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ABSTRACT:  

Background: The inherent problems accompanying chemotherapy necessitate the development of 

new anticancer approaches. The development of compounds that can disrupt cancerous cellular 

machinery by novel mechanisms, via interactions with proteins and non-canonical DNA structures 

(e.g. G-quadruplexes), as well as by alteration of the intracellular redox balance, is nowadays focus of 

intense research. In this context organometallic compounds of the noble metals Pt and Au have 

become prominent experimental therapeutic agents. This review provides an overview of the Pt(II) and 

Au(III) cyclometalated compounds with a chelating ring containing a strong C-M σ-bond to improve the 

stability of the compounds with respect to ligand exchange reactions and biological reduction. 

Furthermore, these properties can be easily tuned by modification of either the anionic cyclometalated 

or the ancillary ligands. Special focus has been set to C^N, C^N^C, C^N^N and C^N^S platinum(II) 

and gold(III) pincer complexes regarding their synthesis and biological modes of action as anticancer 

agents.  

Methods: A structured search of both chemical and medicinal databases for peer-reviewed research 

literature has been conducted. The quality of retrieved papers was appraised using standard tools. 

The synthesis as well as the chemical and biological properties of the described compounds were 

carefully reviewed and described. The findings were outlined using a conceptual framework. 

Results: In this review we included 155 papers, the majority originating from high-impact papers on 

the synthesis and biological modes of platinum(II) and gold(III) compounds. Among them, 17 papers 

were highlighted to give an introduction to the use of Pt and Au compounds with medicinal properties, 

mainly focussing on coordination compounds. The synthesis and medicinal properties of 

organometallic compounds of various metals (such as Fe, Ru, Ti) were outlined in 51 papers. These 

compounds included metallocenes, metallo-arenes, metallo-carbonyls, metallo-carbenes (e.g. N-

heterocyclic carbenes), and alkynyl complexes. The C^N, C^N^C, C^N^N and C^N^S pincer 

complexes of platinum(II) (46 papers) and gold(III) (44 papers) were discussed concerning their 

synthesis, stability and advantages to develop therapeutic compounds. We strove to show the 

consistent development of C^N, C^N^C, C^N^N and C^N^S platinum(II) and gold(III) pincer 

complexes regarding their synthesis and biological modes from the early beginnings to the most 

recent findings. 

Conclusion: This review supplies a profound overview of the development of organometallic 

compounds for medicinal purposes, setting special focus to the synthesis and stability of C^N, C^N^C, 

C^N^N and C^N^S pincer complexes of platinum(II) and gold(III) and their use as anticancer agents. 
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1. Introduction 

The discovery of the cytostatic effect of cis-diamminedichloridoplatinum(II) (cisplatin, 1) on E. coli by 

Rosenberg et al. in 1965 paved the way for the application of platinum based drugs in cancer therapy1. 

Since the clinical approval of cisplatin in US in 1978, (and one year later in several European 

countries) another 25 cisplatin analogues have been approved for clinical trials. However, only 

carboplatin (2) and oxaliplatin (3) display pharmacological advantages compared to cisplatin and since 

their discovery have been marketed worldwide. The established mechanism of action for this family of 

chemotherapic agents involves their binding to nucleic acids after exchange of the chloride ligands 

with water molecules (or OH- ligands) followed by direct coordination to DNA nucleobases. This 

reactivity with DNA leads to a stop of the transcription and translation of the cell DNA which results in 

cell death by apoptosis. Three other Pt(II) drugs have been additionally approved for single markets, 

namely nedaplatin in Japan, lobaplatin in China and heptaplatin in Korea2.  

Despite their clinical success, traditional Pt(II) based drugs for cancer therapy present major 

drawbacks, such as resistance, limited spectrum of action and severe side effects in patients, in part 

due to their non-selective binding to other intracellular components3. Thus, research has been focused 

on developing new inorganic drugs to circumvent these limitations and enable a more sophisticated, 

targeted approach towards cancer cells. In this context, gold complexes have been present in therapy 

for quite a while now, however their exploration as anticancer agents is more recent and has strongly 

increased throughout the last decade4. In fact, gold(I) and gold(III) complexes are an emerging class 

of metal complexes with potential antitumor properties alternative to cisplatin. This is mainly due to 

their outstanding cytotoxic properties exhibited through different antitumor mechanisms, specifically 

the selective inhibition of target proteins and enzymes.  

