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Roaming: A Phase Space Perspective  
 

 

1. INTRODUCTION 
 
The topic of roaming reactions has caused a re-examination of chemists’ traditional ideas con-

cerning the transformation from reactants to products in chemical reactions. This is clear from the 

provocative title of the review paper of Bowman & Suits (1): “Roaming reactions: the third way.” 

 
The notion of a roaming reaction was born after the spectacular success of Townsend et al. (2) in 

explaining some puzzling features of formaldehyde photodissociation (3). This work was made 

possible by the timely development of experimental and computational methods that could be 

employed in tandem, leading to significantly deeper understanding of the details of the reac-tion 

mechanism than had previously been possible. Since this pioneering work, there have been 

numerous review papers dealing with different aspects of roaming (4–9).  
The focus and goals of this review are different from those of previous reviews. Although 

advances in experimental and computational methods have certainly played a significant role in our 

recognition of roaming phenomena, this recognition has in turn firmly pointed to a need for advances 

in the fundamental theory of reaction dynamics. When considering roaming dynamics, several 

questions commonly arise, such as: Is the dynamics statistical? Can transition state (TS) theory 

(TST) be applied to estimate roaming reaction rates? What role do saddle points on the potential 

energy surface (PES) play in explaining the behavior of roaming trajectories? How do we construct a 

dividing surface that is appropriate for describing the transformation from reactants to products for 

roaming trajectories? Can we define the roaming region of phase space associated with a transient 

roaming species?  
In this review we outline the necessary theory required to provide answers to these questions, as 

well as tools for quantitative understanding and prediction in the context of roaming. We strongly 

advocate a phase space, as opposed to a configuration space, point of view for framing these 

questions. Consequently, we rely on recent advances in the theory of phase space structure in 

multimode systems and associated developments in reaction-rate theory from the dynamical systems 

point of view. A recent general review of this approach is given in Reference 10.  
The present review is organized as follows: In Section 2, following a brief discussion of certain 

precursors to the roaming concept, we review the seminal work on roaming in formaldehyde 

(Section 2.2), which has served as a model for the description of roaming. A brief survey of some 

key experimental and theoretical works that have identified the roaming phenomenon (Section 2.3) is 

followed by an attempt to identify general characteristics of roaming (Section 2.4). In Section 3, we 

discuss some aspects of the energy landscape paradigm that play an important role in the description 

of roaming. This discussion leads naturally to a survey of the issues and concepts surrounding the 

phase space approach to reaction dynamics in Section 3.2. The review and discussion up to this point 

culminates in a formulation of a phase space characterization of the roaming region in Section 4.1. In 

Section 4.2, we highlight some important work of Chesnavich on ion–molecule reactions and 

Miller’s “unified statistical theory.” In Section 5, we return to formaldehyde and provide a phase 

space analysis of the reaction dynamics for a model with two degrees of freedom (DOFs). We show 

that, in phase space, roaming can be precisely characterized via a new dynamical mechanism, which 

we term shepherding (11). We compare and contrast our results with the recent work of Houston et 

al. (12) in Section 5.3. In Section 6, we consider some additional case studies of the roaming 

phenomenon, again drawn from our own work (13–15); these examples again force a consideration 

of the configuration space point of view versus the phase space point of view. In Section 7, we 

address the vexing question of the significance of so-called roaming saddles. The issue of the 

roaming saddle leads naturally to consideration of several important questions already raised: the 

dynamical significance of flat regions of the PES, statistical versus nonstatistical dynamics, the 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

validity of TST, and configuration space versus phase space descriptions of the dynamics. Section 8 

summarizes and concludes with a discussion of some worthwhile future directions for research on 

roaming. 

 

2. ROAMING, PAST AND PRESENT 
 
2.1. Roaming Before “Roaming”: An Example 
 
With the benefit of hindsight, certain theoretical developments can be seen as precursors to the 

roaming concept: specifically, the phenomenon of transition-state switching (or competition) in ion–

molecule reactions and Miller’s unified statistical theory of reaction rates (see Section 4). It is also 

important to recall that reactions involving dynamics that avoids the minimum energy path (MEP), 

so-called non-MEP reactions, were extensively studied before the term “roaming” was coined (16–

20).  
As pointed out by Klippenstein et al. (21), an interesting example of the identification of a 

reaction mechanism that we would now recognize as roaming is found in the work of Audier & 

Morton (22) on the reaction 
 

CH3CH2CH2NH3
+  → CH2CH2CH2 + NH4

+ . 1. 

Isotopic labeling experiments established that H-atom transfer to the NH+
3 moiety takes place from 

all positions on the alkyl chain. On the basis of these experiments and of self-consistent field (SCF) 

electronic structure calculations, Audier & Morton concluded that Reaction 1 occurs via the complex 

 

[CH3CHCH3
+ . . . NH3], 2. 

where the NH3 fragment undergoes large-amplitude excursions and internal rotations (i.e, roams) in 

the presence of the CH3CHCH+
3 ion. Rice–Ramsperger–Kassel–Marcus (RRKM) theory cal-

culations suggested that the lifetime of such a complex was ∼100 ps (22).  
The proposed intermediate complex is held together by ion–dipole and/or ion–induced dipole 

attraction. According to Audier & Morton, such complexes are “transient species in which charged 

and neutral fragments sojourn in the vicinity of one another even though they are not covalently 

bonded” (22, p. 1218). 

 

2.2. Formaldehyde 
 
The term “roaming” was first applied to chemical reactions in a 2004 study of the photodissoci-ation 

of formaldehyde by Townsend et al. (2). When excited by photons of sufficient energy, the 

formaldehyde molecule can dissociate via two channels: H2CO → H + HCO (radical channel) or 

H2CO → H2 + CO (molecular channel). In earlier work, van Zee et al. (3) found that, above the 

energy threshold for the H + HCO dissociation channel, the CO rotational state distribu-tion 

exhibited an intriguing shoulder at lower rotational levels correlated with a hot vibrational 

distribution of H2 coproduct. This observed product state distribution did not fit well with the 

traditional picture of the dissociation of formaldehyde via the well-characterized saddle point 

transition state for the molecular channel.  
Using high-resolution state-resolved imaging measurements of the CO velocity distributions, 

Townsend et al. were able to distinguish two dissociation pathways to molecular products. The first 

proceeded through a standard transition state indicated by an index-one saddle point on the PES to 

produce rotationally excited CO and vibrationally cold H2. The second pathway to dissociation to 

molecular products yielded rotationally cold CO and a highly vibrationally 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

excited H2. The second pathway was explored with quasiclassical trajectory (QCT) calculations 

performed on a global PES for H2CO. The trajectory results suggested that the second pathway to 

molecular products was characterized by a hydrogen atom exploring a large region of the PES before 

encountering the other hydrogen atom and undergoing a hydrogen abstraction mechanism, while 

never approaching the standard transition-state saddle point structure. This second pathway was 

termed roaming.  
Since the seminal work on roaming by Townsend et al., a great deal of further work on the 

photodissociation of formaldehyde has been carried out (see Section 2.3), culminating in the recent 

tour de force of QCT analysis by Houston et al. (12) (see Section 5.3). 

