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We combine samples of nearby galaxies with Herschel photometry selected on their dust, metal,
Hi, and stellar mass content, and compare these to chemical evolution models in order to discrimi-
nate between different dust sources. In a companion paper, we used a Hi-selected sample of nearby
galaxies to reveal a sub-sample of very gas rich (gas fraction > 80 per cent) sources with dust masses
significantly below predictions from simple chemical evolution models, and well below My/M, and
Mi/Mgas scaling relations seen in dust and stellar-selected samples of local galaxies. We use a chem-
ical evolution model to explain these dust-poor, but gas-rich, sources as well as the observed star
formation rates (SFRs) and dust-to-gas ratios. We find that (i) a delayed star formation history is
required to model the observed SFRs; (ii) inflows and outflows are required to model the observed
metallicities at low gas fractions; (iii) a reduced contribution of dust from supernovae (SNe) is
needed to explain the dust-poor sources with high gas fractions. These dust-poor, low stellar mass
galaxies require a typical core-collapse SN to produce 0.01 —0.16 Mg, of dust. To match the observed
dust masses at lower gas fractions, significant grain growth is required to counteract the reduced
contribution from dust in SNe and dust destruction from SN shocks. These findings are statistically
robust, though due to intrinsic scatter it is not always possible to find one single model that suc-
cessfully describes all the data. We also show that the dust-to-metals ratio decreases towards lower

metallicity.
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1 INTRODUCTION

Interstellar dust is formed in the winds of evolved
low-to-intermediate mass stars (LIMS, Ferrarotti & Gail,
2006; Sargent et al., 2010) and in core-collapse supernovae
(SNe) as massive, short-lived stars end their lives (e.g.
Dunne et al., 2003; Rho et al., 2008; Dunne et al., 2009;
Barlow et al., 2010; Matsuura et al., 2011; Gomez et al.,
2012; Indebetouw et al., 2014; Gall et al., 2014). There are
also strong indications for grain growth in the Interstel-
lar Medium (ISM) as dust grains acquire additional mass
from the gas phase by accretion in both high and low
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redshift galaxies (Dwek et al., 2007; Mattsson & Andersen,
2012; Asano et al., 2013; Zhukovska, 2014; Rowlands et al.,
2014b). Recent surveys with the Herschel Space Observatory
(hereafter Herschel, Pilbratt et al., 2010) of nearby galax-
ies have produced dust mass scaling relations with stel-
lar mass, gas mass and star formation rate in both tar-
geted samples of nearby galaxies, such as the Herschel Ref-
erence Survey (HRS, e.g. Boselli et al. 2010; Cortese et al.
2012; Smith et al. 2012; Cortese et al. 2014), and in wide-
area blind surveys (Dunne et al., 2011; Bourne et al., 2012;
Clark et al., 2015) including the Herschel-Astrophysical
Terahertz Large area Survey (H-ATLAS, Eales et al., 2010).
The dust properties of the blind, volume-limited, dust-
selected HAPLESS sample of 42 galaxies over the equatorial
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H-ATLAS fields were presented by Clark et al. (2015, here-
after C15).

C15 attempted to model the HRS and HAPLESS galax-
ies using a simple closed box chemical evolution model and
suggested the following: as galaxies evolve, their dust con-
tent first rises steeply, then levels off and reaches its peak
about half way through its evolution, and finally declines to-
wards lower gas fractions. In De Vis et al. (2017, hereafter
DV17), a local Hi-selected sample taken from the same H-
ATLAS fields (dubbed ‘HIGH’) was used to complement the
stellar mass selected HRS and the dust-selected HAPLESS
sample. They showed that the HI selection recovered similar
dust- and gas-rich galaxies as were seen in HAPLESS, but
also revealed gas-rich sources with much lower dust content.
DV17 showed that these dust-poor sources are offset from
the simple evolutionary scenario put forward in C15.

Zhukovska (2014) compared the sample from
Rémy-Ruyer et al. (2014) (including the Dwarf Galaxy
Survey (DGS, Madden et al., 2013), the largest sample
of low metallicity sources observed with Herschel) with
a chemical evolution model to show that the observed
variation in dust-to-gas ratio and metallicity in local star-
forming dwarfs can be explained using models with bursty
star formation histories, low dust yields from core-collapse
SNe and additional grain growth in the ISM. Feldmann
(2015) took the sample from Rémy-Ruyer et al. (2014) and
used both an analytic approximation and dynamic one-zone
chemical evolution models to fit the observed relationships
in the 126 local galaxies. These models require very rapid
grain growth, which activates at a critical metallicity, to
match the observed dust-to-metal ratio in the galaxies.
Feldmann (2015) also argues that there is a balance between
metal-poor inflows and enriched outflows which regulates
the dust-to-metal ratio. Popping et al. (2016) study the
dust content of galaxies from z = 0 to z = 9 using chemical
evolution models including stellar dust, dust grain growth,
destruction of dust by supernovae and in the hot halo, and
dusty winds and inflows.

In this companion paper to DV17, we add additional
metallicity information to DV17’s compilation of dust, stel-
lar mass and Hi-selected samples of nearby galaxies, and add
the metal-selected DGS, in order to investigate the dust-to-
gas and dust-to-metal properties for a total of 382 sources
(44 DGS sources, 58 HAPLESS+HIGH sources and 280 HRS
sources have dust masses from Herschel photometry). The
combined sample here allows one to sample a wider range of
gas fractions than possible before (from 0.05 < f; < 0.97).
We apply a chemical evolution model to interpret the data
by relaxing the closed box model assumption from C15 and
DV17 and adding inflows and outflows, using different star
formation histories (SFH), allowing for dust grain growth in
the ISM and dust destruction. Section 2 reminds the reader
of the samples from DV17 and introduces the DGS. Sec-
tion 3 describes the new metallicity data and the used cali-
brations. Section 4 briefly describes the chemical model and
the combination of parameters modelled in this work. The
results are discussed in Section 5, where we attempt to de-
termine the contribution from different dust sources and to
explain the dust-poor, gas-rich sample first shown in DV17.
Our conclusions are listed in Section 6.

2 NEARBY GALAXY SAMPLES

A detailed description of the HRS, HAPLESS and HIGH
samples used in this work is provided in detail in DV17. Here
we briefly remind the reader of the different datasets and pa-
rameters, introduce the new metallicity measurements and
introduce the Dwarf Galaxy Survey (Madden et al., 2013;
Rémy-Ruyer et al., 2013) which we add to our sample of lo-
cal Herschel galaxies in Section 4. The average properties
for the samples used in this work are shown in Table 1. By
compiling the different nearby galaxy samples, we can model
the dust properties for a total of 382 sources, compared to
126 sources in Zhukovska (2014) and Feldmann (2015). We
also increase the number of low metallicity sources (addi-
tional 67 sources with Z < 1/3 Z), which lie off the scal-
ing relations for more evolved sources. This is particularly
important given the relevance of immature, unevolved low
metallicity sources as analogues for the first galaxies. When
comparing all samples, My/Mypary first rises steeply, then
levels off and then drops again as galaxies evolve from high
to low gas fractions.

2.1 Hi, dust and stellar mass selected samples

The dust-selected HAPLESS (C15) is a blind, volume-
limited sample of 42 local (2 < 0.01) galaxies detected at
250 pym from the H-ATLAS Phase 1 Version-3 internal data
release, covering 160sq. degrees of the sky (Valiante et al.,
2016; Bourne et al., 2016). The Hi-selected sample (HIGH,
DV17) is extracted from the same H-ATLAS area and
includes 40 unconfused HI sources identified in the HI
Parkes All Sky Survey (HIPASS, Barnes & Hernquist 1992;
Meyer et al. 2004) and the Arecibo Legacy Fast ALFA Sur-
vey (ALFALFA, Giovanelli et al. 2005; Haynes et al. 2011,
Haynes et al. priv comm.); 24 of these sources overlap with
the HAPLESS sample. DV17 further split their sample by
stellar mass into HIGH-high and HIGH-low categories based
on whether the sources were above or below M, = 10° M.
To supplement the dust and HI selected samples taken from
H-ATLAS, we follow C15 and DV17 and use the HRS
(Boselli et al., 2010) which provides a (quasi) stellar mass
selected sample of nearby sources. The HRS targeted 323
galaxies ranging from late-type to early type sources. HI
masses were taken from Boselli et al. (2014). DV17 compiled
FUV-submm photometry for each of these samples, and sub-
sequently derived dust masses, stellar masses and star for-
mation rates consistently using MAGPHYS (da Cunha et al.,
2008). The MAGPHYS properties for the HIGH and HAP-
LESS samples are provided in Table Al.

2.2 The Dwarf Galaxy Survey

In this work, we also include results from the Dwarf Galaxy
Survey (DGS; Madden et al., 2013) to improve our sampling
of galaxies at low stellar masses and metallicities. The DGS
sources were selected from several other surveys in order
to make a broad sample of 50 galaxies ranging from very
low (~ 1/50Z) to moderate metallicity (~ 1/3Z5). In or-
der to compare the samples, we need consistent methods
to calculate the different galactic properties. Unfortunately
we do not have the same complete UV-submm coverage for
DGS sources as we have available for the H-ATLAS and
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Table 1. The average properties for the samples used in this work quoted as the mean + standard deviation. Where data is not available
for all the sample we quote the number of sources in the brackets. We only show the late type galaxies (LTGs) in the HRS.

Galaxy Sample log SFR log My log M. log My fq
Mo yr!) Mo) Mo) Mo)
DGS —0.68 £0.85 (45)  8.57 +0.78 (35)  8.10 £ 0.99 512+ 1.77 0.74 + 0.23 (35)
H1GH-low —1.19+0.52 9.02 £ 0.46 8.17 £ 0.56 5.21 £0.97 0.87 £+ 0.09
HiGH-high —0.07 £ 0.40 9.76 £ 0.39 9.89 £ 0.65 7.12£0.43 0.50 £+ 0.24
HRS (LTGs) —0.70 + 0.67 8.94 4+ 0.56 (231) 9.64+£0.57 6.70+0.54 (239) 0.28 £0.22 (231)

HRS. Consequently, we redetermined the dust masses for
the DGS galaxies using a two-component modified black-
body (MBB) fit to the 70-500 um photometry provided in
Rémy-Ruyer et al. (2013; 2015). This method produces con-
sistent results with the dust masses output by MAGPHYS for
the HAPLESS and HiGH sources with dust temperatures
>15K and both methods assume the same dust absorption
coefficient of kgs0 = 0.07m? kg ™! (James et al., 2002). How-
ever, for some sources fitted by a MBB with T. < 15K,
MAGPHYS results in warmer temperatures (by ~3K) and
therefore smaller dust masses (see also DV17). After scaling
the Rémy-Ruyer et al. (2015) masses for graphite grains by
the difference in k used in their work and MAGPHYS, these
dust masses are entirely consistent with the MBB results for
all sources with T. > 15K. For some of the colder sources
there is an offset, yet this is of the same magnitude as the
offset between MAGPHYS and the MBB method. Therefore in
what follows, we simply scale the Rémy-Ruyer et al. (2015)
dust masses for the difference in k to be consistent across
samples.

Rémy-Ruyer et al. (2015) derived stellar masses based
on the Eskew et al. (2012) method. To check consistency
with the MAGPHYS stellar masses, we re-derived stellar
masses for our HIGH sample using their calibration and
found that the DGS stellar masses were a factor of ~ 3.2
larger than MAGPHYS. This difference stems mainly from
Eskew et al. (2012) adopting a Salpeter initial mass func-
tion (IMF), whereas in this work we assume a Chabrier
IMF. After scaling the DGS values to be consistent with the
other samples here, the HIGH-low and DGS contain galax-
ies with similar average stellar masses. SFRs for DGS were
taken from Rémy-Ruyer et al. (2015) and were estimated us-
ing a combination of Ltir and the observed Ha luminosity
(Kennicutt et al., 2009). As there are no integrated Ha lu-
minosities available for the HIGH and HAPLESS samples,
we compared this SFR method with the SFRs output by
MAGPHYS for the HRS galaxies. We found that these meth-
ods were compatible for all but the most quiescent sources
in the HRS (specific star formation rate < 107" Mg yr™')
which are not discussed here. HI masses are available for 35
DGS galaxies from Madden et al. (2013).

3 METALLICITIES AND CALIBRATIONS

To calculate metallicities for the HIGH and HAP-
LESS samples, we use fibre optical spectroscopy from
SDSS (Thomas et al., 2013), supplemented by GAMA
(Hopkins et al., 2013) (v17). Although GAMA is an ex-
tragalactic survey of thousands of galaxies, we have used
GAMA fibre spectra that, for our nearby galaxies, corre-
spond to HiI regions within the galaxies. Emission lines were

measured by running each spectrum through a modified ver-
sion of the Gas AND Absorption Line Fitting algorithm
(GANDALF; Sarzi et al., 2006). Results were cross checked
with GAMA’s GaussFitComplexv05 (GFC; Gordon et al.,
2016) and both techniques gave comparable results for all
but 15 Hir regions. The results for these 15 HII regions
were checked against the Fit3D (Sanchez et al., 2016) and
the GAMA SpecLines (v4) catalogues (Hopkins et al., 2013)
and found to be consistent with the GFC method.

For many of the HIGH and HAPLESS sources, we
found multiple fibres within the same galaxy. Star form-
ing (Hi) regions were selected using the criteria in
Kauffmann et al. (2003) by placing sources on the BPT dia-
gram (Baldwin et al., 1981). This resulted in a sample of 95
Hir regions for the 40 HIGH galaxies and 85 HII regions for
the 42 HAPLESS galaxies (67 HiI regions overlap as their
galaxies are in both samples). The emission line fluxes for
each HiI region were corrected for stellar absorption, and for
internal and galactic extinction using the Balmer decrement
C(Hpg) and the Cardelli et al. (1989) dust obscuration curve.
Errors on the line measurements were provided by GAN-
DALF or GFC. We then bootstrapped the measurements
by generating 1000 new emission line fluxes assuming a nor-
mal distribution with the extinction-corrected emission line
fluxes as mean and the measured error as the standard de-
viation of the distribution. The HIGH and HAPLESS emis-
sion lines and their errors are presented in Table A3. For
the HRS, emission lines from integrated spectroscopy are
available from Boselli et al. (2013) for 170 LTGs. DGS line
measurements are taken from the literature (Table A4; S.
Madden, priv. comm.").

To derive metallicities from the emission line spectra,
we compared the results from different empirical and theo-
retical methods in order to understand any systematic dif-
ferences that may result from our methods. Here, our aim is
to compare the different calibrations to determine which one
fits our model best. Empirical calibrations are only valid for
the same range of excitation and metallicity as the Hil re-
gions that were used to build the calibration. Since they are
determined assuming an electron temperature, these meth-
ods may systematically underestimate the true metallicity
if there are temperature inhomogeneities in a galaxy. This
is thought to be more severe in metal-rich HiIl regions be-
cause the higher efficiency of metal-line cooling leads to
stronger temperature gradients (Garnett, 1992; Stasinska,
2005; Moustakas et al., 2010). On the other hand, theoret-
ical calibrations require inputs including stellar population
synthesis and photoionization models; often the theoretical

1 We include the DGS emission lines and metallicities for the
community in Table A4, and we correct some of the references.
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metallicities are higher than those found with the empirical
calibrations.

