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Abstract

Identifying mechanisms through which individual differences in reward learning emerge offers an 

opportunity to understand both a fundamental form of adaptive responding as well as etiological 

pathways through which aberrant reward learning may contribute to maladaptive behaviors and 

psychopathology. One candidate mechanism through which individual differences in reward 

learning may emerge is variability in dopaminergic reinforcement signaling. A common functional 

polymorphism within the catechol-O-methyl transferase gene (COMT; rs4680, Val158Met) has 

been linked to reward learning where homozygosity for the Met allele (associated with heightened 

prefrontal dopamine function and decreased dopamine synthesis in the midbrain) has been 

associated with relatively increased reward learning. Here, we used a probabilistic reward learning 

task to asses response bias, a behavioral form of reward learning, across 3 separate samples that 

were combined for analyses (age: 21.80 ± 3.95; n=392; 268 female; European-American, n=208). 
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We replicate prior reports that COMT rs4680 Met allele homozygosity is associated with 

increased reward learning in European-American participants (β=0.20, t= 2.75, p< 0.01; ΔR2= 

0.04). Moreover, a meta-analysis of 4 studies, including the current one, confirmed the association 

between COMT rs4680 genotype and reward learning (95% CI −0.11 to −0.03; z=3.2; p<0.01). 

These results suggest that variability in dopamine signaling associated with COMT rs4680 

influences individual differences in reward which may potentially contribute to psychopathology 

characterized by reward dysfunction.
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Introduction

Blunted reward processing is a cardinal feature of depression that is frequently observed 

across other forms of psychopathology, including posttraumatic stress disorder (PTSD), 

schizophrenia, and substance use disorders (Garfield et al., 2014, Gorwood, 2008, 
Hatzigiakoumis et al., 2011, Pizzagalli, 2014). Consistent with theoretical speculation (Loas, 

1996, Meehl, 1975), emerging evidence suggests that diminished hedonic capacity may 

provide trait-like vulnerability to psychopathology (Corral-Frias et al., 2015, Nikolova et al., 
2012), making it important to identify the origin and mechanisms underlying individual 

differences in reward processing. Guided by evidence that variability in reward processing is 

heritable (Bogdan & Pizzagalli, 2009, Wichers et al., 2007) and linked to dopaminergic 

(DA) system function (Schultz, 2015), genetic association studies of reward processing have 

focused primarily on functional polymorphisms within DA-related proteins (Bogdan et al., 
2013, Forbes et al., 2009, Nikolova et al., 2011).

The most studied DA-related polymorphism in psychiatric and behavioral genetics to date is 

rs4680 (Val158Met) within the catechol-O-methyl transferse (COMT) gene (COMT) 

(Buckholtz & Meyer-Lindenberg, 2012, Gatt et al., 2015), which codes for a catabolic 

catecholamine enzyme (Mannisto & Kaakkola, 1999). Along with the DA transporter 

(DAT), the COMT enzyme is one of the primary synaptic regulators of DA. Unlike DAT, 

which is primarily expressed in subcortical regions, COMT is widely expressed in the 

prefrontal cortex (PFC) and is the primary constraint of prefrontal synaptic DA transmission 

(Tunbridge et al., 2004). Met (A) allele homozygosity at rs4680 is associated with a 40% 

reduction in COMT activity relative to Val (G) allele homozygosity (Chen et al., 2004).

This genotype-dependent reduction in COMT activity results in relatively higher DA levels 

in the PFC (Meyer-Lindenberg et al., 2005, Slifstein et al., 2008). While the direct effect of 

COMT Val158Met genotype is primarily on cortical DA, there is evidence that such cortical 

effects may indirectly modulate subcortical DA signaling (Akil et al., 2003, Meyer-

Lindenberg et al., 2005, Scornaiencki et al., 2009, Seamans & Yang, 2004); indeed, the Met 

allele has been associated with decreased midbrain DA synthesis (Akil et al., 2003, Meyer-

Lindenberg et al., 2005), which may facilitate the detection of phasic DA shifts critical for 

reward prediction errors and reinforcement learning (Bilder et al., 2004, Bogdan et al., 2011, 
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Santesso et al., 2008, Schultz, 2002, Schultz, 2007). Consistent with this notion, the Met 

allele has been linked to heightened behavioral reward learning (Lancaster et al., 2015, 
Lancaster et al., 2012), elevated positive affect in response to reward (Wichers et al., 2007), 

and reward-seeking behavior (Lancaster et al., 2012) as well as reduced anhedonic 

symptoms in relatives of schizophrenia patients (Docherty & Sponheim, 2008). Such 

individual differences in reward-related behavior may underlie associations between COMT 
rs4680 genotype and psychopathology (Antypa et al., 2013, Bogdan et al., 2013).

