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ABSTRACT 

Purpose 

A numerically adaptive finite element (FE) method is presented for accurate, efficient 

and reliable eigensolutions of regular second and fourth order Sturm-Liouville (SL) 

problems with variable coefficients.  

Methodology 

After the conventional FE solution for an eigenpair (i.e. eigenvalue and eigenfunction) 

of a particular order has been obtained on a given mesh, a novel strategy is introduced, 

in which the FE solution of the eigenproblem is equivalently viewed as the FE solution 

of an associated linear problem.  This strategy allows the Element Energy Projection 

(EEP) technique for linear problems to calculate super-convergent FE solutions for 

eigenfunctions anywhere on any element.  These EEP super-convergent solutions are 

used to estimate the FE solution errors and to guide mesh refinements, until the 

accuracy matches user-preset error tolerance on both eigenvalues and eigenfunctions. 

Findings 

Numerical results for a number of representative and challenging SL problems are 

presented to demonstrate the effectiveness, efficiency, accuracy and reliability of the 

proposed method. 

Research limitations 

The method is limited to regular SL problems, but it can also solve some singular SL 

problems in an indirect way. 

Value 

Comprehensive utilization of the EEP technique yields a simple, efficient and reliable 

adaptive FE procedure that finds sufficiently fine meshes for preset error tolerances on 

eigenvalues and eigenfunctions to be achieved, even on problems which proved 

troublesome to competing methods. The method can readily be extended to vector SL 

problems.  

 

KEYWORDS: Eigenvalues; Adaptivity; Finite element; Energy methods; Projection 

schemes. 

ARTICLE CLASSIFICATION: Research paper
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1. INTRODUCTION 

The theory presented in this paper covers the regular second and fourth order 

Sturm-Liouville (SL) eigenproblems to which many physical problems over a 

continuous spatial domain can be reduced.  However, for convenience, the vibration of 

a non-uniform structural member is chosen as the default physical model in this paper. 

For brevity, Dirichlet (i.e. fixed-end) boundary conditions (BCs) are taken as the 

default for both second and fourth order SL problems in this paper. Also, for 

conciseness, whenever possible, both the second and fourth order SL problems are dealt 

with together by putting the fourth order case into brackets, e.g. second [fourth] order 

case.  Additionally, in the equations parts (a) and (b) are for the second and fourth order 

SL cases, respectively, and the mathematical term ‘eigenfunction’ is frequently 

replaced by the physical term ‘mode’.  

The regular second order SL problem is to find the eigenvalues   and 

eigenfunctions )(xu  of the second order ordinary differential equation (ODE) 

uxruxquxpLu )()())((  ,    bxa   (1) 

subject to the default BCs 

u(a ) =0, u(b ) =0  (2) 

where: prime denotes ordinary derivative; L  is the associated self-adjoint operator; 

),( ba  is finite; p , p , q  and r  are continuous on ],[ ba ;  0p  and 0r  on ],[ ba . 

The regular fourth order SL problem is to find the eigenvalues   and eigenfunctions 

)(xw  of the fourth order ODE 

wxrwxqwxswxpLw )()())(())((  ,    bxa   (3) 

subject to the default BCs 


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0)(

aw

aw
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0)(

0)(

bw
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where: p , p , p  , s , s , q  and r  are all continuous on ],[ ba ; 0p  and 0r  on 

],[ ba . Note that the same symbol L  is used in Eqs. (1) and (3) to represent different 

self-adjoint operators, which are easily distinguishable from related contexts. 

For second order SL problems, there are a number of state-of-the-art codes, e.g. 

SLEDGE (Pruess and Fulton, 1993), SLEIGN2 (Bailey et al., 2001) and components of 

the NAG library (Numerical Algorithms Group, 1999), of which some only find the 

eigenvalues.  However, the fourth order SL problem is very challenging and to the 
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authors’ best knowledge the only code that specifically solves such problems is 

SLEUTH (Greenberg and Marletta, 1997), which unfortunately does not impose error 

control on eigenfunctions and hence cannot serve as a complete eigensolver. Both 

packages of SLEDGE and SLEUTH use piecewise constant approximation of the 

variable coefficients in SL problems with shooting methods used to locate eigenvalues. 