We therefore chose to compare three common empiri-
cal methods including O3N2 and (third order polynomial)
N2 from Pettini & Pagel (2004), and the S calibration from
Pilyugin & Grebel (2016, hereafter PG16S). All three meth-
ods produce metallicities that correlate well with stellar
mass and gas fraction (e.g. Kewley & Ellison, 2008). How-
ever, the O3N2 calibration is only calibrated for metallicities
12 + log(O/H) > 8 (Pettini & Pagel, 2004; Marino et al.,
2013), and the N2 method also runs into difficulties at
the lowest metallicities due to the large scatter observed
in N/O ratios (Morales-Luis et al., 2014) and instead pro-
vides upper limits to the true metallicity for galaxies when
12 + log(O/H)n2 < 8. We also derived metallicities consis-
tent with the theoretical calculations from Tremonti et al.
(2004, hereafter T04). As we do not have access to their
code we used the scaling relation between O3N2-T04 from
Kewley & Ellison (2008), calibrated against 27,730 SDSS
star-forming galaxies (hereafter KE08/T04). We note that
this conversion is only valid for 8.05 < 12+1og(O/H)osn2 <
8.9. Additionally, we have determined metallicities using
the Bayesian-based IZI tool (Blanc et al., 2015) which also
provides a theoretical calibration based on photo-ionisation
models. The IZI results were found to be entirely consistent
with the KE08/T04 calibration and are thus not further
listed in this work. When the different calibrations are com-
pared, we find the PG16S calibration produces lower metal-
licities, followed by N2, 03N2 and then KE08/T04 (see also
Table 3). Because the limited validity of the other calibra-
tions below 12 + log(O/H) = 8, PG16S is the most reli-
able calibration for the low metallicity sources. Given the
importance of low metallicity sources in this work, we will
plot metallicities using the PG16S calibration throughout.
However, for high metallicity sources, there is a remaining
uncertainty in the metallicity relations in this work with re-
spect to which calibration is used, and we therefore highlight
the main differences throughout the text and include results
derived from all three calibrations where appropriate.

Metallicities for each HIGH and HAPLESS galaxy were
derived from a weighted average of the multiple HiI regions
within the same source (Table A2). Errors were derived
by adding in quadrature the bootstrapped values on the
extinction-corrected emission lines and the intrinsic scatter
observed between the different HII regions within the same
galaxy. The latter amounts to an uncertainty of 0.06 dex (see
also Bresolin & Kennicutt, 2015). Note that these metallici-
ties are based on an average of multiple small (2 for GAMA,
3" for SDSS) fibres per source and not on integrated mea-
surements. They are thus not ideally suited for extended
sources, yet they at least provide a good first estimate for the
metallicity of the galaxies in our sample. The calibrations
used in this work are derived using the electron temperature
method. The uncertainty in the absolute metallicity deter-
mination by this method is ~ 0.1 dex (Kewley & Ellison,
2008). We thus add 0.1 dex in quadrature to the uncer-
tainty on the averaged metallicity for each galaxy and each
calibration. The resulting metallicities and uncertainties for
HIGH and HAPLESS are listed in Table A2.

For the HRS and DGS, we simply derive metallici-
ties based on the integrated spectroscopy for each of the
three calibrations. The DGS metallicities were originally es-
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Figure 1. A comparison of the differences in metallicity cali-
brations A(12 + log(O/H)) using the N2 (blue), O3N2 (green)
and PG16S (red) methods with the published DGS metallicities
derived using PT05 (M13, Madden et al., 2013). The significant
offset between the O3N2 and PTO05 at the lowest metallicities
may be because this calibration is known to break down here (in-
dicated by the vertical line; Pettini & Pagel, 2004), though the
N2 and PG16S results also suggest PT05 tends to underestimate
metallicities in this regime.

timated using the Pilyugin & Thuan (2005, hereafter PT05)
calibration (Madden et al., 2013). PT05 is calibrated over a
similar range of metallicity to N2 and PG16S, but there
are a number of reasons we choose not to use this as
a method to determine metallicities in this study. First,
PTO05 is not a good estimator for metal-rich galaxies that
have low excitation parameters P and high values of Ras
(Moustakas et al., 2010), such as the HRS and HiGH-high
galaxies. PT05 is therefore more suited for the DGS and
HiGH-low sources that have appropriate P and Ra3 val-
ues but this means we cannot apply a consistent method to
derive metallicities across the different samples of nearby
galaxies. Second, PT05 metallicities have been shown to
have a lot of scatter with stellar mass compared to other
calibrators (Kewley & Ellison, 2008), suggesting it is not
a good tracer of metallicity across a wide range of galaxy
properties. Third, the PT05 method has two ‘branches’ of
metallicity values versus the Rg3 emission line ratio with a
transition region between the two branches. Because of this,
a large difference in Z can be derived for galaxies with very
small changes in emission line ratio. The PG16S calibration
also uses different relations for high and low metallicities.
However the appropriate ranges where the high- and low-
metallicity relations can be used, overlap for adjacent metal-
licities, and the transition zone thus disappears. Fig. 1 com-
pares the DGS metallicities derived here with the published
values from Madden et al. (2013, M13), which are based on
the PTO5 calibration. We find, on average, lower metallicities
for galaxies with 12 4+ log(O/H)mis < 8, and higher metal-
licities for high metallicity souces (though with less scat-
ter). We see that the differences between PT05 and PG16S
are less pronounced than for the other calibrations, though
using PG168S still suggest higher metallicities (0.09 dex on
average) than previously published, especially for low metal-
licity sources. We thus use PG16S metallicities throughout
this work.



Dust sources and sinks in low metallicity galaries 5

4 THE CHEMICAL EVOLUTION MODEL

A chemical and dust evolution model can be used to build
a consistent picture of how the metals, dust and gas con-
tent change as galaxies evolve (Tinsley, 1980). The simple
chemical evolution model used in C15 to interpret the dif-
ferent scaling relations for dust, gas and stellar mass se-
lected samples neglected dust destruction and grain growth,
and assumed that the system was a closed box (no inflows
or outflows). Following Zhukovska (2014) and Feldmann
(2015), we relax all of these assumptions. The chemical
model is presented in full in Rowlands et al. (2014b; see
also Morgan & Edmunds, 2003) and the Python code used
is freely available on GITHUB?. The equation for the dust
mass evolution is given in Appendix B. In short, the model
uses a prescription for the Star Formation History (SFH)
and a Chabrier (2003) IMF to calculate how much of the
initial gas is converted into stars at any given time. The
model also tracks the continuous build-up of metals as stars
end their lives, though metals can be removed in outflows
of material. For dust, the picture is more complex. Dust is
produced by supernovae and evolved low-intermediate mass
stars, and additional mass is gained from the ISM by dust
grain growth. Dust is primarily destroyed by SN shocks and
astration (the removal of gas and dust due to star forma-
tion). We use a one-zone chemical evolution model, i.e. we
study the integrated properties of galaxies without spatial
resolution, and assume instant mixing of dust, gas and met-
als.

In this model we include simple analytical prescriptions
for grain growth and dust destruction via shocks as de-
scribed in Rowlands et al. (2014b). The timescale for dust
destruction (7qest, following Dwek et al. 2007) is described
as a function of the rate of SN (Rgn):

oMy,
mismRsn(t)’

Tdest = (1)
where M, is the gas mass of the galaxy and mism is the mass
of ISM that is swept up by each individual SN event. In some
models (Table 2) we set this to mism = 100Mg, indica-
tive of SN shocks ploughing into typical interstellar densities
of 10° cm™® (Gall et al. 2011; Dwek & Cherchneff 2011), al-
though we also explore models with 1000 M (Dwek et al.,
2007), consistent with dust destruction in the diffuse ISM
and possibly more appropriate for a low metallicity ISM.

The grain growth prescription is taken from
Mattsson & Andersen (2012) where the timescale for
dust growth is given by:

oo = it (1= %) @

and ngq is the dust-to-gas ratio, Z is the metallicity (Z =
Mimetals/Mgas) and € is a free parameter, which is set to
e = 500 in Mattsson & Andersen (2012), appropriate for
accretion timescales of 107 yr for a galaxy similar to the
Milky Way.

We also test four ‘representative’ star formation his-
tories, including a Milky Way-type exponentially declining
SFR (Yin et al., 2009), and two versions of a delayed SFH

2 https://github.com/zemogle/chemevol

as parameterised by Lee et al. (2010):
SFR Lo 3
(t) x e (3)

where t is the age of the galaxy and 7 is the star forma-
tion timescale. First, we assume a SFH with 7 = 6.9 Gyr
with peak SFR 4.4 Mg yr~! in order to produce the same
stellar mass as the Milky Way-type SFH. The second de-
layed SFH is reduced by a factor of 3, and has 7 = 15 Gyr
(see Section 5.3). Finally, a model including a bursty SFH,
similar to that used in Zhukovska (2014) to explain the SFR,
properties of the DGS sources, is also included. In Section 5,
we test various parameter combinations, including changing
SFHs, IMFs, inflows, outflows and including different dust
sources, in order to interpret the observed dust, metal, gas
and star formation rates of the nearby galaxy samples. The
parameters for Models I-VII, which are good representations
for the sampled parameter-space, are listed in Table 2.

We note that this model differs from Rowlands et al.
(2014b) in the following ways: (i) the initial remnant mass
function is updated. (ii) We now take into account the for-
mation of a black hole for stars with initial mass m; >
40 Mg when accounting for gas and metals released into the
ISM. Stars with progenitor mass above this cut-off mass
only contribute gas and metals lost via stellar winds be-
fore the collapse. (iii) We add an additional term f. to ac-
count for the fraction of gas that is cold enough for grain
growth in the ISM. We follow Mancini et al. (2015) and
Inoue (2003) by setting this equal to 0.5. This parameter is
likely to be higher at earlier times (e.g. Popping et al. 2014;
Nozawa et al. 2015) though we choose to keep it constant
here. (iv) We no longer interpolate the yields from stars of
a given mass but just choose the nearest neighbour value,
this has a small effect on the resulting stellar yields. (v)
We directly input the dust masses for core collapse SN for
stars with initial mass 8.5 < M; < 40 from Todini & Ferrara
(2001). Rowlands et al. (2014b) used the Todini & Ferrara
(2001) dust masses to estimate a condensation efficiency for
SN dust (dsnx) and applied that to the metal yields from
Maeder (1992). Using the former technique reduces the dust
mass by a factor of ~1.8 for a MW-like galaxy at early times
(< 0.8 Gyr) compared to the latter.

5 RESULTS
5.1 A simple model fit to dust in nearby galaxies

In Fig. 2, we follow C15 and DV17 and compare the evo-
lution of the dust-to-baryonic mass ratio (Mg/Mpary) with
gas fraction for the different nearby galaxy samples com-
piled here. This plot is an excellent starting point as it tracks
the relative changes in dust mass in terms of the evolution-
ary state. We define the baryon mass and gas fraction as
Mypary = Mg + M. and f; = #‘7]\49 respectively, where
My = 1.32 Mm to take into account the mass of neutral
helium. Due to the difficulty in obtaining CO detections for
all the different samples considered here, particularly for low
stellar mass sources, we do not take into account any molec-
ular component. We refer to Section 5.9 for further discus-
sion, though we note here that Hy does not dominate the
total gas mass for our samples and thus including He would
not affect the conclusions reached in this work.
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Table 2. Parameters for the different chemical evolution models used.

Name IMF SFH Reduced SN dust Destruction Grain Growth Inflow Outflow
Model I Chabrier  Milky Way N N N N N
Model II Chabrier Delayed N N N N N
Model IIT Chabrier Delayed N N N N 1.5x SFR
Model IV Chabrier Delayed X6 mism = 150 e =700 1.7x SFR  1.7x SFR
Model V Chabrier Delayed x12 mism = 1500 e = 5000 2.5x SFR  2.5x SFR
Model VI Chabrier  Delayed/3 x100 mism = 150 e = 8000 2.5x SFR  2.5x SFR
Model VII  Chabrier Bursty x12 mism = 150 e = 12000 4.0x SFR  4.0x SFR

In Fig. 2, we find My/Mpary follows a tight relation
at low gas fractions. However at high gas fraction there is
more scatter, at least in part due to differences in the contri-
butions from the different dust sources. We also show how
the observations from the different samples compare with
a chemical evolution track similar to C15 and DV17. This
model uses a SFH consistent with the Milky Way (Yin et al.,
2009), though here we use our updated code (Model I, Ta-
ble 2). Model I overlaps with Model II in Fig. 2 (see also
Section 5.2). Although galaxies are more complex than this
simple model, Model I does explain the overall trend in these
samples, yet not all sources at gas fractions < 50 per cent are
well-matched. We note that our model peaks at a lower gas
fraction (~ 0.3) than in C15 and DV17 due to the changes
made to the assumptions and dust inputs described in Sec-
tion 4. Indeed, as our model has less dust injection from su-
pernovae but the same dust injection from low-intermediate
mass stars (LIMS) compared to Rowlands et al. (2014b),
this shifts the peak Mg/Mpary towards lower gas fractions. In
this work we assume a dust condensation efficiency for LIMS
of 0.16, consistent with predictions of Morgan & Edmunds
(2003). This value is somewhat lower than the high con-
densation efficiencies from theoretical models of dust forma-
tion in stellar winds (Zhukovska et al., 2008; Ventura et al.,
2012). By choosing an even lower value for the dust con-
densation efficiency in LIMS we could obtain a better fit
to Mg/Mpary at low gas fractions for the closed box model
of C15. However, as we will show in Section 5.2, an equally
good fit to My/Mpary can be obtained through the introduc-
tion of inflows and outflows when we relax the assumptions
of the closed box model.

In Fig. 2, we see that a large fraction of the highest gas
fraction galaxies (f; > 85 percent, HIGH-low) have signif-
icantly lower Mg/Mpary than expected from Model 1. We
note, however, that the dust mass of these galaxies have
large error bars due to poorly constrained dust temperatures
from the MAGPHYS fitting. In order to ensure the offset in
Ma/Mhyary for these sources is not due to this, we stacked the
MIR-submm fluxes for the 8 HIGH-low sources with poorly
constrained temperatures. The resulting stacked SED is well
fitted by a single modified black body curve with dust tem-
perature T' ~ 35 K. The lower dust masses for these sources
are therefore consistent with them having warmer dust tem-
peratures than the HAPLESS and HRS sources (on aver-
age). We conclude that a different set of chemical model
properties are necessary to explain this slower build-up of
dust for these high gas fraction sources compared to the
dust-rich HAPLESS galaxies at the same Mgy/Mpary.

Note that in Fig. 2 we also highlight the well-studied
galaxy I Zw 18 (part of the DGS sample) thought to be a
local analogue of low-metallicity, high-redshift systems (e.g.
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Figure 2. Variation of My/Mya.,y, with gas fraction for the dif-
ferent nearby galaxy samples. The solid lines show how galaxies
with the same initial gas mass but different combinations of SFHs,
inflows, outflows and dust sources evolve as the gas is consumed
into stars (Models I-VI; Table 2). Models I and II overlap in
this plot. The observed properties of dust-poor local galaxy I Zw
18 (black diamond) are also added for comparison (Fisher et al.,
2014), with dashed line indicating where this source ‘moves’ using
the methods in this work.

Herrera-Camus et al. 2012; Fisher et al. 2014). The location
of this source on this Mg/Mpary ‘scaling relation’ (and in
later Sections) is indicated by the black diamond using the
measured properties from Fisher et al. (2014). As we have
re-evaluated the DGS measurements to be consistent across
all samples (Section 2), we have indicated where this galaxy
moves with our revised measurements (dashed line). We will
see in later sections that the dust properties of I Zw 18 are
entirely consistent with its gas fraction and metallicity.