Given emergent evidence linking COMT genotype to reward learning (Frank et al., 2007, 
Lancaster et al., 2015, Lancaster et al., 2012), and recent concerns of lack replication in 

behavioral genetics (Duncan & Keller, 2011, Plomin et al., 2016) the present study examined 

whether COMT genotype (rs4680) is associated with reward learning using data from 3 

samples. Based on prior research (Lancaster et al., 2015, Lancaster et al., 2012), we 

hypothesized that individuals homozygous for the low activity Met allele would have 

increased reward learning (i.e., greater response bias to more rewarded cues). Lastly, we 

conducted a meta-analysis of published studies examining associations between COMT 
rs4680 genotype and behavioral reward learning as measured by a probabilistic reward 

learning task.

Materials and Methods

Participants

Participants (n=392) were recruited for three independent studies from the general and 

college community in the greater Boston, Massachusetts (Samples 1–2) and Durham, North 

Carolina (Sample 3) areas. Following quality control within each sample described below, 

the final total sample included 303 participants [age: 21.80 ± 3.95; 209 (69%) female; 

ethnicity: 208 (68.6%) European/European American, 33 (10.9%) African/African-

American, 39 (12.9%) Asian/Asian-American, 10 (3.3%) Hispanic, 11 (3.6%) multiracial or 

other, 2 did not report (0.7%); Supplemental Table 1]. Because the relationship between this 

polymorphism and response bias has only been characterized in European-American 

samples (Goetz et al., 2013, Lancaster et al., 2015, Lancaster et al., 2012), and owing to 

evidence for differential associations in other phenotypes across ancestral origin (Lee & 

Prescott, 2014), primary analyses were conducted on European-American participants 

(Table 1) with supplemental analyses conducted in the entire sample (Supplemental 

Material). All subjects gave written informed consent and studies were approved by the 

Harvard University and Duke University Institutional Review Boards.

Sample 1—Healthy female participants (n=84) aged 18–25 were recruited from the greater 

Boston community. Exclusionary criteria included left-handedness, color blindness, past or 

present neurological, psychiatric, hormonal, or metabolic disturbances, and self-report 

ethnicity (i.e., only participants with two parents of European ancestry were included). 

Participants provided written informed consent to a protocol approved by the Committee on 

the Use of Human Subjects in Research at Harvard University and received either course 

credit or $10/hour as well as additional compensation earned ($15) during the probabilistic 

reward learning task (described below). Data were excluded from analyses for the following 
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reasons: genotyping was not conducted (n=19), task non-compliance (i.e., predominantly 

pressing only one button) or below chance accuracy (n=6), technical difficulties (i.e., 

equipment did not function properly; n = 3), and failed genotyping (n=1), leaving a final 

sample of 56 for analyses. Three prior manuscripts have been published using these data 

evaluating reinforcement learning parameters (Huys et al., 2013) and associations between 

stress and genetic variation in the hypothalamic-pituitary-adrenal axis (Bogdan et al., 2010, 
Bogdan et al., 2011).

Sample 2—Participants (n=214; 123 female) aged 18–64 were recruited from Harvard 

University and the greater Boston community. Exclusionary criteria included current 

medical illness, attention-deficit hyperactivity disorder (ADHD), head injury, loss of 

consciousness, seizures, current alcohol/substance abuse or dependence, smoking, use of 

psychotropic medications during the last 2 weeks, pregnancy, or left handedness. 

Participants provided written informed consent to a protocol approved by the Committee on 

the Use of Human Subjects in Research at Harvard University and received course credit or 

$5 for participation and won additional money (average $6.00; between $5.80-$6.20) while 

completing the reward task. Collected data were excluded (n=41) from analyses due to task 

noncompliance (i.e., predominantly pressing only one button, below chance accuracy, or an 

inadequate reward ratio exposure, n=36), as well as failed genotyping (n=5) leaving a final 

sample of 173 (105 female) participants (119 European American; 61 female) for the present 

analyses. Three prior manuscripts have been published using these data evaluating 

computation reinforcement learning parameters (Huys et al., 2013) associations between 

stress and genetic variation within the HPA axis (Bogdan et al., 2010) and neural substrates 

of reward learning (Santesso et al., 2008).

