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Abstract—Situational understanding (SU) requires a combina-
tion of insight — the ability to accurately perceive an existing
situation — and foresight — the ability to anticipate how
an existing situation may develop in the future. SU involves
information fusion as well as model representation and inference.
Commonly, heterogenous data sources must be exploited in the
fusion process: often including both hard and soft data products.
In a coalition context, data and processing resources will also be
distributed and subjected to restrictions on information sharing.
It will often be necessary for a human to be in the loop in SU
processes, to provide key input and guidance, and to interpret
outputs in a way that necessitates a degree of transparency
in the processing: systems cannot be “black boxes”. In this
paper, we characterize the Coalition Situational Understanding
(CSU) problem in terms of fusion, temporal, distributed, and
human requirements. There is currently significant interest in
deep learning (DL) approaches for processing both hard and
soft data. We analyze the state-of-the-art in DL in relation to
these requirements for CSU, and identify areas where there is
currently considerable promise, and key gaps.

I. INTRODUCTION

Decision making in complex multi-variate domains such as
air traffic control, ship navigation, emergency response, mili-
tary command and control, and so on, often depends heavily
on the situational understanding of the decision maker. This
notion of understanding, in general is defined as the “product
of applying analysis and judgment to the unit’s situation
awareness to determine the relationships of the factors present,
and form logical conclusions concerning threats to the mission
accomplishment, opportunities for mission accomplishment,
and gaps in information” [1]. This is asserted as corresponding
to Level 2 situational awareness (SA) in Endsley’s widely-
used model, as shown in Fig. 1. In fact, Endsley’s SA model
provides us with an operational definition of understanding as
– the spatio-temporal perception of environmental events (level
1), followed by their comprehension within a specific context
(level 2), and finally, the ability to project or predict potential
future events (level 3) due to change in variables such as time,
or other events (also see the UK military doctrine [2]).

In this work, we explore the functional blocks required
to achieve situational understanding in an ad-hoc military
coalition characterized as a federation of agents working
collaboratively towards a common mission objective. These
are coalition agents and therefore are also part of separate ad-
ministrative domains, that determine their local data collection
and data sharing policies.

Motivated by the widespread usage of deep-learning based
techniques in domains such as health care, criminal justice
system, finance, as well as military decision making [3],
[4], we begin by translating the operational definition of

Fig. 1. Mapping between different notions of situational understanding.

situational understanding (provided by Endsley’s model) using
components of a distributed learning framework. First, to gain
perception of the environment, the distributed model should
be trained to identify events occurring at different levels
of spatio-temporal granularity. These events are collectively
recorded in the time-series data collected by the various
agents. The coalition context for these agents can further
introduce local constraints to regulate the flow of information
between the agents, thereby adding additional complexity and
complication. Second, to aid comprehension, the model must
not operate as a black-box. In other words, the model must
be interpretable [5], and its output explainable using human
understandable semantics. Finally, the model itself should be
generative, with ability to accurately project into future states.

An illustration of a multi-layer view of a coalition network
in shown in Fig. 2. Layer 1 depicts the different coalition
agents (blue, green and yellow regions). Each agent collects
multi-modal data locally, and cooperates with other agents,
within constraints of their own organizational data-sharing
policies. Layer 2 shows information pooling from human and
machine agents required to achieve situational understanding.
Coalition Situational Understanding (CSU): Based on the
above description, coalition situational understanding can be
broken down into the following learning challenges.
• Distributed Learning Algorithm: The very existence of

a coalition is contingent on the premise that the whole is
greater than the sum of the parts, i.e., the shared model of
the environment, learned using the information combined



Fig. 2. A multi-layer view of an ad-hoc military coalition. Information
exchange occurs between the different agents under various domain-specific
constraints to achieve distributed learning of an interpretable model.

from all the agents is greater than just the individual pieces
of information. However, to train a shared model and realize
the above goal, the learning algorithm used should, (1) be
able to adjust to the variability in network topology con-
necting the various agents; (2) be sensitive to the reliability
of the training data available from the agents; (3) account
for the different granularities at which information is made
available (e.g., raw data or model parameters) by the agents;
and finally, (4) meet the privacy requirements of the agents.