 

2.3. Other Examples of Roaming 
 
Following the work of Townsend et al., the second example of roaming was identified in the pho-

todissociation of acetaldehyde, CH3CHO. This molecule was observed to dissociate to molecular 

products along the pathway CH3 + HCO → CH4 + CO in a manner sharing many of the char-

acteristics of formaldehyde dissociation via roaming, where the hydrogen atom in formaldehyde 

roaming is replaced by a methyl group. However, whereas the standard transition-state pathway is 

the dominant pathway to molecular products for formaldehyde, the roaming pathway is dominant in 

acetaldehyde (23).  
Following the formaldehyde and acetaldehyde work, there has been a flood of observations of 

roaming in chemical reactions. Rather than provide a comprehensive survey of the literature, in 

Supplement                       the Supplemental Material we provide a table summarizing this work, with references classified according 

to the following attributes: 
 

the reacting molecule; 
 

whether the reaction is unimolecular or bimolecular; 

whether the reaction is adiabatic or non-adiabatic; 
 

the reaction initiation mechanism, e.g., photodissociation or collision; 

gas phase or condensed phase; 
 

the nature of the roaming entity, i.e., what detaches and reattaches to the core; for 

a theoretical paper, classical or quantum treatment. 
 

There have also been a relatively large number of papers reviewing different aspects of roaming 

reactions in recent years (1, 4–6).  
With such a large body of work on roaming in reactions, it is possible to identify the common 

molecular characteristics that are responsible for, or define, roaming dynamics. We consider this in 

Section 2.4. 

 

2.4. Molecular Characteristics Associated with Roaming 
 
As noted above, in the work of Townsend et al., molecular products created as a result of passage via 

the standard transition state (saddle point) are characterized by rotationally excited CO and 

vibrationally cold H2. Contrastingly, molecular products created as a result of following the roam-

ing pathway are characterized by rotationally cold CO and highly vibrationally excited H2. Hence, 

for formaldehyde, roaming was originally distinguished by an energy partitioning criterion. This is a 

phase space criterion.  
In recent years, however, a consensus has developed that the key molecular characteristic 

responsible for roaming is a flat region (or plateau) on the PES. (For formaldehyde, see 12; for 
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molecules in general, see 21.) Flat (slowly varying) regions of the PES are typical of long-range 

interactions between molecular fragments, and this idea has played a central role in the study of ion–

molecule reactions. (See the work of Chesnavich described in detail in Section 4.2.) Flat regions of 

the PES also play an important role in the understanding of the reaction dynamics of certain organic 

molecules (see Section 3.2).  
The manifestation of flat regions of the PES in phase space provides a natural dynamical 

definition of the roaming region, as discussed in more detail in Section 4.1 and explicitly for a 2-

DOF model of formaldehyde in Section 5.2.  
Describing reaction mechanisms in terms of features of the PES constitutes a configuration-space 

approach. Nevertheless, the concept of a chemical reaction is concerned with transformation or 

dynamics. An index-one saddle point on the PES results in a constriction or bottleneck in phase 

space [over a (problem-dependent) range of energies] that constrains trajectories in a way that can 

often be related directly to the reaction mechanism, e.g., by projecting reacting trajectories onto 

configuration space. However, in flat regions of the PES where forces are weak, there may not be 

any obvious potential energy signatures that influence the dynamics. Full understanding of dynamics 

then requires a phase space analysis, e.g., a consideration of how phase space structure constrains the 

motion of trajectories whose configuration space projections spend time in the flat regions of the 

PES.  
In Section 3, we briefly review the energy landscape paradigm for chemical dynamics, one which 

is firmly based in configuration space rather than phase space (24, 25). 

 

3. REACTION RATE THEORY: THE POTENTIAL LANDSCAPE  
PARADIGM AND PHASE SPACE APPROACHES 
 
The concept of the PES (24, 25) remains the foundation of current theories of chemical dynamics 

and molecular physics in general. Even after decades of research, global potentials defined over the 

entire molecular configuration space are still available mainly only for triatomic and tetratomic 

molecules. For larger polyatomic species, the computational effort of quantum chemistry is mainly 

focused in locating critical (stationary) points (minima and saddles) and MEPs or on computing 

forces on the fly for QCT analysis (26).  
The landscape paradigm asserts that knowledge of critical points provides a qualitative descrip-

tion of molecular dynamics, at least in the neighborhood of the potential extrema. 

The standard picture in reaction dynamics is firmly based on the concept of the reaction coor-

dinate (27), for example, the intrinsic reaction coordinate (IRC) (28). According to conventional 

wisdom, the IRC is the path a system follows (possibly modified by small fluctuations about this 

path) as reaction occurs. However, a 1976 paper by Pechukas (29) presaged some of the points that 

we make in this review. Pechukas (29, p. 1516) wrote: “There is no dynamical significance to a path 

of steepest descent. It is a convenient mathematical device to get from high ground, around the 

transition state, to low ground where the stable molecules are.” 

 

3.1. The Potential Energy Landscape and Reaction Rate Theory 
 
A comprehensive description of the so-called energy landscape paradigm is given in Reference 25. 

Here we note that energy refers to potential energy, in contrast to total (kinetic plus potential) 

energy, whose consideration is essential for a phase space analysis. The energy landscape approach 

is an attempt to understand dynamics in the context of the geometrical features of the PES, i.e., a 

configuration space model. In such a model, reaction rates are deduced by making some assumptions 

about the (classical) dynamics of the system. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In the most commonly used theories of this class, TST (30–32) and RRKM theory (33–36), one 

begins by searching for a hypothetical dividing surface (DS) separating reactant(s) from product(s). 