Sample 3—A subset of participants (n=108, 70 females) enrolled in the ongoing Duke 

Neurogenetics Study (DNS; (Carey et al., 2015, Corral-Frias et al., 2015, Nikolova et al., 
2014)) completed the probabilistic reward learning task described below. Participants 

provided written informed consent to a protocol approved by Duke University and received 

$5 for their time and won an additional $5 while completing the task. Study exclusion 

criteria included: medical diagnoses of cancer, stroke, diabetes requiring insulin treatment, 

chronic kidney or liver disease, or lifetime history of psychotic symptoms; use of 

psychotropic, glucocorticoid, or hypolipidemic medication; and/or conditions affecting 

cerebral blood flow and metabolism (e.g., hypertension). As the DNS seeks to establish 

broad variability in multiple behavioral phenotypes related to psychopathology, diagnosis of 

current DSM-IV Axis I and select Axis II disorders (Antisocial Personality Disorder and 

Borderline Personality Disorder) were not exclusionary. Collected data were excluded from 

analyses due to task noncompliance (e.g., pressing one button exclusively, n=6) or because 

genotyping was not conducted (n=26). The final sample included a total of 74 (48 female) 

participants (33 European-American, 18 female).

Reward Learning Task and Data Processing

The computer task, which was adapted from prior studies (Pizzagalli et al., 2005, Tripp & 

Alsop, 1999), was presented on a PC using E-prime software (Psychology Software Tools, 

Inc, Pittsburgh, Pennsylvania). Notably, reward learning as measured by this task is (1) 
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heritable (Bogdan & Pizzagalli, 2009), (2) associated with depression and anhedonia 

(Luking et al., 2015a, Luking et al., 2015b, Pizzagalli et al., 2005), (3) linked to treatment 

outcomes (Vrieze et al., 2013)and smoking behaviors in depressed patients (Liverant et al., 
2014), (4) associated with depression resistance among anxious individuals (Morris & 

Rottenberg, 2015), (5) linked to reward-related striatal function (Santesso et al., 2008) and 

DA release (Vrieze et al., 2013), and (6) blunted by stress (Bogdan & Pizzagalli, 2006, 
Bogdan et al., 2011) and nicotine withdrawal (Pergadia et al., 2014). Briefly, participants are 

instructed to press a button on a button box or a keyboard to indicate whether a long or short 

mouth or nose1 is presented (100 ms) within a schematic face (see Figure 1). Importantly, 

the small size difference between stimuli and brief exposure time makes it difficult to 

discern which stimulus is presented. Participants are told that some, but not all correct 

responses, will result in correct feedback and a monetary reward. One of the stimuli (i.e., 

either long or short), the “rich” stimulus, is rewarded three times more frequently than the 

other, “lean” stimulus (stimulus types and buttons were counterbalanced across participants). 

Under these contingencies, humans and non-human animals develop a response bias for the 

more frequently rewarded, “rich” stimulus (Der-Avakian et al., 2013, Herrnstein, 1961, 
Lauwereyns et al., 2002, Pizzagalli et al., 2005, Tripp & Alsop, 1999).

The task consists of three blocks with 40% of trials per block receiving a reward.2 The 

“rich” and “lean” stimuli were presented with equal frequency, but, unknown to the 

participants, the reward feedback is asymmetrical in favor of the “rich” stimulus (3 “rich” to 

1 “lean” reward ratio).3 Prior to analyses, we implemented a two-step procedure to identify 

outlier responses (Bogdan & Pizzagalli, 2006, Pizzagalli et al., 2005). First, trials with 

reaction times (RT) less than 150 ms or longer than 1500 ms were excluded. Second, after 

removing outliers with step one, we naturally log transformed the remaining trials and 

calculated the RT mean and standard deviation (SD) for each individual subject; trials that 

fell outside of the log-transformed mean ± 3 SD were excluded.

The main variable of interest was response bias, an empirically-based measure of reward 

learning, which measures the propensity to select a stimulus based on prior reinforcement 

history. Higher response bias values are reflective of a tendency to select the “rich” stimulus 

as being displayed. Response bias was calculated according to the following formula:

This formula illustrates that increased response bias results from: 1) a high quantity of 

correct identifications of the rich stimulus and misses for the lean stimulus (i.e. incorrectly 

identifying the lean stimulus as the rich stimulus) resulting in a large numerator, and 2) a 

1In sample 1, two different stimuli were used: mouth and nose. In this sample participants had to indicate whether a long (mouth, 
11.00 mm; nose, 5.31 mm) or short (mouth, 10.00 mm; nose, 5.00 mm) stimulus was presented. In sample 2, only mouth stimuli (long 
mouth: 13 mm, short mouth: 11.5 mm) were presented. In sample 3, only mouth stimuli were presented, and these were the same 
length as in sample 1.
2The task in sample 1 and 3 consisted of 80 blocks whereas in sample 2 it consisted of 100 blocks. Accordingly, 32 of the trials in 
sample 1 and 3 were rewarded and 40 trials in sample 2 were rewarded.
3Participants in samples 1 and 3 received reward for 24 and 8 of the rich and lean stimulus trials, respectively, whereas those in sample 
2 received 30 and 10 reward for the rich and lean stimulus, respectively.
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low number of misses for the rich stimulus and correct identifications of the lean stimulus, 

resulting in a smaller denominator. The addition of 0.5 to each cell in this formula allows for 

the inclusion of data in which there were no incorrect responses.