As an example, auranofin (4) (Ridaura®) is a relatively simple Au(I) thiolate complex which is 

used in the clinic to treat severe rheumatoid arthritis. Early studies on the anticancer activity of 

auranofin revealed activity levels similar to cisplatin in vitro, which subsequently led to a large number 

of Au(I) complexes being evaluated for antiproliferative activity4b. Initially approved as an antirheumatic 

agent in 1982 for worldwide clinical use, it recently passed phase II of clinical trials for the treatment of 

chromatic lymphocytic leukaemia (CLL), Small Lymphocytic Lymphoma (SLL) and Prolymphocytic 

Lymphoma (PLL)4b. 
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Figure 1. Prominent anticancer Pt(II) complexes and and experimental cytotoxic Au(I) and 
Au(III) complexes. 

 

Following the clinical success of auranofin, other Au(I) complexes featuring auxiliary phosphine 

ligands were synthesized by Berners-Price et al,5 among which the bis[1,2-

bis(diphenylphosphino)ethane]Au(I) chloride ([Au(dppe)2]Cl) with chelating diphosphine ligands (5). 

Interestingly, 5 is more stable with respect to ligand exchange reactions than the linear complexes and 

less reactive towards thiols. [Au(dppe)2]Cl has shown reproducible and significant in vivo antitumor 

activity in a range of murine models. However, due to severe hepatoxicity of the compound, the 

studies were not continued6.  

The modes of action of cytotoxic gold(I) compounds are still a matter of intense debate. 

However, there is now quite a wide consensus on the concept that their behaviour diverges profoundly 

from that of cisplatin and analogues, mainly grounded on a documented poor reactivity with double-

helix DNA. On the other hand, there is good evidence that they often produce severe mitochondrial 

damage4a. In this context, among the most studied and recognized targets for gold compounds, the 

seleno-enzyme thioredoxin reductase (TrxR) has been widely investigated7. Human TrxR contains a 

cysteine-selenocysteine redox pair at the C-terminal active site, and the solvent-accessible selenolate 

group constitutes a likely target for “soft metal ions such as gold.  

Concerning gold(III) complexes, many families have been synthesized and the anticancer 

activity evaluated against numerous cancer cell lines in vitro. In most cases, the donor atoms 

stabilizing the Au(III) center are either Cl, Br, S or P8. As an example, the complex [Au(phen)Cl2]Cl (6) 

contains a 1,10-phenanthroline as chelating N-donor moiety. Although displaying lower stabilities 

compared to other ligands, the phenanthroline chelated complex shows higher cytotoxicity towards 
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various cancer cell lines9. Recently, it was demonstrated that 6 is a functional selective inhibitor of the 

human water and glycerol channel aquaglyceroporin-3 (AQP3), possessing inhibitory effects on the 

proliferation of cells over-expressing this isoform10. Hence, 6 may produce a targeted therapeutic 

effect on carcinomas with enhanced AQP3 expression 11. 

Pursuing the search of novel protein targets for anticancer gold compounds, some of us 

reported on the inhibitory effects of different cytotoxic gold-based complexes with phosphine or 

bipyridyl ligands, towards the zinc finger (ZF) enzyme poly(-adenosine diphosphate (ADP)-ribose) 

polymerase 1 (PARP-1)12. Interestingly, Au(III) coordination complexes were among the most efficient 

in inhibiting PARP-1, at the nM level, followed by Au(I) compounds. Among the most recent reports, a 

new gold(III) complex bearing a 2-((2,2’-bipyridin)-5-yl)-1Hbenzimidazol-4-carboxamide ligand has 

been synthesized and characterized for its biological properties in vitro13. In addition to showing 

promising antiproliferative effects against human cancer cells, the compound potently and selectively 

inhibits the zinc finger protein PARP-1, with respect to the seleno-enzyme TrxR. The results hold 

promise for the design of novel gold-based anticancer agents disrupting PARP-1 function and to be 

used in combination therapies with DNA alkylating agents. 

Interestingly, dithiocarbamato ligands were also described as efficient coordinating ligands for 

Au(III) ions14. Thus, Fregona et al. reported on the design of targeted Au(III) dithiocarbamate 

complexes with peptide-based ligands for carrier-mediated delivery of the compounds in cancer cells 

via peptide transporters15. Compounds of the type [Au(dpdtc) Cl2] (dpdtc = dipeptidedithiocarbamate) 

(7) lead to reduced toxic and nephrotoxic side-effects in comparison to their analogues without the 

peptide moiety, while displaying increased tumor selectivity. Notably, several of these compounds 

resulted to be potent proteasome inhibitors. 

Unfortunately, the majority of the cytotoxic Au(I)/Au(III) coordination compounds show 

limitations concerning stability in aqueous solution, and especially Au(III) complexes are easily 

reduced to Au(I) or Au(0), resulting in loss of activity and possible side effects. Therefore, research is 

nowadays dedicated to a larger extent to the design and synthesis of more stable derivatives, 

including organometallic compounds. 