The package SLEIGN2 uses the Prüfer transformation and oscillatory properties to 

calculate both eigenvalues and eigenfunctions.   

There are some other approximate methods dedicated to SL problems. Prikazchikov 

and Loseva (2004) constructed a difference scheme of high order by using  a special FE 

method for second order SL problems,  Andrew (2003) proposed an asymptotic 

correction technique to improve the accuracy of FE solutions for second order SL 

problems, Yücel and Boubaker (2012) applied the Differential Quadrature Method to 

compute the eigenvalues of some regular fourth order SL problems, and Taher et al. 

(2013) proposed a technique based on the chebyshev spectral collocation method for 

the eigenvalues of fourth order SL problems. However, these methods are generally not 

adaptivity oriented and lack ingredients required in an adaptive package. 

The authors of this paper were motivated to probe into SL eigenproblems from the 

structural engineering discipline by having successfully solved structural vibration 

problems with uniform members (Yuan et al., 2003; Williams and Wittrick, 1970; 

Wittrick and Williams, 1971, 1973), which are special cases of both second and fourth 

order SL problems with constant coefficients. Four of the present authors developed a 

recursive second order convergence method (Yuan et al., 2003) for accurate solution of 

both eigenvalues (natural frequencies) and eigenfunctions (modes) by using the exact 

Dynamic Stiffness Method (DSM). This critical success led to further progress in a 

series of research projects using the DSM (Djoudi et al., 2005; Yuan et al., 2007c, 

2014).  

The procedure presented in this paper is based on the conventional finite element 

(FE) method (Bathe, 1996). This means that it no longer requires the calculation of 

exact dynamic stiffnesses, but instead relies on sufficiently fine meshes being found for 

sufficiently accurate FE solutions. The most important and substantial contribution of 

the present paper is its presentation of an adaptive procedure for finding such meshes.  

A key component in the procedure is the recently developed Element Energy Projection 

(EEP) technique (Yuan et al., 2006, 2007a, 2007b; Yuan and Zhao, 2007; Yuan and 

Xing, 2014), which is applied, with a novel ‘technology transfer’ from linear problems 



 5 

to the current eigenproblem, to calculate super-convergent solutions, which are called 

EEP solutions in the following, for eigenfunctions during the FE post-processing stage.  

These EEP solutions are then used as if they were exact solutions to estimate the errors 

in the FE solutions and hence to further guide mesh refinements (Yuan and He, 2006; 

Yuan et al., 2008).  This yields a simple, efficient, reliable and general adaptive FE 

procedure that is able to find sufficiently fine meshes for the accuracy of the obtained 

FE solutions to satisfy the user-preset error tolerances on both eigenvalues and 

eigenfunctions.  

2.  OUTLINE OF THE SOLUTION PROCEDURE 

For conciseness and neatness, suppose that the leading n  eigenpairs ])[,( kkk wu  

),,1( nk   are required (although k may not necessarily be from 1) and that the 

user-preset error tolerance for both eigenvalues and modes is Tol .  The aim of the 

procedure presented is to find FE solutions ])[,( h
k

h
k

h
k wu  ),,1( nk   on sufficiently 

fine meshes k  ),,1( nk   such that 

|)|1(|| k

h

kk Tol    

Tol|u|u h
kk max , with 1max ||uk  

Tol|w|w h
kk max  with 1max ||wk  

(5) 

(6a) 

(6b) 

Since the exact solutions ])[,( kkk wu  are not usually available, the proposed 

procedure uses the following stop criteria instead  

|))||,max(|1( ullu Tol   ,     ),( ul
h
k    

Tol|u|u h
kk *max , with 1max ||uh

k  

Tol|w|w h
kk *max  with 1max ||wh

k  

(7) 

(8a) 

(8b) 

where the eigenvalue interval is defined by bounds ),( ul   calculated on the mesh k   

and the more accurate *
ku  [ *

kw ] are EEP solutions calculated based on  h
ku  [ h

kw ] on the 

mesh k , which will be described below.  Note that once Eq. (7) is satisfied with true 

bounds ),( ul  , any value in  ),( ul   serves as a valid FE solution h  which is 

guaranteed to satisfy Eq. (5). 

In practical computation, the solution procedure starts from the lowest eigenpair 
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])[,( 111 wu  and successively advances until the highest eigenpair ])[,( nnn wu has 

been found. To start with the first eigenpair, an initial mesh 0  is specified by the user.  