To test the specificity of putative findings, control analyses were performed on 

discriminability, which provides a measure of the ability to discriminate between the two 

stimuli and is a measure of overall task performance or difficulty. Discriminability was 

calculated according to the following formula:

Both measures, response bias and discriminability, were derived from the behavioral model 

of signal detection (Macmillan, 2005).

Procedure

Sample 1—Participants completed two separate sessions. In the first session, the 

Structured Clinical Interview for the DSM-IV (SCID; (First et al., 1997) was administered to 

ensure no past or current Axis I disorder was present (participants with past minor alcohol 

abuse, i.e., one symptom meeting threshold more than 2 years ago, were included, n = 2). 

Eligible participants then completed a battery of questionnaires and provided a saliva sample 

for DNA analysis. During the second session participants performed the probabilistic reward 

task under a stress (threat-of-shock) and no-stress condition. In the stress condition, which 

was excluded from the present analyses, two electrodes were attached to the back of 

participants’ right hand and participants were instructed that they would receive one to three 

electrical shocks during the stress condition and that the intensity of shocks would increase 

over time. For a complete description of this procedure please see (Bogdan et al., 2011). The 

order of the stress and no stress condition was counterbalanced across participants. Only 

data from the no-stress condition was used for analyses.

Sample 2—Participants completed two separate sessions. In the first, the SCID (First et al., 
1997) was administered to ensure that participants had no past or present Axis I disorders. 

Participants then completed several self-report measures assessing mood and stress, and 

provided a saliva sample for DNA analysis. In the second session, participants completed the 

probabilistic reward task. For a complete description of this procedure please see (Santesso 

et al., 2008).

Sample 3—Participants were recruited to complete the probabilistic reward learning task 

from a large ongoing study, the Duke Neurogenesis Study (DNS), which assesses a wide 

range of behavioral, experiential, and biological phenotypes among young-adult college 

students (Carey et al., 2015, Corral-Frias et al., 2015, Nikolova et al., 2014, Yacubian et al., 
2007). Diagnosis of current DSM-IV Axis I and select Axis II disorders (Antisocial 

Personality Disorder and Borderline Personality Disorder) was assessed with the electronic 

Mini International Neuropsychiatric Interview (Sheehan et al., 1998) and Structured Clinical 

Interview for the DSM-IV Axis II (SCID; (First et al., 1997). These disorders were not 
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exclusionary, as the DNS seeks to establish broad variability in multiple behavioral 

phenotypes related to psychopathology. After completing the initial portion of the study, 

some participants completed the probabilistic reward learning task on an additional day.

Genotyping

Samples 1 and 2—DNA obtained from saliva samples (OG-100; OG-25; Oragene; DNA 

Genotek) was purified, extracted, and hydrated; it was stored at −80°C when not in use. 

Primers were designed using Spectro DESIGNER software (Sequenom). Following a PCR, 

an iPLEX mass EXTEND reaction was performed. After baseline correction and peak 

identification, Sequenom SPECTROTYPER software was used to analyze resulting spectra. 

Concordance for duplicate DNA in the current sample was 100%. COMT rs4680 did not 

deviate from Hardy–Weinberg equilibrium (HWE; all ethnicities: χ2=0.372, p=.54; European 

American sample only: χ2=1.20, p=.27; sample 1: χ2=.055, p=.82; sample 2: χ2=1.388, p=.

24).

Sample 3—DNA from participants within the DNS cohort was isolated from saliva derived 

from Oragene DNA self-collection kits (DNA Genotek) customized for 23andMe (www.

23andme.com). DNA extraction and genotyping were performed by the National Genetics 

Institute (NGI), a CLIA-certified clinical laboratory and subsidiary of Laboratory 

Corporation of America. The Illumina HumanOmniExpress BeadChips and a custom array 

containing an additional ~300,000 SNPs were used to provide genome-wide data. COMT 
rs4680 did not deviate from HWE (all ethnicities: χ2=.118, p= 0.73; European-American 

sample only: χ2=2.44, p= 0.12).