The key feature of the DS is that reactive trajectories—those making their way from reactants to 

products—cross it only once. By specifying the DS in terms of trajectory behavior, one is defining it 

to be an object in phase space (see Section 3.2), but the most common implementations of TST and 

RRKM theory characterize the DS in configuration space. The two theories compute the reaction 

rate constant in terms of the one-way flux through the DS.  
The widespread adoption of the configuration space approach to reaction-rate theory is perhaps 

surprising, as two of the seminal papers responsible for the development of TST formulate the DS 

and the theory in phase space (32, 37). A central theme of this review is the importance of the phase 

space point of view in understanding the roaming phenomenon. This point is also emphasized by the 

statement of Shepler et al. (38, p. 9344) that “a more general definition of the TS is a minimum flux, 

phase space dividing surface, depending on both coordinates and momenta, and not simply a TS with 

a coordinate definition, as is usually done in the literature, separating reactants.” With respect to 

roaming in particular, they further state (38, p. 9344): “It is an especially useful concept for reactions 

without a prominent saddle point and associated IRC.” In Section 5.2, we describe how this approach 

is useful for understanding what makes trajectories roam in formaldehyde. It is important to note that 

the TS is the DS and not the saddle point. Some confusion on this point exists in the literature, and 

Harding et al. (39) emphasize the importance of being clear on this distinction in the context of the 

roaming phenomenon.  
In order to compute reaction rates using the flux through the DS, RRKM theory explicitly 

invokes (and TST implicitly invokes) the statistical approximation (40–43). The statistical ap-

proximation assumes that the intramolecular vibration energy redistribution (IVR) in reacting 

molecules occurs very much faster than the time required for their conversion to products. It is this 

approximation that allows one to sidestep the calculation of explicit dynamics in RRKM and TST 

theories and that guarantees a single exponential decay for the reaction (the random lifetime 

assumption for the reactant part of the phase space; see 44). As a corollary, the claim that TST is an 

exact theory, given the correct DS (45), is valid only to the extent that the statistical approximation is 

also valid. If the random lifetime assumption fails, then TST also fails, even for a perfect DS.  
As we have pointed out, the DS is fundamentally dynamical in nature: a surface in the phase 

space of the reacting system satisfying the local nonrecrossing condition (32). Locating such a 

surface in the high-dimensional phase space of a chemical system is not an easy task. Indeed, the DS 

is a 2(n − 1)-dimensional surface embedded within a 2n-dimensional phase space for a system with n 

DOFs. The normally hyperbolic invariant manifold (NHIM) approach to TST provides a conceptual 

solution to this problem, and we discuss this in more detail in Section 3.2. 

In the simplest versions of TST and RRKM theory, the DS is associated with a first-order saddle 

point on the PES, but in the variational versions of these theories (46–49), the location is chosen to 

minimize k(E) (for variational RRKM theory) or k(T ) (for canonical variational TST). In the latter 

case, the optimal location will always turn out to be a first-order saddle point on the standard free-

energy surface. One can also investigate the flux through surfaces specified by sets of parameters to 

determine optimal DSs in a given family of such surfaces. (Such surfaces have been applied to the 

roaming phenomenon; see 21.) 

 

3.2. Periodic Orbit Dividing Surfaces, Normally Hyperbolic Invariant 

Manifolds, and Reaction-Rate Theory in Phase Space 
 
As noted in Section 2.4, of key relevance to roaming is the fact that, for polyatomic molecules, one 

commonly encounters regions that are energetically rather flat. Technically, they are identified 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

as regions for which ∇ V (q) ≈ 0. The forces acting on the reacting system in such regions are often 

very weak and ineffective in changing the motion of the reacting system. These PES regions 

typically occur when there are hypo-coordinate atoms—for example, for molecular configurations 

corresponding to the homolysis of a bond.  
If, when intact, the bond formed part of a ring, its cleavage would create a chain with hypo-

coordinate atoms at the ends. In such cases, the ends of the chain often become capable of large-

amplitude relative motions with little associated change in potential energy. Hoffmann et al. (50) 

were the first to suggest the generality of such phenomena, and, in recognition that the associated 

PES regions possessed characteristics somewhere between those of minima and saddle points, 

coined the term twixtyl for the molecular species so generated. The flat PES regions themselves have 

been likened to geological features: a caldera (51, 52) if access to the plateau is protected by barriers, 

or a mesa (53) if it is not.  
If the bond suffering homolysis was not originally part of a ring, its cleavage would create two 

radical fragments, whose motions would now become relative translations and rotations, again 

typically with small associated changes in potential. This latter situation is exactly what happens in 

reactions exhibiting roaming.  
In extended regions of a PES for which ∇ V (q) ≈ 0, where the forces are near zero, the dynamics 

will be heavily influenced by the momenta that the atoms possessed when they entered the plateau 

region. Inclusion of the momenta requires a phase space model.  
Critical points on the PES do have significance in phase space: They are the equilibrium points 

for zero momentum. They continue to have influence for nonzero momentum, however, for a range 

of energies above the energy of the equilibrium point. In particular, there has been a great deal of 

recent work describing phase space signatures of index-one saddles on the PES. These are relevant to 

reaction dynamics (see, for example, 10, 54–56). More recently, index-two (57–59) and higher-index 

(60) saddles have also been studied (see 61–63).  
The construction of a DS separating the phase space into two parts, reactants and prod-ucts, has 

been the subject of many studies. As we have emphasized, the DS is in general a sur-face in phase 

space, and the lack of a firm theoretical basis for construction of such surfaces for systems with ≥3 

DOFs has until recently been a major obstacle in the development of the theory. 

 
In phase space, the role of the saddle point is played by an invariant manifold of saddle sta-bility 

type, the NHIM (64–66). In order to fully understand the NHIM and its role in reaction rate theory, it 

is useful to begin with a precursor concept: the periodic orbit dividing surface or (PODS). 

 
For systems with 2 DOFs described by a natural Hamiltonian, kinetic plus potential energy, the 

problem of constructing the DS in phase space was solved during the 1970s by Pechukas and 

colleagues (45, 67–69). They showed that the DS at a specific energy is intimately related to an 

invariant phase space object, an unstable periodic orbit (PO). The PO defines (i.e., is the boundary of 

) the bottleneck in phase space through which the reaction occurs, and the DS that intersects 

trajectories evolving from reactants to products can be shown to have the topology of a hemisphere 

in phase space whose boundary is the PO (55, 70). The same construction can be carried out for a DS 

intersecting trajectories traveling from products to reactants, and these two hemispheres form a 

sphere of which the PO is the equator.  
Generalization of the above construction to higher-dimensional systems has been a major 

question in TST and has only rather recently received a satisfactory answer (55, 70). The key 

difficulty concerns the higher-dimensional analog of the unstable PO used in the 2-DOF problem for 

the construction of the DS. In his 1981 review of TST, Pechukas (48, p. 161) wrote: “It is easy to 

guess that generalized transition states in problems with more degrees of freedom must be 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

unstable invariant classical manifolds of the appropriate dimension, . . . but to our knowledge no 

calculations have been done.”  
This conjecture of Pechukas has indeed turned out to be correct (provided we interpret “tran-

sition state” as the DS associated with such invariant objects). Results from dynamical systems 

theory show that transport in phase space is controlled by various high-dimensional manifolds, 

NHIMs, that are the natural generalization of the unstable PO of the 2-DOF case (10). Normal 

hyperbolicity of these invariant manifolds means that they are, in a precise sense, structurally stable, 

and they possess stable and unstable invariant manifolds that govern the transport in phase space 

(71). Existence theorems for NHIMs are well established (71).  
For 2-DOF systems, the NHIM is simply an unstable PO. For a fixed-energy system with n > 2 