After the adaptive solution for the first eigenpair has been completed, its final mesh 1  

is used as the initial mesh for finding the next eigenpair.  

The proposed adaptive procedure achieves the above objective for each eigenpair 

])[,( wu  simply by implementing the following three-step adaptive strategy. 

(1) FE solution.  On the current mesh, the conventional FE solution ])[,( hhh wu  

is obtained by jointly using the bisection method, the Sturm sequence property and 

inverse iteration, as described in Section 3.   

(2) EEP solution.  Based on the FE solution ])[,( hhh wu , the EEP solution 

][ ** wu  is calculated on each element e, as described in Section 4. 

(3) Mesh refinement.  The EEP solution ][ ** wu  is used to calculate the maximum 

error on each element ||max * h

e
uu   [ ||max * h

e
ww  ]. For those elements for which 

Eq. (8) is not satisfied, the error-averaging method (Yuan et al., 2008) is used to 

subdivide each into two elements, forming a new refined mesh, as described in Section 

5. Then the procedure returns to the first step (i.e. the FE solution) and cycles until all 

elements satisfy Eq. (8). 

The above three steps constitute a round of adaptive iteration. After Eq. (8) has 

been satisfied by a series of such adaptive iterations, the procedure further proceeds to 

satisfying Eq. (7) by adjusting the bounds on the sought eigenvalue. 

3.  FE SOLUTION 

This section describes the implementation of the first step of the adaptive strategy, i.e. 

the conventional FE solution. 

3.1 FE formulation 

The element model adopted is the conventional polynomial element of degree 1m  

[ 3m ], with length h  and end nodal coordinates 1x  and 2x . Also let 
0Cuh   

[ 1Cwh  ] denote the conventional FE solution on the given mesh  , in which 0C  is 

the space of continuous functions and 1C  is the space of the functions which are 

continuous up-to the first-order derivative. As in common practice, the shape functions 
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for hu  could be of either Lagrange or hierarchical type whereas those for hw  are of 

Hermite type. 

 For the current mesh  , the standard FE formulation leads to a linear 

eigenproblem of the form (Bathe, 1996) 

MDKD   (9) 

where D  is the so-called mode vector, and both K  and M  are square and symmetrical 

constant matrices with M  being also positive definite.  Given an arbitrary trial value 

a  (shift value), the above problem can be equivalently written in the shifted form 

(Bathe, 1996) 

DMDK a      with MKK aa  , a   (10) 

Eq. (10) is taken as the eigenproblem to be solved in the remainder of this paper.  

3.2 Divide-and-Conquer  

For the sake of reliability, Eq. (10) is solved by a two-phase Divide-and-Conquer (DC) 

strategy (Yuan et al., 2003) as follows. 

(i) Divide phase.  Quickly isolate an eigenvalue interval ),( ul   containing the 

sought eigenvalue (initially the first one h
1 ) on the current mesh by using the 

bisection method via the Sturm sequence property; 

(ii) Conquer phase. Find the eigenpair ),( hh
D  by using inverse iteration to obtain 

the conventional FE solution ])[,( hhh wu  with ),( ul

h   . 

3.3 J-count based on Sturm sequence property 

According to the well-known Sturm sequence property (Wilkinson, 1965), the total 

number of eigenvalues below a  for Eq. (10) can be calculated by the following 

J-count formula 

}{)( aa sJ K  (11) 

Here }{ as K  is the sign count of aK , which equals the number of negative leading 

diagonal elements of the upper triangular matrix 
aK  obtained from aK  by ordinary 

Gaussian elimination. One of the usages of the J-count is, at the Divide phase, to 

incorporate it into the bisection method (Williams and Wittrick, 1970) to search for 

bounds ),( ul   on the sought k-th eigenvalue k  such that kJ u )(  and kJ l )( . 
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Another usage is to compute the number of eigenvalues rN  in a given eigenvalue 

interval ),( ul   as 

)()( lur JJN    (12) 

Using the J-count, the Divide phase is performed as follows. Bisection is used 

simply to find an interval ),( ul   containing the sought eigenvalue k  and then the 

interval ),( ul   is further narrowed by the bisection method until either (a) 1rN  in 

),( ul   or (b) 1rN  in ),( ul   but the interval is narrow enough to satisfy the stop 

criterion of Eq. (7). In case (b), all rN )1(  eigenvalues in ),( ul   are considered to 

be coincident for the current mesh. In the following analysis, case (a) is considered as 

the default case with case (b) only briefly addressed. 

