
Sensitive data in Smartphone Applications:
Where does it go? Can it be intercepted?

Eirini Anthi and George Theodorakopoulos

School of Computer Science & Informatics, Cardiff University, UK
anthies@cardiff.ac.uk

theodorakopoulosg@cardiff.ac.uk

Abstract. In this paper, we explore the ecosystem of smartphone ap-
plications with respect to their privacy practices towards sensitive user
data. In particular, we examine 96 free mobile applications across 10 cate-
gories, in both the Apple App Store and Google Play Store, to investigate
how securely they transmit and handle user data. For each application,
we perform wireless packet sniffing and a series of man-in-the-middle
(MITM) attacks to capture personal identifying information, such as
usernames, passwords, search terms, and location/geo-coordinates data.
During the wireless packet sniffing, we monitor the traffic from the de-
vice when a specific application is in use to examine if any sensitive
data is transmitted unencrypted. At the same time, we reveal and as-
sess the list of ciphers that each application uses to establish a secure
connection. During the man-in-the-middle attacks, we use a variety of
methods to try to decrypt the transmitted information. We also record
the third party domains to which various applications transmit sensitive
information without the user’s permission.
The results show that although all tested applications establish a secure
SSL/TLS connection with the server, 85% of them support weak ciphers.
Additionally, 60% of iOS and 25% of Android applications transmit un-
encrypted user data over the Wi-Fi network. By performing a MITM
attack we are able to capture the username, password, and email for In-
stagram, Blackboard, Ebay, and Spotify. Even when certificate pinning is
employed in order to prevent MITM attacks, we manage to bypass it in
75% of the iOS applications, including Facebook, and capture usernames
and passwords. Finally, we observe that data is being forwarded to third
party domains (mostly to domains that belong to Google and Apple).

Key words: mobile security, man-in-the-middle attacks, wireless net-
work security, network sniffing, SSL/TLS

1 Introduction

In the last decade, the number of smartphone users has increased dramatically
[36]. Smartphones are Internet-enabled devices with an operating system (e.g.
iOS, Android, Windows), capable of executing a variety of applications. Most
of these devices are also equipped with voice control functionality, a camera,

2 Eirini Anthi and George Theodorakopoulos

a Wi-Fi antenna, Bluetooth, and GPS. Due to their capabilities, smartphone
owners not only use their devices to communicate but also to perform important
everyday life activities. Such activities include researching a health condition,
accessing education resources, navigating, and managing their money [34].

Most of the time users are required to share personal information with the
mobile applications they use. However, it is often not clear to them how exactly
these applications handle their personal data. A study by Boyels et al. [9] showed
that 54% of smartphone users decided not to install an application once they
discovered how much personal information they would need to share. Addition-
ally, 30% of the users uninstalled an application that was already on their mobile
phone when they learned it was collecting personal information they did not wish
to share. The same study also showed that users are particularly sensitive about
location data, with 19% of the users turning off the location tracking feature on
their phone due to concerns about who could possibly access this information.

The rapid growth of the number of smartphone users has led to the increase of
security threats related to smartphones. According to ENISA (European Union
Agency for Network and Information Security), the number one threat is the
leakage of data [13], which can happen in various ways: When a smartphone
gets lost or stolen, its memory or removable media are unprotected, allowing an
attacker to access the user’s data [13]. Moreover, most of the applications used
on a smartphone device will require the user to change their privacy settings in
order to allow the application to access sensitive information such as contacts,
photographs, etc. Many of these applications have been reported for sharing
users’ personal information with third parties without their consent. A recent
study by Zang et al. [20] showed that 73% of Android and 47% of iOS applications
shared personal information with third parties, including email addresses and
location data. Finally, there is data loss that can occur when a smartphone is
connected to Wi-Fi [22].

Although many smartphone users are aware that the mobile applications they
use may share their personal data with third parties, many do not realise how
often this happens [10]. Specifically, a recent survey [35], showed that many users
are completely unaware of the risks that come when they share their personal
data over a Wi-Fi connection, and particularly over public Wi-Fi networks. The
most severe threat is the unauthorized access to their device which can lead to
identity theft and compromised bank accounts [35].

This paper examines in depth the data leakage that occurs when users share
personal information with various mobile applications over a Wi-Fi connection.
Such information includes usernames, passwords, search terms, and location/geo-
coordinates data. Additionally, we examine how these applications handle a
user’s personal information by observing the type of data they might share with
third parties. Finally, we investigate methods to avoid data leakage. We perform
tests on both Android and iOS devices; as they have different operating systems,
we expect their behavior as to how they transmit and handle user data to differ.

The rest of the paper is organized as follows: Section 2 presents related work.
Section 3 describes the experimental set up. Sections 4, 5, and 6 describe the

Sensitive data in Smartphone Applications 3

main experiments and their results. Section 7 discusses the findings and evaluates
the research. Finally, section 8 covers the conclusion and future work.

2 Related Work

Previous studies have mainly focused on investigating the types of sensitive data
that various mobile applications share with third parties, using dynamic analysis
to capture mobile network traffic [6]. The major disadvantage of this approach is
that requires human intervention, which can limit the scaling of the experiment.
Various methodologies fall under this approach and have been used successfully
in the past.

For instance, Rao et al. [32] used a Virtual Private Network (VPN) to moni-
tor mobile traffic, involving tools such as Meddle. They showed that a significant
number of Apple iOS and Google Android applications shared sensitive infor-
mation such as emails, locations, names, and passwords as plaintext. A different
way to observe network traffic is directly on the device. The TaintDroid applica-
tion [4] for the Android platform allows users to track how private information is
obtained and released by mobile applications in real time. A study by Enck et al.
showed that 15 applications sent user location data to third parties and 30 sent
the unique phone identifier, phone number, and SIM card serial number. Zang
et al. [20] used a third method to monitor network traffic, during which they
performed a man-in-the-middle attack over the Wi-Fi network that the device
was connected. They showed that a very large percentage of mobile applications
shared personal data with third parties and connected to unknown domains.

Another study which used the same method as [20] was that of Thurm et al.
[38]. This study revealed that a music iOS application shared personal informa-
tion with eight different domains. Furthermore, the Federal Trade Commission
[16] applied the same method to research the behavior of 15 fitness applica-
tions. The results of this study showed that 12 of the applications transmitted
identifying information to 76 third party domains.

These studies focus on investigating the types of sensitive data that vari-
ous mobile applications share with third parties. However, how securely these
applications transmit this data over Wi-Fi networks has not yet been examined.