DOFs, the NHIM has the topology of a (2n − 3)-dimensional sphere. This (2n − 3)-dimensional 

sphere is the equator of a (2n − 2)-dimensional sphere that constitutes the DS. The DS divides the 

(2n − 1)-dimensional energy surface into two parts, reactants and products, and one can show that it 

is a surface of minimal flux (70).  
The NHIM approach to TST consists of constructing DSs for the reaction studied built from 

NHIMs, and ensures a rigorous realization of the local non-recrossing property. Once these 

geometrical objects (NHIM and DS) are computed the reactive flux from reactant to products 

through the DS can easily be expressed as the integral of a flux form over the DS. Furthermore, it is 

possible to sample the DS and use this knowledge to propagate classical trajectories initiated at the 

TS (DS).  
One route to the computation of NHIMs and their associated DSs for systems with ≥3 DOFs 

involves application of normal-form theory to the Hamiltonian (10, 72). The idea is to find a set of 

canonical coordinates by means of canonical transformations that put the Hamiltonian of the system 

into a simple form in a neighborhood of an equilibrium point of saddle–center– · · · –center type (an 

equilibrium point at which the linearized vector field has one pair of real eigenvalues and n − 1 pairs 

of imaginary eigenvalues for a system of n DOFs). The simplicity comes from the fact that, under 

generic nonresonance conditions among the imaginary frequencies at the saddle point, one can 

construct an integrable system valid in the neighborhood of the equilibrium point and thereby 

describe the dynamics in this neighborhood very simply. The geometrical structures that govern 

reaction dynamics are thus revealed (10).  
Fundamental theorems assure the existence of these phase space structures and invariant man-

ifolds for a range of energies above that of the saddle (66). However, the precise extent of this range, 

as well as the nature and consequences of any bifurcations of the phase space structures and invariant 

manifolds that might occur as energy is increased, is not known and is a topic of continuing research 

(73–76).  
Although work relating phase space structures and invariant manifolds to saddle points on the 

PES has provided new insights and techniques for studying reaction dynamics (10, 54–56), it by no 

means exhausts all of the rich possibilities of dynamical phenomena associated with reactions. In 

fact, the roaming phenomenon calls into question the utility of concepts such as the conventional 

reaction path and/or transition state (1, 2, 4–6, 16, 17, 23, 38, 77) and provides further motivation for 

phase space approaches. There are important classes of chemical reactions, such as ion–molecule 

reactions and association reactions in barrierless systems, for which the TS (DS) is not necessarily 

directly associated with the presence of a saddle point on the PES. Such TSs might be generated 

dynamically, and so are associated with critical points of the amended or effective potential, which 

includes centrifugal contributions to the energy (78–80).  
The phenomenon of TS switching in ion–molecule reactions (81–83) provides a good example of 

the dynamical complexity possible in such systems, and we address this question in Section 4. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. PHASE SPACE PERSPECTIVE ON ROAMING 
 
4.1. The Roaming Region: Generalities 
 
Audier & Morton’s (22) characterization quoted above captures the essential nature of many in-

termediates in which roaming putatively occurs. This picture of a roaming intermediate naturally 

invites the question: How can we characterize the associated roaming region? Such a characteriza-

tion should be based on inherent features of the system dynamics, i.e., phase space structure, rather 

than on arbitrary boundaries drawn in configuration space. Strictly speaking, such a roaming re-gion 

should be defined as a (2n − 1)-dimensional constant-energy subregion of the 2n-dimensional 

molecular phase space. This roaming region will then, presumably, have boundaries, which are (2n − 

2)-dimensional surfaces in phase space: These boundaries are DSs, or phase space portals, through 

which activated molecules enter and leave the roaming region. In other words, they are TSs for the 

reactions where the roaming species is a reactant or product. [Kinetic models invoking rates of 

passage in and out of the roaming region have been developed by Harding et al. (39) and Houston et 

al. (12); see Section 5.3.]  
Roughly speaking (for more details, see Section 4.2), for dissociation reactions involving roam-

ing, there are two types of DS. One type of DS is located at the generalized centrifugal barrier (48) 

associated with relative rotation of the separating fragments; this is called the loose or outer tran-

sition state (OTS). Dynamically defined DSs such as the OTS arise whenever one molecular 

fragment rotates relatively freely with respect to the other (80). The other type of DS is associated 

with passage into and out of the roaming region at smaller interfragment distances than the OTS; this 

is an example of a so-called tight transition state (TTS).  
In our view, then, the roaming region of phase space is by definition demarcated by the OTS and 

the TTSs (there may be several). Given this conceptual model, it is possible to discuss the kinetics 

of, for example, formation and decay of roaming species (see also 12, 21).  
Kinetic models for such situations have been discussed by Miller (46) in his unified statistical 

theory of reaction rates. This theory is a general framework for considering reactions where several 

DSs are relevant for determining the overall rate of capture, for example. As discussed in Section 

4.2, this theory is applicable to the case of TS switching in ion–molecule reactions, which is in our 

view a prototypical case of roaming (82). 

 

4.2. Ion–Molecule Reactions and the Unified Statistical Theory 
 
As we have noted, a common characteristic of systems exhibiting roaming reactions studied so far is 

the presence of long-range attractive interactions between the dissociating fragments. This 

characteristic is typical of ion–molecule reactions, and roaming is thus expected to be at play in these 

reactions.  
The theory of ion–molecule reactions has a long history going back to Langevin (84), who 

investigated the interaction between an ion and a neutral molecule in the gas phase and derived an 

expression for ion–molecule collisional capture rates. Assuming an isotropic long-range attraction 

(for example, r−4
), the capture cross section can be computed for 2-body systems as the flux through 

the DS associated with the OTS, which is bounded by an orbiting trajectory (PO) located at the 

centrifugal barrier. Further developments along these lines are discussed in References 45, 80, 82, 

85, and 86.  
Note that capture theories, by definition, only compute the rate of passage through the DS 

associated with the OTS. The subsequent fate of captured species is not treated; it is often assumed 

that reaction follows with probability unity. 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

There has been much debate in the literature concerning the interpretation of experimental results 

on ion–molecule reactions. Some results support a model for reactions taking place via the OTS, 

whereas others suggest that the reaction operates through a TTS (for a review, see 82). In order to 

explain this puzzling situation, the concept of transition state switching was developed (82), in which 

both kinds of TS (TTS and OTS) are present and the relative fluxes determine the overall reaction 

rate. This is precisely the kind of dynamical situation treated by Miller’s (46) unified statistical 

theory, where it is assumed that the dynamics in the phase space regions bounded by the relevant set 

of DSs is entirely statistical, so a kinetic scheme can be formulated for the overall rate of reaction. 