5.2 Relaxing the closed box assumption

Fig. 2 also compares the Mg/Mpary of these samples with
different chemical evolution tracks including different SFHs
and/or relaxing the closed box assumption from Model I
(Models 1I-VI, Table 2). There are significant differences
between some of the models and the data, especially at
fg ~ 80 per cent. Even for the same gas fraction, nearby low
M, galaxies split into two categories: dust-rich and dust-
poor and require different chemical evolution models to ex-
plain their dust-to-baryonic mass properties. Briefly, we see
that the dust-rich low M., sources are matched relatively well
by Models I-III, which show a steep rise in M4/Mpary at the
highest gas fractions (fy > 95 percent) and correspond to
core-collapse SNe producing 0.17 — 1.0 Mg of dust per ex-
plosion when there is no dust destruction or grain growth (or
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Figure 3. SFR/My,,y against the gas fraction reveals the need
for a delayed SFH (Models II-VI) to explain the HIGH-low and
HAPLESS sources at high fg. In this parameter space, Models II,
IV and V overlap as they have the same SFH and their inflows
and outflows are balanced. Bursty SFHs are needed for the DGS
(Appendix C).

the net interstellar grain growth is matched by equal dust
destruction). For the sources with high My/Mpary for their
gas fraction, an increased SN dust yield results in a better
fit. In this case the dust contribution from LIMS needs to
be reduced. Even though the SFH for models I and II are
very different, their chemical evolution tracks in Fig. 2 nearly
overlap, indicating the My/Mypary evolution is not dependent
on the SFH for models without dust grain growth.

To model the dust-poor HIGH-low and DGS sources,
we follow Zhukovska (2014) and Feldmann (2015) and relax
the closed box assumption, reduce the contribution from su-
pernova dust, and include dust grain growth in our model.
Models IV-VTI therefore require a reduction in the dust pro-
duction in SNe by a factor of 6-100 compared to the mod-
els required to fit the HRS, HIGH-high and HAPLESS. In
contrast to our approach (and Zhukovska, 2014), Feldmann
(2015) even uses reduced supernova dust yields for sources
that are not dust poor given their metallicity and instead
uses extremely fast (timescale of ~ 5 Myr) grain growth to
achieve high dust masses at high gas fractions. There is thus
a degeneracy between using a significant contribution from
supernova dust, and using very fast dust grain growth. Their
grain growth timescales of ~ 5 Myr are much faster than typ-
ically found in nearby galaxies (Mattsson & Andersen, 2012;
Mattsson et al., 2014) or from basic theoretical estimates of
the underlying growth rate (Draine, 2009).

At late times (low gas fractions), Models I and II over-
estimate the amount of My/Myayy, and require (stronger)
inflows and dust-rich outflows of gas or a reduced dust con-
tribution from LIMS to explain the observed properties. The
choice of Models I-VI will be motivated in Sections 5.3-5.6.

5.3 Star formation histories

Next we attempt to explain the observed SFR properties
with these models by comparing the change in SFR/Myary
with gas fraction. Fig. 3 compares the HAPLESS, HRS,
HiGH, and DGS samples. In the high gas fraction regime
(fg > 80percent), we see that Model I overpredicts the

SFR/Mpary, particularly in comparison to the HIGH-low
sources. Delayed SFH models provide a closer match to this
sample (as used in Models II-VI) by reducing the SFR per
unit baryonic mass at early evolutionary stages. The values
of the delayed SFHs in Eq. 3 were chosen to match the data
in Fig. 3, with Model VI providing a good fit to most® of
the HIGH-low sources. In models with strong outflows but
no inflows (Model III), the baryonic mass is significantly
reduced at low gas fractions, and therefore SFR/Mpary in-
creases as the gas fraction decreases. Model III thus poorly
matches the observed SFR/Mypary at low gas fractions and
can be discarded as an unrealistic model. However, when the
outflow is matched by an equal inflow as in Model V, Myary
stays constant and we find the same SFR/Muya.y track as for
the same model without inflows and outflows (i.e. Models
II, IV and V overlap in Fig. 3).

The DGS sources lie significantly above the HRS, HIGH
and HAPLESS samples in Fig. 3, with higher SFR /M,y for
the same gas fraction. DGS tends to contain more actively
star-forming galaxies (average SFR 0.21 Mg yr™ ', Table 1)
than is typical of nearby dwarfs (e.g. Hunter et al. 2012).
Their selection towards more star-forming, low-stellar mass
systems could be a consequence of their original selection of
galaxies with moderate to very low PT05 metallicities. We
return to this in the next section. The intensely SF nature of
the DGS was highlighted in Zhukovska (2014), where they
found they required bursty SFRs to fit the gas and dust
properties of these dwarf galaxies. Even with the revised
dust masses and metallicities and the different model as-
sumptions in this work, we also require a bursty SFH to fit
the DGS properties (Appendix C). This demonstrates that
despite having similar stellar masses, dust temperatures and
gas fractions as the HIGH-low sources, the DGS are more
actively star forming than the HIGH galaxies and do not
appear to be the same sources at a different evolutionary
stage. However, we cannot rule out that DGS and HiGH-
low are both part of the same evolutionary sequence, with
DGS sources undergoing a burst and HIGH-low sources in a
quiescent period between bursts. The HIGH-low and HAP-
LESS samples therefore complement the DGS and provide
additional, new, information of more normal star-forming
systems at low metallicities, high f,, and potentially differ-
ent dust properties.

5.4 Metallicity build-up

We next wish to compare how the metallicity of galaxies
changes as they evolve from high to low gas fractions. The
chemical evolution code traces both the total metal mass
fraction Z and the oxygen mass, we can directly convert the
models to oxygen abundance using:

(0] oxygen mass, 16
12 41 — | =12+1 —_— | . 4
+ Og(H) + og( gas mass/1.32 @

In Fig. 4 we see in both the model behaviour and the ob-
servations that, in general, the metallicity increases mono-
tonically as galaxies evolve from high to low gas fractions.

3 Three HIGH-low sources actually have a higher SFR, more in
line with the actively star-forming DGS sources rather than the
other normal star-forming HIGH galaxies.
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Figure 4. Metallicity variation with gas fraction for the differ-
ent samples using the PG16S metallicity calibration. The differ-
ent chemical evolution models (see text and Table 2) are also
included.

The models are almost indistinguishable at gas fractions
> 80 per cent in this parameter space. At low gas fractions,
Models T and II clearly overestimate the amount of met-
als; we find models with moderate (2.5% SFR) outflows of
enriched gas and metal-poor inflows are necessary (Models
V-VI). Here we note that it is possible that empirical cal-
ibrations such as PG16S are underestimated (particularly
at low gas fractions) due to temperature inhomogeneities. If
this is the case, a theoretical calibration such as KE08/T04
would be more applicable and less strong inflows and out-
flows would be sufficient.

Fig. 4 also shows that the DGS appears to have lower
metallicities than the HRS at low gas fractions and, to a
lesser extent the HIGH-low sources at high gas fractions. In
other words, the DGS galaxies are, on average, more metal-
poor given their evolutionary state. In the previous section
we also found DGS are, on average, more actively form-
ing stars. Selecting galaxies ranging from low to moderate
metallicity at a given gas fraction appears to result in a sam-
ple selection biased towards galaxies with very high SFRs
due to the mass-metallicity-SFR relation (Mannucci et al.,
2010; Lara-Lépez et al., 2010). Additionally, higher SFR
(and thus brighter) sources are easier to observe with Her-
schel, and it is easier to obtain high signal-to-noise spectra
(in order to determine metallicities). This is another reason
DGS consists mainly of high SFR sources. As suggested in
Feldmann (2015), the low metallicities at a given gas frac-
tion for DGS sources, requires the addition of strong inflows
and outflows to regulate the build-up of metals in the DGS
galaxies. Only Model VII (Fig. C1), with bursty SFH and
stronger inflows/outflows (4x SFR) than the models (V and
VI) used to match the other nearby galaxy samples in this
work, can be used to explain the Z — f, properties of the
DGS sample.

5.5 Dust-to-gas ratio

Next we compare metallicity with the dust-to-gas ratio for
the 253 galaxies in our combined sample that have metallic-
ities available (Fig. 5). The Mg/M, ratio correlates with
the gas-phase metallicity over a wide range 7.3 < 12 +

-1.5 =
PG16S
-2.0
—-2.5
é’c -3.0 Model I
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Figure 5. Metallicity variation with gas-to-dust ratio My/M,.
Models IV, V and VI provide a better match between metallic-
ity and My/M, for the HIGH-low and many DGS sources than
Models I-III.

log(O/H)pgies < 9.0, yet we again identify two regimes.
If dust traces the metals or a constant fraction of metals re-
mains in dust grains, we expect a linear My/My— Z relation-
ship, with a slope as for Models I-III. Models I-III are con-
sistent with the slope of those galaxies with highest My/M,
in the metallicity range 7.3 < 12+log(O/H)pciss < 8.2, but
the HRS sources do lie offset from these models?. This could
be explained either by increasing the dust produced by stars
by a factor of 5 or more which would move Models I-III up
the y-axis whilst keeping the slope constant. However we
note that the amount of dust formed in LIMS stars and SNe
is already substantial, and these models have no dust de-
struction suggesting that adding more dust produced from
stars in this way is unrealistic. Alternatively, one could add
interstellar grain growth which would act to steepen the tips
of Models I-IIT at metallicites 12 + log(O/H)pcies > 8.2
(see for example the tips of Models IV-VI). We return to
how this may be a result of different dust-to-metal ratios in
Section 5.6.

The dust-poor high gas fraction sources (HiIGH-low
and some of the DGS galaxies) lie well below the lin-
ear trend from Model I-ITI. This offset was already dis-
cussed in Rémy-Ruyer et al. (2013; 2015); Zhukovska (2014);
Feldmann (2015), who explained this by suggesting the su-
pernova contribution to the dust budget needs be reduced
and a dust grain growth term added. The argument is such:
for the highest gas-fraction galaxies in Fig. 5 the dust mass
needs to be significantly suppressed without reducing the
metals. The only way® to do this is to reduce the amount of
dust formed by stars (including SN) in each stellar popula-
tion. As the dust-to-gas ratio is already lower than expected
from a linear trend at high gas fractions, this suggests the
SN dust production must be suppressed. The observed dust-
to-gas ratio in the lowest metallicity HIGH-low and DGS
galaxies requires models with a maximum of 0.01 — 0.16 Mg
(Models VI-IV) of dust per core collapse SNe, which corre-

4 Here we do not aim to find a single model that explains the
HRS galaxies, rather we simply show how models without grain
growth evolve in this plot.

5 Note the dust destruction caveat in Section 5.9.
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sponds to a condensation efficiency of 0.2-3.2 per cent for a
25Mg progenitor (assuming 5M¢g of metals ejected and that
all of this mass can be condensed into dust).

Therefore Models IV, V and VI include a reduced SN
dust component (by a factor of 6-100 in mass, Table 2) com-
pared to the MW model. Since there is less stardust in these
models, if we require galaxies to ultimately reach the typi-
cal dust-to-gas ratios observed at low f, (Fig. 5), we need
to also include interstellar grain growth. This dust source is
strongly metal-dependent and only becomes important once
the galaxy reaches a critical metallicity (Asano et al., 2013).
This means that different values of the grain growth param-
eters €, and consequently Tgrow, move the model tracks. An
increase of € steepens the slope of My/M, (shown by Mod-
els IV-VI as they reach the end of their tracks); any offset
from the linear trend in Fig. 5 can therefore be mitigated by
changing e such that grain growth starts at a lower metallic-
ity (thereby increasing the dust-to-gas ratio). Alternatively,
offsets in Fig. 5 can also be explained through the use of
different bursty SFHs, because long quiescent phases allow
accretion of existing metals after short active enrichment
episodes (Zhukovska, 2014).

The relative contributions to the dust mass budget for
Models IV-VI are displayed in Fig. 6. At high gas fractions,
stellar sources dominate (mostly SN dust, Rowlands et al.,
2014b, C15), yet dust grain growth becomes the largest
source of dust mass at gas fraction below 0.88, 0.79 and
0.53 for Model VI, V and IV respectively. The metallicity at
which dust grain growth exceeds dust production from stars
in our model is reached between 0.003 < Z < 0.012 (or
7.97 < 12 + log(O/H) < 8.63, or 0.88 > f, > 0.53), though
low values in this range result in the best match with obser-
vations. High values of € (Table 2) lead to short grain growth
timescales and low critical metallicities. By the time Mod-
els IV-VI reach the lowest gas fractions, dust grain growth
produced 70-93 per cent of the total dust mass created over
the galaxy’s lifetime.

The (Z-dependent) dust grain growth timescales for
Models IV, V and VI are shown in Fig. 6 (bottom). For
Model IV and V, the dust grain growth timescale Tgrow de-
creases steeply at high gas fractions (when the critical metal-
licity is reached), and decreases gradually after that. For
Model VI, we again find an initial steep decrease in Tgrow
at high gas fractions, yet afterwards we find some fluctua-
tion and then an increase towards the lowest gas fractions.
Terow 18 inversely proportional to the SFR (Eqn. 2) and the
Model VI SFR decreases steeply towards low gas fractions
(and is low in general). This explains the higher Tgrow of
Model VI compared to Model V, even though € is higher.
The fluctuation in the 7gow for Model VI is thus a result
of the balance of the growing efficiency of grain growth as
the metallicity increases and the SFH reaching a peak and
decreasing steeply towards low gas fractions. We note that
even though the dust grain growth is slower in Model VI
than Model V, it is still faster relative to the SFR and thus
a more important term in the chemical evolution.

5.6 Dust-to-metal ratio

The variation in the dust-to-metals ratio is discussed in
Mattsson et al. (2014), where they show there is only a
small change in My/Mz (but increased scatter) observed
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Figure 6. (top:) The dust mass produced by the various dust
sources in Models IV, V and VI against gas fraction. Stellar dust
sources dominate at the highest gas fractions and are overtaken by
dust grain growth at lower gas fractions. (bottom:) The variation
of the grain growth timescale Tgrow (Equation 2) with gas fraction
for Models IV, V and VI. The growth timescale remains long until
the critical metallicity is reached.

in low metallicity environments (De Cia et al., 2013) and
at high redshifts (Zafar & Watson, 2013) even down to
Z < lpercent of Solar. In Fig. 7, we find that for HRS,
and a small fraction of the other sources, there is indeed not
much variation in the My/Mz®. The HRS is in good agree-
ment with the MW value (Clark et al., 2016) and the recent
survey by Davies et al. (2014) using Herschel observations
of galaxies in the Virgo Cluster. Models with stardust only
(Model T) predict an almost constant dust-to-metals ratio®.

However, there are also ~ 25 low metallicity (DGS and
H1GH) sources for which Mg/M7 is significantly smaller. We
note this result is independent on which metallicity calibra-
tion was used. Results for N2 and T04/KE08 are included
in Table 3 for comparison with PG16S. We thus use our
larger and more normal-star forming sample at low Z to
further support the Feldmann (2015) result that the dust-
to-metal ratio varies as a function of metallicity. The loca-
tion of the low stellar mass samples (HIGH-low and DGS
galaxies) is contrary to what we would expect if stellar
sources were the dominant source of dust in the galaxies,
which again shows we cannot model these sources without

7 The normalisation in Feldmann (2015) is given by their model
Mg/Mz at solar metallicity.

8 To estimate the total metal mass My from the observed oxygen
abundance from Section 3, we assume 12+log(O/H), = 8.69 and
a Solar metal mass fraction Zz = 0.014 following Asplund et al.
(2009).

9 The kink in Model T at 12 + log(O/H) ~ 8.4 is due to an in-
creasing metal mass from stars resulting from changing the input
metal yield file (Maeder, 1992).
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Table 3. Average dust-to-metal ratio for the different galaxy samples and metallicity calibrations quoted as mean + standard deviation.