• Multiple time-scale learning: Coalitions are often formed
to monitor a particular geographic region for event(s) of
interest. However, the periodicity of the monitored events
could be different. The shared model, should have the power
to use the collective information from the agents to learn
events that manifest themselves at different time scales.
For example, on a particular road segment, the volume of
traffic (or the congestion level) on a weekday, may be solely
dependent on the time-of-day. However, the congestion level
over a weekend, might depend on the schedule of a nearby
sporting event. Thus, congestion is predicted as a result of
two different events occurring at different time scales.

• Model interpretability and tellability: These attributes re-
fer to the bi-directional flow of information between models
and humans. While deep learning based models are moti-
vated by neuro-scientific advancements in the understanding
of the working of the human brain, a critical distinction, that
has often been made between the two, is attributed to the
human ability to “think” [6]. Informally, it is this ability to
think, that allows humans to not only make a prediction,
but also justify or rationalize it through a series of logically
consistent and understandable choices leading up to the
prediction. This justification, in turn, enables the decision
maker to implicitly or explicitly associate a measure of
confidence to the prediction and use that to determine the
next steps of necessary actions. The counterpart to the

human thought process in deep learning models is often
referred to as interpretability [5]. The ability to interpret a
prediction enables semantically meaningful information to
flow from the models to humans.
We refer to the information flow from humans to models
as tellability. The notion of tellability is different from
enriching the training data set with samples corresponding
to the new hypothesis classes that we want the model
to learn. Instead, it implies adding prior information to
the model that is not part of the training data. Tellable
information is typically based on human experience and not
limited to the training data alone.

Our contributions: In this paper, we make two contributions.
First, we translate the problem of coalition situational under-
standing within a learning framework. We do so, by mapping
the operational definition from Endsley’s model to different
components of the learning framework. For each of these
components, we then summarize the state-of-the-art and per-
form gap-analysis. Second, we provide our preliminary results,
using techniques that are aimed at bridging the gap for each
component, and list the open problems that need to be solved
in order to attain situational understanding.

II. DISTRIBUTED MODEL LEARNING

We broadly categorize the challenges involved in designing
an effective distributed learning algorithm into two groups.
First, any learning strategy should account for the heterogene-
ity in network topology of the agents effecting the commu-
nication costs of data (or parameter) sharing, and also make
suitable adjustments for unreliable training data. Second, in
a more adversarial setting, the learning algorithm should be
resilient to intentional tampering of training data with the aim
to subvert model learning, and also preserve the privacy of the
agents sharing their local data.

A. Comparison of Learning Strategies

We did a preliminary analysis of different distributed learn-
ing strategies and compared them in terms of their communica-
tion efficiency. In particular, we focussed on (1) federated, (2)
incremental, and (3) diffusion, based strategies which have the
highest communication efficiency, in terms of communication
power consumed for model training. Once the learning algo-
rithm has completed the model training phase, all the agents
are expected to have the same shared model.

Federated Learning is a centralized learning strategy. Learn-
ing is done via a federation of agents, which are coordinated
by a central server [7]. In each iteration, the agents pull the
global model from the central server, and train the model
separately on their local datasets. After training for several
epochs, parameter updates from all agents are aggregated by
the central server. The agent parameters are averaged and used
to update the global model parameters.

Incremental Learning strategy uses a cyclic path connecting
the agents to propagate the model update. The distribution
network is represented by a graph, where agents correspond
to nodes in the graph. An edge is placed between two nodes if



Strategy Comm # AvgDistance TotalComm
Federated N x 2 1/6 Θ(n)

Incremental 1
√

log2n/n Θ(log2n/n)

Diffusion N x 2
√

log2n/n Θ(log2n)
TABLE I

COMMUNICATION COST OF DIFFERENT STRATEGIES

they have a direct line of communication, i.e. they are neigh-
bors of each other within a certain distance. While, finding
such a cycle – also called a Hamiltonian cycle – in general,
is an NP-complete problem, prior work has demonstrated that
they can be found with high probability in random geometric
graphs that we use in our experiments [8], [9]. During training,
each agent transmits model parameters to the next agent in the
cycle. Thus, in any iteration, there is only a single active agent.