In this paper, we build on previous work by testing 96 free applications
that require personal information. We investigate how user sensitive data is
transmitted and handled, using wireless packet sniffing and dynamic analysis
with man-in-the-middle attacks over a Wi-Fi network.

3 Experimental Setup

3.1 Selecting Mobile Applications

The Google Play Store for Android and the Apple App Store for iOS are the
two largest distribution channels for mobile applications [41], which is why we

4 Eirini Anthi and George Theodorakopoulos

focus on these two platforms. From a total of 96 applications that we test, 51
are iOS and 45 are Android. These are the most popular applications as of
January/February 2016 that handle sensitive user data, across 10 different cat-
egories: Business, Finance, Food and Drink, Games, Health and Fitness, Music,
Productivity, Shopping, Social Networking and Travel. We test the iOS appli-
cations on an iPhone 6/ iOS v9.0.1 and the Android applications on a Motorola
Moto e/ Kit Kat v4.1. Table 1 in the Supplemental Materialcontains all the
applications that we examine in this research.

3.2 Testing the Mobile Applications

In order to test each application we manually simulate a typical use for 10 to
15 minutes. The time spent on each application varies and exclusively depends
on its type. During the simulation we explore the basic functions of the ap-
plication. These include: create a user account, search using various keywords,
perform actions that require personal identifying data, and complete a level of a
game. We record specific keywords and personal user data that are used during
each simulation. We then search for these keywords and personal data in the
captured communications. To ensure the integrity of the captured data and to
avoid possible interference from other applications, we take the following mea-
sures: during testing only the tested application is open and no other. We achieve
this by terminating all other applications and by observing whether any data is
transmitted, while no applications are open. For each application, we allow all
requested permissions, such as for sharing location data, except for push notifi-
cations. The reason we disable push notifications is because they keep sending
data in the background even after the application is closed [15]. This would result
in capturing data not only from the application being tested at any single time,
but also from any previously tested applications that enabled push notifications.

4 Experiment 1: Examining Network Data Following SSL
Employment

To identify if any of the applications transmit unencrypted data over the Wi-
Fi network, we perform wireless packet sniffing using Wireshark [26]. During
this process we passively monitor the mobile traffic from the smartphone. After
configuring Wireshark to monitor mobile traffic from the smartphone, we start
using an application. For each application, we test all the captured packets for
user sensitive data using Wireshark ’s built-in filter functionality.

If the mobile applications do not employ the Secure Sockets Layer (SSL)/
Transport Layer Security (TLS) protocol [33], the data that gets transmitted is
not encrypted, hence it can simply be intercepted by performing passive network
sniffing on the operating channel. If the SSL/TLS is employed, the transmitted
data is encrypted and no third party is able to eavesdrop on or interfere with any
of the transmitted messages [29]. As a result, for any application that employs

Sensitive data in Smartphone Applications 5

SSL, we are unable to read or modify any of the transmitted messages. However,
the SSL connection can be weakened in a number of ways and hence it is possible
to decrypt the transmitted data.

In order for an SSL connection to be established, the client and the server
make use of cipher suites. A cipher suite consists of a key exchange algorithm,
a signature algorithm, a block cipher algorithm, and a hashing algorithm which
computes the authentication key [29](see Figure 1). There is a variety of cipher
suites available that provide different levels of security. The choice of cipher suites
is crucial as they can compromise the security of the communication. Even if
one of the listed cipher suites is cryptographically insecure, it is enough to break
the secure connection between the client and the server and hence intercept the
communication. This is possible via the TLS Protocol Downgrade attack [25]
and it is one of the ways in which the SSL/TLS connection can be weakened.

Fig. 1. Format of a cipher suit

Via Wireshark we are able to view the list of the cipher suites that each
application supports to establish a secure connection with the server and as a
result we can assess how secure they are. To achieve this we use data from the O-
Saft [28] tool, which is used to inspect information about SSL/TLS certificates
and tests the SSL/TLS connection, according to a given list of cipher suites.
The code within O-Saft contains an evaluation of the strength of different ci-
pher suites. To rate a cipher suite as weak or strong, the script examines the
level of security of the individual algorithms (including the length of the key
they use - if applicable) that compose the cipher suit. The script contains all
possible combinations of cipher suites followed by a description of the level of
their security, described as weak, medium, and high. Immediately afterwards, it
displays a break down of each cipher, which explains the algorithms they contain
and their key lengths in further detail.

Results: All the tested mobile applications for both iOS and Android plat-
forms employ the latest version of SSL to establish a secure channel for commu-
nication. As a result, although we are able to capture the transmitted data, it is
not possible for us to read it because it is encrypted. The only case in which we
have the opportunity to capture transmitted data in plaintext is when we test
the mobile browsers, Safari on the iPhone and Google Chrome on the Motorola,
and perform requests that do not require a secure connection.

We examine and assess the cipher suites in 51 iOS applications, and we find
that 45 use the same set of 26 cipher suites. From these 26 suites, 4 are considered
to be weak and should not be used. Only 6 of the tested applications use less than
26 suites and do not support any weak suites (see Figure 2). From the 45 Android
applications, 27 use the same set of 35 cipher suites, of which 4 are considered
insecure. Moreover, 11 of the applications use less than 35 cipher suites and from
these only 6 do not support any insecure suites. Just 3 applications use more

6 Eirini Anthi and George Theodorakopoulos

than 35 suites and only 1 does not support weak cipher suites. Finally, it was not
possible to capture the ClientHello message for 4 applications and as a result
their cipher suites could not be assessed (see Figure 3).

Fig. 2. Number of cipher suites that iOS applications support and how many of these
are considered to be weak.

Fig. 3. Number of cipher suites that Android applications support and how many of
these are considered to be weak.

Table 3 in the Supplemental Material shows in detail the number of cipher
suites each application uses and how many of these are considered to be weak.
For both systems we find that the applications support the same 4 insecure
cipher suites, which are:

1. TLS ECDHE ECDSA WITH RC4 128 SHA
2. TLS ECDHE RSA WITH RC4 128 SHA
3. TLS RSA WITH RC4 128 SHA
4. TLS RSA WITH RC4 128 MD5

The order in which the suites appear in the ClientHello message denotes
the client’s preferred suites (with the client’s highest preference first). In the

Sensitive data in Smartphone Applications 7

ClientHello message, for all iOS applications, we observe that these 4 suites are
at the bottom of the list, as opposed to the Android applications where the suites
are found to be at the top of the list, which shows that these are the client’s
most preferred suites. Therefore, in the first case, the four weak cipher suites are
the least preferred suites by the client and are unlikely to be used to establish a
secure connection [1]. In the second case, the weak suites seem to be the client’s
most preferred suites. If the server accepts the client’s preferences (the server
is free to ignore the client’s order and can pick the cipher suite that thinks it
is best [1]) a connection will be established using one of these insecure suites,
making the application vulnerable to MITM attacks. Regardless of the order in
which these weak cipher suites appear in the application’s ClientHello messages,
they should not be used, as a TLS Downgrade Attack [25] could be used against
them.