When an appropriate interval ),( ul   has been identified, the procedure switches 

from the Divide phase to the Conquer phase which solves Eq. (10) by inverse iteration 

for the eigenpair ),( hh
D . 

3.4 Inverse iteration 

Suppose that during the Divide phase an eigenvalue interval ),( ul   has been 

identified by the bisection method.  In case (a), i.e. when 1rN , the initial a  is set as 

)(
2
1

ula   . This ensures that the nearest eigenvalue to a  is the one within 

),( ul   and hence guarantees that the desired eigenvalue   is the numerically 

smallest of all the eigenvalues of Eq. (10) and so can be safely and efficiently solved for 

by using inverse iteration (Yuan et al., 2003) which guarantees convergence on the 

eigenpair ),( D  for which the absolute eigenvalue is least.   The inverse iteration is 

terminated when 

Tolii  )()1(    and TolDD i
j

i
j  )()1(max  (13) 

Here )(i

jD  is the j-th component in D  at the i-th inverse iteration step and D  is 

normalized by 1||max j
j

D . In case (b), i.e. when 1rN , Eq. (10) is solved with 

)(
2
1

ula    by using subspace iteration to find the rN  absolutely smallest 

eigenpairs simultaneously. 

Note that both the inverse and subspace iterations involve factorization of aK , 
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which implies the J-count at a  for the current mesh can easily be found without 

additional computation.  Hence it is immediately known whether a  is a new upper or 

lower bound and the eigenvalue interval ),( ul   is updated accordingly.  

After the above inverse iteration converges, an FE solution ),( hh
D  (i.e. ),( hh

D  

with h

a

h   ) of Eq. (10) is obtained.  However, the current mesh may not be 

sufficiently fine and so the accuracy of this FE solution needs to be checked by a more 

accurate solution, namely the EEP solution, which is discussed in the following section. 

4.  EEP SOLUTION 

This section firstly introduces a recently developed Element Energy Projection (EEP) 

technique for extracting super-convergent solutions from conventional FE solutions of 

linear boundary value problems (BVPs). It then presents a novel technology transfer of 

the EEP technique from linear BVP to SL problems, enabling the desired error checking 

for the FE solution of SL problems. 

4.1  EEP formulae for linear BVP 

Consider the second [fourth] order BVP of Eq. (1) [Eq. (3)] with uxr )(  [ wxr )( ] 

being replaced by a ‘load’ term )(xf  [ )(xf ] and its FE solutions for u [ w ] which, for 

convenience, are called displacements in this section. It is well known that for elements 

of degree m  the FE solution hu [ hw ] gains, for sufficiently smooth problems and 

solutions, a super-convergence )( 2mhO  [ )( )1(2 mhO ] at the element end nodes [25, 26], 

while the FE solutions of hu  [ hw ] at element interior points only gain convergence 

)( 1mhO  [ )( 1mhO ] (Douglas, 1974; Strang and Fix, 1973). 

In earlier studies led by the first author (Yuan et al., 2006, 2007a, 2007b; Yuan and 

Zhao, 2007; Yuan and Xing, 2014), it has been found that the well-known projection 

theorem (Strang and Fix, 1973) in FE mathematical theory almost holds true for a 

single element of degree m ( 1 ) [ m ( 3 )]. Accordingly, based on a series of related 

conceptual studies, the EEP method has been developed for computation of both 

super-convergent displacements and derivatives at any interior point for FE solution of 

linear BVPs. The EEP formulae were developed in both simplified and condensed 

forms. This paper uses the simplified form, due to its simplicity, convenience and 
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efficiency, the formulae of which are presented as follows 








  
2

1

d)(d)( 1221
* x

x

hx

x

hh xNLufNxNLufN
p

h
uu  (14a) 

2/)(6/)(

2/)(6/)(

2
2

1
1

3
2

0
1

2
1

1
2

3
1

0
2

*

xxJxxJ

xxJxxJpwpw h




 (14b) 

Here: iN  )2,1( i are the linear shape functions; *)(  represents EEP value at the 

interior point ),( 21 xxx  with 12 xxh  ; and 

xNLwfJ
x

x

h d)( 21
1



  ,  xNLwfJ
x

x

h d)( 12

2 

  ,  1,0  (15) 

with 
iN  ( 1,0,2,1  i ) being conventional cubic Hermite shape functions. 