Diffusion Learning strategy also makes use of the Hamil-
tonian cycle described above. However, in this strategy, all
the agents perform model training using their local datasets
in parallel. Once training is complete, the model parameters
are then shared with the neighboring nodes. This allows for
faster dissemination of the model parameters and is also in
accordance with asynchronous learning, where different agents
learn with models of different parameters at every iteration.
Experimental Setup We use a setup of n nodes uniformly
distributed over the unit square region [0, 1]2 as our simulated
network. Each node maintains its own private dataset that can
be used for training a shared model. Within this network, the
distributed learning strategies are implemented as follows:

In case of federated learning, we exploit the symmetry of
the distribution region, and compute the optimal location of
the central server to be the center of the square with coordinate
[0.5, 0.5]. The average communication cost for every agent is
thus a constant, equal to 1/6. The total communication cost
is of the order Θ(n), which is proportional to the number of
agents in the network.

In case of incremental learning and diffusion learning
strategies, the communication cost depends on the edges that
form the Hamiltonian cycle. Since the graph is constructed
based on communication constraint, i.e., edges between two
nodes exist only when their distance is less than certain
radius. Setting this radius to rn ∝ Θ(

√
log2n/n), ensures

that the Hamiltonian cycle exist with a high probability. The
average communication cost is no greater than Θ(log2n/n).
A comparison of the total communication cost for each of the
three strategies is shown in Table II-A.

We use a Multilayer Perceptron (MLP) network with a
single hidden layer of 128 neurons as the shared model and
train it using the MNIST dataset. Data is randomly partitioned
among ten agents. In every iteration, the agents train their own
model for 20 epochs, using local datasets and a batch size of
100 data samples. The optimization algorithm we are using is
the vanilla stochastic gradient descent. After every iteration,
we use the testing dataset to evaluate the performance of each
agent, and communicate the model with other agents as per
the learning strategy.
Communication Cost Analysis We use two different metrics

Fig. 3. Comparison of the learning strategies in terms of the error rate
(expressed as a percentage) and the approximate communication cost.

for analyzing the communication cost. The first one is the
error rate which we define as:

Error Rate = 1− P(accurate classification).

The total communication cost is the sum of all the pairwise
communication costs between different clients. We further
approximate the pairwise communication cost between nodes
i and j, denoted by Ei,j as,

Ei,j ∼ d2i,j

where di,j is the distance between the two nodes.
Fig. 3 shows the change in error-rate for different learning

strategies. For incremental strategy, the curve shows the per-
formance of the model propagated in the network. While for
federated learning and diffusion learning, the transition curves
are drawn as averages of testing error-rate for all the agents
in the networks. Fig. 3 (a) shows the change in the error-rate
curve for the three different strategies as a function of the
number of iterations and Fig. 3 (b) shows the error-rate with
regard to the normalized communication cost.

From our preliminary analysis, it is clear that federated
learning consumes the most energy. This is because all the
agents are assumed to be able to communicate with the
central server, which requires them to have sufficient radio
power. In addition to this, setting up a central server for
storing and updating parameters is also resource intensive. In
comparison, for the incremental and diffusion strategies, the
average communication distance can be optimized using the
Hamiltonian cycle, which also provides an upper bound on the
radio range for each client.

B. Prior approaches for privacy-aware distributed learning

We now summarize prior work that has been done in the
area of privacy-aware and adversarial learning strategies.

Shokri et. al. [10] considered a setup where data are
distributed between various agents, each wanting to keep their
own data private. The goal was to learn a model over the com-
bined data. The authors proposed a technique where models
were trained locally, and instead of raw data only the model
parameters were shared. In fact, to guarantee privacy, the
model parameters were perturbed using differentially private
noise before sharing. The shared parameters were averaged



and passed back to the entities for the next iteration. Model
inversion attacks were demonstrated in [11]. The authors
showed that shared models leak information and are vulnerable
even against a “black-box” adversary (that interacts with the
model only via inputs and outputs). More recently, Abadi et.
al. [12], demonstrated the training of a large differentially
private neural network (with non-convex objectives) and a
privacy budget. In fact, they proved that their model is resilient
to model inversion attacks against a stronger adversary that
also has knowledge of the training algorithm and the model
parameters.