5 EXPERIMENT 2: Examining Network Data after
bypassing SSL

To examine how various applications transmit and handle user data other than
sniffing the packets on the wireless network, we also use dynamic analysis with
MITM attacks. The MITM attack is a technique used to intercept the commu-
nication between two systems, in this case between the client (application) and
the server [27].

There are many tools that can be used to perform such an attack. Specifically,
in this paper we use Burp Suite [37] and mitmproxy [8]. These also help us
identify only HTTP-based traffic. We note that a recent study by Raora et al.
[32] showed that TCP flows (HTTP/HTTPS) are responsible for over 90% of the
total traffic volume. Finally, in order to perform the attacks described above, we
need to setup a Wi-Fi hot-spot on a computer that runs these tools and connect
the smartphone device to the Internet via this hot-spot.

Fig. 4. Man-In-The-Middle attack using Burp Suite and mitmproxy.

5.1 Man-In-The-Middle attack using Burp Suite

To examine if an application is accepting self-signed certificates, it is necessary
to configure the smartphone to use a proxy. In this case we use Burp Suite, which

8 Eirini Anthi and George Theodorakopoulos

generates a self-signed certificate and presents it to the client. We then monitor
the behavior of the application in use and observe if it functions as expected.
Additionally, we check if we are able to capture any HTTPS traffic on the proxy
software. The steps of the procedure are described below [39]:

1. We ensure that the smartphone does not have any existing custom proxy
certificates in its trust store.

2. On the computer, we disable the firewall and start the Burp Suite proxy.
It is necessary to configure it to listen to all external network interfaces by
specifying the port and address.

3. Then we configure the smartphone device to use the proxy. (Settings, Wi-Fi,
we choose the desired Wi-Fi network, select HTTP Proxy Manual). The IP
address and port of the proxy are the same to the computer in use.

4. Finally, we launch the application we want to test and simulate a typical use,
while we monitor the proxy to detect if any HTTPS data is being intercepted.

If Burp Suite is able to intercept HTTPS traffic from the device without us
having to install the proxy’s certificate on the device’s trust store, we know that
the application does indeed accept self-signed certificates and is vulnerable to
eavesdropping and modification via MITM attacks [39].

Results: We find that none of the applications for both platforms accept
the unverified certificate that Burp Suite generates, and they prompt us with
a message as shown in Figure 5. As a result, we are not able to capture any of
the HTTPS traffic that occurs during the simulation of a typical use for each
application.

Fig. 5. Blackboard application rejecting Burp Suite’s self-signed certificate

5.2 Man-In-The-Middle attack using mitmproxy

On applications that do not accept self-signed certificates, we are not able to
capture the encrypted traffic that occurs from the device using the previous
method. In order to overcome this, we perform a MITM attack using mitmproxy.

Sensitive data in Smartphone Applications 9

Once again, we configure the smartphone to use the proxy. However, this
time we install the proxy’s certificate in the device’s trust store. mitmproxy
contains a Certificate Authority (CA) implementation and is able to generate
digital certificates [24]. Furthermore, to make the client (device) trust certificates
issued by mitmproxy, we register it manually on the device as a trusted CA. It is
necessary to emphasize that this method will only work if the application does
not employ certificate pinning [12]. More details about this mechanism and how
to bypass it are in Section 6.

To intercept traffic with the mitmproxy we follow the steps below [23]:

1. We start mitmproxy and configure the device to use it by setting the correct
proxy details (port and IP address).

2. We then open the browser on the smartphone and visit www.mitm.it.
3. We select the relevant icon and follow the instructions, as to how to in-

stall the proxy’s certificate in the device’s trust store. When the installation
is completed, we open an application and start observing the mitmproxy ’s
screen for HTTPS traffic.

In the mitmproxy ’s main screen, we are able to view the mobile traffic that
occurs when an application is in use. mitmproxy displays the full flow summary,
including the methods used and the full Uniform Resource Identifiers (URIs)
of the HTTP/HTTPS requests. By selecting one of the requests, the software
allows us to inspect and manipulate the data it contains [24]. If the application
is not using any encryption on the transmitted data, we are able to view it as
plaintext. Therefore, this method helps us identify if the applications transmit
unencrypted information over the network and examine if they send any of it
to unknown third parties. To analyze further the captured communications, we
export all captured data to a text file and use a Python script to search in
it for any user sensitive data that might have been transmitted in plaintext.
Specifically, the data we look for includes: Personal Identifying Information (PII)
such as names and passwords, search terms, and geo-coordinate data, including
longitude and latitude values. In Table 1, we present all the types of user data
that the script looks for in the text files. The complete list of the keywords
that are used throughout the simulations and therefore we look to find in the
captured data, can be found in Table 2 in the Supplemental Material. Moreover,
in our Python script we identify all the URIs of the requests that the application
performed POST requests for. This way we are able to discover if any of the
applications transmit personal user data to unknown domains.

In order to ensure that our results are reliable, every time that the script
identifies an occurrence of a keyword within a text file, we manually inspect the
findings to confirm that they are correct and identify any further information.
For instance, if the script finds a match for the string “1990”, we manually
examine the result to ensure that the finding is indeed the user’s year of birth
and not a part of some other information such as long integer [20]. This process
is also necessary in order to discover the destination domain, of the data that is
transmitted and identified as plaintext.

10 Eirini Anthi and George Theodorakopoulos

Categories of data Data types

Behavior

Employment (Job Searches)
Medical

Private Messaging (chats, texts, etc.)
Searching

Location
Latitude

Longitude

PII

Address
Age

Date Of Birth
Device Information (e.g. Device ID)

Email Address
Gender
Name

Password
Post Code

Telephone Number
Username

Table 1. Types of user data.

Results: In order to perform this MITM attack it is necessary to install
the certificate that mitmproxy generated in the device’s trust store. After we
complete this procedure, we observe that the Android device displays a warn-
ing message (see Figure 6) to inform us that an unauthenticated certificate is
currently being used. In contrast, on the iOS device we do not get any warn-
ings about the fake certificate. Nevertheless, at this point we are able to capture
HTTPS traffic from both devices, hence we start testing the applications, the
results of which are presented in the following sections.

