitation wavevector control
was achieved by imaging collimated laser beam (~2 mm
diameter) onto the gimbal mirror®, from there laser spot
was demagnified by a factor of 38 and imaged onto the
sample. The beam divergence at the mirror was adjusted
to create a gaussian tail at the sample, providing the min-
imum wavevector spread for a given excitation size. The
beam diameter at 1/e intensity on the sample was 70 pm,
corresponding to a wavevector spread of |k| < 0.09/pum.
In order to avoid sample heating, the excitation was
chopped by an acousto-optic modulator producing pulses
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FIG. 1: Reflection of the microcavity as function of photon
energy and wavevector k = (kz,0). a) positive detuning A; =
5meV. b) negative detuning Ac = —4meV. The calculated
polariton dispersions EB(k) are given by lines as labeled.

of 1 us pulse duration at 1% duty cycle. The peak inten-
sity on the sample I was about 10> W/cm?. The reso-
nantly created polariton density Nyp(kp) ~ I7T/Ep ~
107 /cm?2 26, the The reciprocal space (k) of the cross-
linearly polarized emission was imaged onto the input
slit of a high resolution (20 ueV) imaging spectrome-
ter and detected using a CCD-Camera®®?'. The po-
lariton dispersion in the low-intensity regime was mea-
sured using k resolved reflection spectroscopy as shown
in Fig. 1, and modeled with the coupled three oscilla-
tor model for the cavity mode, heavy- and light-hole
exciton'®?2. From these fits of Fp(k) to the set of po-
lariton branches B={LP,MP,UP}, we deduced the exci-
ton energies Eynp = 1.5333€V, LBy = 1.5399¢eV, and the
Rabi splittings 2Qp, = 3.7meV, 2Qp, = 2.4meV, for
heavy- and light-hole excitons, respectively. The exciton
and polariton linewidths of this sample were previously
compared!” with the linewidth averaging model, in which
the polariton linewidth ~p is a weighted average of 7. and
the exciton linewidths yun, Y,

YB = Z1h,BYhh T Z1h,BV1h + CBYc (1)

with the contents of cavity cg, heavy hole exciton znn B,
and light hole exciton z, p in the polariton®®. The model
is assuming Lorenzian lineshapes, and shows sufficient
agreement'” with the experiment for the LP at zero and
negative detuning. Increasing the exciton density as rel-
evant in our experiments, the exciton linewidth is dom-
inated by exciton-exciton scattering, which has a differ-
ent non-Lorentzian shape compared to inhomogeneous
broadening.

The parametric emission was modeled following Ref. 7,
where the polaritons are excited resonantly with a pump
field Pp(t) = <p£P(kp,t)> of defined wavevector kp and
photon energy Ep within the LP branch. The po-
laritons of signal and idler are coupled by a momen-
tum conserving exciton-exciton scattering proportional
to the pump intensity, described by off-diagonal terms
in an anti-hermitian coupling matrix. In the follow-
ing we use the renormalised complex polariton energies
Ep = Eg — iy + EX"|Pp|?. The polariton-polariton in-
teraction term EE™ was determined using Eq. 9 in Ref. 9

B (K) = 220p (kp)zp (k) {12Ex + @)
167”9}1}1 [\/xg;(kp) N 1} } ,

with an exciton binding energy of Ex = 8 meV. The exci-
tonic content g was taken as the sum xp = Thn,B+2m,B
of heavy and light hole content. The expression holds for
circular polarization, so that for the cross-linear polar-
ization configuration used here in the regime where the
renormalisation is smaller than the linewidth we expect
some deviations in the overall scattering strength. For
higher polariton densities the spin-dependent interaction
is influencing the dynamics significantly?*.
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FIG. 2: Energy and wavevector resolved emission intensity /(k,w) on a logarithmic scale as indicated, for a pump energy
Ep = 1530.25meV and wavevector kp = (0.1,0)/pum at a cavity detuning of A, = —1.7meV, injected polariton density
Nip(kp) = 2.23 - 107. a) Measured I(k,w) for k = (k;,0.4/um). Lines: Eigenmodes E%E (k) of Eq.(3), for B=LP in magenta,
and for B=MP in yellow. b) Parametric emission I°*(k,w) calculated using Eq.(5). The same dynamic ranges of the data
were plotted for all figures shown hereafter. Horizontal line at Ep is due to the saturation of CCD-camera pixels at the laser
energy.