Generative adversarial network (GAN) is an unsupervised
framework, used to train a generative model in an adversarial
setting. Two models are simultaneously trained: a generative
model G that captures the data distribution, and a discrimina-
tive model D, that estimates the probability that a sample came
from the training data rather than G [13]. The goal is to train
the generator G such that the error rate of the discriminator
is close to 50%, which implies that D is unable to distinguish
between a training and a fake sample. Note, while the discrimi-
nator has access to the training samples the generator does not.
The weights of the generator are adjusted based on the output
of the discriminator. In a distributed setup, each agent trains a
discriminator model (that has access to the local training data),
a shared generator model is trained based on the feedback
received from the discriminator models of the different agents.
Sometimes, training data are injected with malicious samples
to allow attackers to induce vulnerability into the model and
mount black box attacks without knowledge of the model’s
parameters. Adversarial training is a technique that trains a
model explicitly on adversarial examples to make it robust to
attacks. Scaling of an adversarial training to large data sets
has been proposed in [14].

C. Gap analysis within coalition context

Distributed learning in the coalition context is confounded
by concerns of data privacy of the agents and heterogeneity in
terms of both network topology and in the form of the shared
data. In addition, for large models, parameter sharing is also
extremely expensive in terms of the memory and bandwidth
consumed, especially for resource constrained agents [15].

In future, we plan to extend our investigations to model
network effects including bandwidth constraints more accu-
rately, allowing us to better study the impact of the network
on learning algorithm. In addition, we will also introduce
appropriate penalty functions, to handle reliability of the
training data and study their impact on the error-rate.

III. MULTI TIME-SCALE LEARNING

Situational understanding in a coalition setting is a complex
task that requires fusion of information from different sources
in order to make accurate decisions. One major challenge it to
handle the heterogeneity between the data sources with respect
to their time scales. This can be due to the different sampling
rates at which data are collected or due to the difference in

periodicity of the patterns recorded in the data. We explain
these challenges in detail below.

• Multi time-scale data sources: If different data sources
collect data at different frequencies, challenges arise
when trying to learn a model from these data sources.
For example, if a GPS sensor collects data at the rate of
one sample per minute (0.01667 Hz) and a microphone
collects data at a significantly higher rate of 16, 000
Hz. Fusing these two sources of data together is clearly
challenging as they vary significantly in their data rate.

• Multi time-scale data patterns: Multi-time scale pattern
learning can be a challenging problem even when using
data from a single source. There may exist patterns at
different scales within the data which require a scale-
invariant learning algorithm. For example, consider the
task of modeling the volume of road traffic to predict
future congestion levels. Clearly, traffic congestion pat-
terns exist at multiple time scales: at the scale of specific
hours within the day, or particular days of the week,
and even during specific seasons of the year. Another
example is language modeling for text understanding. In
this case, patterns exist at the character-level, word-level,
and sentence-level. An effective model should be able to
learn and exploit all these patterns together instead of
modeling only the single level patterns.

A. Prior approaches for multi-time scale learning

Recurrent neural networks (RNNs) are theoretically capable
of learning long-term temporal dependencies regardless of
their scale. However, in practice, this is difficult to achieve due
to the long-term memory requirements while RNN suffer from
vanishing gradient problem [16]. These practical difficulties,
induced by multi-scale patterns in time-series data while doing
sequence prediction and classification, led to the invention
of the ClockWork RNN (CW-RNN) model architecture [17].
CW-RNN is a powerful modification of the standard RNN
architecture in which the hidden layer units are partitioned
into separate modules. Each module can process inputs at its
own clock rate. Units within each module are fully connected
to each other, while only units that are in faster modules (with
smaller clock period) are connected to units in other slower
modules (with larger clock period). The evaluation results of
CW-RNN when tested on sequence generation and sequence
classification tasks in [17], shows that CW-RNN can achieve
significantly better results compared to both standard RNNs
and also Long Short-Term Memory (LSTM) networks [18]. In
addition, CW-RNNs are also computationally more efficient
than an equivalent RNN or LSTM with the same number
of hidden neurons, as hidden neurons are updated only at
their assigned clock rates. However, CW-RNN require manual
setting of the clock rates for each group of hidden neurons
while an effective multi-scale learning algorithm should be
able to automatically learn these rates from the data.

An approach for learning multi-scale temporal patterns by
discovering the latent hierarchical structure of the sequence
was recently proposed by the authors in [19]. This model,



Fig. 4. Real ECG signal vs synthetic output generated by a multi-layer
recurrent neural network.

called hierarchial multiscale recurrent neural network (HM-
RNN), does not require assigning fixed clock rates or explicit
boundary information. The model is able to adaptively find
the proper relationship between the patterns at different scales
in the sequence.