 
The minimal flux requirement for a DS in TST can be cast as the condition of a minimum in the 

sum of states at the DS. As we move along some reaction coordinate from reactants to products, two 

effects determine the sum of states in the DS (46). First, as we move to the dissociation products, the 

potential energy rises monotonically (for a barrierless dissociation), and hence the available kinetic 

energy decreases, which has the effect of lowering the sum of states. Second, there is a lowering of 

the vibrational frequencies at the DS that tends to increase the sum of states. Competition between 

these two effects can result in a minimum in the sum of states located at some value of the reaction 

coordinate. This minimum has been called an entropic barrier for the reaction, or a TTS. 

 
By contrast, in the orbiting model of complex formation, the DS is located at the centrifugal 

barrier induced by the effective potential (the orbiting TS) (46, 80, 82). In general, the TTS and OTS 

are not located at the same position along the reaction coordinate, so one might ask which of these 

two DSs should be used to compute the rate of the reaction. This problem gives rise to the theory of 

multiple TSs; in the Chesnavich (81–83) model, both TSs (DSs) exist simultaneously and the actual 

TS (DS) for the computation of the reaction rate in a naive TST calculation is the one giving the 

minimal flux or, equivalently, the minimal sum of states. As already noted, Miller’s (46) approach 

provides a unified theory appropriate when the fluxes associated with each DS are of comparable 

magnitude.  
Chesnavich (83) presented a simple model to illustrate the concept of TS switching in the 

reaction CH+
4 → CH+

3 + H. (For related work in the context of variational TST, see 87.) This 

relatively simple model has all the ingredients required to manifest essential aspects of the roaming 

effect.  
In our own work (88, 89), we have revisited the Chesnavich model in light of recent devel-

opments in TST. For barrierless systems such as ion–molecule reactions, the concepts of OTS and 

TTS can be clearly formulated in terms of well-defined phase space geometrical objects (for recent 

work on the phase space description of OTSs, see 80). We demonstrated how OTSs and TTSs can be 

identified with well-defined phase space DSs attached to NHIMs. 

 

 

5. ROAMING IN FORMALDEHYDE 
 
In the previous section, we discussed the notions of OTS and TTS in the context of a reaction 

occurring without a potential barrier. We also discussed how the NHIM approach to TST pro-vides a 

rigorous way of constructing a DS that satisfies the local no-recrossing requirement of TST. In this 

section, we show how the approach can be explicitly implemented for formaldehyde and used to 

answer the question: What is the mechanism that distinguishes between trajectories that roam and 

trajectories that dissociate to radical products? We show that the phase space ap-proach provides an 

answer that could not be deduced from configuration space considerations alone. 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.1. A Model Hamiltonian 
 
We begin by describing a model 2-DOF Hamiltonian derived by Chesnavich (83) that contains the 

essential features of this problem: 
 

H = 

p
2

R 

+ 

pθ
2 

 

1 

+ 

1 

+ V (R, θ ). 3. 2μ 2 I μ R
2 

 
The Hamiltonian in Equation 3 describes the motion of a hydrogen atom in the vicinity of a rigid 

core. Here, R is the distance between the center of mass of the rigid fragment and the hydrogen atom. 

The coordinate θ describes the relative orientation of the two fragments in a plane. The momenta 

conjugate to these coordinates are p R and pθ , respectively, and μ is the reduced mass of the system 

and I is the moment of inertia of the rigid fragment. The potential V (R, θ ) describes the so-called 

transitional or bending mode.  
This Hamiltonian describes both the Chesnavich (83) model and our two-dimensional planar 

model for roaming in formaldehyde (11). 

 

5.2. Formaldehyde Revisited: Why Do Trajectories Roam? 
 
We now turn to the prototypical roaming system, formaldehyde (2), and consider hydrogen atom 

roaming in formaldehyde decomposition from a phase space perspective (11). 

The reduced 2-DOF model in Equation 3 describes the dynamics of a hydrogen atom moving 

with respect to a rigid HCO fragment. The reduced potential energy function V (R, θ ) is computed 

from the full six-dimensional PES produced by Bowman and coworkers (90). The PES and the 

coordinate system used are shown in Figure 1. This model describes the long-range part of the 

potential and is appropriate for investigating the dissociation of formaldehyde into the radical 

products H + HCO (indicated by the R coordinate becoming large) as well as the molecular product 

channel H2 . . . CO.  
The roaming phenomenon is manifested as follows. Trajectories initiated in the formaldehyde 

well leave the well and are apparently on a path to dissociate to the radical products H + HCO. In the 

course of their evolution, however, the roaming trajectories deviate from this path and the hydrogen 

atom rotates around the HCO fragment before binding with the other hydrogen atom and finally 

dissociating to H2 + CO. 
 

To analyze the questions raised above, we first identify the relevant reactive events and then 

determine the unstable POs (NHIMs for 2-DOF systems). Using these POs we construct DSs, the 

crossing of which defines these reactive events. In one relevant reactive event, the formalde-hyde 

molecule breaks into the radical products H + HCO. The PO identified with this event (which we 

denote by POOTS) is associated with the centrifugal barrier. POOTS is at a large value of R, with R 

essentially constant and with θ making a full cycle from 0 to 2π. In other words, the roaming 

hydrogen atom rotates around the HCO fragment at a large value of R. Another reactive event occurs 

when the system escapes from the formaldehyde well and reaches the flat region of the PES, i.e., the 

roaming region. In our model, this occurs for R ≈ 6–8 au and θ ≈ 0–2 rad. We have located an 

unstable PO (denoted by POTTS1) that defines the DS for passage from formaldehyde to the complex 

HCO · · · H. The final reactive event that we con-sider consists in the binding of the two hydrogen 

atoms just before the molecule breaks into the molecular products, H2 + CO. The PO defining the 

DS for this event (denoted by POTTS2) is similar to the one just described and is located in 

approximately the same range of the R coordi-nate, with θ ≈ 4.5–6 rad. Figure 2 shows the 

projections of POOTS, POTTS1, and POTTS2 onto configuration space, as well as the contours of the 

PES and a PO called POROT that we discuss below. 
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Figure 1 
 
Potential energy surface with two degrees of freedom and coordinates employed in the reduced-dimensional 

model of formaldehyde. 
 

Each of the POs is 1D and defines a 2D DS; these DSs serve to partition the 3D constant-energy 

surface. Each of the three POs we have identified belongs to a family of POs that exists for a range 

of energies. For our study, we have located the POs at an energy just above the threshold for the 

dissociation to radical products H + HCO. 
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Figure 2 
 
POs associated with DSs that describe different reactive events in formaldehyde decomposition. A resonant PO 

in the roaming region is also shown. Abbreviations: DS, dividing surface; PO, periodic orbit. 
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Figure 3 
 
Trajectory propagation from the dividing surface. (a) Roaming trajectories. (b) Trajectories returning to the formaldehyde well. (c) H 

+ HCO trajectories. 