Mathematical analyses (Yuan and Zhao, 2007; Yuan and Xing, 2014; Zhao et al., 

2007; Yuan et al., 2015) have proved that for both the second and fourth order cases *u  

and *w  gain in general a super-convergence of at least )( 2mhO  in maximum norm, i.e. 

2*max 


 m

bxa
Chuu  [ 2*max 


 m

bxa
Chww ].  It is also worth mentioning that the 

calculations of Eq. (14) are performed at the post-processing stage, and involve only 

some definite integration. 

Since the accuracy of the EEP solution *u  [w*] is at least one order higher than that 

of hu  [ hw ], for elements of degree 1m  [ 3m ], a very simple strategy for error 

estimation is to use *u  [ *w ] instead of the exact solution u  [ w ] to estimate the errors 

in hu  [ hw ].  This estimate tends to become more accurate and reliable as the mesh 

becomes finer ( 0h ) and hence can be used to guide mesh refinement. 

4.2  EEP technology transfer to SL problems 

The EEP formulae are powerful and valuable but a key question remains unanswered: 

namely, they are for linear BVPs, so how can they be applied to SL problems which 

essentially have a special nonlinear form due to the obviously nonlinear term uxr )(  

[ wxr )( ]?  The answer is as follows. 

Note that Eq. (10) is solved as the shifted form of Eq. (9), so that at the final stage of 

the inverse iteration the obtained solution ])[,( hhh wu  is the best FE solution on the 

current mesh to the shifted ODE eigenproblem 

uxruxruxquxpuL aa
)()()())((   ,    bxa   (16a) 
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0)(,0)(  buau  

with u  being normalized as 1)(max 


xu
bxa

 

wxrwxrwxqwxswxpwL aa
)()()())(())((   ,  bxa   

0)(,0)(,0)(,0)(  bwbwawaw  

with w  being normalized as 1)(max 


xw
bxa

 

(16b) 

The converged FE solution ])[,( hhh wu  implies that no further improvement in 

accuracy will be gained by more inverse iterations unless the mesh is further refined. It 

is at this stage that the linear problem based EEP technology can be directly transferred 

to SL problems. Specifically, the FE solution ])[,( hhh wu  of Eq. (10) can be viewed 

as an FE approximation to that of the linear BVP 

)(xfuL
a
 ,    bxa  ,  with hh uxrxf )()(   

0)(,0)(  buau  
(17a) 

)(xfwL
a

 ,    bxa  ,    with hh wxrxf )()(   

0)(,0)(,0)(,0)(  bwbwawaw    
(17b) 

with the corresponding FE formulation being 

PDK a   with  hh
MDP   (18) 

This is justified because the FE solution of the linear BVP of Eq. (17) on the current 

mesh is exactly the same hu  [ hw ].  Based on this formulation, the corresponding EEP 

solution *u  [ *w ] can be calculated by using Eq. (14) with L  and f  replaced by 
a

L  

and hh uxr )(  [ hh wxr )( ] respectively, and subsequently can be used to check 

whether hu  [ hw ] is good enough compared with *u  [ *w ]. The underlying rationale is 

simply that if the FE solution hu  [ hw ] is not good enough for the linear BVP of Eq. 

(17), neither is it for the original SL problem of Eq. (16), and vice versa.  All of the 

numerical examples so far have confirmed the error estimate is indeed valid and 

reliable for the original SL problem of Eq. (16). 

5.  MESH REFINEMENT 

5.1 Error checking 

Suppose each element on the current mesh is divided into a grid of M equal 
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subintervals.  For the 1M  interior grid points on a typical element, the ordinary FE 

solutions h
ju  [ h

jw ] and the EEP solutions *
ju  [ *

jw ] at the j-th interior point 

( 1,,2,1  Mj  ) are calculated. Then the errors at the 1M  interior points are 

calculated and checked to see if all of them satisfy the given tolerance, i.e. 