Multi-scale learning is also challenging problem when the
scale variation exist in dimensions other than time, such as,
in images where objects appear at different scales. While
the state-of-the-art techniques in object recognition, namely
convolutional neural networks (CNN) [20], use convolution
and pooling layers for satisfying the translation and scale
invariance requirements to detect patterns in images, scale
invariance, remains a challenge as CNN accuracy can drop
significantly due to change of scale of objects in test images.
This was also demonstrated in [21], where the performance of
a CNN on scaled version of CIFAR-10 [22] dataset dropped
by 43.22% of its performance on the standard CIFAR-10. To
counter these challenges, variations of CNN, such as the Scale-
Invariant Convolutional Neural Networks have been proposed
that detect objects and are resilient to scale variations.

B. Multi-time scale pattern learning using ECG data

We investigated the multi-scale pattern learning problem
by training a deep recurrent neural network for identifying
patterns in an electrocardiography (ECG) signal. ECG signals
have multiple repeating patterns composed of waves, typically
identified by the letters P, Q, R, S, T, and U. To successfully
learn the patterns and synthesize an ECG signal, the interval
between each of these waves as well their periodicity has to
be preserved. In addition, the high sampling rate of the signal,
implies that the current value of the signal can be dependent
on prior values that were hundreds of time steps ago – long
range dependence. Therefore, the model has to exhibit long-
term memory capabilities in order to model these long range
dependencies.

We used a variation of the hierarchical recurrent neural
network architecture, proposed in [23], to perform our
experiments. Fig. 4 shows 2000 samples each of the true
ECG signal and the signals synthesized by our model. The
results demonstrates that our model architecture was able to
successful generate an output signal that closely matched the
real signal.

C. Gap analysis within coalition context

In a coalition setting, multi-scale learning is an inherent
problem due to the different time-scales at which data is
collected by the various agents. In addition, in coalition
scenarios involving surveillance or monitoring, there is a often
a necessity for learning very long-term dependencies (i.e.,
the prediction or classification result may depend heavily on
measurements that happened over a long period of time).
While learning very long-term dependencies is a problem
for standard RNN and LSTM networks, multi-scale learning
algorithms such as CW-RNN and HM-RNN exhibit better
results for this goal. In future, we also want to combine these
models with episodic delineation techniques for improved
results [24].

IV. MODEL INTERPRETABILITY AND TELLABILITY

This attribute represents the extent to which the human is in
the loop for the CSU problem. As discussed in Section I and
illustrated in Figure 2, the human user typically has a number
of interaction points with the data models, generally in terms
of setting requirements and preferences. These interactions
need to be bi-directional – where on one hand, the model
predictions are interpretable and on the other hand, humans
are able to inject prior knowledge into the model training
process. Specifically, where the human provides input to the
system in terms that change the representation and reasoning
of the corresponding model — for example, by providing
key information currently unknown to the CSU system —
we denote the model as tellable by humans. We believe that
analyzing model interpretability will also help in identifying
pathways using which prior knowledge can be injected into
the models, making them tellable. Therefore, in the remaining
section, we will focus primarily on model interpretability.

One can be misled into believing that interpretability is
simply the ability to explain the working of the learned model
(Layer 2 in Fig. 2) itself in a human understandable way. In
fact, a closer inspection of even the human thought process
reveals that we do not actually interpret the working of the
model (in this case of our brain) in terms of its low-level
parameters. We do make predictions but we do not justify
our predictions based on the learning algorithm used by the
brain or the way it chooses to represent information (model
parameters) in the model. Instead, we choose to provide our
justifications, more often than not in a post-hoc setting, based
on prior information correlating model response and physical
observations. This implies that one can define interpretability
at multiple different levels: in terms of low-level model pa-
rameters and learning algorithms used to train the model, or in
terms of the functionality of the model or even a combination
of both.

In fact, as observed in [5], the notion of interpretability is
not even a monolithic concept but reflects several different
dimensions which are summarized below:

• Model Transparency: This is defined in terms of three
parameters: (i) simulatability – whether a human can



use the input data together with the model to reproduce
every calculation step necessary to make the prediction.
This allows the human to understand the changes in the
model parameters caused by the input and the influence
of the training data on the model parameters; (ii) de-
composability – whether there is an intuitive explanation
for all the model parameters; and finally (iii) algorithmic
transparency – which is essentially an ability to explain
the working of the learning algorithm. For example,
choice of a linear regression model versus a highly non-
linear neural network.