Fig. 6. Warning message on the Android device, regarding the mitmproxy ’s fake cer-
tificate.

Results for iOS applications: From the 51 applications, we find that
30 transmitted the data unencrypted over the network, of which 20 forward
it to third party domains. Just 8 of the applications encrypt user data in the
application layer (i.e. before passing it to SSL), therefore although we can capture
the transmitted data, we are unable to read it. Finally, 12 applications employ

Sensitive data in Smartphone Applications 11

certificate pinning and do not function at all (see Figure 7), claiming that there
is a problem with the network.

Fig. 7. The number of iOS applications that use encryption in the application layer,
employ certificate pinning, and transmit sensitive data to 3rd party domains.

Table 5 in the Supplemental Material shows the sensitive data that we cap-
ture for each application and the domains that each one forwards data to. In the
same table we mark applications that employ certificate pinning with an xmark
and use “n/a” for data that is not being forwarded to any third party domains.

The Burger King, Indeed Jobs, Lose it!, and Ebay applications transmit the
most unencrypted user data, which includes: usernames, passwords, emails, lo-
cation, gender, and search terms. Additionally, we manage to capture usernames
and passwords for Spotify, Blackboard, Instagram, and EasyJet. The applica-
tions that forward the most data to third party domains are Indeed Jobs and
Burger King. Gaming applications mainly transmit and share information about
the device such as: phone model, screen size, etc. Moreover, the third party
domains that receive the most sensitive user data are googleanalytics.com,
googleservices.com, and apple.com. Figure 8 shows the types of data that
the 20 iOS applications share with third parties.

Being able to capture the username, password, and email for Instagram,
EasyJet, Blackboard, Ebay, and Spotify is a vulnerability. If an unauthorised
person logs into these applications using these credentials, they could have ac-
cess to much more sensitive information such as PayPal, bank accounts, home
address, passport details, etc. Therefore, we decided to report our observations
to each of the application’s development teams as per the Responsible Disclo-
sure1 procedure. Facebook (for Instagram), Spotify, and Blackboard replied to
us thanking us for reporting this issue, confirming that it is indeed a security
flaw.

Results for Android applications: From the 45 applications that we ex-
amine, 11 do not use any encryption in the application layer, hence the data gets
transmitted unencrypted over the Wi-Fi network. Only 9 applications use en-

1 This procedure involves privately notifying affected software vendors of vulnerabil-
ities. The vendors then typically address the vulnerability at some later date, and
the researcher reveals full details publicly at or after this time [18].

12 Eirini Anthi and George Theodorakopoulos

Fig. 8. The number of iOS applications that use encryption in the application layer,
employ certificate pinning, and transmit sensitive data to 3rd party domains.

cryption on the actual user data, so although we are able to capture the network
traffic we are not able to read it. Furthermore, 25 applications employ certificate
pinning and do not function during this process (see Figure 9). Table 6 in the
Supplemental Material shows the transmitted sensitive data that we capture for
each Android application and also the third party domains to which it is being
sent.

Fig. 9. The number of Android applications that use encryption in the application
layer, employ certificate pinning, and transmit sensitive data to 3rd party domains.

Ebay, Gumtree, and Booking.com, are the only applications that transmit
unencrypted usernames and passwords. Domino’s Pizza, Gumtree, and Book-
ing.com share with third parties all the terms that were searched for in the
application. Finally, location data is only shared by Just Eat and gaming appli-
cations mainly transmit and share device information. The third party domains
that receive the most user sensitive data are googleads.com and apple.com.
Figure 10, shows the types of data that the 11 Android applications share with
third parties.

Sensitive data in Smartphone Applications 13

Fig. 10. The number of Android applications that use encryption in the application
layer, employ certificate pinning, and transmit sensitive data to 3rd party domains.

6 EXPERIMENT 3: Bypassing Certificate Pinning

Certificate pinning is a technique used widely in mobile applications to prevent
the possibility of the device’s trust store being compromised, by manually in-
stalling unverified certificates [12]. Specifically, this technique pins the certificate
that the server uses in the application’s source code, forcing it to ignore the de-
vice’s trust store. As a result, it will only establish a connection to hosts signed
with certificates that are pinned in the application’s source code. To applications
that employ this mechanism, we use iOS SSL Kill Switch to attempt to bypass
it.

We perform this procedure only on iOS applications, and we are required
to Jailbreak/Rooting [11] the tested device. This allows us to remove all the
software restrictions of Apple’s operating system and grants us access to the
iOS file system and manager. As a result, we are able to download extra items
that are unavailable on the official Apple App Store [11].

After jailbreaking the iPhone 6 following the instructions on [30], we gain
access to Cydia, the unofficial iOS App Store. From there we can download and
install in the device iOS SSL Kill Switch [2]. This tool disables the certificate
validation process on the client side (the device), leaving it exposed to MITM
attacks. Having installed and enabled iOS SSL Kill Switch, we use mitmproxy
following the method described in the previous Section 5 to check if we can
capture any HTTPS traffic.

Results: We find that this tool is effective on 75% of the applications, allow-
ing us to capture the traffic that is transmitted while we are testing them. The
remaining 25% of the applications are able to detect that the device is Jailbroken
and do not operate (e.g. banking & social media applications).

14 Eirini Anthi and George Theodorakopoulos

7 Discussion

We perform wireless packet sniffing to investigate if any of the mobile applica-
tions transmit data unencrypted over the Wi-Fi network. Our results show that
all the applications for both iOS and Android platforms use SSL to establish a
secure channel for communication with the server. This protocol is fairly widely
employed by developers, as it provides protection against passive eavesdropping
[8]. Anyone performing wireless packet sniffing over the network will be able to
capture the traffic, but they won’t be able to read it as it is encrypted. SSL
may provide privacy and data integrity between a client and a server, however
it can be weakened and the cipher suites that applications use to establish this
connection have an important role in this. We examine all the cipher suites that
applications support in order to establish a secure connection and we find that
the majority of them in both platforms (90% of the iOS and 80% of the Android
applications) support four insecure cipher suites. These suites were the same for
both operating systems:

1. TLS ECDHE ECDSA WITH RC4 128 SHA
2. TLS ECDHE RSA WITH RC4 128 SHA
3. TLS RSA WITH RC4 128 SHA
4. TLS RSA WITH RC4 128 MD5

These cipher suites are considered to be weak mainly because they use the
RC4 stream cipher. Even though RC4 is widely supported and preferred by
most servers, it has been known to have a variety of cryptographic weaknesses,
making it unable to provide a sufficient level of security [19, 3]. For this reason,
according to the Internet Engineering Task Force (IETF), the RC4 algorithm is
prohibited and clients must not include RC4 ciphers in their ClientHello mes-
sage. Additionally, the MD5 hash algorithm is also known to have cryptographic
weaknesses and cipher suites that employ it should not be used [29, 14]. A few
of the reasons that applications support these suites although they are consid-
ered to be insecure and have been prohibited include: compatibility with most
servers, simple design, and speed due to the reduced number of operations they
need to perform [31]. Nevertheless, 85% of all the tested iOS and Android ap-
plications that support these suites, even though they use SSL, are considered
to potentially be vulnerable to MITM attacks.