Toluue h
jjj  **   ( 1,,2,1  Mj  ) (19a)  

Tolwwe h
jjj  **   ( 1,,2,1  Mj  ) (19b) 

Usually it is more than sufficient to set M  in the range 84  M .  

5.2 Elememt subdivision 

If Eq. (19) is not satisfied for any j, the corresponding element needs to be subdivided 

into two sub-elements by inserting an interior node at the aj -th point, calculated by 














 









1

1

2*
1

1

2* )()(int
M

j

j

M

j

ja eejj  (20)  

This subdivision approach is called the error-averaging method (Yuan et al., 2008), 

with the areas of error squared on the two sides of point aj  roughly equal to each other. 

With the above mesh refinement completed, a new mesh *  results and then 

another round of adaptive iteration is conducted on the new mesh with the shift value 

a  unchanged. This adaptive iteration proceeds repeatedly for a sequence of adaptively 

refined meshes until a sufficiently fine mesh   is found, such that the FE solution 

hu [ hw ] fully satisfies Eq. (19). 

The case of subspace iteration can be implemented similarly, without substantial 

difficulties.  Once subspace iteration converges with a set of rN  FE solutions, the 

processes of EEP solution, error checking and mesh refinement are applied to each 

solution.  If the current mesh is not sufficiently fine for any of them, a new mesh is 

generated based on that solution and is used in another round of adaptive iteration.  

Such adaptive iteration is repeated until a mesh that is sufficiently fine for all rN  

solutions is found. 

If the FE solution hu [ hw ] fully satisfies the tolerance Tol  on all elements as 

defined in Eq. (8) (or in the discrete form of Eq. (19)), the procedure of mesh 

refinement is terminated. However, the eigenvalue h

a

h    thus obtained may not 
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yet be accurate enough, and so the procedure continues to adjust the bounds until Eq. (7) 

is also fully satisfied. 

After a round of the above adaptive iteration, the outcome is a number of useful 

results with rich and important information, e.g. an FE solution ),( hh
D  (or ),( hh

D ) 

with a J-count at a  on a previous mesh and a finer mesh.  Then comprehensive use of 

these results can guide and guard successive adaptive iterations so that they approach 

the exact eigenpair of the sought order quickly and safely.  There are some auxiliary 

techniques in computation, e.g. checking and adjusting eigenvalue bounds, dealing 

with negative eigenvalues. They are all well handled by common practice and thus a 

detailed description is not given here. 

6.  NUMERICAL EXAMPLES   

The proposed method was implemented in a Fortran 90 code and was tested by 

computing the first fifty eigenpairs for a batch of 44 SL eigenproblems (Greenberg and 

Marletta, 1997; Pruess et al., 1994). For all the examples, it was found that the present 

method produced satisfactory results, with both eigenvalues and modes fully satisfying 

the preset error tolerances. In this section, four representative and challenging examples 

are chosen to demonstrate the effectiveness of the proposed method. All of these 

examples were run with Tol = 10-9 on a LENOVO Notebook computer with a Pentium 

M 2.8GHz CPU, with about 14 decimal digits of floating point numbers used. The 

polynomial elements used in these examples had degree 3m  [ 5m ] for all second 

[fourth] order SL problems.   

The error of the computed eigenvalue 
h  is measured by 











1

h

 (21)  

where   is the exact eigenvalue.  For problems where the exact eigenvalue is unknown 

  is replaced by the result produced by SLEDGE/SLEUTH and the corresponding 

error given by Eq. (21) was denoted by *
 .   

To calculate the error of a computed eigenfunction )(xuh  [ )(xwh ], the domain was 

divided into np =1000 uniform subintervals for all examples.  Then the error between 

)(xuh   [ )(xwh ] and the exact one )(xu  [ )(xw ] was calculated from 
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)(

)(

)(

)(
max

,,1,0
j

h
i

h

j

i

ni
u

xu

xu

xu

xu

p


 

   with )(max)(
,,1,0

k
nk

j xuxu
p

  

)(

)(

)(

)(
max

,,1,0
j

h

i

h

j

i

ni
w

xw

xw

xw

xw

p


 

   with )(max)(
,,1,0

k
nk

j xwxw
p

  

(22a) 

 

 

(22b) 

where the use of |)(| jxu  [ |)(| jxw ] implies that normalization was based on the 

discrete values )( kxu  [ )( kxw ] of the exact solution.  For those second order SL 

problems whose exact eigenfunctions were not available, )( kxu  was replaced by values 

calculated by SLEDGE and the corresponding error given by Eq. (22a) was denoted by 

*

u .  For the fourth order SL problems, because SLEUTH does not impose error control 

on eigenfunctions and hence their accuracy is too poor to compare with the present 

method. For all calculated errors, the machine accuracy was assumed to be 1410  and 

errors smaller than this will not be shown. 