• Model Functionality: This is defined in terms of (i)
textual description – explaining the predictions. To do so,
one might use a model for prediction and another model
to generate an explanation; (ii) visualization – another
common means of explaining the working of a model
is through visualization of the parameters. One popular
approach to visualize high-dimensional distributed repre-
sentations is using the t-SNE mechanism [25]; and finally
(iii) local explanation – where instead of explaining the
entire mapping of a model, local changes introduced by a
specific input vector for a given output class is computed.
Gradient of the output is used to identify specific weights
and the local changes that are influenced by the input
vector.

Note that some of the above dimensions, while leading to
better interpretability of the model, can however lead to loss
in model efficiency. For example, a linear model using simple
features, even with a large amount of training data, will not
be able to match the predictive capability of a neural network
for highly non-linear data.

We now summarize prior work based on the above inter-
pretability dimensions. We then identify challenges that are
unique to the CSU setting.

A. Prior approaches for model interpretability

We provide a classification of prior works based on the
dimensions discussed above.

Deep learning networks are created by composition of in-
dividual units that are differentiable. This allows the gradient-
descent based learning algorithms to back propagate and adjust
the weights of these units to minimize the error function.
Recently, the layer-wise relevance propagation algorithm [26],
[27] (LRP), has been proposed that uses this property of
the individual units to decompose the output of a deep
neural network in terms of its input variables and provide
transparency into which features of the data were used for
the model output. It is a principled method which has close
relation to Taylor decomposition and is applicable to arbitrary
deep neural network architectures.

The LRP technique has been used for EEG data analysis
in [28]. Relevance score for each input data point is computed
towards the final decision and is then visualized as a heat map
providing interpretability.

Our familiarity with textual explanations make them a useful
method for explaining a model to humans. Recent work in this

space has thus focused on learning the textual explanation.
The authors in [29], combine two modular components –
a generator and encoder – to operate together and learn
candidate rationales for a prediction. Rationales are simply
subsets of the words from the input text that satisfy two
key properties. First, the selected words represent short and
coherent pieces of text (e.g., phrases) and, second, the selected
words must alone suffice for prediction as a substitute of the
original text. For a given input text, the generator specifies a
distribution over possible rationales. The encoder then maps
the rationale to task specific values. The distribution that
minimizes the regularized encoder loss function is then used
as the rationale.

Similarly, word vectorization models are used to capture
the semantic context of a word, and explain the result of
the operation on the vectors [30]. Model visualization for
understanding the working of recursive neural networks has
been proposed in [31]. The above technique provide insight
into the functionality of the neural network models.

B. Gap analysis within coalition context

We consider the problem of model interpretation within
a coalition setting. Any decision made using the common
model has to be adequately justified for it to be accepted
by all the coalition agents. Such a justification can only
be generated using an interpretable model. Furthermore, the
policy-constraints of an agent can mandate that it cannot share
raw data with other agents. In such a scenario, the member
can train a local model and share the predictions of the
model (instead of raw data). For the other agents to use this
prediction, it should not only be associated with a confidence
score, but also a justification for the prediction based on an
interpretable model.

The coalition setting also presents unique challenges that
can influence the design of the interpretable model. The local
models at each agent maybe be non-homogeneous in terms of
their architecture, making it difficult to use techniques such as
layer-wise relevance propagation (LRP). Similarly, the policy-
based constraints might make it difficult to learn the correct
interpretation because of incomplete information sharing.

V. APPROACH OVERVIEW AND OPEN PROBLEMS

In the previous sections, we defined the coalition situational
understanding problem in terms of operational components
of a distributed deep learning framework. We also identified
several gaps in current architectures such as lack of support
for (1) distributed model learning in a heterogenous and
possibly adversarial setting; (2) multi-scale pattern learning
from time series data; and (3) human-in-the-loop activities via
interpretable and tellable models. These gaps need to closed to
enable such a framework to work within a coalition context.
In addition, model learning is also a data and computation
intensive process. While we can address the need for com-
puting power by pooling in more resources, obtaining the
required amount of training data, might not always be feasible,
especially in an ad-hoc coalition setting. Finally, deep learning



models are poor at representing uncertainty – a key ingredient
in the human-machine interaction loop. The quantification of
uncertainty is also related to the interpretability aspect of the
models, as it allows humans to associate a degree of trust to
the machine output [32].