Data Analysis

Because participants in each sample completed the same task with minor variations and 

response bias across these 3 samples did not differ, we combined samples. Kolmogorov-

Smirnov test statistics indicated that the data did not significantly deviate from a normal 

distribution (D=.04; p=.20). As such, linear regressions (SPSS v.21) were used to test the 

association between COMT genotype and total response bias in the combined sample as 

well as in each sample individually. We used total response bias as our index of reward 

learning because this reflects the overall bias developed across the task. In addition, this 

metric has been previously associated with rs4680 genotype (Lancaster et al., 2012) and is 

robust (i.e. does not produce lower estimates) even in cases where individuals learn 

contingencies quickly. Given prior evidence that Met homozygotes have higher response 

bias relative to Val carriers, participants were separated into Val-allele carriers (Val/Val and 

Val/Met) and Met homozygotes (Met/Met) (Goetz et al., 2013, Lancaster et al., 2015, 
Lancaster et al., 2012). Additional results reporting an additive model are reported in 

Supplemental Materials. Covariates included sex, study, and ethnicity (when applicable). 

Additionally, due to differences in age across samples and evidence that COMT enzyme 

activity differs according to age (Tunbridge et al., 2007), we also included age as a covariate. 

Finally, since some of the participants in our sample met criteria for one or more Axis I 

disorders (4.6%) according to a diagnostic interview (Supplemental Tables S2 and S3), 

psychiatric diagnosis was also added as a covariate. Because the association between 

Val158Met genotype and response bias has only been reported in European-American 

Corral-Frías et al. Page 7

Genes Brain Behav. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



samples and due to population stratification concerns (Thomas & Witte, 2002), primary 

analyses were conducted in European-American participants only (n=208). Supplemental 

analyses were conducted in the full population (see Supplemental Materials).

Meta-analysis

Literature Search and Analyses—We performed PubMed and Google scholar searches 

to identify COMT genotype and reward learning studies, using the probabilistic reward 

learning task of interest (Pizzagalli et al., 2005), published before December 2015. Search 

words included “COMT genotype”, “COMT Val158Met”, “rs4680”, “reward”, “reward 

learning”, “response bias”, and “probabilistic reward task”. This search yielded a total of 3 

studies that were published between 2012 and 2015 ((Goetz et al., 2013, Lancaster et al., 
2015, Lancaster et al., 2012); Table 2). A weighted average for total response bias for Val 

carriers was calculated utilizing the means for Val/Val and Val/Met participants for a study 

that implemented an additive model (Goetz et al., 2013).

Analyses were performed using Revman 5.3 software (Cochrane IMS, Oxford, UK). The 

pooled effect was reported as a weighted mean difference (MD) with the corresponding 95% 

CI. Heterogeneity was assessed using I2 and χ2 tests, and a p value < 0.10 was considered to 

be significant. Since heterogeneity was not present in this meta-analysis, the pooled effect 

size was calculated through a fixed-effects model. Forest plots were constructed with p < 

0.05 considered to be significant.

Results

Response bias

COMT rs4680 (Val158Met) genotype was significantly associated with total response bias 

(β=0.20, t= 2.75, p<0.01; ΔR2= 0.04; Figure 2) in the combined European-American 

samples (n=208). Consistent with prior literature (Lancaster et al., 2015, Lancaster et al., 
2012), Met allele homozygotes demonstrated relatively higher response bias (M = 0.19 SD = 

0.15; n = 55) compared to Val allele carriers (M = 0.12 SD = 0.16; n = 153). The 

directionality of this relationship was also consistent when participants of all ethnicities 

were included in the analysis (n=303); however, the effect of genotype was no longer 

significant (β= 0.09, t=1.56, p=0.12; Supplemental Figure 2). Although an additive genetic 

model showed consistent directional effects, these effects did not reach significance (see 

Supplemental Materials and Supplemental Figure 1).

The main effect of COMT rs4680 genotype on response bias was significant in the 

European-American population within the largest sample (sample 2: β= 0.19, t= 1.99, p= 

0.04; n=119) but was not significant in sample 3 (β= 0.29, t=1.50; p=0.14; n=33) or 1 (β= 

0.15, t= 1.0; p= 0.32; n=56). Consistent with analyses combining data across samples, meta-

analysis of all 3 independent samples from this study showed that Met-allele homozygotes 

had heightened response bias compared to Val carriers (MD: −0.07; 95% CI −0.12 to −0.02; 

p < 0.01; n=208).