Neglecting higher-order scattering processes and
Langevin terms of the external light field, the steady-
state emission from these branches was derived in
an analytical form (Eq.9 of Ref.7) as a function of
the steady state population of the signal Np(ks) =
(pTB(ks,O)pB(kS7O)> and an anomalous parametric cor-
relation amplitude between signal and idler polaritons
Az (ks) = (ph(ks, 0)ph (ki1 0)) where pg(k, t) is the time-
dependent polariton operator of branch B and wavevec-
tor k. We extended the model to include the middle po-
lariton branch (MP) resulting in a corresponding ghost
branch (MP*). The coupling matrix for the different
branches is given by

ar EB (kS) Einth
MP — > B ,\P 3
b (—(E;;ta%)* 2B - By )

having the eigenvalues Eg(ks). The interaction energy
ER*® is given by Eq.8 in Ref. 9,

Eg*(ks) = zrp(kp)v/as(ks)wp (ki) x (4)
{12EX + 167779}1}1 [21 [z p(kp) — 1+
\/mgl(ks) -1+ \/mgl(kl) - 1} } ,

The parametric emission intensity of each polariton
branch I§" is then given by

IB" (ks,w) o cp(ks) x (5)

Ag(ks,w)Np(ks) + B (ks) P3Af (ks)
(Eg(ks) - hw) (hw —E5 (ks))

with
Ap(ks) = ER*(ks) P3os (ks)
o 2 k k)2 | min 27
o s — CoBEml 1 )

Np(ks) = S {Eg‘t(kS)PPQ,A*B(kSl} /vB(ks) , the emis-
sion detuning Ap(ks,w) = hw + Ef (ki) — 2Ep and the
signal-idler detuning 6p(ks) = 2Ep — Ej(ks) — E3 (ki)
The total emission IP** is the sum of IF* over all
branches B. This theoretical treatment is valid below
the threshold for parametric oscillation given by the con-

~

dition ¥(F5(ks)) < 0. We used the complex polari-

o~

ton energies Ep calculated in the three coupled oscilla-
tor model with a k-dependent broadening from Eq.(1)
with 7. = 300ueV and v, = Yy = 400peV. The ex-
citon linewidths are higher than measured in the low
intensity regime, which we attribute to exciton-exciton
scattering by the higher exciton density in the paramet-
ric scattering experiments?®. The pump is assumed to
be resonant to the LP branch. The simulations shown
are well below the threshold, for which the renormalisa-
tion is small EF™ ~ 10 pneV and the polariton density is
Nip(kp) ~ 107 /cm?. In this regime, IP% is independent
of the pump intensity up to a scaling factor. The simu-
lations were made with a step size of 20 ueV in hw and
0.06/pm in kg.
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FIG. 3: As Fig.2, but for Ep = 1530.55meV, kp =
(0.85,0)/pum, A. = —2.1meV, injected polariton density
Nip(kp) = 2.18 - 10". ab) k = (ks,0.3/pm). cd) k =
(0/pm, ky).