 
To investigate the dynamics of formaldehyde dissociation, we sampled the DS attached to 

POTTS1 (the PO associated with the reactive event H2CO → HCO · · · H). We then propagated the 

trajectories until they crossed the DSs associated with the other POs (or the same PO). Roaming 
trajectories are those initiated on the DS controlling the escape from the formaldehyde well and 

ending up in the H2 · · · CO well by crossing the DS associated with POTTS2 (Figure 3a). Similarly, 

the system has completed the reaction HCO · · · H → H2CO when the trajectories cross the 

backward DS associated with POTTS1 (Figure 3b). Finally, the reaction HCO · · · H → H + HCO 

occurs when the system crosses the DS associated with POOTS at a large value of R (Figure 3c).  
For trajectories initiated on the DS controlling the escape from the formaldehyde well, there are 

therefore three possible outcomes: the roaming behavior just described, a return to the formaldehyde 

well by recrossing the other hemisphere of the DS from which the trajectories 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

were initiated, and dissociation to the radical product by crossing the DS at a large value of R. Those 

trajectories that end up dissociating to H + HCO can exhibit several turning points in R with an 

extended range in angle θ before crossing the DS at large R; such trajectories orbit around HCO 

before producing the radical products.  
To identify the dynamical mechanism that causes roaming trajectories to turn in the θ direction 

instead of evolving directly to the radical products, we must consider the dynamics in the region 

where a trajectory has the three possible fates. This is the roaming region bounded by the three DSs 

associated with the POTTS1, POTTS2, and POOTS discussed in Section 4.1. The roaming region is 

associated with the flat region of the PES where the dynamical complex HCO · · · H is defined (88, 

89). In this region, the molecule is not yet dissociated, and couplings between the two DOFs are still 

present which enable the system to transfer energy between these DOFs. Note that there is no 

arbitrariness in our definition of the roaming region once we have identified the relevant DSs. 

 
Figure 3a shows a relatively small spread of roaming trajectories in configuration space, in the 

range R ≈ 6.5–9.5 au. The roaming trajectories appear to approximately follow a nearby orbiting PO 

that we call POROT (see Figure 2). From POROT, which passes directly through the roaming region, 

emerge the phase space structures that cause the hydrogen atom to roam.  
Computation of the (2D) stable and unstable manifolds associated with POROT shows that these 

surfaces intersect to form a phase space conduit that envelops the roaming trajectories and leads 

them to particular regions of phase space. This phase space shepherding is the mechanism for 

transferring energy from the radial to the angular mode. The series of 2D surfaces of section at 

different values of θ shown in Figure 4 strikingly reveal the influence of these manifolds on the 

roaming trajectories: They are trapped in a region bounded by the stable and unstable manifolds of 

the PO and extending to the intersection point of the stable and unstable manifolds of POROT, which 

is referred to as a homoclinic point. The area confined by the stable and unstable manifolds of 

POROT is conserved, but it does change shape as θ varies. In fact, Figure 4 shows that, as θ 

increases, this region deforms and moves toward the DS controlling access to the H2 · · · CO well. 

This is the phase space mechanism for energy to be transferred between the two DOFs and for 

trajectories to be shepherded from the formaldehyde well, through the roaming region, and into the 

H2 · · · CO well.  
Such a mechanism could not have been discovered through a purely configuration space anal-

ysis. It is intrinsic to phase space. Such pictures of phase space transport involving turnstiles and 

lobes have a long history in studies of phase space transport (91). In a series of important pa-pers, 

Davis, Gray, Skodje, and Rice applied these ideas to a variety of 2-DOF models of chemical reaction 

dynamics (for a review, see 92).  
Roaming in formaldehyde has been treated by statistical theories (21, 93). Our findings indicate 

that the dynamics in the roaming region in our model is nonstatistical. As the basic assumptions of 

TST are not fulfilled in the roaming region, resorting to a dynamical approach to predict rates for this 

system may be required. 

 

5.3. Roaming Under the Microscope 
 
Houston et al. (12) recently carried out classical trajectory calculations for formaldehyde in the full-

dimensional space and presented a detailed analysis of the roaming trajectories. In this work, the 

motion of the remote hydrogen with respect to the CO diatom is studied by projecting the trajectories 

onto spherical coordinate configuration space (R, θ , φ). R is the distance from the center of mass of 

CO to the furthest hydrogen atom and φ and θ are azimuthal and polar angles, respectively. 
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Figure 4  
Stable and unstable invariant manifolds of the periodic orbit POROT in the roaming region on different surfaces 

of section located at various values of θ . The stable manifold is shown in green and the unstable manifold in red. 

The blue (resp. cyan) bullet is the intersection of the orbiting periodic orbit (resp. homoclinic orbit) with the plane 

of section. Black dots represent crossings of the different surfaces of section by the roaming trajectories. 

 

 

After analyzing hundreds of trajectories, these investigators concluded that roaming is associ-ated 

with the hydrogen rotating around the CO axis described by the azimuthal angle φ. According to 

them (12, p. 5112), “long roaming periods are characterized by unstable periodic orbits that involve, 

mostly, rotation of the distant H atom around the CO axis (φ) or, less commonly, end-to-end rotation 

(θ ).” However, they do find that the roaming reaction takes place after the H atom enters the HCO 

plane (φ ≈ 0).  
The 3D analysis of Houston et al. (12) not only reveals the important role of the azimuthal angle 

in the roaming mechanism for the full-dimensional problem, but also demonstrates that orbiting POs, 

now in both φ and θ (see 12, figure 3), act as the mechanism for transferring energy from the radial 

DOF to the angular DOF. Moreover, their findings are not inconsistent with our 2D model study 

(11). The free rotation in the φ coordinate, which takes place in a region of phase space where the 

associated angular momentum pφ is approximately conserved, acts as a clock measuring the time 

taken between significant dynamical events involving coupling between the R and θ coordinates 

occurring in a planar or near-planar configuration.  
Houston et al. have also formulated a kinetic model involving a roaming entity as one of the 

species, and rate constants were extracted from trajectory data. Nevertheless, no explicit definition of 

the roaming region as a subset of phase space was given. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6. ROAMING: FURTHER CASE STUDIES 
 
We now briefly discuss several other examples of roaming that we have recently studied that provide 

further motivation for the phase space point of view. 

 
 

6.1. Ketene 
 
The photodissociation of ketene, CH2CO, to yield product fragments CO and CH2 has been the 

subject of many studies (94–96). Isotopic substitution shows that isomerization (carbon exchange) in 

ketene takes place prior to dissociation. The postulated mechanism involved in the isomerization of 

ketene is the Wolff rearrangement mechanism (97). Ab initio calculations (94, 98) have shown that 

the relevant portion of the PES for ketene isomerization has three different minima associated with 

two symmetrically related formylmethylene species and an oxirene structure situated midway 

between these structures, respectively (96). On each side, a high barrier leads to the two isomers of 

ketene.  
Recently, Ulusoy et al. (99, 100) studied the effect of roaming trajectories on the reaction rates 

for the isomerization of ketene. For ketene isomerization, there are no long-range interactions at 

play, and this raises the question of the broader relevance of the roaming mechanism. Ulusoy et al. 