Example 1 (Second order SL Problem) 









0)(,0)(,1,0,0)(

10sinh/)10cosh(100)(),10cosh(/)( 210210

buaubaxq

xexrxexp 
 (23) 

The analytical solution of this example is 

2kk  , 









10sinh

)10sinh(
sin)(

x
kxuk  , ,...2,1k  (24) 

Figure 1 shows the variation of functions )(xp  and )(xr .  It is obvious that )(xp  

decreases rapidly while )(xr  increases rapidly. This corresponds to an axial free 

vibration problem of a fixed bar with the ratio of stiffness to mass varying from very 

large to very small.  To illustrate the adaptivity effects, the first three eigenpairs were 

calculated with Tol=10-3, and the variations of the eigenfunctions and the corresponding 

final meshes are shown in Figures 2 and 3 respectively. It can be seen that the adaptive 

process can automatically and properly arrange more elements for the sharply varied 

parts of these eigenfunctions. To get further tastes for the adaptivity effects, the final 

number of elements, the errors of the computed eigenfunctions, the maximum maxh  and 

minimum minh  of element sizes on the final meshes and the number of adaptive steps 

are given in Table 1. It is seen that the errors of the adaptive FE results are fully 
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controlled within the preset Tol in the maximum norm, and the big difference between 

maxh  and minh well reflects the capability of generating extreme irregular meshes by the 

present method. For Tol = 10-9, the eigenvalue errors   and eigenfunction errors u  of 

the proposed method and SLEDGE are shown in Figure 4(a) and it can be seen to agree 

with the user-preset error tolerance for both eigenvalues and eigenfunctions very well. 

Example 2 (Second order SL Problem): Coffey-Evans equation 






















0)(,0)(,
2

,
2

,
50

20

)2sin(2cos2)(,1)()( 2

buauba

xxxqxrxp






 (25) 

The Coffey-Evans equation is well known to be a very difficult one.  Even though 

the mathematical theory guarantees that for the separated boundary conditions there are 

no multiple eigenvalues for regular second order SL problems, the triple well of the 

Coffey-Evans potential produces triplets of eigenvalues which can be made arbitrarily 

close by deepening the well, i.e. by increasing β.  The number of triplets increases as β 

increases.  For 2i  and β = 20, or for 6i  and β = 50, the i-th triplet occurs as 

eigenvalue numbers 4i – 1, 4i and 4i + 1. The first two of the triplets can be seen in 

Table 2, which illustrates how the triplets become much tighter as β is increased from 

20 to 50 and also that they become less tight as i increases.  Note that the β = 50 case is 

a very difficult one for some other software (Pryce, 1993).  The computed results given 

by the present method and by SLEDGE are given in Figure 4(b) and can be seen to 

agree very well with each other except for the eigenfunctions corresponding to the 

triplets.  When using 14 decimal digit precision, neither method could give acceptable 

solutions for these exceptional cases, due to the difficulty of separating the modes in 

each triplet. 

Example 3 (Fourth order SL Problem) 













0)(,0)(,0)(,0)(,2,1

9

64
)(,

1024

1215
)(,

128

27
)(,

64

9
)(

6

4
246

bwbwawawba

x
xrxxqxxsxxp


 (26) 

The exact solution of this example is 

4kk  , ))
3

1

3

4
(sin()(

2
2
3


x

kxxwk  , ,...2,1k  (27) 

The eigenvalue errors   and eigenfunction errors w  for both the present method and 
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SLEUTH are shown in Figure 4(c).  It can be seen that some of the eigenvalues from 

SLEUTH are not sufficiently accurate and the eigenfunctions from SLEUTH are 

completely unacceptable for the given tolerance. 