 

1.1 Organometallic anticancer agents 

In recent years, organometallic compounds have become more popular and are now quite widespread 

as experimental anticancer agents. In fact, they combine the advantages of a classical inorganic 

system with the higher stability of an organic scaffold16. The organic ligands allow the introduction of 

stereospecifity which gives access to an even higher amount of structural possibilities. Furthermore 

“fine tuning” possibilities within the organic moiety regarding functional groups etc. is given, 

determining the physiochemical properties of the respective metal compound17. In fact, in 

organometallic complexes it is the metal–carbon (M–C) bond that endows these coordination 

compounds with peculiar features. On the one hand M–C bonds have high trans effects and trans 

influences, which affects the lability of bonds to other ligands (M–L) in the complex. Moreover, π-

bonded aromatic arene and cyclopentadienyl ligands can act both as electron donors and π-acceptors. 

These ligands can therefore modify the donor/ acceptor behaviour (and reactivity) of other ligands in 
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the complex. Finally, by choosing specific targeting moieties, either incorporated into the ligand or 

attached to the metal center, targeting at specific cancer cells’ receptors can be achieved.  

Typical classes of organometallics include metallocenes, metallo-arenes, metallo-carbonyls, 

metallo-carbenes (e.g. N-heterocyclic carbenes), and alkynyl complexes, respectively18. Classically 

these compounds families have been widely applied in catalysis19. However, their medicinal use has 

been recently demonstrated. The utilized complexes show thereby a great variety, not only 

mononuclear compounds, but also multinuclear compounds have been synthesized and investigated. 

In this respect one has to distinguish between homonuclear and heteronuclear compounds. In Fig. 2, 

we provide an overview of some of the most representative structures of medicinally relevant 

organometallic complexes. 
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Figure 2. Organometallic complexes with medicinal properties. 

 

To begin with, the biological properties of metallo-carbonyls have been studied for a number of metals, 

such as iron20, ruthenium21 and manganese22. Carbonyl complexes offer the benefit of displaying high 

lipophilicity, leading to increased cellular uptake levels, which could be demonstrated in several 

studies 23. Among the various examples present in the literature, the alkyne hexacarbonyldicobalt 

Co2(CO)6 species Co-ASS (8) contains an acetylsalicylic acid (aspirin) moiety. Aspirin has been shown 

to reduce the recidivism risks in cancer patients, therefore making it interesting as a ligand in a 

combination therapy approach. Indeed, 8 was found to display good stabilities under physiological 
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conditions, to strongly inhibit both the COX-1 and COX-2 enzymes and to induce of apoptosis23. 

Further recent studies with zebra fish embryos also indicate that 8 has anti-angiogenic properties, a 

trait which is not present with aspirin24. 

In contrast to modifying somewhat remote groups of organic inhibitors, in 2009 Meggers et al. 

have taken the concept of using metal fragments to occupy defined regions of 3D-space in enzyme 

active sites one step further, and synthesized a number of Ru(II) compounds as protein kinase 

inhibitors 25. The high selectivity displayed by these compounds is believed to be achieved by the rigid 

scaffold, leaving the metal as a pure structural motif. Complex 9 has therein shown promising activities 

against several cancer cell lines and in a melanoma spheroid model26. Furthermore the CO ligands 

apparently play a significant role in the molecular interaction with biological targets, although the 

interactions need further systematic investigations 18, 27. 

Organometallic compounds displaying N-heterocylic carbene (NHC) ligands have also been 

investigated closely throughout the last decades, since they offer benefits such as easy accessibility 

from imidazolium salts, non-toxicity of the ligands and high complex stability28. Steric and electronic 

effects contribute to the bonding of metals to NHC ligands. Whereas NHC complexes were initially 

considered as pure σ-donors, it is now commonly established that besides the NHC-to-metal σ → d 

donation also metal-to-NHC d → π* and NHC-to-metal π → d donations contribute to the bonding. 

Moreover, saturation or aromaticity of the NHC ligand and the volume of attached side chains 

influence the stability and reactivity of the complexes. The first reports on biological activity of metal 

NHC compounds were published between 1996 and 1999 by Cetinkaya et al., who described the 

antibacterial properties of ruthenium(II) and rhodium(I) NHC complexes29. 