We also test the applications in order to investigate if they accept self-signed
certificates. We find that none of the applications, for both iOS and Android,
accept the self-signed certificate that Burp Suite proxy generates. This is an
indication that accepting self-signed certificates is indeed a severe security issue
that developers are aware of, making the certificate validation processes as robust
as possible [39].

Using mitmproxy we establish that approximately 60% of the iOS and 25%
of the Android applications transmit and forward sensitive unencrypted data
to third party domains. The most common data forwarded by applications to
third party domains is Personal Identifying Information (PII) and Behavioral

Sensitive data in Smartphone Applications 15

including: device information, email, name and search terms. For both platforms,
gaming applications mainly transmitted and forwarded information about the
device. A reason why PII and behavioural types of data are shared with third
parties could be that this information is used by these organisations to develop
targeted advertising [40]. The percentage of Android applications that share user
data with third party domains seems to be significantly less than the percentage
of the iOS applications. This is due to the fact that 20% of Android applications
encrypt the actual user data and 56% employ certificate pinning. On the other
hand, only 15% of the iOS applications encrypt the user data and only 23%
employ certificate pinning. Therefore, for the applications that encrypt the data
and use certificate pinning we are unable to investigate if they share sensitive
information with third parties.

Comparing our results with a recent study by Zang et al. [20], which also in-
vestigated data sharing by applications, we can observe some differences. In the
previous study, more applications shared location and other sensitive user data
and very few employed certificate pinning. On the contrary, our results show
that fewer applications share location and other sensitive user data with third
parties. Additionally, the number of applications that use certificate pinning,
specifically when it comes to Android applications, has increased dramatically.
The overall increase in applications employing certificate pinning may be be-
cause, without it, data can be intercepted by installing fake certificates in the
device’s trust store [12]. Additionally, penetration testing recently performed on
various mobile applications [20, 21] could also explain why more of them started
using certificate pinning. The fact that significantly more Android applications
employ certificate pinning compared to iOS is because certificate pinning is one
of the many security enhancements introduced in the new firmware version, An-
droid 4.2 [12].

The domains to which applications from both platforms send the most user
sensitive data are: googleanalytics.com, googleservices.com, googleads.

com, and apple.com. Previous studies [20, 32] have also found these domains to
be dominant. This may be due to Google and Apple owning a variety of mobile
advertisement networks and services such as AdMob, Google Analytics, Double
CLick and iAds [17, 5].

Finally, we use SSL Kill Switch on a Jailbroken iPhone, in order to attempt
to bypass certificate pinning on applications that employ it, and we successfully
manage to do so in 75% of the applications. Finance applications (Barclays,
PayPal, Pingit) detected that the device was jailbroken and did not operate. To
conclude, Jailbreaking or Rooting the smartphone introduces security issues and
unless the applications are designed to not operate in such a device, the user’s
data is in danger of being stolen.

Overall, the methods we choose to evaluate how securely mobile applications
transmitted and handled user data over a Wi-Fi network are effective but have
limitations. To begin with, all the methods we use require human intervention
which limits significantly the number of applications that we are able to test.
The MITM attacks we perform to both platforms, although they were able to

16 Eirini Anthi and George Theodorakopoulos

provide us with valuable information about the applications certificate validation
process and data sharing behaviour, require physical access to the device in order
to install fake certificates. Therefore, even though we are able to intercept any
transmitted sensitive data, these methods would be very difficult to apply in
real life. Additionally, the tools we use to perform these attacks focus only on
HTTP/HTTPS traffic, limiting the scope of the research. The SSL Kill Switch
allows us to successfully bypass the certificate pinning mechanism; however, we
need to jailbreak the iPhone. This is a very time consuming and insecure process.
To analyse the captured data, we write a Python script to searche for sensitive
data in the captured communications text files. The script is very effective in
analysing our data, however if these files were larger in size, Python would run
very slowly and would not be the most appropriate language to use to implement
it.

8 Conclusion and Future Work

Our study aims to explore and analyse how user data is transmitted and handled
by various mobile applications. We select 51 iOS and 45 Android mobile appli-
cations and carry out 4 different experiments, while we simulate a typical use for
each application. The results show that all applications use SSL protocol to es-
tablish a secure channel for communication with the server, which protects data
from passive eavesdropping, specifically when transmitted over public networks.
However, this does not mean that user data is secure, as our findings show that
only a very small percentage of these applications encrypt the actual user data
and approximately 85% of these applications support 4 weak cipher suites which
make them vulnerable to MITM attacks. Moreover, our results show that 60%
of the iOS and 15% of Android applications forward sensitive user data, mostly
PII and Behavioral, to third party domains mainly owned by Google and Apple.

Although our research methodology has its limitations, we still manage to
arrive at significant conclusions as to how securely user data gets transmitted and
handled by various applications, over a Wi-Fi network. Additionally, two of the
methods we use are designed to break or bypass the basic security mechanisms
that developers employ, such as SSL and certificate pinning. This is proof that
these security measures are not invulnerable. As a result, users need to become
fully aware that their personal information can never be 100% secure and the
only way to protect their privacy is to understand these security risks.

To expand on the results of this research, future study could focus on test-
ing more applications from each category, for both operating systems. Non-TCP
traffic could also be investigated for sensitive data leakage using tcpdump, which
monitors traffic that is not on TCP. To the applications that support weak ci-
pher suites TLS Downgrade Attack could be performed, to explore if SSL can
indeed be compromised this way. In this paper, we manage to apply tools to
bypass certificate pinning only to iOS devices. Future studies could also root an
Android device and then use Android-SSL-TrustKiller [7] to try to bypass cer-
tificate pinning in this operating system as well. Furthermore, tools that track

Sensitive data in Smartphone Applications 17

the data-sharing behavior of applications directly from the smartphone device
such as TaintDroid could be used to monitor both the operating system and
the application. As a result, it would be possible to clearly distinguish any leak-
age that happens due to the application’s activity and the background system
processes [20, 4].