In comparison, Bayesian reasoning provides a unified
framework for model building, inference, prediction and deci-
sion making. There is explicit accounting for uncertainty and
variability of outcomes. Finally, the framework is also robust
to model overfitting and Bayes rule provides an automatic
“Occam’s Razor” effect, penalizing unnecessarily complex
models [33], [34]. However, for reasons of computational
tractability of inferences, Bayesian reasoning is restricted
primarily to conjugate and linear models.

The above leads us to the observation that there exists
elements in the Bayesian reasoning and deep learning frame-
works that complement each other. This observation has been
exploited in recent work on probabilistic machine learning in
general (see [35] and references therein) and Bayesian Deep
Learning (BDL) in particular [36]. In short, BDL aims to
integrate deep learning and Bayesian models within a uniform
probabilistic framework. Motivated by the above advances
in BDL, we sketch an initial architecture for addressing the
coalition situational understanding problem below.

Fig. 5. Human-in-the-loop CSU approach

Fig. 5 illustrates our approach to the CSU problem with
an emphasis on the human-in-the-loop dimension and can
be considered a ‘vertical’ view of the ‘horizontal’ plane
previously depicted in Section I, Fig. 2. We view the in-
terpretable deep learning networks, handling time-series data
and extracting patterns at multiple time-scales, feeding their
output (e.g., next predicted state) into a Bayesian network. We
have already established that deep learning models perform
exceedingly well when it comes to perception tasks such as
object recognition, speech recognition, text modeling and so
on. The Bayesian network connects the output from the various
models into a reasoning network which then can be used to

draw inferences leading to CSU. Such a reasoning network is
also amenable to user input in the form of priors (i.e., it is
tellable), and some initial work has been done in this area,
referred to as collaborative DL [37]. This ability to assign
priors on the Bayesian network can help reduce the amount
of training data required for model training. In addition, the
notion of automatic relevance determination (ARD), has also
been studied in Bayesian networks in [38], and is very similar
to the layer wise relevance propagation techniques applied
in deep learning – allowing interpretability. Therefore, the
above architecture can not only be trained within a unified
probabilistic model, but can also fill in the gaps required for
achieving CSU.

We envision, that a user will interact with the system via a
meta-information layer that will allow bidirectional exchange
of messages. On one hand, a human can use this layer to
provide priors – these priors can be on the hidden units of the
deep learning models, parameters defining the neural network
or the model parameters specifying the causal inferences (rep-
resented in the figure as a Bayesian network). As mentioned
earlier, these priors help avoid overfitting, especially when
sufficient training data is unavailable [36]. On the other hand,
the model output will be translated to human-consumable form
(e.g., semantically meaningful sentences) by this layer. As the
situation develops, the agents (human and machine) can both
contribute additional meta information to better describe the
problem context, additional data sources and/or services.

Currently, work is underway to realize the architecture
scoped in Figures 5 in the context of a number of pilot
applications involving a mix of DL techniques from the
ones surveyed in earlier sections, together with other signal
processing techniques, with an aim to begin addressing the
gaps identified above.

VI. CONCLUSION AND FUTURE WORK

In this paper we have established that, to be effective in
addressing the SU problem in a coalition context, a DL-based
approach must be able to incorporate:

1) multi-modal data;
2) time-series data;
3) distributed learning with information flow constraints;
4) classification and model-building (low-level and high-

level fusion);
5) human-in-the-loop factors (interpretability and tellabil-

ity).
All of these characteristics may be present in non-coalition
SU settings also, but all are likely to always be present in the
coalition context.

Beyond characterizing the coalition SU problem, the main
contribution of this paper has been twofold: (1) to analyze
the current state-of-the-art in DL against each of the above
requirements, and to identify gaps and (2) to propose an
outline systems architecture to support ongoing research into
addressing the gaps.

Our immediate research agenda consists of grounding the
proposed architecture in a set of initial implementations,



addressing a small number of challenge problems featuring
combinations of the above requirements. Going forward, we
are committed to placing our datasets and code in the public
domain to promote collaboration in what is, after all, a large
problem space.
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