To ensure that our findings were specific to response bias and not due to differences in the 

ability to discriminate between the two different stimuli (i.e., discriminability), we 
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conducted regression analyses using COMT rs4680 genotype as a predictor of 

discriminability. Highlighting the specificity of the response bias findings in this European 

American sample, COMT rs4680 genotype was not significantly associated with 

discriminability (Discriminability total: β= −0.07, t= −1.60, p= 0.10).

Meta-analysis

A pooled analysis of four studies (Goetz et al., 2013, Lancaster et al., 2015, Lancaster et al., 
2012), present study, n=431) of European/European-American participants revealed that 

response bias was significantly increased among Met-allele homozygotes (n = 112) 

compared to Val-allele carriers (n = 319; MD: −0.07; 95% CI −0.10 to −0.03; p < 0.01; 

Figure 3). The test for heterogeneity was not significant (I2 = 48%; p = 0.12) confirming the 

appropriateness of a fixed effects model. Consistent with previous meta-analyses (Munafo et 
al., 2008), the effect size of the first published paper (Lancaster et al., 2012) was much larger 

than the effect size for the subsequent studies suggesting an overestimation of the effect in 

first published investigations (Ioannidis et al., 2001). Additionally, an analysis including 

participants from all ethnicities within the present sample (n=526) revealed consistent results 

(MD: −0.04; 95% CI −0.08 to −0.003; p < 0.05; See Supplemental Figure 3).

Discussion

This study sought to replicate recently reported associations between COMT Val158Met 

genotype and behavioral reward learning ((Lancaster et al., 2015, Lancaster et al., 2012); 

Table 2). Consistent with these prior findings, our data suggest that individuals homozygous 

for the low enzymatic activity Met allele have relatively increased reward learning (as 

reflected by heightened response bias toward a stimulus more frequently associated with 

reward; Figure 2). Further, a meta-analysis of four studies ((Goetz et al., 2013, Lancaster et 
al., 2015, Lancaster et al., 2012) and the present study), using the same probabilistic reward 

learning task ((Pizzagalli et al., 2005); n=431), also produced a significant association 

between response bias and rs4680 genotype (Figure 3). Consistent with our findings, recent 

complementary evidence suggests that COMT rs4680 genotype is also associated with other 

aspects of reward function, including positive affect in response to rewarding experiences 

(Wichers et al., 2007) and reward seeking behavior (Lancaster et al., 2012). Collectively, 

these findings across studies provide evidence for an association between COMT rs4680 

genotype and individual differences in reward processing, which may in turn, confer 

variability in vulnerability to a host of psychopathologies.

Putative Neural Mechanisms

While this study did not examine putative neural mechanisms through which COMT rs4680 

genotype may be associated with individual differences in reward learning, emerging 

literature probing associations between COMT rs4680 genotype and neural phenotypes 

allows for informed speculation. This research suggests differential DA function associated 

with COMT rs4680 genotype wherein Met-allele homozygosity results in higher PFC DA 

levels relative to Val-allele homozygosity due to 40% fold reduction in COMT activity 

(Chen et al., 2004). This Met-allele driven variability in PFC DA may influence phasic 

reward prediction signals, stimulus signal-to-noise ratios as well as working memory to 
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produce differences in reward learning. However, as noted below, each of these 

interpretations is also challenged by conflicting evidence.

Phasic changes in subcortical DA neuron firing are thought to encode differences in reward 

prediction errors (i.e., difference between expected and observed value), which are crucial 

signals for reward learning (Bayer & Glimcher, 2005, Garris et al., 1999, Schultz, 2002, 
Schultz, 2007). The expression of COMT in subcortical regions is minimal and the direct 

effect on subcortical DA cell activity is unknown. However, midbrain and striatal 

dopaminergic neurons are regulated by the PFC (Seamans & Yang, 2004), and the COMT 
Val allele is associated with increased tyrosine hydroxylase expression within the midbrain 

and, hence, presumably increased DA synthesis (Akil et al., 2003, Meyer-Lindenberg et al., 
2005). This putative increase in DA synthesis may decrease the ability to detect phasic 

activity necessary for reward prediction, leading to decreased reward learning in Val-allele 

carriers (Pizzagalli et al., 2008, Santesso et al., 2009). Moreover, rs4680 genotype has been 

associated with individual differences in the functional interactions of subcortical and 

prefrontal regions during a working memory task (Meyer-Lindenberg et al., 2005) 

suggesting that COMT rs4680 genotype-related differences in PFC-subcortical interactions 

may contribute to reward learning.