Additionally, paid applications could also be tested for data leakage. The
results could then be compared to free applications in order to review any dif-
ference in the data sharing behavior. Finally, tools that limit data sharing, such
as Limit ad Tracking and Opt out of interest based ads, can be employed to
examine any differences in the activity of the applications.

References

1. RFC 5246 - the transport layer security (TLS) protocol version 1.2. https://

tools.ietf.org/html/rfc5246. Accessed on 05/01/2017.
2. Alban Diquet. ios ssl kill switch. https://github.com/iSECPartners/

ios-ssl-kill-switch, 2016. Accessed: 20/04/2017.
3. N. AlFardan. On the security of RC4 in TLS. http://www.isg.rhul.ac.uk/tls/.

Accessed on 25/04/2017.
4. Appanalysis. Realtime privacy monitoring on smartphones. http://www.

appanalysis.org/index.html/, 2016. Accessed: 9/04/2017.
5. Apple. Ad for developers. apple developer. https://developer.apple.com/iad/.

(Accessed on 03/05/2017).
6. T. Ball. The concept of dynamic analysis. In Software EngineeringESEC/FSE99,

pages 216–234. Springer, 1999.
7. M. Blanchou. isecpartners/android-ssl-trustkiller. bypass ssl certifi-

cate pinning for most applications. https://github.com/iSECPartners/

Android-SSL-TrustKiller. (Accessed on 03/05/2017).
8. D. Boneh, S. Inguva, and I. Baker. Ssl, mitm proxy. http://crypto.stanford.edu/ssl-

mitm, 2007.
9. J. L. Boyles, A. Smith, and M. Madden. Privacy and data management on mobile

devices. Pew Internet & American Life Project, 4, 2012.
10. Carnegie Mellon University. Knowledge of location sharing by apps prompts pri-

vacy action. https://www.sciencedaily.com/releases/2015/03/150323132846.
html, 2015. Accessed: 4/04/2017.

11. A. Cohen. The iphone jailbreak: A win against copyright creep. Time. com, 2010.
12. N. Elenkov. Certificate pinning in android 4.2, 2012.
13. ENISA. Top ten smartphone risks. https://www.enisa.europa.eu/activities/

Resilience-and-CIIP/critical-applications/smartphone-security-1/

top-ten-risks, 2016. Accessed: 4/04/2017.
14. M. L. for Computer Science and R. D. Security. RFC 1321 - the MD5

message-digest algorithm. https://tools.ietf.org/html/rfc1321. (Accessed on
25/04/2017).

15. M. A. Fox, P. F. King, and S. Ramasubramani. Method and apparatus for main-
taining security in a push server, July 16 2002. US Patent 6,421,781.

16. FTC. Federal trade commission. https://www.ftc.gov/search/site/

fitness~app, 2016. Accessed: 9/04/2017.

18 Eirini Anthi and George Theodorakopoulos

17. Google. Monetize and promote with google ads.google developers. https:

//developers.google.com/ads/?hl=en. (Accessed on 03/05/2017).
18. Google. Rebooting responsible disclosure: a focus on protect-

ing end users. https://security.googleblog.com/2010/07/

rebooting-responsible-disclosure-focus.html. (Accessed on 30/04/2017).
19. I. E. T. F. (IETF). RFC 7465 - prohibiting RC4 cipher suites. https://tools.

ietf.org/html/rfc7465#section-1. Accessed on 25/04/2017.
20. Jinyan Zang, Krysta Dummit, James Graves, Paul Lisker, and Latanya Sweeney.

Who knows what about me? a survey of behind the scenes personal data sharing
to third parties by mobile apps. http://techscience.org/a/2015103001/, 2015.
Accessed: 14/02/2017.

21. A. Mense, S. Steger, M. Sulek, D. Jukic-Sunaric, and A. Mészáros. Analyzing
privacy risks of mhealth applications. Studies in health technology and informatics,
221:41, 2016.

22. Michael Cooney. 10 common mobile security prob-
lems to attack. http://www.pcworld.com/article/2010278/

10-common-mobile-security-problems-to-attack.html, 2012. Accessed:
4/04/2017.

23. mitmproxy. About certificates, 2016. Accessed: 20/04/2017.
24. mitmproxy. How mitmproxy works, 2016. Accessed: 20/04/2017.
25. B. Moeller and A. Langley. RFC 7507: TLS fallback signaling cipher suite value

(SCSV) for preventing protocol downgrade attacks, 2015.
26. A. Orebaugh, G. Ramirez, and J. Beale. Wireshark & Ethereal network protocol

analyzer toolkit. Syngress, 2006.
27. OWASP. Man-in-the-middle attack. https://www.owasp.org/index.php/

Man-in-the-middle_attack/, 2016. Accessed: 18/04/2017.
28. OWASP. O-saft. https://www.owasp.org/index.php/O-Saft/, 2016. Accessed:

20/04/2017.
29. OWASP. Transport layer protection cheat sheet. https://www.owasp.org/index.

php/Transport_Layer_Protection_Cheat_Sheet, 2016. Accessed: 18/04/2017.
30. Pangu. Pangu jailbreak. http://en.pangu.io, 2016. Accessed: 20/04/2017.
31. S. Paul and B. Preneel. On the (in) security of stream ciphers based on arrays and

modular addition. In Advances in Cryptology–ASIACRYPT 2006, pages 69–83.
Springer, 2006.

32. A. Raoa, A. M. Kakhkib, A. Razaghpanahe, A. Tangc, S. Wangd, J. Sherryc,
P. Gille, A. Krishnamurthyd, A. Legouta, A. Misloveb, et al. Using the middle to
meddle with mobile. Technical report, Northeastern University, 2013.

33. E. Rescorla. SSL and TLS: designing and building secure systems, volume 1.
Addison-Wesley Reading, 2001.

34. A. Smith. Us smartphone use in 2015. Pew Research Center, pages 18–29, 2015.
Accessed: 1/04/2017.

35. Statista. The hidden dangers of public wifi. http://www.privatewifi.

com/wp-content/uploads/2015/01/PWF_whitepaper_v6.pdf/, 2016. Accessed:
5/04/2017.

36. Statista. Number of smartphone users worldwide from 2014 to 2019. http://www.
statista.com/statistics/330695/number-of-smartphone-users-worldwide/,
2016. Accessed: 1/04/2017.

37. D. Stuttard. Burp suite, 2007.
38. S. Thurm and Y. I. Kane. Your apps are watching you. The Wall Street Journal,

17:1, 2010.