Berners-Price et al. pioneered this field by synthesizing a series of linear, cationic Au(I) NHC 

complexes (10) with remarkable anticancer properties in vitro, and inducing mitochondrial damage. By 

varying the substituents at the N,N positions of the imidazolium precursor, the lipophilic properties 

could be finely tuned30. Moreover, these compounds allow selective targeting of mitochondrial 

selenoproteins, such as TrxR. The antimitochondrial activity of cationic gold(I) NHC complexes could 

be related to their cationic and lipophilic character, which attributes the complex properties that are 

known from the class of delocalized lipophilic cations (DLCs). Notably, DLCs can selectively 

accumulate in the mitochondria of cancer cells driven by their enlarged mitochondrial membrane 

potential. 

The effects of gold(I) NHC complexes on cell metabolism and their interference with pathways 

relevant for cancer cell proliferation have been studied for many derivatives31. In this area, Ott et al. 

reported on the synthesis of an Au(I) N-heterocyclic carbene 11, utilizing an aminotriazole NHC 

carbene ligand, 32 displaying good activity against various cancer cell lines and good to moderate 

inhibitory activity of TrxR. As 1,2,4-triazoles possess different electronic properties than the classical 

imidazolium salts, these complexes may show a different behaviour concerning donor abilities and 

physiochemical properties 33.  

A further interesting linear, cationic Au(I) NHC complex series was reported by Casini and 

Picquet et al in 2014 34 featuring xanthine ligands, including caffeine, which naturally possess an 

imidazole ring and has recently been reported for its anticancer properties 35. Within this series, the 

bis-carbene complex ([Au(9-methylcaffein-8-ylidene)2]+ 12 showed selectivity in vitro against various 
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cancer cell lines with respect to non-tumorigenic ones, and most importantly was also demonstrated to 

be a selective G-quadruplex stabilizing agent. X-ray structural studies showed that the three 

molecules of compounds are bound to a G4 structure36. G-quadruplexes (also known as G4) are 

nucleic acid sequences, rich in guanines, capable of forming a characteristic four-stranded fold. 

Interestingly, formation of quadruplexes causes a net decrease in the activity of the enzyme 

telomerase, which is responsible for maintaining the length of telomeres. Therefore, molecules that 

template the formation or stabilize the structure of G-quadruplex DNA might lead to development of 

new effective anticancer drugs based on selective telomerase inhibition37. 

Within the NHC family, also Pt(II) complexes have been described, including [(1,3-

dibenzyl)imidazol-2-yl]platinum(II) carbene complexes with different spectator ligands (Cl-, dmso, 

PPh3)38. Some of these compounds were shown to bind DNA predominantly by initiating its 

aggregation and precipitation to the effect of a G1 phase cell cycle arrest in melanoma cells. 

 Metallocene compounds, homonuclear as well as heteronuclear, have gained considerable 

interest in anticancer research throughout the last years. For example, titanocene dichloride (Cp2TiCl2) 

(13), was one of the early non-platinum based anticancer complexes that reached phase II of clinical 

trials39. However, the clinical response was not significant enough to pursue it, especially since 

Cp2TiCl2 displays rather poor solubility and stability in water, leading to problems in drug formulation 40. 

Furthermore, the exact mode of action could not be elucidated so far41. Addressing the solubility and 

stability properties, various titanocene analogues have been synthesized. McGowan et al.42 

demonstrated that by introducing amino groups to the bent metallocenes, improved hydrolytic stability 

could be achieved43.  

The organometallic arene complexes termed RAPTAs are among the most investigated 

examples of Ru(II) half-sandwich complexes with antimetastatic and antiangiogenic properties44. 

Consisting of a monodentate 1,3,5-triaza-7-phosphaadamantane (pta) ligand and a facial η6-arene 

ligand coordinated to Ru(II) in a so-called “piano-stool” conformation, RAPTA complexes display good 

stabilities under physiological conditions. Concerning the mode of action, aquation of the chloride 

ligands appears a prospective intracellular drug activation process 45. Although the exact target 

identification is still elusive, RAPTA compounds have been found to alter the expression, and thereby 

the activity, of key proteins involved in the regulation of the cell cycle and apoptosis46. RAPTA-C 

(arene=cymene) (14) is the most representative example of this series47. Similar to titanocene 

dichloride, a number of derivatives have been synthesized in order to stepwise alter the 

physicochemical properties48. 