Galaxy Sample Mean 12 + log(O/H) Mean My/Mz
N2 KE08/T04 PG16S N2 KE08/T04 PG16S

DGS 8.024+0.28 834+0.19 798+0.30 —-0.724+0.71 —-0.44+£0.33 —0.69=+0.66

HiGH-low 8.174+0.12 837+0.16 799+0.18 —-1.154+0.70 —-1.38£0.69 —0.97+0.70

HiGH-high 8.48+0.12 881+0.16 836+0.14 —0.494+043 —-0.82+£042 —0.37+0.43

HRS (LTGs) 8.57+0.15 875+0.17 848+0.18 —-0.204+0.24 —-0.38£0.25 —0.11+0.27
constraints on the physical properties of these galaxies given
0-5 the degeneracies in the model. The scatter in the observed
- KE08/To values between the different galaxy samples compiled in this
§ o0y | [peres work and others, and indeed within samples are often much
3 larger than their error bars. This suggests there is an intrin-
= 03 sic source of scatter in the observed data, and in this case,
= - one would not expect one model to provide a good fit to the
E -1.0 ) ® Mool v whole sample or even to subsets based on simple flux selec-
< L e tion criteria. Here then, we focus on comparing whether one
= -15 - o model, or class of models can provide a better description of
i) A HIGH < 10° M, the data than others, rather than derive the model that de-
—2.0 - B S“‘g Mo scribes the data best in an absolute way. We aim to constrain
- the degeneracies and parameters of our chemical evolution
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Figure 7. Dust-to-metal ratio versus metallicity (to allow com-
parison with Feldmann (2015), we use a normalisation” of
[Myg/Mz]p = 0.7) for HIGH, HRS, HAPLESS and DGS. The
dust-to-metal ratio is significantly lower for galaxies in the low
metallicity regime regardless of how actively star forming these
galaxies are. The large crosses show the mean + standard devia-
tion of dust-to-gas within the samples. We also highlight the MW
(Mg/Mz = 0.5, orange star) and recent estimates for galaxies in
the Virgo Cluster (Davies et al., 2014, cyan star).

grain growth. Feldmann (2015) attributes the rising dust-
to-metal ratio to dust grain growth becoming more effi-
cient as galaxies reach their critical metallicity. In contrast
to the strong inflows and outflows, and the extremely effi-
cient interstellar grain growth (timescale of ~ 4 Myr) from
Feldmann (2015), we find we can also model these sources
with more moderate inflows and outflows (2.5x SFR), and
moderate grain growth (timescale of 1 Gyr - 200 Myrs) mod-
els (Model IV-VI). The dust growth timescales in our models
are more similar to those quoted for the MW and local galax-
ies (Draine, 2009; Asano et al., 2013; Mattsson & Andersen,
2012; Mattsson et al., 2014).

We note it is very difficult for a model with SFH con-
sistent with the MW, with dust from LIMS combined with
significant dust production in supernovae and no dust de-
struction or grain growth (Model I, peak My/Mz ~ 0.2) to
reach the observed MW dust-to-metals ratio (~ 0.5; orange
star in Fig. 7) as it evolves. This issue demonstrates why
significant interstellar grain growth is needed to supplement
the dust mass and reduce the large offset in the predicted
Ma/Mz in Model I compared to the observed values, even
in our own galaxy.

5.7 Statistical constraints

We next attempt to check whether the comparison between
the data and Models I-VI in earlier Sections provide strong

models in a future paper (De Vis et al., in prep.) using a
Bayesian approach on a large grid of models. In this section,
we will test whether the “eye-ball fits” used here to select
“preferred models” (and in similar other studies Zhukovska,
2014; Rémy-Ruyer et al., 2013; Feldmann, 2015) are, in fact,
statistically robust.

We do this by calculating a statistic to measure the
goodness of fit between the data and each of the models as
plotted in Figs. 2, 3, 5. For simplicity, we consider just two
data samples: the full sample of all the galaxies together;
and the HIGH-low subset. Using all of the galaxies equally
weighted together is naturally dominated by the HRS sam-
ple which contains the most sources. The HIGH-low subset
departs from the typical chemical trends seen in other, more
evolved, galaxy samples, and so although we have to contend
with small number statistics, this subset represents an un-
usual and interesting population.

Since our measurements have significant uncertainties
in both the x and y values, and our models are non-linear
in y as a function of x, it is not possible to simply use a
standard x? approach to determine the goodness of fit. We
use a Bayesian approach to determine an effective x2 which
includes the measurement uncertainties in 2 dimensions. We
start from Bayes theorem:

P(model|data) = P(datajmodel) x P(model)/P(data). (5)

For two measured parameters, x and y, an observed data
point d; is given by (x;,y;) with Gaussian uncertainties
(0;,0y;). If we have a model linking z and y, y = f(x),
and we know that the true value for x is zo, then the true
value for y is given by f(zo). For this situation, the proba-
bility of observing z; and y; is given by:
2 2
P(d;|(o& f)) o exp <—(“’1 — 7o) (v = J(z0)) ) (6)

2 2
20z, 203,

Since the MAGPHYS uncertainties used in this work are often
asymmetric, we have used the lower x-errorbar if xo < x;
and the upper errorbar if x¢o > x;, and equivalently for the
y-errorbars and y; compared to f(zo).

To find the probability of observing the data point given
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the model f, we need to integrate over all possible values
for the true value xo. Assuming a uniform prior on xo, this
becomes,

P(dilf) /exp (—(xi _fO)Q € ﬂxo)y)d:po, (7)

202, 202

This integral can be solved numerically since the function
f(xo) can be described numerically from the output of the
chemical evolution models. The normalisation for Equation
7 is found from determining the maximum probability that
would be obtained for any y value for the same x-value as
the real data point. We thus find the ymax that maximises
Equation 7 with respect to y, and use this as the normali-

sation:
- 2 - 2
P(di|) / o (’(&20;) - 23:@ . )d"”“
ilJ) = 2 — 2 :
[y (el e S
(8)

For a linear model, ymax = f(z0), so a data point that
lies on the model will correspond to P(d;|f) = 1, which is
equivalent to x? = 0, as expected. This normalization re-
produces the standard form of x? for a linear function with
uncertainties in both x and y. However, our models are not
linear and as a result Yymax is not necessarily equal to f(zo).
By normalising P(d;|f) in this way, we ensure the estimated
probability is never larger than 1. This normalisation is thus
necessary to obtain sensible results. Formally we should nor-
malise by the maximum of P(d;|f) in both z and y, but this
2-d maximisation is time-consuming, and our approximation

is valid so long as azji—g < Zy and oy d; < which is the
case for our models and data.

The likelihood for the entire sample d = {d;} is then
found from taking the product of each of the probabilities
for the individual data points from Equation 8. Equivalently,
the logarithms of the probabilities can be added to give the

log likelihood:

log(L£(d|f))

dy7

Zlog (di] 1))- 9)

Additionally, in order to allow for more easily interpretable

results, we convert P(d;|f) from Equation 8 to an effective

X’

o= 3 —2log(P(dil)) (10)
Finally, so we can easily compare samples with different

number of galaxies, n, we calculate the average contribu-
tion to x2g per data point,

> —2log(P(ds|f))

n

(11)

This statistic is similar to reduced x?, but does not allow for
the number of degrees of freedom; the true number of de-
grees of freedom is hard to quantify because of correlations
between the effects of parameters in our models. Neverthe-
less, our models are essentially different parameter choices
for one over-arching model, and so they all have the same
effective degrees of freedom, and the statistic does allow a
fair comparison between them.

In this section we revisit three of the main figures

<X§H> =

in this work and determine how well Models I-VI fit
the observations. Table 4 shows the (x2z) for the com-
bined HRS+HAPLESS+HIGH sample and for HIGH-low for
Figs. 2, 3 and 5. In these Figs., the models do not reach
the lowest gas fractions and highest metallicities. Therefore
in our determination of (x2g), we have discarded all data
points with f; < 0.2 for Figs. 2 and 3 and all data points
with 12 + log(O/H) > 8.5 for Fig. 5. Figs. 2 and 3 use gas
fraction f; on the x-axis. However, the uncertainties on f,
become very non-linear near f; ~ 1, so the approximation
of a Gaussian error probability distribution is not valid, and
the calculation of (x2¢) is unreliable if we use f, as the x
variable. Therefore we have used M,/M, instead. This is
entirely equivalent to fy (My/M. = fq4/(1 — fg)), but has
errors that are more close to Gaussian, and so our statistic is
acceptable. It is worth noting that Models II and V provide
a reasonable fit to each of the studied relations and for both
sub-samples ({x2z) < 4). In the rest of this section we will
study which of the models fits which relation best and how
we interpret these results.

In Table 4 we find that the observations for My/Mpary
versus My /M, (or equivalently fy) are best fitted by Model
VI for HIGH-low. We thus find statistical confirmation for
our result from Section 5.2 that rapid dust grain growth
is necessary to model the unevolved HIGH-low sources. For
the combined sample, Model III provides the best fit. Here
the HRS dominates the (x2;) because of its large sample
size. As previously mentioned in Section 5.2, a reduced dust
contribution from LIMS would reduce the Mg/Mpary at low
fg and thus provide a better match for Models I and II.

The large (xZ4) in Table 4 for SFR/Myay against
Mgy /M, for all models and both sub-samples indicate that
a single model cannot describe the spread in SFR/Mpary.
For both the combined sample and HIGH-low, Model I pro-
vides a very poor fit. Delayed SFH thus provide a better de-
scription of the overall SFH of normal star-forming galaxies
than exponentially declining SFR. For the combined sam-
ple, Model IIT also provides a poor match. The reduction in
baryon mass due to the outflows is not matched by reduced
star formation in the delayed SFH. We also find Model VI
provides a poor match to the combined sample, and surpris-
ingly also to HIGH-low. As can be seen in Fig. 3, HIGH-
low includes some very actively star-forming galaxies with
small errorbars. These sources are more in line with the
bursty sources in DGS and are different from the normal
star-forming galaxies we tried to describe by the reduced
delayed SFH in Model VI. Therefore, HIGH-low cannot suc-
cessfully be described by a single Model in Fig. 3.

For Mga/M, versus 12 + log(O/H), Table 4 shows Model
VI provides the best fit to both HIGH-low and the com-
bined sample. This thus provides further corroboration of
dust grain growth being necessary to model the build up of
dust as galaxies evolve. For HIGH-low the scatter is rather
large, and none of the models provides a particularly good
fit.

5.8 Discussion

We have found that, in order to get satisfactory fits to the
observed Mg/Mypary, SFR/Mpary, 12 +log(O/H), Mga/M,
and Mq/Mz for the different nearby galaxy samples in this
work, it is necessary to reduce the SNe dust contribution (by
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Table 4. The goodness of fit of each Model as expressed by (ngf) for the combined HRS+HAPLESS+HIGH sample and for HIGH-low.
Results for Figs. 2, 3 and 5 are shown for both samples. My /M, was used instead of fy because for f; the approximation of a Gaussian

error probability distribution is not valid.

Galaxy Sample Combined HiGH-low
Fig. 2 3 5 2 3 5
y-axis Md/Mbary SFR/Mbary Md/Mg Md/Mbary SFR/Mbary Md/Mg
x-axis Mg /M Mgy /M. 12 + log(O/H) Mgy /M. Mgy /M. 12 + log(O/H)
Model I 1.90 7.55 2.73 1.28 20.45 1.65
Model II 2.06 3.56 2.80 1.47 2.72 1.68
Model IIT 0.84 10.45 2.79 1.36 3.01 1.68
Model IV 1.31 3.55 8.64 0.94 2.72 2.38
Model V 1.03 3.53 1.09 0.89 2.72 2.19
Model VI 3.51 6.43 0.41 0.59 3.77 1.45
a factor of 6-100) and include moderate inflows and outflows, 5.9 Caveats

dust destruction and moderate grain growth in our models.

The reverse shock in the remnants of SN likely reduces
the produced dust (Bianchi & Schneider, 2007; Gall et al.,
2011; De Looze et al., 2016). The Todini & Ferrara (2001)
SN dust prescription used in our models does not include a
correction for dust destruction by reverse shocks. The need
to reduce the SN dust contribution in Models IV-VI could
thus, at least in part, be due to dust destruction by the
reverse shock.

There is a growing number of studies that sug-
gest significant amounts of dust grain growth are
required to model observations in both high and
low redshift studies (Dwek et al., 2007; Matsuura et al.,
2009; Michalowski et al., 2010; Mattsson & Andersen, 2012;
Asano et al., 2013; Grootes et al., 2013; Calura et al., 2014;
Rowlands et al., 2014a; Zhukovska, 2014; Nozawa et al.,
2015; De Cia et al., 2016). On the other hand, Ferrara et al.
(2016) point out the difficulties in obtaining high enough
grain growth efficiencies to explain the observations. The
subject of dust grain growth thus remains a debated sub-
ject. For Models IV-VI, we find grain growth timescales
ranging from 1 Gyr - 200 Myrs, similar to those quoted for
the Milky Way and local galaxies(e.g. Asano et al., 2013;
Mattsson & Andersen, 2012)). There is also evidence for
shorter timescales (Draine, 2009; Zhukovska et al., 2008;
Feldmann, 2015), which might be more appropriate for the
more dust-rich sources at low-metallicity or higher metallic-
ity sources. Variations in the dust growth timescales might
also help to explain the differences between dust-rich and
dust-poor sources at the same (high) gas fraction. If the re-
verse shock destroys the majority of the dust grains in SN for
all galaxies (and not only the ones modelled well by Model
IV-VI), then the higher dust mass sources (which are now
fitted by Models I-IIT) could be explained by shorter dust
grain growth timescales, and high dust mass can be reached
in spite of a reduced SN contribution. In this scenario, all
galaxies have a strongly reduced SN dust contribution com-
pared to Todini & Ferrara (2001), and galaxies with short
dust grain growth timescales result in a higher dust content
(on the level of Model I), and galaxies with long dust grain
growth timescales (such as in Model VI) will have a lower
dust content at high gas fractions.

In the previous sections we have used a range of models to
explain the dust properties in the dust-poor low-Z sources,
as well as dust-rich lower gas fraction sources. In this section
we discuss potential caveats of our approach.

e Dust Emissivity - If the dust emissivity is different
across the samples, this could explain the reduced Mg/Mm;
seen in Fig. 5 and in My/Mz (Fig. 7). For the dust poor
HiGH-low sample to have a dust/metals ratio similar to the
HRS and HIGH-high samples (i.e. ~ 0.4—0.5), x would have
to be ~4 times lower.

e Missing molecular gas - We lack sufficient molecu-
lar gas information for the HAPLESS and HIGH samples.
To affect our results, the molecular mass would have to
be larger than the HI mass. This does not agree with ob-
served molecular gas masses for the HRS and DGS, nor with
the galaxy gas-scaling laws from Saintonge et al. (2011) and
Bothwell et al. (2014) for a wide range of stellar masses.
These results suggest that My, /J\/[bary is small at all evo-
lutionary phases (see DV17 for more discussion). Using CO
derived Hy masses for HRS from Boselli et al. (2014), we
find that including the molecular gas component does not
change the conclusions of our work. At low gas fractions,
M, /M, is large for some sources, and subsequently these
will shift to higher gas fractions and higher total gas masses
when molecular gas is included. This shift only results in a
better fit to the models at low f; (e.g. Fig. 5).

To study the effects of molecular gas at high gas
fraction, we took Mmu, for DGS from Rémy-Ruyer et al.
(2014). These were derived by converting CO fluxes using
a constant conversion factor Xco,mw (Ackermann et al.,
2011) or a metallicity-dependent conversion from CO
Xco,z (Schruba et al., 2012). Using Xco,mw, we again find
M, /Mu, is small for all but the lowest gas fractions. The
small shift at low gas fractions again results in a better
fit with the models. However, if we use My, derived using
Xco,z, we find significantly higher My, /Mmu at high gas
fractions and thus again a shift towards higher gas masses
and gas fractions compared to not including molecular gas
masses. For the high gas fraction sources this results in a
poorer fit to the models assumed here, though the offset
does not change our conclusions. Different Xco,z factors
(see Bolatto et al. 2013 for a review) lead typically to smaller
My, than for Xco,z from Schruba et al. (2012), and would
thus result in smaller offsets.

e Increased dust destruction - We have investigated
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whether it is possible to explain the observed dust-to-gas
properties of the HIGH galaxies by increasing the amount
of dust destruction as opposed to reducing the dust pro-
duction from SNe. We can model increased dust destruc-
tion in two ways. Firstly we can increase the amount of
dust which is destroyed per SNe (by adjusting the value
of mism in Eq. Bl) and secondly by adjusting the value
of fo (the fraction of the ISM in the cold phase). With a
larger fraction of the ISM in the warm phase, the efficiency
of the dust destruction in the galaxy will be increased. We
find that changing dust destruction alone can not match the
observed Mg/Mypary and Mg/M, ratios, since an increased
dust destruction does not reduce the dust produced at the
high gas fractions (fy; > 0.8). Even an extreme model with
mism = 2500Mg and fo = 0.01 would still require signifi-
cant SNe dust reduction to explain the observed dust-to-gas
values. Alternatively, if we change f. to vary with fg, this
makes at most a factor of 2 difference to dust destruction,
whereas we need a reduction of the dust mass by a factor
of 10-100 at high fy. Therefore the conclusion of needing a
reduced dust yield from SNe first put forward by Zhukovska
(2014) is robust to changes in the values of f. and mism. We
note that changes in f. and mism could reduce the offset in
Ma/Mpary between the observations and some of the models
at low gas fractions.