(99, 100), in their effort to find trajectories that avoid the MEP on the PES, carried out isomerization 

rate constant calculations at very high energies, accessible neither to experiments (94–96) nor to the 

quantum-mechanical calculations of Gezelter & Miller (101).  
We have used a reduced-dimensional model initially proposed by Gezelter & Miller to study the 

isomerization dynamics of ketene (13). The study of Ulusoy et al. (99, 100) discussed the connection 

between ketene isomerization and the roaming reactions mechanism. The question of how our 

previous interpretation of the roaming phenomenon (11, 89) fits the ketene isomerization situation 

naturally arose.  
It was found that our general interpretation of the roaming mechanism in terms of a trap-ping 

mechanism of trajectories between two DSs enhanced by nonlinear resonances also fits the dynamics 

observed in the ketene isomerization reaction at experimentally relevant energies (13). We were able 

to classify classical trajectories into qualitatively different types of trajectories and compute fractions 

of different types of trajectories. The question of statistical dynamics was in-vestigated by gap time 

analysis (102), and significant deviation from the statistical assumption of TST was found. In 

addition, evidence of the trapping mechanism of the trajectories by resonant POs was found. 

 
These studies of ketene isomerization have therefore led to two distinct kinds of dynamics being 

labeled as roaming: the non-MEP dynamics found by Ulusoy et al. (99, 100) and the trapping 

dynamics found in our study. In the work of Ulusoy et al. (99, 100), the non-MEP trajectories are 

able to access flat regions of the potential, albeit at very high total energies. 

 
 

6.2. Recombination of the Ozone Molecule 
 
We have examined the phase space structures that govern reaction dynamics in the absence of 

critical points on the PES (14). This work is significant because we showed how phase space NHIMs 

could be located in the neighborhood of a hyperbolic torus (a phase space signature) as opposed to 

the neighborhood of an index-one saddle (a configuration space signature). In particular, it was 

shown that, in the vicinity of hyperbolic invariant tori, it is possible to define phase space DSs that 

are analogous to the DSs governing transition from reactants to products near a critical point of the 

PES. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We showed the power of this phase space approach by investigating the problem of capture of an 

atom by a diatomic molecule and showed that a NHIM exists at large atom–diatom distances, away 

from any critical points on the potential. Exploiting adiabatic separability of the diatomic vibrational 

mode in the phase space region of interest, we presented an algorithm for sampling an approximate 

capture DS.  
As an illustration of our methods, we applied the algorithm to the recombination of the ozone 

molecule: O + O2 → O3, a reaction known to exhibit an unconventional isotope effect (103). We 

treated both 2- and 3-DOF models with zero total angular momentum and found the coexistence of 

the OTS and TTS in ozone recombination. Roaming dynamics may therefore have important 

consequences for the unconventional isotope effect in ozone formation. Further work along these 

lines may be fruitful. 

 

6.3. Quantum Roaming: MgH2 
 
A recently studied molecule exhibiting roaming is magnesium hydride (39, 104, 105), a promising 

storage medium for hydrogen molecules (106, 107). Li et al. (108) have carried out both quantum 

and classical trajectory calculations on an improved ab initio ground electronic state PES (104) to 

study the reactions 
 

H + MgH → Mg + HH (reactive: direct and roaming) 4. 

→ H + MgH (nonreactive: direct and roaming) 5. 

→ H + MgH (exchange). 6.  
Direct and roaming abstraction (Reaction 4) and nonreactive (Reaction 5) reaction channels as 

well as an exchange reaction (Reaction 6) were identified for the three elementary reactions. It was 

found that Reaction 4 is dominated at low collision energies by the direct abstraction channel, 

whereas the exchange reaction, which involves a highly energetic intermediate complex, [MgH2]∗ , 

plays almost no role at the collision energies studied. As in the formaldehyde dissociation, the two 

dominant channels (direct and roaming) produce similar highly excited vibrational distributions for 

the H2 product. However, it should be noted that the energetic complex is prepared here by collision 

rather than by photoabsorption.  
On the basis of classical trajectory studies, Li et al. (108) have concluded that it is difficult to 

define roaming trajectories unambiguously solely on the criterion of their passage near the geom-etry 

of any putative roaming TS and so defined roaming trajectories as those reactive trajectories in 

which the H–H distance extends beyond a certain distance (8.5 a0) after the first turning point in the 

R coordinate.  
Furthermore, on the basis of their quantum calculations, Li et al. (108) have argued that, for a 

rotationless MgH2, roaming is quantum mechanically manifested as a large-amplitude vibrational 

progression that emerges below the radical reaction threshold and continues into the energy 

continuum, leading to roaming resonances.  
We have investigated the mechanisms of H + MgH ↔ [MgH2]∗ ↔ Mg + HH using classi-cal 

trajectories. A 4D DS associated with the OTS PO (see Figure 5) that separates the radical reactants 

from the complex [MgH2]∗ was rigorously defined and partially sampled in order to run trajectories 

that result in all possible reactive or nonreactive events, according to the theory described in 

Reference 14. Classification of the trajectories into different reactive events demon-strates 

nonstatistical dynamical behavior of the highly energetic MgH2. 
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Figure 5 
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(a) Quantum density (wave function squared) for the bound eigenstate at energy −0.02 kcal/mol relative to the asymptotic potential in the 

radical channel. (b) Potential energy contours and simple periodic orbits (POs) originated from center-center-saddle bifurcations and 

projected in the (R, θ ) plane. (c) Quantum density for the resonance eigenstate at energy +0.05 kcal/mol relative to the asymptotic potential 

in the radical channel. (d ) Family of symmetric POs extending along the θ = π axis corresponding to the eigenfunction shown in the left at 

energy +0.05 kcal/mol. For details, see Reference 15. 

 

Calculations of quantum bound and resonance wavefunctions for the eigenstates of MgH2 reveal localization in 

configuration space with characteristic patterns identified by POs, in accord with previous studies (109, 110). Figure 5 

depicts two typical eigenstates with corresponding POs.  
The roaming mechanism is attributed to trapping of trajectories in specific regions of phase space associated with 

POs (11, 13, 88, 89), wherein energy can be transferred from R to θ . For 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

MgH2, however, there is no unique roaming reaction path but rather several different pathways 

according to which region of phase space the trajectories visit (15). 

 

7. THE ROAMING SADDLE AND ITS ROLE IN ROAMING 
 
There has been an interesting discussion in the literature concerning the possible existence of saddles 

in the PES that are, in some fashion, responsible or necessary for the roaming mechanism, often 

referred to as roaming saddles (21, 111–113). For example, in the case of the Chesnavich model, 

there exists a saddle point on the PES (labeled EP3 in Reference 89, table I) that could be considered 

a candidate to be a roaming saddle, but it appears to play no immediate role in the roaming dynamics 

that we have described in this model. Moreover, as we have emphasized, in general phase space TSs 

need not be associated with particular potential saddle points on the PES (14). 