Notably however, while this interpretation is consistent with our understanding of the role of 

subcortical DA and reward learning, direct neuroimaging studies of COMT rs4680 genotype 

associations with reward-related brain activation, which is believed to be tied to DA 

signaling (Knutson & Gibbs, 2007), have yielded conflicting evidence (Antypa et al., 2013, 
Camara et al., 2009, Dreher et al., 2009, Forbes et al., 2009, Schmack et al., 2008, Yacubian 

et al., 2007). For instance, some studies have shown increased reward-related ventral 

striatum reactivity in Met homozygotes (Dreher et al., 2009, Schmack et al., 2008, Yacubian 

et al., 2007) while others have shown increased activation in Val homozygotes (Camara et 
al., 2009). While these contradictory findings call into question the potential impact of 

COMT genotype on reward function through its effect on subcortical DA, it is important to 

note that none of these tasks were designed to evaluate reward learning specifically (as 

opposed to other forms of reward processing such as anticipating or receiving money). It is 

also possible that false positive associations (Farrell et al., 2015, Lee & Song, 2015, Munafò 

et al., 2005, Nickl-Jockschat et al., 2015) may contribute to these equivocal results.

Alternatively, though not mutually exclusive, the effects of rs4680 genotype on reward 

learning may arise from its effects on prefrontal DA function and related behaviors. In 

addition to striatal reward prediction errors, a wide variety of higher order brain function, 

including executive control and working memory, likely contributes to reward learning 

(Collins & Frank, 2012). Extensive working memory research suggests COMT-related 

effects on prefrontal DA may modulate signal-to-noise ratio allowing task-related 

information to be prioritized, potentially facilitating learning of novel stimulus-reward 

pairings [(Akil et al., 2003, Meyer-Lindenberg & Weinberger, 2006, Seamans & Yang, 

2004) but see also (Nickl-Jockschat et al., 2015)]. Further, this literature suggests that in the 

context of working memory, an optimum level of DA stimulation is necessary to reach the 

highest signal-to-noise ratio, placing Met homozygotes at the height of this inverted u-curve 

(Meyer-Lindenberg et al., 2005). Moreover, behavioral and in silico experiments suggest that 
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prefrontal function may contribute to reward learning by influencing initial learning 

acquisition rate (Collins & Frank, 2012). Supporting this interpretation, genetic association 

studies have linked polymorphisms associated with variability in subcortical DA signaling 

(e.g. DARPP-32 and DRD2) to individual differences in learning rates after initial learning 

has occurred, and polymorphisms associated with cortical DA function (e.g. COMT) with 

learning rates during initial acquisition (Frank et al., 2007). Thus, although the effects of 

COMT rs4680 genotype on subcortical function have been hypothesized (Bilder et al., 
2004), evidence (Huotari et al., 2002) suggests that an explanation based on prefrontal 

regulation of striatal DA metabolism via top–down projections may also be important 

(Matsumoto et al., 2003).

While this interpretation could potentially account for the behavioral effects observed here, 

it is challenged by recent meta-analyses suggesting that COMT rs4680 genotype may have 

no main effect on higher order executive function such as working memory (Nickl-Jockschat 

et al., 2015). Notably, it is possible that Val allele-specific patterns of methylation may 

contribute to this contradictory literature, as the Val-allele homozygotes have a CpG 

methylation site that Met-allele carriers do not. Moreover, methylation at this site is related 

to stress exposure and variability in behavioral and neural working memory phenotypes 

(Ursini et al., 2011). Specifically, Val-allele homozygotes with low stress levels and 

heightened methylation in this region have working memory-related neural function and 

behavior comparable to Met-allele carriers highlighting the importance of considering 

methylation and stress in future COMT rs4680 genotype research (Ursini et al., 2011).

Vulnerability to Psychopathology

Recent theoretical and empirical evidence suggests that reward processing deficits within 

psychiatric disorders may be closely linked to motivation, reward learning and reward 

decision making, rather than hedonic response (Barch et al., 2015, Pizzagalli, 2014). Since 

positive reinforcement increases the likelihood of behaviors linked to them, reward learning 

dysfunction may reduce motivation to pursue rewards, thus increasing the probability of 

symptom persistence or even exacerbation of psychopathology (Pizzagalli, 2014). Consistent 

with this hypothesis, behavioral reward learning, as measured by the task used in this study, 

has been associated with anhedonic symptoms and depression (Luking et al., 2015a, Luking 

et al., 2015b, Pizzagalli et al., 2005) as well as chronicity of symptoms after antidepressant 

treatment (Vrieze et al., 2013). Accordingly, reward learning deficits observed in COMT 
rs4680 Val-allele carriers may place them at greater risk for psychopathology characterized 

by deficient reward processing as has been reported in some (Baune et al., 2008, Benedetti et 
al., 2009, Benedetti et al., 2010, Spronk et al., 2011, Yoshida et al., 2008), but not all 

(Szegedi et al., 2005), studies.