Given our assumption that gas and dust are uniformly
mixed, the dust destruction in our model is proportional
to the global dust-to-gas ratio. However, in reality Mgq/M,
could be higher in star forming regions than the global av-
erage My/M,. More of the SN dust will thus be destroyed
before being mixed into the diffuse ISM than is currently
the case in our model. Hopkins & Lee (2016) show that on
molecular cloud scales, gas-grain decoupling can lead to fluc-
tuations in the local dust-to-gas ratios. For the highest dust-
to-gas ratios they predict, dust destruction could remove
a significant fraction of the dust (even at high gas frac-
tions) compared to the current model. Conversely, dust grain
growth would become more efficient. This could thus provide
an alternative interpretation for the scatter in Mg/Mpary at
high gas fractions and the need to reduce the SN dust con-
tributions. A full treatment of this issue requires spatially
resolved chemical evolution modeling, which is outside the
scope of this work.

e Initial mass functions - We have also tested how
different IMFs change our results. Changing the model
IMF to a more bottom-heavy IMF (e.g. Salpeter, 1955 or
Cappellari et al., 2012), reduces the dust and metals pro-
duced in the first generation of stars, which results in a
better match of these models compared to the observations
(i.e. smaller Mg/Mpary at high gas fractions and smaller Z
at low gas fractions). Similarly at high gas fractions, a top-
heavy IMF in the model could increase Z. But to change
the model IMF we must also scale the observational param-
eters which have been determined using the Chabrier func-
tion. For example, using a top-heavy IMF with slope a =
—1.5 (Cappellari et al., 2012; Madau & Dickinson, 2014) we
would have to scale the stellar mass and SFRs by a factor
of 0.32 (Michalowski, 2015). This results in models that are
nearly indistinguishable (in terms of a ‘good-fit’) compared
to the scatter in the relations.

6 CONCLUSIONS

In this paper, we have brought together the Hi-selected
HIGH, dust-selected HAPLESS, stellar mass selected HRS
and the metallicity-selected DGS sources. Compared to the
126 sources from Rémy-Ruyer et al. (2014), we have in-
creased the sample size to 382 sources (including 48 DGS
sources in both samples). Beyond the 37 DGS sources with
Z < 1/5Zg, we have added a further 67 sources with a
metallicity smaller than 1/3 Zg, including 15 sources below
1/5 Z. Following Zhukovska (2014) and Feldmann (2015),
we have investigated the dust trends of these samples us-
ing a chemical evolution model (an updated version of
Rowlands et al., 2014b and Morgan & Edmunds, 2003). We
use the PG16S metallicity calibration, which was found to be
the most reliable calibration for the low metallicity sources,
and gas fraction (a proxy for the evolutionary state) to track
and constrain the build-up of dust and metals as gas is con-
verted into stars, from very high (fy = 0.97) to very low
(fg = 0.05) gas fractions. We find that:

e DGS sources are selected to have low metallicities,
which leads to a selection of very actively star forming galax-
ies. For a given gas fraction or stellar mass, we have found
our low M, HIGH and HAPLESS samples to be more normal
in terms of star formation properties and metallicity. These
samples thus complement the DGS, and provide additional,
new information on more normal star-forming galaxies in
the nearby Universe.

e Delayed star formation history models are necessary
to match the evolution of SFR/Mypary for our normal star-
forming galaxies.

e We find that low—moderate metallicity galaxies (a) can
have dust properties that are consistent with dust produc-
tion at early stages being dominated by SNe dust (as in
C15), and thus with a linear My/M, — Z relationship and
constant Mq/Mz; or (b) have dust masses well below these
trends, with a much smaller contribution from SNe dust.
The lowest metallicity sources fall in the latter category and
to model them we require a maximum of 0.01 — 0.16 My of
dust per core collapse SN.

e The dust properties and the observed correlation of
Mqg/Mz — Z for low metallicity sources are well matched
when including: (1) reduced stardust contribution by 6-
100, particularly from core-collapse SNe as the reduced
dust component has to act at very high gas fractions.
(1) Moderate (2.5x SFR) enriched outflows and metal-
poor inflows to keep the model metallicity from rising to
higher than observed metallicties at low gas fractions. (I11)
Dust destruction and moderate grain growth (timescales
ranging from 1Gyr - 200 Myrs, similar to those quoted
for the MW and local galaxies; Draine 2009; Asano et al.
2013; Mattsson & Andersen 2012; Mattsson et al. 2014).
The need for this moderate grain growth is corrobo-
rated by the good statistical match of Model VI to the
Mga/My — Z relation for both HIGH-low and the combined
HRS+HAPLESS+HIGH sample.

e As we show that neither the dust-to-metals nor the
dust-to-gas ratio are constant during the evolution of a
galaxy, we urge caution when using dust as a tracer of
gas mass in galaxies (e.g. Eales et al., 2010; Scoville et al.,
2014). Assuming a universal value for either is unwise and
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unlikely to produce reliable results, particularly for low stel-
lar mass systems.

e In our best models, we find that grain growth produces,
by mass, 70-93 per cent of the total dust created over the
lifetime of these galaxies, and the metallicity at which dust
grain growth exceeds stellar dust sources in our model is
reached between 7.97 < 12 + log(O/H) < 8.63 (or 0.88 >
fq > 0.53).

We show our Model VI (SN dust contribution reduced
by factor 100, inflows and outflows of 2.5x SFR, delayed
SFH, dust grain growth and destruction) is consistent with
all of the observed properties (except the SFR for some
rather bursty sources) of the HIGH-low galaxies, the first
normal star forming population of low stellar mass galaxies
studied in this way. Comparing the data and models using
a Bayesian approach confirms that Model VI provides the
best statistical match to the HIGH-low data for the dust-to-
baryon ratio against gas fraction and the dust-to-gas ratio
against metallicity. For SFR/Mpary, it is not possible to find
one model that describes all the HIGH-low data since the
intrinsic scatter within the sample is larger than the error-
bars. When Model VI is combined with a bursty SFH (as
shown originally in Zhukovska 2014) and stronger outflows
(Feldmann, 2015, Model VII), this scenario is also consis-
tent with the DGS galaxies at similar fy, M. and Z without
requiring extremely rapid grain growth timescales and ex-
treme outflows for low metallicity galaxies.
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APPENDIX A: EMISSION LINES AND
GALAXY PROPERTIES

The basic galaxy properties for the HIGH and HAPLESS
galaxies are listed in Table A1 and their metallicities in Ta-
ble A2. Star formation rates and stellar and dust masses
were derived using MAGPHYS (See DV17 for details). Metal-
licities were derived for 4 different calibrations, using a
weighted average of the metallicities from individual HII re-
gions within the galaxy (Section 3). The emission lines for
each HII region in the HIGH and HAPLESS galaxies are
listed in Table A3. For DGS, emission lines from literature
and derived metallicities are provided in Table A4.
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APPENDIX B: DUST MASS EQUATION

Here we reproduce the equation for the dust mass evolution,
My, for the chemical evolution model used in this work:

AR — [ (fm — () 206 = )i + )

T™m

X P(t = 7 )p(m)dm — (Ma/M,)ip(t)

(- 1) My +fc(1_%> My

Tdest M, g/ Tgrow

(BL)

M, is the gas mass, ¥(¢) is the star formation rate,
¢(m) is the stellar IMF, Z is the metal mass fraction de-
fined as Mz /M, and mp is the remnant mass of a star of
mass m (Ferreras & Silk, 2000). The first term accounts for
dust formed in stars and supernovae. This includes met-
als re-released by stars after they die, and newly synthe-
sised metals ejected in winds and supernovae. The second
term describes the removal of dust due to astration and the
grain destruction and growth timescales are given in terms
three and four. The fifth term allows us to include primor-
dial dust in the galaxy for example associated with Pop
III stars, we set this to zero (Rowlands et al., 2014b). Fi-
nally, I(t) and O(t) are simple parameterisations of dust re-
moved or contributed via inflows and outflows. The lifetime
Tm of stars with initial mass m is derived using the model
in Schaller et al. (1992) and yields for LIMS and massive
stars are taken from van den Hoek & Groenewegen (1997)
and Maeder (1992) respectively. A full discussion on the ef-
fect of using different yields can be seen in Rowlands et al.
(2014b), and Romano et al. (2010).

APPENDIX C: COMPARISON OF MODELS
WITH DWARF GALAXY SURVEY

We can model the properties of the DGS sources by in-
cluding strong inflows and outflows (Feldmann, 2015) and
a bursty SFH (Zhukovska, 2014) in the chemical evolution
(Model VII). The results are shown in Fig. C1 using the
original DGS metallicities (transparent triangles), and the
revised PG16S metallicities derived in this work. In the
top-left panel, we compare the My/Mypary of the DGS with
Model VII (as we did with the HRS, HIGH and HAPLESS
in Fig. 2). Model VII matches the observed trend well. In
the top-right panel of Fig. C1, we compare the predicted
SFR/Mpary with gas fraction for Model VII. Here we see
that the bursty model is required to explain the elevated
SFR/Mpary of the DGS galaxies compared to the HAPLESS,
HRS and H1GH samples. In the bottom-left panel, we find
the observed metallicities for DGS tend to be lower than for
the other samples and are well matched by Model VII, due
to including strong inflows and outflows at a rate of 4 times
the SFR.
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Figure C1.

Top: My/Mypary and SFR/Miy,yy, evolution with gas fraction using a bursty SFH (Model VII). As shown in Zhukovska

(2014), the DGS sample (purple triangles, transparent triangles are the same galaxies, yet with properties from Zhukovska (2014)) can
be explained with a model undergoing many bursts of star formation (brown line). Bottom: the metallicity variation is compared with
gas fraction (left) and My/Miyy (right). As shown in Feldmann (2015), the observed metallicity of the DGS galaxies can be explained by
a chemical evolution model that incorporates strong inflows and outflows of gas (Model VII).
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Table Al. Basic properties for the Hi-selected HIGH sample (DV17) and dust-selected HAPLESS sample (C15). The check-marks
indicate which sample the source is part of (24 sources are included in both samples).

# Common name RA DEC Distance log M log My, log My log SFR fq % é
(32000 deg)  (J2000 deg) (Mpe) (M) (M) Mg) (Mg yr—b) = 5
=
1 QMASXJiéggiigi 216.72078 0.96285 120.35 9.607923 962 7261915 0037007 o058 V0
2 CGCG014-010 185.08868 0.36769 11.84 7.297913 821 348t040 9141004 99
3 CGCG014-014 185.27509 0.5519 41.91 8.5410-17 6.1310-2% 1187012 v’
4 CGCG019-003 214.83333 1.16467 42.99 8.557929 5.7810-56 1417017 v’
5 CGCG019-084 220.62268 1.50173 34.63 9.067513 6.3970-12  .0.8370:97 v’
6 FGC1412 184.85783 0.21197 11.32 6.9410-13 7.85 3841078 0431014 g1
7 IC1010 216.83483 1.02589 118.19  10.821098 1055  7.937912 0441004 g4
g  IC1011 217.01885 1.00607 117.95  10.161513 9.73  7.4110:98 0.60t996 033 V7
9 LEDA1241857 222.59576 2.95833 28.64 g.2t0-14 4937993 1907012 v’
10 MGC0066574 219.99969 -0.18714 3337 7181029 5221055 2287012 v’
11 MGC0068525 221.3158 -0.1602 2019  8.681012 4501050 _1.9010-13 v’
12 NGC4030 180.09841 -1.10033 20.39  10.8819 32 1017 7967502 0787004 920 VvV V7
13 NGC4030b 180.19873 -0.02333 38.36  8.857019 9.36 5647933 0981099 o8 V'
14 NGC4202 184.53574 -1.06413 93.20  10.307970 1041 7.467507 005109 o063 V7
15 NGC5496 212.9082 -1.15909 27.35  9.4670 L 1003 7127914 0231001 o953 VvV
16  NGC5584 215.59857 -0.3869 3021 9.9710:99 9.76  7.5110-97 0267094 ou5 VvV
17 NGC5690 219.42 2.29162 32.10  10.3879 50 9.90  7.6117962 0317095 931 VvV
18 NGC5691 219.47216 -0.39846 33.35  10.0110-10 9.16 6857907 006709 o016 VvV
19  NGC5705 219.95623 -0.71874 31.35 9.3379:9% 977 735%912 0247004 ors VTV
20 NGO5713 220.04759 -0.28933 33.60  10.5610 17 1006 7.54700% 0721996 020 VvV
21 NGC5719 220.23393 -0.31856 30.72  10.7910-99 1007 7437907 017190% 020 VvV
22 NGC5725 220.24298 2.18655 29.42 9.1379:98 893 6457019 0657007  o46 V' V7
23 NGO5733 220.69092 -0.35132 30.13  8.8910-12 6.4710-23  _0.6810:02 v’
24 NGOC5738 220.98402 1.60435 31.20  9.6810-11 4937636 -2.27038 v’
25 NGC5740 221.10171 1.68019 28.08  10.2810-1% 974 7167997 0057004 027 VvV
26 NGC5746 221.23292 1.955 30.76  11.3110:97 9.84  8.0010-07 0417035 0.04 v Vv
27 NGO5750 221.54705 -0.2236 3112 10.5979:98 9.08  6.997967 0707398 o0.04 v’
28 PGC037392 178.7696 1.71954 26.69  8.311013 8.37 5771010 1187012 0.60 v’
29  PGCO051719 217.15782 0.55312 29.01 8.82701% 6.427529 2117897 v’
30  PGC052652 221.12776 1.52249 25.67  8.561010 784 58270490 1647018 020 v’
31 SDSSJESSEZ?‘;‘Z 130.74318 0.64408 158.93  9.847913 9.07 7211940 0.03t010 061 V'
32 SDSSJ_&g?gZi‘;g 218.47167 1.48543 32.99  7.77+0-19 894 4527073 1601004 095 V7
33 UGC04673 133.967 2.52426 59.73 9.1210-20 978 7.407933 0241004 056 V'
34 UGC04684 134.17066 0.37591 40.56 9.3570-14 958 6701916 0367010 060 VvV
35  UGC04996 140.81604 -0.72945 57.25 9.361012 9.84 718103 0171505 o0.80 v’
36  UGC06578 174.153 0.81678 20.42 8.0210-19 882 5727082 1021003 080 VvV
37  UGC06780 177.20993 -2.03249 34.16 9.007918 987 69719320 0367011 001 WV v’
38  UGC06877 178.55071 0.13681 18.30 8.9410-13 g.01 5531010 0761005 0.13 v’
39 UGC06879 178.60538 -2.3197 45.61  10.05791% 7.2010-14 _0.4870-06 v’
40  UGC06903 178.9025 1.23817 37.66 9.8910-99 9.68 7.17t910 0241004 o45 VTV
41 UGC06970 179.69101 -1.46169 30.31 9.3970-12 9.05 652793 0861019 o385 V'
42 UGC07000 180.295 -1.29751 30.76 9.1179:98 910 6431912 0457004 56 V7 v’
43 UGC07053 181.0863 -1.53071 30.13 8.1910-18 9.25 4807936 1031006 091 V7
44  UGCO07332 184.48653 0.43491 13.91 7701014 8.05 4311048 1307004 g5y
45 UGC07394 185.11652 1.46789 32.65  8.937014 9.24 687792 1227017 73 VvV
46  UGC07396 185.14135 0.78863 41.30 9.1170-14 9.11  6.491028 077015 o057 v’
47 UGCO7531 186.55054 -1.30325 39.44 8.607525 9.05 6491989 0387004 g9 V7 v’