Example 4 (Fourth order SL Problem): a simplified Cahn-Hilliard equation 









0)(,0)(,0)(,0)(,1,1

1)(,0)(,20)(,1.1)( 2

bwbwawawba

xrxqxsxxp
 (28) 

The eigenvalue differences between the present method and SLEUTH are shown in 

Figure 4(d) and some selected eigenvalues computed by the present method are listed in 

Table 2.  It is obvious that the difference of the first and third eigenvalues between our 

method and SLEUTH exceeds the error tolerance. For this problem, the present code 

was additionally compiled with quadruple precision (about 28 decimal digits) using 

Intel Visual Fortran 11, and was run with a stricter tolerance Tol = 10-15. Comparison 

with these results showed that our first and third eigenvalues satisfy the error tolerance 

Tol = 10-9. This implies that for the first and third eigenvalues SLEUTH are not accurate 

enough to satisfy the error tolerance. 

 

7.  CONCLUDING REMARKS 

A new adaptive FE method for accurate, efficient and reliable computation of both the 

eigenvalues and eigenfunctions of regular second and fourth order SL eigenproblems 

has been presented.  Comprehensive utilization of the EEP technique with a number of 

other auxiliary techniques (including the Sturm sequence property and both inverse and 

subspace iterations) has yielded a simple, efficient and reliable adaptive FE procedure 

that finds sufficiently fine meshes for the user-preset error tolerances to be 

achieved. Numerical results, including ones known to be particularly troublesome, 

have shown that the present method always completely satisfied the required error 

tolerances for both eigenvalues and eigenfunctions.  The present paper is limited to 

regular SL problems, but with some numerical treatments, as done by SLEUTH, the 

present method can also solve some singular SL problems in an indirect way.  Looking 

forward, a very welcoming and encouraging feature of this method is that it can readily 

be extended to vector SL problems since the EEP formulae for corresponding linear 

system of ODEs are well available already, which will be addressed in other papers.  
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Table 1 Adaptive iteration results of Example 1 (Tol=10-3) 

 

k 
Final number 

of elements 
||max huu   maxh  

minh  Adaptive 

steps 

1  9 0.95E-6 0.4375 0.0234 4 

2 14 0.77E-6 0.3281  0.0117  1 

3 18 0.61E-6 0.3281  0.0059  2 
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Table 2  Selected eigenvalues k  computed by the present method 

for Example 2 and Example 4 

 

 

k 
Example 

2 ( 20 ) 2 ( 50 ) 4 

1 0.000000000 0.000000000 -77.89968895 

2 77.91619568 197.9687265 -43.13822158 

3 151.4627783 391.8081915 81.02449670 

4 151.4632237 391.8081915 703.9992915 

5 151.4636690 391.8081917 2182.636239 

6 220.1542298 581.3771092 4991.260833 

7 283.0948147 766.5168273 9702.727093 

8 283.2507438 766.5168273 16985.85788 

9 283.4087354 766.5168275 27605.35265 

10 339.3706657 947.0474916 42421.71719 

15 452.6311750 1458.746557 216276.6366 

20 613.2813296 1771.935291 679173.3123 

25 833.3807330 2058.412167 1646345.342 

30 1105.794050 2417.288116 3392822.470 

35 1429.249568 2657.771476 6253427.131 

40 1803.251190 2979.923959 10622773.15 

45 2227.567985 3375.290131 16955265.18 

50 2702.079745 3830.263314 25765098.42 
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Fig. 1  Variation of the coefficients of Example 1 

 

500 

1000 

1500 

2000 

0      0.2     0.4      0.6     0.8      1 

x 

)(xr  

5000 

10000 

15000 

20000 

)(xp  

0       0.2    0.4      0.6      0.8     1 

x 



 23 

 

0.0 0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.0

0.5

1.0
 h
u

 x

 1
st
  order

 2
nd

 order

 3
rd
  order

 
 

Fig. 2 First three eigenfunctions of Example 1 
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Fig. 3 Final meshes of first three eigenpairs of Example 1 (Tol=10-3) 
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Fig. 4  Relative errors and differences,   and *
  for the k-th eigenvalue, u  [ w ] and 

*

u  for the k-th eigenfunction, for (a) Example 1, (b) Example 2, (c) Example 3, (d) 

Example 4 
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