Limitations and Conclusions

Interpretation of the current results should be considered in the context of study limitations. 

First, our sample (even the pooled meta-analytic data) is small for a genetic association 

study making our estimated effect imprecise. Second, our results were only significant when 

all subsamples were combined (or meta-analyzed), and in our largest dataset (Sample 2). 

The relationship was not significant in our other samples, though it approached a trending 
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relationship in our Sample 3 and showed a similar directional effect across all. The non-

significant results from Sample 1 may be partially attributable to the original design of the 

study. Here participants performed the probabilistic reward learning task under stress and 

no-stress conditions, where the order was counterbalanced across subjects (Bogdan et al., 

2010, Bogdan et al., 2011). While this study did not use data from the stress condition, given 

preliminary evidence of Gene x Environment interactions at this locus (Craddock et al., 

2006), it is possible that this study design and the presence of the stress condition weakened 

the link between COMT genotype and reward learning. Moreover, our 3 samples differed in 

sex, ethnicity and age distribution as well as the version of the probabilistic reward task 

used. These study-related differences may have added variability to our reported effects. In 

an attempt to account for this possibility, study differences including, the study of origin, 

sex, and age, were included as covariates in our analysis. Further, we analyzed each sample 

independently and conducted a meta-analysis, which resulted in the same conclusion.

Third, results were only significant when analyses were constrained to European-American 

individuals. However, the directionality of the effect was consistent when all ethnicities were 

included in analyses (Supplemental Figure 2) and a meta-analysis across published studies 

(including the present data) also yielded evidence of significant association when including 

individuals of all ancestral origins (Supplemental Figure 3). It is important to note that this is 

the only study to date to contain a sample of mixed ethnicities so the role of ancestral origin 

in COMT Val158Met genotype–response bias phenotype associations is unclear. Notably, 

among other phenotypes, there is evidence of differential association according to ancestry 

(e.g.,(Domschke et al., 2007, Hosak, 2007).

Fourth, our meta-analysis only included data from previously published research. In light of 

publication bias for positive as opposed to null findings (Hirschhorn et al., 2002, Munafo et 
al., 2004), it is possible that additional data are available which do not report the associations 

described herein and may have led to a biased meta-analysis. Along with these previous 

reports, our study thus highlights the importance of not only replicating genetic association 

studies but also performing meta-analyses in an attempt to more accurately measure effect 

sizes (Munafo et al., 2008). Lastly, meta-analyses were conducted using a fixed effects 

model. While the heterogeneity observed in the data support such a model, the larger studies 

included within the meta-analysis by definition contributes more to the weighted average. 

Notably, a random effects model showed trending effects (p=.08) in the same direction as the 

fixed effects model.

These limitations notwithstanding, the present study suggests that a common genetic variant 

within the COMT gene (rs4680) is associated with individual differences in reward learning. 

Our study further highlights the importance of replication and meta-analyses in genetic 

association studies. While these findings shed light on how this functional genetic 

polymorphism is important in the appearance of individual differences in reward learning, 

further research is needed to elucidate the potential neural mechanisms underlying these 

behavioral associations and to trace such associations to the development of 

psychopathology.
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Figure 1. Schematic diagram of the reward learning task
Participants are instructed to press a button on the keyboard to indicate whether a long or 

short mouth is presented (100 ms) within a schematic face. Following some, but not all 

correct responses, participants received a monetary reward of 5 cents. One stimulus (rich) 

was rewarded 3 times more than the other (lean). Figure adapted from (Pizzagalli et al., 
2005).

Corral-Frías et al. Page 18

Genes Brain Behav. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. COMT genotype associated with differences in total response bias in the probabilistic 
reward task
A. In the European-American sample Met/Met participants (n = 55) demonstrated 

significantly greater total response bias than Val carriers (n = 153) (β=.20, t=2.75, p<.01; 

ΔR2= .04). Data points are jittered to allow for distribution visualization.
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Figure 3. Forest plot of the pooled effect of COMT genotype on total response bias
Size of square is proportional to sample size. CI: confidence interval; df: degrees of 

freedom; IV: Inverse Variance (statistical method). Lancaster et al., 2015 report a significant 

COMT rs4680 genotype x block interaction; here we depict the effect for the main effect of 

COMT rs4680 genotype on response bias.
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