Table Al. Continued

Dust sources and sinks in low metallicity galazies

# Common name RA DEC Distance log M, log My log My log SFR fq <] %
5 &
(J2000 deg)  (J2000 deg) (Mpc) M) Mg) Me)  (Mgyr™h) = &
=
48  UGC09215 215.86342 1.7243 25.65  9.3110-1% 956 6951999 0247092 o700 VvV
49  UGC09299 217.39393 -0.01906 28.29  8.617019 9.94 6397015 0557004 097 v Vv
+0.14 +0.10 +0.07
50  UGC09348 218.11926 0.29425 30.36  9.4110-11 6.667010  -0.8070:97 v’
51 UGC09432 219.766 2.94708 28.53  8.1970-92 9.19 441048 -1.0670-95  0.93 v’
52 UGC09470 220.45274 0.68756 34.03  8.907007 912 6.22F017 0687004 060 VvV
53 UGC09482 220.69539 0.66151 32.39  8.7210-10 9.16 6001931 1307014 079 VvV
54 UM452 176.75239 -0.29363 29.27  8.83T013 8.24 534703 1377997 0.25 v’
55  UM456 177.65105 -0.56613 33.73  8.2810-1% 889 4961932 0767091 o84 vV V7
56 UM456A 177.6415 -0.53795 35.53  7.8810-11 893 4891005 1329012 g9 V'V
+0.09 +0.34 +0.05
57 UMA491 184.97097 1.77326 39.71  8.4670:99 9.36 5997534 083708 o0.01 v’
58  UMS501 186.59463 -1.2534 39.49  7.9010-10 930 51107l 1067012 008 V'

19

Table A2. Metallicity measurements in the form 12 + log(O/H) for the Hi-selected HIGH sample (DV17) and dust-selected HAPLESS

sample (C15). The check-marks indicate which sample the source is part of (24 sources are included in both samples).

7# Common name 12+log(O/H) % %
O3N2 N2 PG16S  KE08/T04 = %
1 2MASXJ14265308+0057462 8.53%012 8.53%513 8.371513 8.7710 13 v’
2 CGCGO014-010 v’
3 CGCG014-014 8.25101% 8.151512 7.7515 31 8.42%91% v’
4 CGCG019-003 8.21%912 8.22%512 8.14%512 8.367513 v’
5 CGCC019-084 8.5970-13 8.5070-12 8.8470-13 v’
6 FGC1412
7 IC1010 v’
8 1C1011 8.73%512 8.77+5 16 8.6075-12 9.01%513 v’
9 LEDA1241857 8.34%912 8.2915-12 8.197512 8.541512 v’
10 MGC0066574 v’
11 MGC0068525 v’
12 NGC4030 g.811511 8.557511 8.5476-1 911751 v’ v’
13 NG(C4030b 8.367512 8.321512 8.301512 8.571513 v’
14 NG (4202 8.71151¢ 8.4471512 8.471512 8.981017 v’
15 NGC5496 8.34%919 8.29%910 8.19%510 8.541910 v’ v’
16 NGC5584 8.49%919 8.43%919 8.361919 8.72%919 v’ v’
17 NGC5690 8.76 7011 8.58T0 11 8.48T0-11 9.04T0-11 v’ v’
18 NGC5691 8.57T0-19 8.54170-10 8.4270-19 8.8270-19 v’ v’
19  NGC5705 8.567511 8.487511 8.30751 8.811512 vV
20  NGC5713 8.761919 8.631519 8.531519 9.05%519 v oV
21 NGC5719 v’ v’
22 NGC5725 8.42+910 8.4115:19 8.3115:19 8.651919 v’ v’
23 NGC5733 8.281519 8.287011 8.1875-1 8.4875 11 v’
24 NGC5738 v’
25  NGC5740 8.681511 8.707511 8.57151 8.957511 v oV
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Table A2. Continued

# Common name 12+log(O/H) % %
03N2 N2 PG16S  KEO08/T04 = %
26 NGC5746 v’ v’
21 NGEST50 8rst0N  879T0N 8597013 9.03+0:12 v
28 PGC037392 8337012 836t012 8197012 8.5470:12 v
29 PGCO51719 8387011 g33t0ll  gogtOll 8.5970:11 v
0 PGCoses2 Sl satgl seTl sael v
31 SDSSJ084258.354-003838.5 8.6370-13 8.5870-12 8.4770-12 8.8970-13 v’
32 SDSSJ143353.30+012905.6 v
33 UGC04673 8.5070 11 8.451011 8.3610-11 8751012
M UGCois sstls s sl v
35 UGC04996 845101 836t 1l g1gtQll 8.681012
36 UGCo6578 8041011 T99r0ll  7.s87I0L] 825ty vV
37 UGCO6T80 g2t sa32M0l] 806701} g6at0l2
38 UGCo68T77 8587012 g53t012 g 5p*012 8.837012 v
39 UGC068T79 v
40  UGC06903 8591017 8497075 8.331013 8857015 vV
o vecosno Y e
42 UGCO7000 8397010 834%01) 8257010 85901
. uGCoTss sl sl el sl
44 UGCO7332 v
45 UGC07394 8281011 gogtOll  7gqt0.12 g47t012
16 uGoTIS sathlsathll sl sesthl v
AT UGCOT7531 v v
48 UGC09215 8407010 837YLNG  829%0G 86270 v
9 UGC0R9 sartgllmastgllsasll sedl v v
50 UGC09348 8497013 8491013 8.337013 8737512 v
L UGC09452 8250073 8217013 8067015 8427013
52 UG 8181005 s1sIgny  Tealnny s:Ign vV
53 UGC09482 8.33701  gorfOll  gygtQll 854012 v
54 UM452 8277012 826+012 8197012 8.4570:12 v
55 UM456 804311 805t 7e1FGl 8201913 vV
56 UMdseA soetill  sorgll rmil sl v v
57 UM491 8257013 824y 8a8T0a] 8.421012 v
58 UMS501 v




Table A3. Emission line measurements for the HIGH and HAPLESS samples. The first three columns give the ID from Table A1, the common name, and the GAMA catalD respectively.
All emission lines have been corrected for reddening using the Balmer decrement C(H3) and the Cardelli et al. (1989) dust obscuration curve. The Origin column specifies whether the
stellar absorption corrected fluxes were extracted using GANDALF or the GaussFitComplexv05 (GFC) catalogue. Measurements from multiple regions of the galaxies are presented
where appropriate.

. @
1D name catalD C(HpB) I/ Tugp Origin 0 5
[On] HB [O111,4959] [Om1,5007] Ha [N11] [S11,6713] [S11,6731] = E
1 2MASXJ142... 106616 0.53 2.36 £ 0.10 1.00 £ 0.02 0.37 + 0.01 1.04 + 0.02 2.86 + 0.03 0.703 £ 0.010 0.674 £ 0.013 0.539 £ 0.011 GANDALF \/
3 CGCG014-014 86115 0.69 5.78 £ 0.53 1.00 £ 0.31 0.59 4+ 0.05 1.50 + 0.09 2.86 + 0.09 0.139 £+ 0.043 0.357 £ 0.035 0.237 £ 0.029 GFC \/
4 CGCG019-003 227753 0.0 3.32+0.11 1.00 £+ 0.01 1.05 £+ 0.01 3.00 £ 0.02 2.60 £ 0.02 0.190 £ 0.008 0.309 £ 0.009 0.206 £ 0.008 GANDALF v’
5 CGCG019-084 240108 1.2 1.00 £ 0.22 0.23 £ 0.07 0.63 £0.19 2.86 £ 0.10 0.658 £ 0.066 0.884 £ 0.066 GANDALF v’
6 FGC1412 611445 0.24 1.00 £ 1.27 0.17 + 2.52 0.49 +7.17 2.86 £+ 0.40 0.224 £+ 1.491 0.154 £+ 0.794 GANDALF \/
6 FGC1412 611446 0.18 2.61 £ 20.76 1.00 £ 1.32 0.37 £ 0.63 1.05 £+ 1.80 2.86 £ 0.91 0.476 £ 0.676 0.927 £ 0.587 0.620 £ 0.757 GANDALF N
8 1C1011 106717 0.92 1.00 £ 0.05 0.14 £ 0.02 0.41 £ 0.03 2.87 £ 0.68 1.211 4+ 0.028 0.458 £ 0.019 0.359 £ 0.017 GFC N
9 LEDA1241857 367540 0.1 1.00 £+ 0.14 0.63 £ 0.03 1.78 £+ 0.05 2.86 £ 0.06 0.305 £ 0.022 0.452 £ 0.025 0.325 £ 0.016 GFC v’
10 MGC0066574 594420 0.0 3.79 + 4.23 1.00 £ 0.55 0.20 + 0.65 0.58 + 1.87 0.77 £ 0.28 0.226 £ 0.382 0.257 £ 0.296 0.399 £ 0.331 GANDALF /
12 NGC4030 31521 0.0 0.35 +0.15 1.00 £ 0.03 0.05 + 0.01 0.13 + 0.03 2.09 £ 0.02 0.554 £ 0.020 0.149 £ 0.017 0.108 £ 0.016 GANDALF / /
12 NGC4030 31523 0.55 2.55 + 0.22 1.00 £ 0.03 0.03 + 0.01 0.09 + 0.02 2.86 + 0.05 0.630 £ 0.015 0.281 £ 0.012 0.240 £ 0.009 GANDALF / /
12 NGC4030 690077 0.0 14.76 + 2.09 1.00 £ 0.05 0.08 & 0.02 0.24 + 0.04 2.31 +0.04 0.689 £ 0.031 0.230 £ 0.036 0.159 £ 0.036 GANDALF / /
13 NGC4030b 584731 0.0 3.94 + 0.37 1.00 £ 0.04 0.60 &+ 0.01 1.73 £0.04 2.53 + 0.03 0.298 £ 0.017 0.265 £ 0.015 0.168 £ 0.015 GANDALF /
14 NGC4202 32362 2.57 4.25 + 25.06 1.00 £0.18 0.44 +0.16 0.21 +0.12 2.88 4+ 0.08 0.538 £ 0.027 0.256 £+ 0.019 0.164 £ 0.015 GFC /
15 NGC5496 496980 0.0 2.20 £ 5.24 1.00 £ 0.42 0.33 +0.03 0.89 + 0.05 1.65 £ 0.05 0.170 £ 0.031 0.378 £ 0.028 0.262 £ 0.022 GFC / \/
15 NGC5496 463393 0.25 2.35 4+ 0.30 1.00 £ 0.03 0.48 + 0.01 1.36 £ 0.03 2.86 4+ 0.02 0.342 £ 0.015 0.513 £ 0.016 0.367 £ 0.015 GANDALF / \/
15 NGC5496 463394 1.25 2.46 + 0.25 1.00 £ 0.04 0.83 + 0.03 2.30 £+ 0.08 2.86 + 0.07 0.272 £ 0.009 0.265 £ 0.009 0.185 £ 0.007 GANDALF / \/
15 NGC5496 496979 0.91 5.29 £+ 0.86 1.00 £ 0.13 0.74 + 0.08 2.05 +0.23 2.86 + 0.24 0.234 £ 0.022 0.289 £ 0.024 0.209 £ 0.018 GANDALF \/ \/
15 NGC5496 496981 1.21 10.32 £ 0.71 1.00 £+ 0.03 0.81 + 0.01 2.24 +0.02 2.86 4 0.02 0.344 £ 0.008 0.423 £ 0.008 0.295 £ 0.008 GANDALF \/ \/
15 NGC5496 496982 0.0 6.06 + 0.59 1.00 + 0.04 0.89 + 0.01 2.54 4+ 0.04 2.05 4+ 0.02 0.147 £ 0.013 0.273 £ 0.012 0.199 £ 0.013 GANDALF \/ \/
15 NGC5496 496985 0.35 4.85 + 0.72 1.00 + 0.06 0.43 + 0.02 1.22 £ 0.05 2.86 + 0.06 0.454 £+ 0.032 0.664 £ 0.031 0.462 £ 0.034 GANDALF \/ \/
15 NGC5496 496986 0.0 11.33 £ 1.72 1.00 £ 0.08 0.46 + 0.02 1.32 £ 0.06 2.57 + 0.06 0.238 £+ 0.044 0.436 £ 0.041 0.299 + 0.045 GANDALF \/ \/
16 NGC5584 693091 0.29 1.38 + 7.39 1.00 £ 0.05 0.43 + 0.02 1.26 £ 0.04 2.86 4+ 0.04 0.448 £+ 0.018 0.532 £+ 0.031 0.383 £ 0.023 GFC \/ \/
16 NGC5584 63349 0.0 187.48 £+ 0.84 1.00 £0.12 0.18 + 0.04 0.51 + 0.12 2.56 4+ 0.10 0.365 £ 0.089 0.149 £+ 0.124 0.179 £ 0.116 GANDALF \/ \/
16 NGC5584 63351 0.0 1.91 £ 0.27 1.00 £ 0.09 0.35 4+ 0.02 1.00 £ 0.07 2.86 + 0.17 0.509 £ 0.028 0.448 £ 0.030 0.320 £ 0.022 GANDALF \/ \/
16 NGC5584 63353 0.86 2.54 £ 0.32 1.00 £ 0.04 0.33 + 0.01 0.92 4+ 0.04 2.86 4+ 0.05 0.577 £ 0.014 0.428 £+ 0.012 0.300 £ 0.013 GANDALF \/ \/
16 NGC5584 63354 0.66 2.84 +£0.70 1.00 £0.14 0.31 4+ 0.04 0.89 +0.12 2.86 + 0.23 0.535 £ 0.054 0.569 + 0.059 0.397 £ 0.042 GANDALF \/ \/
16 NGC5584 693086 0.01 3.23 +£0.77 1.00 £0.18 1.14 + 0.20 3.25 + 0.56 2.86 4+ 0.43 0.239 £ 0.032 0.173 £ 0.023 0.138 £ 0.018 GANDALF \/ \/
16 NGC5584 693088 0.27 2.16 + 0.22 1.00 £ 0.02 0.25 4+ 0.01 0.72 + 0.02 2.86 4+ 0.02 0.882 £+ 0.013 0.555 £+ 0.011 0.445 £+ 0.010 GANDALF \/ \/
17 NGC5690 262444 1.63 4.54 + 25.79 1.00 £ 0.07 0.08 4+ 0.03 0.22 + 0.05 2.87 + 0.05 0.984 + 0.029 0.499 + 0.037 0.352 £+ 0.031 GFC \/ \/
17 NGC5690 262445 2.13 11.63 4+ 25.93 1.00 £ 0.05 0.05 4+ 0.02 0.16 + 0.04 2.87 £ 0.03 0.625 £+ 0.010 0.356 £+ 0.008 0.251 + 0.007 GFC \/ \/
17 NGC5690 716324 0.73 2.00 4+ 0.88 1.00 £ 0.07 0.10 4+ 0.02 0.28 + 0.04 2.86 + 0.07 0.805 £+ 0.032 0.542 + 0.027 0.340 £ 0.023 GANDALF \/ \/
18 NGC5691 64554 0.4 3.71+£0.34 1.00 £ 0.03 0.25 £ 0.01 0.70 £ 0.03 2.86 £ 0.02 0.773 £ 0.015 0.698 £ 0.015 0.488 £ 0.015 GANDALF v’ v’
18 NGC5691 693423 0.0 6.78 £0.25 1.00 £+ 0.01 0.39 £ 0.00 1.11 4+ 0.01 2.75 £ 0.01 0.804 £ 0.005 0.529 £ 0.005 0.442 £ 0.006 GANDALF v’ v’
18 NGC5691 693424 0.0 1.67 £+ 0.10 1.00 £ 0.02 0.23 £ 0.01 0.64 £ 0.01 2.50 £ 0.02 0.688 £ 0.011 0.510 £ 0.011 0.365 £ 0.010 GANDALF v’ v’
18 NGC5691 693425 0.75 1.90 £+ 0.12 1.00 £ 0.01 0.33 £ 0.00 0.92 £ 0.01 2.86 £ 0.01 0.888 £ 0.006 0.669 £ 0.008 0.527 £ 0.007 GANDALF N v’
18 NGC5691 693426 0.62 3.13+£0.16 1.00 £ 0.02 0.29 £ 0.00 0.81 £ 0.01 2.86 £ 0.01 0.611 £ 0.007 0.397 £ 0.007 0.283 £ 0.007 GANDALF N v’
18 NGC5691 756783 0.58 1.00 £ 0.02 0.24 £ 0.00 0.66 £ 0.01 2.86 £ 0.03 0.491 £ 0.008 0.370 £ 0.008 0.248 £ 0.007 GANDALF v’ v’
19 NGC5705 49167 0.0 2.18 +0.46 1.00 £ 0.07 0.25 + 0.02 0.71 £ 0.07 2.29 4+ 0.09 0.590 £ 0.054 0.772 £ 0.059 0.532 £ 0.050 GANDALF \/ /
19 NGC5705 49169 0.21 4.11 +0.19 1.00 £ 0.03 0.28 + 0.01 0.81 + 0.02 2.86 + 0.07 0.530 £ 0.018 0.567 £ 0.018 0.431 £ 0.015 GANDALF \/ /
19 NGC5705 49171 0.0 4.53 + 1.82 1.00 £ 0.33 0.20 + 0.05 0.57 + 0.15 0.98 +0.14 0.233 £0.134 0.336 £ 0.103 0.211 £+ 0.148 GANDALF / /
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Table A3. Continued