Sensitive data in Smartphone Applications 19

39. O. W. Tyrone Erasmus, Shaun Colley. The Mobile Application Hacker’s Handbook.
John Wiley & Sons; 1 edition (3 April 2015), 2015.

40. U. Varshney and R. Vetter. Mobile commerce: framework, applications and net-
working support. Mobile networks and Applications, 7(3):185–198, 2002.

41. H. Victor. Android’s google play beats app store with over 1 million apps, now
officially largest. Retrieved January, 16:2014, 2013.

Supplemental Material

1 Tested Mobile Applications for both platforms

Category Application iOS Android

Business

Adobe Reader
ADP Mobile Solutions -

Dropbox
Facebook Pages

Indeed Jobs
Reed.co.uk

Smart Scan Express -

Finance
Barclays Mobile Banking -

PayPal -
Pingit -

Food and Drink

Burger King
Domino’s Pizza
Hungry House

Just Eat

Games

Angry Birds
Bubble Witch 2

Candy Crush -
Fruit Ninja -

Guess the Emoji
Monsters -

Piano Tiles
Temple Run
Two Dots -

Health and Fitness

Clue
iTriage
Lose it!

Map My Run -
MyFitness Pal

Period Tracker Lite
Withings -

Music

Capitol Fm
SoundCloud

Spotify
Ultimate Guitar -

Productivity

BlackBoard
Google Chrome -

Safari -
Weather -

1

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

Continuation of Table 1

Category Application iOS Android

Shopping

Amazon
Ebay

Groupon
GumTree

Wish

Social Networking

Facebook
Facebook Messenger

Instagram
Skype
Viber

Whatsapp

Travel

Booking.com
EasyJet
Expedia

Google Earth
Kayak

Tripadvisor -
Trivago

Table 1: List of all tested applications.

2 Keywords used throughout the testing

Category Type Term Searched

Behavior Employment analyst

Behavior Employment assistant

Behavior Employment chef

Behavior Employment developer

Behavior Employment education

Behavior Employment fulltime

Behavior Employment full-time

Behavior Employment graduate

Behavior Employment IT

Behavior Employment research

Behavior Employment security

Behavior Employment teacher

Behavior Employment £21000

Behavior Medical chest pain

Behavior Medical cough

Behavior Medical fever

Behavior Medical headache

Behavior Medical medication

Behavior Medical mycrogynon

Behavior Medical pneumonia

Behavior Medical sinusitis

Behavior Private Messaging ciao

Behavior Private Messaging cinema at nine

Behavior Private Messaging hello

Chapter Eirini Sofia Anthi 2

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

Continuation of Table 2

Category Type Term Searched

Behavior Private Messaging hey

Behavior Private Messaging holla

Behavior Private Messaging how are you?

Behavior Private Messaging meet me at seven

Behavior Searching beer

Behavior Searching boat cruise

Behavior Searching cavalieri hotel

Behavior Searching fish

Behavior Searching game of thrones

Behavior Searching indian

Behavior Searching kickboxing

Behavior Searching laptop

Behavior Searching mani club

Behavior Searching nintendo

Behavior Searching pancacke accessories

Behavior Searching rocksmith

Behavior Searching weights

Location Latitude 51.5

Location Longitude -3.0

Location Latitude latitude

Location Longitude longitude

PII Address athens

PII Address cardiff

PII Address corfu

PII Address newport

PII Address risca

PII Address thessaloniki

PII Address united kingdom

PII Address

PII Age 23

PII Age 27

PII DOB 23/07/1962

PII DOB 23-07-1990

PII DOB 17/09/1990

PII DOB 17-09-1990

PII DOB July 62

PII DOB 1962

PII DOB Sept 90

PII DOB 1990

PII Device Info iphone

PII Device Info motorola

PII Device Info MEID: 89**************

PII Device Info MEID: 67**************

PII Email irini@yahoo.gr

PII Email irinianthi90@gmail.com

PII Email chris-2@live.co.uk

PII Email c1417801@gmail.com

PII Gender Female

Chapter Eirini Sofia Anthi 3

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

Continuation of Table 2

Category Type Term Searched

PII Gender female

PII Name chris northfield

PII Name irene anthi

PII Name nenitsa tsoukala

PII Password *******

PII Password *******

PII Password *******

PII Password *******

PII Password *******

PII Password *******

PII Post Code np108fl

PII Post Code np10 8fl

PII Telephone Number 07745971980

PII Telephone Number 00447745971980

PII Telephone Number 077-459-71980

PII Telephone Number 077-459-71980

PII Username chrisnorthfield

PII Username ireneanth

PII Username ireneanthi

PII Username irinaki90

PII Username irini90

PII Username lina

PII Username ninoula

Location Latitude 51.5

Location Longitude -3.0

Location Latitude latitude

Location Longitude longitude

Table 2: Keywords used throughout the testing.

3 Cipher Suites Used by iOS applications

Category Application Total Ciphers Weak Ciphers

Business

Adobe Reader 12 0
ADP Mobile Solutions 26 4

Dropbox 26 4
Facebook Pages 26 4

Indeed Jobs 26 4
Reed.co.uk 26 4

Smart Scan Express 26 4

Finance
Barclays Mobile Banking 26 4

PayPal 26 4
Pingit 26 4

Food and Drink

Burger King 26 4
Domino’s Pizza 26 4
Hungry House 26 4

Just Eat 26 4

Games

Angry Birds 26 4

Chapter Eirini Sofia Anthi 4

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

Continuation of Table 3

Category Application Total Ciphers Weak Ciphers

Bubble Witch 2 26 4
Fruit Ninja 26 4

Guess the Emoji 26 4
Piano Tiles 26 4
Temple Run 26 4
Two Dots 26 4

Health and Fitness

Clue 18 0
iTriage 26 4
Lose it! 26 4

Period Tracker Lite 26 4
MyFitness Pal 26 4

Withings 24 0

Music

Capitol Fm 26 4
SoundCloud 12 0

Spotify 12 0
Ultimate Guitar 26 4

Productivity
BlackBoard 26 4

Safari - -
Weather 26 4

Shopping

Amazon 26 4
Ebay 26 4

Groupon 26 4
GumTree 26 4

Wish 26 4

Social Networking
Facebook 26 4

Facebook Messenger 26 4
Instagram 12 0

Skype 26 4
Viber 26 4

Whatsapp 26 4

Travel

Booking.com 26 4
EasyJet 26 4
Expedia 26 4

Google Earth 26 4
Kayak 26 4
Trivago 26 4

Table 3: Total number of cipher suites used by each application and how many of these
are rated as weak.