 
Several putative index-one roaming saddles have been found to be characterized by very low 

potential curvatures (vibrational frequencies) transverse to the direction of negative curvature; this 

property means that the associated DS is unlikely to be a dynamically significant bottleneck for any 

aspect of the roaming reaction (39).  
A broader issue concerns energetic (i.e., relative energetics of saddle points) versus dynamical 

separability of DSs associated with different mechanisms. By dynamical separability we mean 

separation in phase space. According to Harding et al. (39), a key question is whether there is some 

separation in phase space between trajectories that follow one mechanism (conventional 

dissociation) as opposed to the other (roaming). In Section 5.2, this question has been definitely 

answered for a 2-DOF model of formaldehyde in terms of the shepherding mechanism in phase 

space.  
Nevertheless, the potential landscape paradigm continues to motivate the search for config-

uration space explanations for the dynamical phenomena of roaming. Harding et al. (39) have 

proposed that index-two (second-order) saddles (as well as conical intersections) might be of key 

significance in distinguishing between different dissociation mechanisms, because, according to the 

Murrell–Laidler theorem (57, 114, 115), an index-two saddle can be found between two index-one 

saddles defining nominally distinct DS. (We note that use of the term “theorem” in relation to the 

Murrell–Laidler work has no strict mathematical justification and that the notion of “between two 

points” in high dimensions requires a careful explanation.)  
Nonetheless, examples show that an index-two saddle may be naturally considered to be a 

component of a global DS that divides reactants from products and that is crossed by trajectories 

associated with either mechanism (molecular versus roaming). A challenge is then to further define a 

mechanism DS, within the global DS, that separates reactive trajectories corresponding to different 

mechanisms.  
As noted above, the role of higher-index saddles in chemical dynamics has been extensively 

explored (see 61 and references therein). For a model 2-DOF isomerization problem, we have 

studied the role of the index-two saddle in defining phase space criteria for distinguishing between 

synchronous (concerted) and asynchronous (sequential) isomerizing trajectories (61). In this way, we 

were able to define a global DS together with the associated mechanism DS.  
Such global DSs have been studied in the context of bifurcations of NHIMs and associated DSs 

(61–63; see also 116, 117). These concepts have yet to be applied to the case of roaming. 

A recent paper of Maronsson et al. (118) provides an algorithm for finding an index-two saddle 

point on a (1D) ridge connecting two index-one saddle points. Note that this algorithm does not 

prove that the existence of two index-one saddles implies that there is a ridge connecting them 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

that contains an index-two saddle. Moreover, such a ridge is a configuration space notion. Careful 

consideration of related phase space structures, and the associated energetics of the saddle points, is 

essential for understanding its dynamical significance for roaming and, indeed, for reaction dynamics 

in general. 

 

 

8. CONCLUSIONS AND FUTURE OUTLOOK 
 
In this review we have considered the roaming phenomenon and, in the context of the currently 

known results, presented an answer to the question: Why do molecular fragments roam? Up to now, 

the general consensus (from experiment and theory) is that the roaming phenomenon is manifested 

as a frustrated dissociation of the molecule, with the fragments initially sampling the long-range part 

of the PES and then returning to the strong interaction region to react by avoiding conventional 

MEPs. With respect to the PES, the key role in this mechanism is played by flat regions of the PES, 

and we have discussed the dynamical significance of such flat regions in some detail. 

 
We have argued that the precise definition of such alternative reaction paths (roaming), as well as 

a dynamical understanding of the mechanism of energy transfer among the internal coordinates, 

requires a phase space structure analysis. We have described recently developed techniques in 

nonlinear dynamical systems theory (most notably the NHIM) and how they can be used to develop 

the skeleton of a phase space landscape paradigm. The fruitfulness of such an approach was 

established in a study of a 2-DOF model of formaldehyde. In this example, NHIMs were used to 

identify the roaming region and reactive events, all in phase space. Unprecedented insight into the 

roaming process was gained, and a new phase space mechanism, shepherding, was identified, 

enabling a precise characterization of the initial conditions of trajectories that evolve to each reactive 

event. Our results definitively show that the dynamics in this model is nonstatistical, and thus that 

TST is not applicable. This phase space approach can in principle be extended to higher-dimensional 

examples (O3, MgH2). 
 

The phase space interpretation allows one to extend the definition of roaming not necessarily to 

reaction paths involving dynamics in the long-range part of the PES, but to other regions of the PES, 

where nonlinear dynamics play a significant role, for example by generating new types of motion 

(bifurcations).  
Topics in dynamical systems theory, such as NHIMs, as well as other general results in the 

geometry of phase space transport theory, are relatively unfamiliar to chemists, which is perhaps one 

reason why the phase space approach is not more widely applied. Another factor is the dearth of 

computational tools for such geometrical phase space analyses. Whereas there exist many methods 

for locating saddle points and saddle point connections on PESs (configuration space methods), 

computational phase space methods are less familiar. POMULT is a widely used software package 

for locating POs in Hamiltonian systems (119); unstable POs are the simplest phase space NHIMs. 

As noted in Section 3.2, software has been developed to find NHIMs and DSs near index-k saddles 

in Hamiltonian systems (available at https://github.com/Peter-Collins/NormalForm).  
The method of Lagrangian descriptors (LD), originally from fluid mechanics (120–123), is a new 

numerical approach for exploring and discovering phase space structures that has been applied to 

several fundamental problems in chemical reaction dynamics by Hernandez and coworkers: 

chemical reactions under external time-dependent driving (124), phase space structure and reaction 

dynamics for a class of barrierless reactions (125), and the isomerization dynamics of ketene (126).  
The LD method provides a completely new point of view for visualizing phase space structures in 

high dimensions by realizing the geometric structures in terms of the initial conditions of 
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trajectories, rather than the asymptotic-in-time behavior of trajectories, and has great potential for 

advancing our understanding of chemical reaction dynamics in general and roaming in particular. 

 
 

SUMMARY POINTS 
 

1. Invariant geometrical structures govern phase space reaction dynamics. 
 

2. The roaming region is defined in phase space. 
 

3. The roaming region is a dynamical complex. 
 

4. The phase space shepherding mechanism shows why trajectories roam. 

 
 

 

FUTURE ISSUES 
 

1. The roles of, and relationships between, roaming saddles, higher-index saddles, and global 

DSs should be studied. 
 

2. Higher-dimensional generalizations of the shepherding mechanism need to be identified. 
 

3. Use of Lagrangian descriptors in analysis of roaming in multimode systems should be 

developed. 
 

4. Phase space analysis of quantum mechanical roaming needs to be explored further. 
 

5. The phase space approach to roaming dynamics in nonadiabatic systems and in the liquid 

phase needs to be developed. 
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