= @
1D name catalD C(HpB) L Origin 0 E
[On] Hp [O111,4959] [O111,5007] Hao [N11] [S11,6713] [S11,6731] = %
=
20 NGC5713 693034 1.38 1.11 +£9.33 1.00 + 0.02 0.06 £+ 0.01 0.19 4+ 0.01 2.87 £0.01 1.001 + 0.007 0.443 £+ 0.005 0.328 £+ 0.004 GFC \/ \/
20 NGC5713 64772 1.52 7.49 £ 0.43 1.00 + 0.02 0.16 £+ 0.00 0.45 4+ 0.01 2.86 £ 0.04 0.855 £ 0.012 0.386 £ 0.006 0.279 £ 0.006 GANDALF \/ \/
20 NGC5713 64773 0.53 1.18 £ 0.06 1.00 £+ 0.01 0.10 £ 0.00 0.29 £ 0.01 2.86 + 0.01 0.912 £ 0.005 0.454 £ 0.005 0.334 £ 0.004 GANDALF v’ v’
20 NGC5713 693033 0.51 2.10 £ 0.11 1.00 £ 0.01 0.11 £ 0.00 0.30 £ 0.01 2.86 + 0.01 0.871 £ 0.005 0.387 £ 0.004 0.285 £ 0.004 GANDALF v’ v’
20 NGC5713 693035 0.94 1.00 £ 0.01 0.09 £ 0.00 0.24 £ 0.00 2.86 + 0.02 0.779 £ 0.006 0.326 £ 0.004 0.227 £+ 0.004 GANDALF v’ v’
20 NGC5713 693036 0.19 1.24 4+ 0.07 1.00 £ 0.01 0.06 £ 0.00 0.16 £ 0.01 2.86 + 0.01 1.001 + 0.008 0.483 £ 0.007 0.348 £ 0.006 GANDALF v’ N
20 NGC5713 693037 0.62 1.29 £+ 0.16 1.00 £ 0.02 0.07 £ 0.01 0.21 £ 0.02 2.86 + 0.02 0.895 £ 0.013 0.452 £ 0.011 0.330 £ 0.010 GANDALF v’ v’
20 NGC5713 693038 0.63 0.76 + 0.29 1.00 £ 0.04 0.09 £+ 0.01 0.24 + 0.03 2.86 £ 0.02 1.005 + 0.017 0.501 £+ 0.016 0.359 £ 0.015 GANDALF \/ \/
22 NGC5725 343415 0.24 5.46 £ 25.00 1.00 £0.28 0.31 4+ 0.13 0.92 + 0.21 2.86 + 0.33 0.550 £ 0.151 0.942 £ 0.161 0.622 £+ 0.123 GFC \/
22 NGC5725 343407 1.02 9.35 4+ 69.01 1.00 £ 0.04 0.57 4+ 0.02 1.75 £ 0.04 2.87 £+ 0.02 0.435 £ 0.012 0.482 £+ 0.011 0.339 £ 0.009 GFC \/
22 NGC5725 343410 0.34 3.74 + 15.39 1.00 £0.14 0.34 4+ 0.02 0.96 + 0.04 2.86 £+ 0.05 0.461 £ 0.023 0.539 £+ 0.021 0.354 £ 0.016 GFC \/
22 NGC5725 343414 0.69 3.97 £ 11.92 1.00 £0.10 0.44 4+ 0.05 1.32 £ 0.09 2.86 £+ 0.06 0.491 £ 0.037 0.766 £+ 0.070 0.481 £ 0.065 GFC \/
22 NGC5725 343405 0.0 1.00 £ 0.01 0.55 4+ 0.01 1.59 £ 0.02 2.72 £ 0.04 0.471 £ 0.008 0.443 £ 0.009 0.333 £ 0.006 GANDALF \/
22 NGC5725 343409 0.31 1.34 £0.29 1.00 £ 0.05 0.68 4 0.02 1.94 £+ 0.06 2.86 £+ 0.04 0.369 £ 0.022 0.418 £+ 0.023 0.306 £ 0.022 GANDALF \/
22 NGC5725 343411 0.0 2.80 £+ 0.27 1.00 £ 0.03 0.54 4+ 0.01 1.53 £ 0.03 2.63 £+ 0.02 0.453 £ 0.016 0.419 £+ 0.018 0.306 £ 0.017 GANDALF \/
22 NGC5725 343413 0.15 1.22 £ 0.50 1.00 £0.14 0.80 4+ 0.10 2.27 +0.28 2.86 + 0.28 0.265 £ 0.038 0.232 £+ 0.036 0.139 £ 0.028 GANDALF \/
22 NGC5725 722438 0.0 5.81 4+ 0.42 1.00 £ 0.04 0.47 + 0.02 1.35 £ 0.05 2.66 £+ 0.05 0.824 £ 0.033 0.721 £+ 0.032 0.635 £ 0.039 GANDALF \/
23 NGC5733 64893 0.43 1.00 £ 0.04 0.84 4+ 0.02 2.60 + 0.05 2.86 £+ 0.05 0.361 £ 0.020 0.542 £+ 0.019 0.378 £ 0.015 GFC \/
23 NGC5733 64894 0.0 2.85 +0.12 1.00 £ 0.02 0.81 4+ 0.01 2.30 &+ 0.02 2.69 + 0.02 0.237 £ 0.007 0.329 £ 0.007 0.232 £+ 0.007 GANDALF \/
23 NGC5733 64895 0.0 0.98 +0.11 1.00 £ 0.03 0.85 4+ 0.01 2.42 4+ 0.04 2.66 £+ 0.02 0.225 £+ 0.014 0.412 £+ 0.015 0.278 £ 0.012 GANDALF \/
25 NGC5740 321075 1.87 1.00 £ 0.04 0.20 4+ 0.01 0.58 + 0.03 2.87 + 0.04 1.116 £+ 0.019 0.324 £+ 0.013 0.268 £+ 0.013 GFC \/ \/
25 NGC5740 321076 0.11 2.46 + 0.57 1.00 £ 0.06 0.10 4 0.02 0.30 + 0.05 2.86 £+ 0.08 1.078 + 0.039 0.452 £+ 0.028 0.318 £ 0.027 GANDALF \/ \/
25 NGC5740 321077 0.0 2.64 £+ 0.29 1.00 £ 0.03 0.26 4+ 0.01 0.74 + 0.02 2.72 + 0.02 0.930 £ 0.015 0.415 £+ 0.013 0.296 £+ 0.015 GANDALF \/ \/
27 NGC5750 65076 0.0 2.42 4+ 0.20 1.00 + 0.02 0.13 4+ 0.01 0.38 4+ 0.02 2.68 £ 0.02 1.177 £ 0.012 0.456 £+ 0.012 0.336 £+ 0.011 GANDALF \/
28 PGC037392 288461 0.06 1.00 + 0.05 0.85 4+ 0.02 2.44 + 0.06 2.86 £+ 0.06 0.406 £ 0.046 0.815 £ 0.046 0.492 £ 0.046 GANDALF \/
29 PGC051719 92677 0.32 2.66 £+ 0.20 1.00 + 0.05 0.85 4+ 0.04 2.41 +0.13 2.86 £ 0.11 0.244 £+ 0.011 0.331 £ 0.014 0.236 £+ 0.011 GANDALF \/
29 PGC051719 92676 0.22 4.08 + 0.32 1.00 + 0.04 0.35 4+ 0.02 1.00 + 0.04 2.86 + 0.06 0.511 £ 0.022 0.656 + 0.025 0.427 £+ 0.024 GANDALF \/
30 PGC052652 240202 0.46 3.20 £0.25 1.00 + 0.02 0.65 4+ 0.01 1.83 + 0.02 2.86 £ 0.01 0.352 £ 0.006 0.389 £+ 0.007 0.274 £+ 0.006 GANDALF \/
31 SDSSJ084... 622084 0.19 1.75 + 0.09 1.00 + 0.02 0.20 4+ 0.01 0.56 4+ 0.02 2.86 £ 0.02 0.796 + 0.011 0.480 £+ 0.013 0.356 £+ 0.011 GANDALF \/
33 UGC04673 517868 0.65 1.00 £ 0.17 0.21 £ 0.07 0.63 +0.12 2.86 +£ 0.24 0.776 £ 0.060 0.672 + 0.071 0.568 £+ 0.056 GFC \/
33 UGC04673 517869 0.53 2.89 +£0.33 1.00 + 0.07 0.51 4+ 0.03 1.42 + 0.09 2.86 £ 0.12 0.426 + 0.025 0.372 4+ 0.021 0.257 £ 0.017 GANDALF \/
34 UGC04684 600168 0.31 1.00 + 0.05 0.22 4+ 0.01 0.62 4+ 0.04 2.86 £ 0.05 0.615 £ 0.027 0.629 £+ 0.025 GANDALF \/ \/
35 UGC04996 198771 0.0 1.66 £ 0.20 1.00 £+ 0.07 0.27 £ 0.02 0.78 £ 0.06 1.91 £+ 0.05 0.346 £ 0.033 0.531 £ 0.040 0.396 £ 0.036 GANDALF v’
35 UGC04996 198772 0.22 6.01 £ 0.89 1.00 £+ 0.07 0.51 £ 0.02 1.44 £+ 0.06 2.86 + 0.05 0.301 £ 0.037 0.466 £ 0.035 0.405 £ 0.032 GANDALF v’
36 UGC06578 6821 0.0 0.62 £ 14.85 1.00 £+ 0.21 1.39 4 0.00 4.13 £0.01 1.19 £ 0.00 0.013 £ 0.000 0.031 £ 0.000 0.023 £ 0.000 GFC v’ N
36 UGC06578 6822 0.25 1.00 £ 0.02 1.01 4+ 0.01 2.88 £0.03 2.86 + 0.03 0.126 £ 0.005 0.292 £ 0.005 0.200 £ 0.007 GANDALF v’ v’
37 UGC06780 177588 0.13 1.76 £+ 0.39 1.00 £ 0.05 0.33 £0.02 0.95 £ 0.05 2.86 + 0.06 0.500 £ 0.043 0.640 £ 0.044 0.459 £ 0.045 GANDALF v’ v’
37 UGC06780 177591 0.0 3.09 £ 0.28 1.00 £ 0.05 0.43 £0.01 1.24 £+ 0.04 2.28 +0.03 0.169 £ 0.016 0.317 £ 0.021 0.207 £ 0.018 GANDALF v’ v’
38 UGC06877 70114 1.02 2.48 £+ 0.06 1.00 £ 0.02 0.24 4+ 0.01 0.72 + 0.01 2.87 £+ 0.02 0.712 £ 0.005 0.251 £+ 0.007 0.193 £ 0.003 GFC \/
40 UGC06903 22742 0.0 4.11 + 3.47 1.00 £0.25 0.17 4+ 0.08 0.49 +0.24 1.93 £0.29 0.524 + 0.126 0.445 £+ 0.091 0.323 £0.134 GANDALF \/ \/
40 UGC06903 272331 0.33 2.04 +0.44 1.00 £ 0.06 0.23 £+ 0.02 0.65 + 0.07 2.86 £+ 0.07 0.592 £ 0.043 0.678 £ 0.050 0.429 £ 0.043 GANDALF \/ \/
41 UGC06970 185266 0.0 1.42 £ 0.90 1.00 £0.19 0.27 4+ 0.07 0.76 + 0.21 1.88 £0.12 0.370 £ 0.125 0.687 + 0.121 0.463 £+ 0.127 GANDALF \/
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Table A3. Continued