We now discuss the measured microcavity emission
for different pump energies and wavevectors together
with corresponding results of simulations. We com-
mence with a pump close to the dispersion minimum at
Ep = 1530.15meV and kp = (0.1,0)/um for a cavity de-
tuning A, = —1.7meV, shown in Fig.2. The measured
emission I((k;,0.4/pum),w) shown in Fig.2a shows the
dominant emission from the LP and from the pump which
is scattered elastically by disorder towards the detection
wavevector range. The emission from the MP is about 2
orders of magnitude weaker, and the ghost branches LP*
and MP* are 2-4 orders of magnitude weaker and show a
reversedA dispersion. The corresponding predicted eigen-
values EE (k) of Eq.(3) are following the observed emis-
sion peaks. For a more detailed comparison with theory,
we give in Fig. 2b the calculated parametric emission in-
tensity /%", which shows a semi-quantitative agreement
with the experimental result. The main deviation is the
observed intensity of the ghost branches, which in the
experiment is much weaker than in the simulation. This
is actually expected as the model accounts for radiative
broadening only, such that all parametrically scattered
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FIG. 4: As Fig.2, but for Ep = 1530.1meV, kp =
(0,—1.9)/um, A. = —5.5meV, injected polariton density
Nip(kp) = 2.05- 10" and cross-section k = (0, k).
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FIG. 5: As Fig.2 but for Ep = 1530.0meV, kp =
(0,—1.95)/pum, A. = —6meV, injected polariton density
Nip(kp) = 2.05-107 and k = (—0.25/um, k,) for a,b and
k = (kz,0) in (c,d).

polaritons are emitted, resulting in equal intensities of
signal and idler. In the experiment, a significant part of
the broadening at higher k is due to the exciton linewidth
(see Eq.(1)), which represents a scattering of polaritons
into excitonic states. This scattering results in a ther-

malized population of excitons at high k, emitting dom-
inantly from the LP and the bottleneck region, which is
the reason for the observed strong LP emission. Ghost
branches are best visible for small kp due to the smaller
contribution of the exciton broadening?®.

Moving the pump away from the dispersion minimum
to kp = (0.85,0)/um, the emission reveals the expected
agsymmetry as shown in Fig.3. Two different cross-
sections k = (k;,0.3/pum) in (a,b) and k = (0/um, k)
in (c,d) of the full three-dimensional data set are given.

Moving further along the dispersion to kp =
(0,—1.9)/um close to the inflexion point, as shown in
Fig. 4, LP and LP* intersect close to the dispersion min-
imum at kp = (0,—0.5)/um and kp = (0,0.2)/um, at
which energy and momentum conserving scattering is res-
onant for signal and idler. This pump wavevector is close
to the so-called magic angle® for which LP and LP* inter-
sect at k = 0 resulting in a small threshold for parametric
oscillation. For this excitation the ghost branches are vis-
ible mainly at the intersection points. This could partly
be due to the onset of stimulated scattering?®. The cor-
responding simulations shown in Fig. 4b give good agree-
ment with measurement for the LP branch. However, the
calculated MP branch has a weaker emission for small k,
and a higher emission for large k. This is again related to
the exciton scattering into the exciton reservoir and sub-
sequent emission of thermalized excitons, as the middle
polariton the highest exciton content at small k.

In Fig.5, we show measured polariton luminescence
for kp = (0,—1.95)/um well above the inflexion point,
resulting in an 8-shaped resonant region® in k space.
In the cross-section k = (—0.25/um, k), the LP real
and ghost branches intersect at £ = 1526.95meV k =
(—0.25,0.7)/pm. In the cross-section k = (k,,0) shown
in Fig.5c, the LP real and ghost branches intersect at
E = 1527.1meV, k = (£0.82,0)/um. Again a good
agreement with the simulations is found.

In summary we have shown polariton parametric pair
scattering from a resonantly excited pump state into real
and ghost branches of signal and idler polaritons for dif-
ferent excitation angles and wavevectors. The measure-
ments are in agreement with simulations, apart from the
additional emission due to thermalized excitons related
to the missing treatment of non-radiative scattering pro-
cesses. These results can be further explored towards
entangled photon source by measurements of their time-
correlation, measurements for higher pump powers which
will give rise to stronger renormalisation and deviation of
polariton dispersion from quadratic can be also studied.
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