4 Cipher Suites used by Android Applications

Category Application Total Ciphers Weak Ciphers

Business

Adobe Reader 35 4
Dropbox 8 1

Facebook Pages 35 4
Indeed Jobs 35 4
Reed.co.uk 6 2

Chapter Eirini Sofia Anthi 5

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

Continuation of Table 4

Category Application Total Ciphers Weak Ciphers

Food and Drink

Burger King 17 0
Domino’s Pizza 35 4
Hungry House 35 4

Just Eat 35 4

Games

Angry Birds 50 0
Bubble Witch 2 - -

Candy Crush 65 4
Guess the Emoji 35 4

Piano Tile 35 4
Monsters 35 4

Temple Run - -

Health and Fitness

Clue 11 0
iTriage 35 4
Lose it! - -

Map My Run 11 0
MyFitness Pal 11 0

Period Tracker Lite 35 4

Music

Capitol Fm 35 4
SoundCloud 35 4

Spotify 10 0

Productivity
BlackBoard 35 4

Google Chrome - -

Shopping

Amazon 35 4
Ebay 53 4

Groupon 35 4
GumTree 35 4

Wish 35 4

Social Networking

Facebook 35 4
Facebook Messenger 35 4

Instagram 14 0
Skype 35 4
Viber 11 0

Whatsapp 35 4

Travel

Booking.com 35 4
EasyJet 15 2
Expedia 35 4

Google Earth 35 4
Kayak 35 4

Tripadvisor 10 0
Trivago 35 4

Table 4: Cipher Suites used by Android Applications

Chapter Eirini Sofia Anthi 6

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

5 Intercepted Sensitive data for iOS Applications

Category Application ,
Transmitted data

that was unencrypted
,

Shared with
3rd party domains

B
u

si
n

es
s

Adobe none n/a
ADP Mobile Solutions none n/a

Facebook Pages 7 7

Dropox 7 7

Indeed Jobs
password n/a

email googleadservices.com
search terms googleanalytics.com

Reed none n/a
Smart Scan Express none n/a

F
in

an
ce Barclays Mobile Banking 7 7

Paypal 7 7

Pingit 7 7

F
o
o
d

an
d

D
ri

n
k

Burger King

username n/a

email
googleapis.com

googleanalytics.com
facebook.com

search terms googleanalytics.com
password n/a
telephone n/a
post code n/a

Domino’s Pizza
location n/a

device info
crashlitics.com

apple.com
Hungry House device info apple.com

Just Eat location stats.ge

G
am

es

Angry Birds
rovio.com

device info toons.tv
apple.com

Bubble Witch device info adtrack.com

Fruit Ninja
apple.com

device info facebook.com
amazon.com

Guess the Emoji

apple.com
device info google.com

googleads.com
twitter.com

Piano Tiles
device info apple.com

googleads.com
Temple Run device info apple.com
Two Dots device info apple.com

Chapter Eirini Sofia Anthi 7

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

Continuation of Table 5

Category Application ,
Transmitted data

that was unencrypted
,

Shared with
3rd party domains

H
ea

lt
h

an
d

F
it

n
es

s
Clue none n/a

iTriage search terms googleads.com

Lose it!

gender
email

username n/a
device info

Period Tracker none n/a

MyFitness Pal
name googleads.com

username n/a
Withings location n/a

M
u

si
c

Capitol Fm
email iech.ch

device info youtube.com
Soundcloud device info n/a

Spotify
username n/a
password

Ultimate Guitar search terms n/a

P
ro

d
u

ct
iv

it
y

Blackboard
username n/a
password

Safari none n/a
Weather none none

Safari 7 7

S
h

op
p

in
g

Amazon search terms n/a

Ebay

email
username n/a
password
location

Gumtree
username googleads.com

search terms

Wish
gender yahoo.com

date of birth

S
o
ci

a
l

N
et

w
or

k

Facebook 7 7

Facebook Messenger 7 7

Instagram
username n/a
password

Skype 7 7

Viber none n/a
Whatsapp 7 7

T
ra

ve
l

Booking.com email googleads.com
search terms

EasyJet username twitter.com
password

Expedia search terms apple.com
Google Earth none none

Kayak 7 7

Trivago 7 7

Table 5: Sensitive data that we captured for each iOS application and the third party
domains that applications forwarded data to.

Chapter Eirini Sofia Anthi 8

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

6 Intercepted Sensitive data for Android Applications

Category Application ,
Transmitted data

that was unencrypted
,
Sent to 3rd party

domains
B

u
si

n
es

s

Adobe 7 7

Facebook Pages 7 7

Dropox 7 7

Indeed Jobs none n/a

Reed none n/a

F
o
o
d

Burger King none n/a

Domino’s Pizza search terms googleads.com

Hungry House device info apple.com

Just Eat location stats.ge

G
am

es

Angry Birds

rovio.com

device info cloudads.net

googleads.com

Bubble Witch device info adtrack.com

Guess the Emoji

apple.com

device info google.com

googleads.com

twitter.com

Don’t tap the white tile
device info apple.com

googleads.com

Temple Run device info apple.com

Two Dots device info apple.com

H
ea

lt
h

&
F

it
n

es
s

Clue none none

iTriage 7 7

Lose it! 7 7

Period Tracker 7 7

MyFitness Pal 7 7

M
u

si
c Capitol Fm 7 7

Soundcloud 7 7

Spotify 7 7

P
ro

d
.

Blackboard 7 7

Google Chrome 7 7

S
h

o
p

p
in

g

Amazon search terms n/a

Ebay

email

username n/a

password

location

Chapter Eirini Sofia Anthi 9

Exploration and analysis of smartphone Wi-Fi and Bluetooth data.

Continuation of Table 6

Category Application ,
Transmitted data

that was unencrypted
,
Sent to 3rd party

domains

Gumtree
username n/a

search terms googleads.com

Wish none n/a

S
o
ci

al
N

et
w

or
k
in

g Facebook 7 7

Facebook Messenger 7 7

Instagram 7 7

Skype 7 7

Viber 7 7

Whatsapp 7 7

T
ra

ve
l

Booking.com
email n/a

search terms googleads.com

EasyJet 7 7

Expedia 7 7

Google Earth 7 7

Kayak 7 7

Tripadvisor 7 7

Trivago 7 7

Table 6: Sensitive data that we captured for each Android application and the third
party domains that applications forwarded data to.

Chapter Eirini Sofia Anthi 10