. @
1D name catalD C(HB) L Origin 0 E
[On] HB [O111,4959] [O111,5007] Ha [N11] [S11,6713] [S11,6731] = %
Jus)
42 UGCO07000 144491 0.56 3.52 4+ 13.57 1.00 £ 0.15 0.44 4+ 0.06 1.64 +0.15 2.86 + 0.08 0.450 £+ 0.051 0.442 £ 0.041 0.362 £+ 0.036 GFC \/ \/
42 UGCO07000 144493 0.0 2.97 £0.14 1.00 £ 0.02 0.74 + 0.01 2.11 £ 0.02 2.11 £ 0.02 0.238 £+ 0.010 0.301 £ 0.011 0.206 £+ 0.010 GANDALF \/ \/
42 UGC07000 144494 0.23 3.24 £0.37 1.00 £ 0.04 0.32 £ 0.01 0.91 £+ 0.03 2.86 + 0.04 0.453 £ 0.023 0.544 + 0.023 0.395 £ 0.025 GANDALF v’ v’
42 UGC07000 144495 0.0 5.38 + 1.69 1.00 £ 0.20 0.62 £ 0.12 1.77 £ 0.34 2.69 + 0.34 0.332 £ 0.057 0.430 £ 0.062 0.286 £ 0.054 GANDALF v’ v’
42 UGC07000 700775 0.27 1.02 £ 0.50 1.00 £ 0.36 1.00 & 0.34 2.83 +0.97 2.86 £ 0.71 0.279 £ 0.085 0.395 £ 0.097 0.328 £ 0.075 GANDALF N N
43 UGC07053 185622 0.21 1.00 £ 0.05 1.04 £+ 0.03 3.09 £0.08 2.86 + 0.06 0.145 £ 0.021 0.233 £ 0.037 0.178 £ 0.027 GFC N
43 UGC07053 185623 0.64 0.74 £ 0.53 1.00 £ 0.20 0.15 £ 0.15 0.67 £0.17 2.86 + 0.27 0.328 £ 0.213 0.614 £ 0.142 0.561 £+ 0.134 GFC v’
43 UGCO07053 791635 0.0 4.10 + 0.89 1.00 £ 0.05 0.60 £ 0.02 1.72 £ 0.06 2.35 + 0.05 0.085 £ 0.025 0.258 £ 0.028 0.185 £ 0.027 GANDALF \/
44 UGC07332 85881 0.0 86.23 £ 52.80 1.00 £1.30 0.39 4+ 0.48 1.12 +£1.37 1.62 £0.57 0.155 £+ 1.762 1.524 + 0.572 1.116 4+ 0.439 GANDALF \/
45 UGC07394 221194 0.52 2.97 £+ 6.90 1.00 £0.19 0.37 £ 0.18 0.69 + 0.24 2.86 + 0.24 0.302 £ 0.101 0.563 £ 0.133 0.555 + 0.134 GFC \/ /
45 UGC07394 221195 0.5 0.72 + 0.12 1.00 £ 0.07 0.82 4+ 0.05 2.31 +£0.14 2.86 + 0.11 0.143 £+ 0.012 0.272 £ 0.015 0.177 £ 0.013 GANDALF \/ /
46 UGCO07396 9163 0.02 5.82 +1.15 1.00 £0.10 0.43 4+ 0.02 1.24 £+ 0.07 2.86 £+ 0.06 0.455 £ 0.050 0.590 £ 0.059 0.447 £+ 0.064 GANDALF /
48 UGC09215 238952 0.7 2.50 £ 56.85 1.00 £0.16 0.52 4+ 0.02 1.38 £0.03 2.86 £+ 0.03 0.503 £ 0.018 0.461 £ 0.014 0.318 £ 0.011 GFC \/ /
48 UGC09215 714924 0.0 43.90 £+ 191.72 1.00 £ 0.04 0.41 + 0.01 1.09 £ 0.03 1.97 £0.02 0.321 £ 0.007 0.326 £ 0.006 0.234 £ 0.005 GFC / /
48 UGC09215 714923 0.43 2.82 4+ 39.15 1.00 £ 0.02 0.60 &+ 0.01 1.82 £+ 0.02 2.86 4+ 0.01 0.478 £ 0.006 0.365 £ 0.008 0.267 £ 0.004 GFC \/ /
48 UGC09215 319800 0.13 1.91 £ 0.07 1.00 £ 0.01 0.97 4+ 0.00 2.76 + 0.01 2.86 4+ 0.01 0.263 £ 0.005 0.309 £ 0.005 0.223 £ 0.005 GANDALF \/ /
48 UGC09215 319801 0.0 1.95 £ 0.09 1.00 £ 0.02 0.40 + 0.01 1.13 £ 0.02 1.91 £ 0.01 0.272 £ 0.010 0.329 £ 0.012 0.214 £+ 0.010 GANDALF \/ /
49 UGC09299 593645 0.29 1.00 £ 0.07 0.60 &+ 0.04 1.80 £ 0.07 2.86 + 0.06 0.483 £ 0.035 0.684 £ 0.033 0.474 £+ 0.026 GFC \/ \/
49 UGC09299 593646 0.0 2.95 + 0.24 1.00 £ 0.03 0.55 + 0.01 1.56 £+ 0.03 2.82 4+ 0.03 0.330 £ 0.017 0.430 £ 0.018 0.308 £+ 0.016 GANDALF \/ \/
50 UGC09348 619104 0.39 5.13 + 0.62 1.00 £ 0.07 0.43 + 0.02 1.22 + 0.06 2.86 4+ 0.04 0.637 £ 0.032 0.734 £ 0.028 0.554 £ 0.030 GANDALF \/
51 UGC09432 367146 0.1 1.00 £ 0.03 0.74 + 0.01 2.15 + 0.03 2.86 4+ 0.05 0.195 £+ 0.014 0.450 £ 0.018 0.313 £ 0.014 GANDALF \/
52 UGC09470 16827 0.0 5.06 + 0.13 1.00 £ 0.01 1.21 £ 0.00 3.44 + 0.01 2.22 4+ 0.01 0.103 £ 0.001 0.173 £ 0.002 0.121 £ 0.002 GANDALF \/ \/
53 UGC09482 16863 0.0 5.18 + 0.38 1.00 £ 0.02 0.86 + 0.01 2.45 £+ 0.03 2.65 4+ 0.02 0.252 £+ 0.011 0.404 £ 0.013 0.265 £+ 0.011 GANDALF \/
53 UGC09482 16899 0.0 6.51 + 0.69 1.00 £ 0.05 0.38 4+ 0.02 1.08 + 0.05 2.49 4+ 0.05 0.243 £+ 0.034 0.492 + 0.039 0.342 £+ 0.038 GANDALF \/
54 UM452 54103 0.21 2.46 £+ 0.07 1.00 £ 0.01 0.85 4+ 0.00 2.42 £ 0.01 2.86 4+ 0.01 0.258 + 0.004 0.366 £+ 0.005 0.266 £+ 0.004 GANDALF \/
55 UM456 559583 0.0 1.61 +£0.12 1.00 £ 0.01 1.80 £ 0.01 5.15 £+ 0.02 1.93 £ 0.01 0.037 £ 0.003 0.078 £ 0.003 0.053 £+ 0.003 GANDALF \/ \/
55 UM456 559584 0.0 4.76 + 0.16 1.00 £ 0.02 1.05 £ 0.01 3.00 4+ 0.02 2.06 4+ 0.01 0.078 £ 0.005 0.197 £+ 0.006 0.138 £ 0.006 GANDALF \/ \/
56 UM456A 559608 0.0 3.65 +0.13 1.00 £ 0.02 1.15+ 0.01 3.30 + 0.02 1.73+0.01 0.049 + 0.006 0.125 £ 0.006 0.083 £ 0.006 GANDALF \/ \/
56 UM456A 559610 0.0 2.27 £0.13 1.00 £+ 0.02 1.10 £ 0.01 3.15 4+ 0.02 2.67 £ 0.02 0.060 £ 0.006 0.166 + 0.006 0.110 £ 0.006 GANDALF \/ \/
57 UM491 290172 0.0 4.52 + 0.10 1.00 £+ 0.01 0.87 4+ 0.00 2.47 £ 0.01 2.53 £ 0.01 0.201 £ 0.005 0.277 £+ 0.005 0.191 £+ 0.004 GANDALF \/
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Table A4. Emission line measurements and derived metallicities for the Dwarf Galaxy Survey using the O3N2, N2, PG16S and KE08/T04 methods. The literature emission lines have
been corrected for stellar absorption and reddening using methods in the listed references.

¥e

name I/\/IHB 12+10g(O/H) Ref
Ho [On] [O11, 4959] [O111, 5007] [N11] [S11,6713] [S11,6731] N2 O3N2 PG16S KE08/T04
Haro II 2.91 1.08 1.19 3.72 0.488 0.156 0.102 8.40 8.30 8.45 8.49 1
Haro 2 2.86 3.41 0.55 1.45 0.461 0.297 0.298 8.39 8.42 8.36 8.65 2
Haro 3 2.86 2.71 1.08 3.22 0.236 0.223 0.180 8.24 8.22 8.24 8.37 1
He 2-10 3.00 2.29 0.36 1.06 0.878 0.301 0.266 8.60 8.55 8.55 8.8 3
HS0822+-3542 2.75 0.31 1.19 3.58 0.010 0.026 0.018 7.29 7.78 7.40 4
HS13044-3259 2.86 1.85 1.52 4.51 0.100 0.330¢ 8.10 8.05 8.03 8.07 5
HS13194-3224 2.86 1.24 1.63 5.03 0.140¢ 4
HS1330+3651 2.86 0.48 1.64 4.9 0.090 0.350¢ 8.08 8.03 8.03 4
HS14424-4250 2.76 0.54 1.75 4.98 0.023 0.042 0.029 7.72 7.84 7.73 6
I Zw 18 2.74 0.408 0.636 1.906 0.012 0.029 0.022 7.39 7.88 7.15 7,13
II Zw 40 2.87 0.84 2.46 7.41 0.063 0.067 0.054 8.09 7.92 8.14 8
IC10 2.85 1.01 1.35 3.97 0.241 0.118 0.094 8.25 8.20 8.33 8.33 9
Mrk 1089 2.86 1.50 0.74 2.24 0.315 0.141 0.101 8.30 8.31 8.38 8.51 10
Mrk 1450 2.83 1.35 1.79 4.76 0.067 0.117 0.083 8.02 7.99 7.95 11
Mrk 153 2.81 0.00 1.51 0.059 0.247¢ 7.99 12
Mrk 209 2.78 0.72 1.96 5.54 0.029 0.061 0.045 7.80 7.86 7.80 13
Mrk 930 2.85 2.37 1.39 4.17 0.143 0.269 0.198 8.15 8.12 8.11 8.19 14
NGC 1140 2.88 2.32 0.97 0.29 0.256 0.231 0.175 8.25 8.57 8.28 8.81 15
NGC 1569 2.84 0.99 1.50 4.51 0.137 0.205 0.147 8.15 8.10 8.13 8.16 16
NGC 1705 2.86 3.74 1.05 3.00 0.105 0.060¢ 8.10 8.12 7.99 8.2 17
NGC 1705 2.86 3.37 1.66 4.87 0.026¢ 16
NGC 1705 2.91 2.54 1.47 4.25 0.111 0.034¢ 8.11 8.07 8.24 8.11 16
NGC 1705 2.76 2.43 1.52 3.83 16
NGC 1705 2.85 4.00 1.03 3.15 0.039 0.049¢ 7.89 7.97 7.73 16
NGC 1705 2.86 4.75 1.32 3.67 0.122 0.016¢ 8.13 8.07 8.33 8.18 16
NGC 1705 2.81 2.74 1.67 4.86 0.098 0.037¢ 8.09 8.04 8.25 16
NGC 1705 2.86 3.12 1.71 4.94 0.069 0.036¢ 8.03 7.99 8.15 16
NGC 1705 2.84 3.49 1.69 4.87 0.095 0.038¢ 8.09 8.04 8.24 16
NGC 1705 2.84 4.36 1.45 4.27 0.148 0.047¢ 8.16 8.12 8.28 8.2 16
NGC 1705 2.83 2.64 1.13 3.40 0.033¢ 16
NGC 1705 2.86 5.13 0.59 2.04 16
NGC 1705 2.86 4.01 1.09 3.19 0.097 0.043¢ 8.09 8.10 8.03 8.16 16
NGC 1705 2.86 4.02 1.26 3.59 0.154 0.043% 8.17 8.15 8.23 8.25 16
NGC 1705 2.86 4.08 1.57 4.39 0.122 0.046¢ 8.13 8.09 8.24 8.14 16
NGC 1705 2.86 3.52 1.63 4.64 0.016 0.038¢ 7.42 7.80 7.67 16
NGC 1705 2.79 3.02 1.37 3.93 0.062 0.036¢ 8.01 8.01 8.02 16
NGC 2366 2.86 0.84 1.34 3.93 0.139 0.234 0.167 8.15 8.12 8.08 8.2 18
NGC 2366 2.86 1.75 1.93 5.73 0.037 0.099 0.074 7.87 7.88 7.84 17
NGC 4214 2.85 3.04 1.00 3.03 0.241 0.267 0.194 8.24 8.23 8.23 8.39 15
NGC 4214 2.80 3.08 2.47 7.52 0.041 0.035 0.033 7.91 7.86 8.08 17
NGC 4449 2.87 3.89 0.69 2.07 0.338 0.476 0.334 8.32 8.33 8.22 8.53 15
NGC 4861 2.86 1.41 1.26 3.76 0.204 0.346 0.173 8.22 8.18 8.16 8.3 17
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@ The [SII] A6717 and [SII] A6731 lines are blended.



Table A4. Continued

name I)\/IHB 12+10g(O/H) Ref
Ha [O1] [O111,4959] [O111, 5007] [N1] [S11,6713] [S11,6731] O3N2 N2 PG16S KE08/T04
NGC 5253 2.83 2.60 1.42 4.22 0.200 0.270 0.205 8.21 8.16 8.17 8.28 15
NGC 625 2.86 1.76 1.52 4.53 0.123 0.136 0.101 8.13 8.08 8.10 8.13 19
NGC 625 2.84 2.31 0.99 2.95 0.204 0.197 0.146 8.21 8.21 8.24 8.36 18
NGC 625 2.82 3.38 0.87 2.55 0.262 0.341 0.240 8.27 8.27 8.21 8.45 18
NGC 625 2.86 4.86 0.33 1.03 0.422 0.676 0.520 8.37 8.46 8.2 8.69 18
NGC 6822 2.85 0.94 1.77 5.35 0.051 0.067 0.050 7.96 7.94 7.94 20
NGC 6822 2.85 1.47 1.44 4.26 0.071 0.103 0.072 8.03 8.02 7.92 19
Pox 186 2.86 0.35 2.09 6.22 21
SBS 0335-052 2.86 0.30 1.09 3.24 0.009 0.021 0.020 7.17 .77 7.33 17
SBS 0335-052 2.86 0.25 1.1 3.29 0.009 0.020 0.017 7.17 7.76 7.35 17
SBS 0335-052 2.86 0.26 1.42 4.27 0.061 0.124 0.084 8.00 7.99 7.87 17
SBS 0335-052 2.86 0.23 1.50 4.49 0.124 0.221 0.215 8.13 8.09 8.09 8.13 17
SBS 11594-545 2.76 0.65 1.29 3.80 0.085 0.187 0.133 8.07 8.06 7.92 8.08 17
SBS 12114540 2.71 0.80 2.04 6.07 0.041 0.093 0.069 7.92 7.90 7.90 17
SBS 12494493 2.86 1.24 2.01 5.88 0.047 0.097 0.072 7.94 7.91 7.93 17
SBS 14154437 2.86 1.18 1.19 3.54 0.037 0.090 0.067 7.87 7.95 7.66 12
SBS 15334574 2.81 2.46 1.30 3.80 0.122 0.234 0.170 8.13 8.11 8.03 8.18 12
SBS 15334574 2.85 2.04 1.79 5.33 0.087 0.167 0.117 8.07 8.01 8.05 12
Tol 0618-402 2.86 2.11 1.62 4.95 22
Tol 0618-402 2.86 2.35 1.60 4.92 21
Tol 1214-277 2.74 0.36 1.76 5.28 0.009 0.019 0.016 7.23 7.71 7.58 14
UGC 4483 2.86 1.32 0.90 2.73 0.037 0.070 0.052 7.88 7.99 7.56 17
UGCA 20 2.76 0.92 0.89 2.60 0.035 0.073 0.050 7.87 7.99 7.53 23
UGCA 20 2.76 1.35 0.85 2.58 0.044 0.088 0.064 7.93 8.02 7.58 22
UM 133 2.86 1.81 1.25 3.74 0.043 0.118 0.083 7.91 7.96 7.71 17
UM 311 2.89 1.80 1.32 3.98 0.180 0.167 0.124 8.19 8.15 8.16 8.26 17
UM 448 2.85 2.78 0.87 2.60 0.409 0.366 0.285 8.36 8.33 8.31 8.53 13
UM 461 2.78 0.53 2.04 6.02 0.021 0.052 0.042 7.68 7.80 7.74 13
VII Zw 403 2.83 1.36 1.17 3.52 0.051 0.105 0.077 7.96 8.00 7.74 17

References: (1) Guseva et al. (2012), (2) Kong & Cheng (2002), (3) Kobulnicky et al. (1999), (4) Pustilnik et al. (2003), (5) Popescu & Hopp (2000), (6) Guseva et al. (2003),
(7) Skillman & Kennicutt (1993), (8) Guseva et al. (2000), (9) Magrini & Gongalves (2009), (10) Lépez-Sénchez et al. (2004), (11) Izotov et al. (1994), (12) Izotov et al. (2006),
(13) Izotov et al. (1997), (14) Izotov & Thuan (1998), (15) Izotov & Thuan (2004), (16) Kobulnicky & Skillman (1997), (17) Lee & Skillman (2004), (18) Izotov et al. (2007), (19)
Skillman et al. (2003), (20) Peimbert et al. (2005), (21) Guseva et al. (2007), (22) Masegosa et al. (1994), (23) van Zee et al. (1996).
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