Metal complexes can interfere in the cellular redox chemistry in several ways: directly through 

metal or ligand redox centers or indirectly by binding to biomolecules involved in cellular redox 

pathways. Within the metallocene family, Sadler et al. illustrated that organometallic ruthenium(II) and 

osmium(II) arene complexes and iridium(III) cyclopentadienyl complexes of the type 

[(arene/CpxPh)M(N,N)Cl/I]n+ can achieve nanomolar potency toward cancer cells in combination with 

the redox modulator L-buthionine sulfoximine44b, 49. A representative member of this series – the 

chlorido(iminopyridine)arene- ruthenium(II) complex [Ru(η6-p-cym)(p-Impy-NMe2)Cl]+ (15) - is reported 

in Fig. 2. Thus, these complexes were proposed for possible use in combination therapy with redox 

modulators to increase their anticancer effects. These results highlights the importance of determining 
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not only the distribution of metal anticancer complexes in cells but also their speciation, the chemical 

form of the metal complex, including the oxidation state of the metal, the fate of the ligands, and 

dynamic processes such as efflux. 

 Ferrocene, a compact metallocene possessing stability in non-oxidating media, low toxicity, 

and reversible redox behaviour, has recently played an important role in bioorganometallics, as an 

antiparasitic or an antibacterial50, and indeed as an antitumor agent51.  

Examples of the vast and regularly increasing number of biologically active ferrocene compounds with 

antitumoral potential are presented in a recent review by Jaouen, Vessieres et al. and will not be 

treated in details here52. Overall, they illustrate the richness of the activity in this field, the variety of the 

structures brought into play and the diversity of possible mechanisms of activity. 

Here, we selected to highlight the ferrocene containing complex ferroquine (16) structurally close to 

the antimalarial drug chloroquine53. It shows similar activity compared to chloroquine but most 

importantly it is also active against chloroquine resistant malaria parasites54. Since malaria resistance 

has become a critical issue in malaria-endemic countries, development of new, organometallic 

analogues is crucial. Ferroquine has completed phase IIb of clinical trials and is about to enter phase 

III55. 

Recently, there has been a strongly growing interest in the utilization of heteronuclear 

compounds as anticancer agents56. This is due to the hypothesis that different metals within the same 

compound can either react in different pathways towards the targeting of cancer cells or improve the 

chemicophysical properties of the overall scaffold. A greater challenge in this concept of 

multinuclearity consists in the combination of two (or more) different metal containing moieties, 

requiring a design of suitable ligands to coordinate selectively one metal and the other. Thus, a 

number of successful examples have been described in the literature, including ferrocene-based 

complexes. For example, in 2008 Dyson et al. reported on the synthesis of a ferrocenoyl pyridine 

arene ruthenium complex (17). Interestingly, this complex proved to be twice as active towards cancer 

cells, as their monomeric analogue 57. Contel et al. demonstrated the cytotoxic propertied of a 

heterometallic complex series containing both a gold(III) and a palladium(II) metal center with 

iminophosphorane ligands (18), derived from ferrocenylphosphane58 Especially the trimetallic 

derivatives have shown significant higher anticancer properties with respect to their corresponding 

monomeric analogues. 

When other metal other than iron was used, Casini et al. reported in 2011 on the synthesis of 

the titanocene-gold trimetallic complex (19) showing 10-fold higher activity against cancer cells than 

the monomeric titanocene-phosphine and enhanced stability in aqueous solution 59. Interestingly, this 

complex also exhibits luminescent photophysical properties, originating from the bent metallocenes, 

making it suitable for distinctive uptake studies. The same group also reported on series of bimetallic 

Ti-Ru complexes based on a titanocene- phosphine backbone anchored to a Ru(II)-arene scaffold, 

which showed improved antiproliferative effects on cancer cells in comparison to their mononuclear Ti 

and Ru organometallic precursors60. 

Notably, the synthesis, characterization and stability studies of new titanocene complexes containing a 

methyl group and a carboxylate ligand (mba = S–C6H4–COO) bound to gold(I)-phosphane fragments 

through a thiolate group [(η-C5H5)2TiMe(µ-mba)Au(PR3)] were recenty reported61. Two compounds 
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were selected for further in vivo studies on mice based on their selectivity in vitro against renal cancer 

cell lines when compared to non-tumorigenic human kidney cell lines (HEK-293T and RPTC) and the 

favourable preliminary toxicity profile in C57BL/6 mice. Evaluation of Caki-1 xenografts in NOD. CB17-

Prkdc SCID/J mice showed an impressive tumor reduction (67%) after treatment for 28 days (3 mg per 

kg b.w.  every other day) with heterometallic compound [(η-C5H5)2Ti(CH3)[OC(O)C6H4SAu(PPh3)]].  

 In the following section we will introduce the class of organometallic cyclometalated 

complexes, which constitutes the focus of this review. After a brief introduction on these chemical 

scaffolds, we will introduce the studies on cyclometalated Pt(II) and Au(III) compounds as 

experimental anticancer agents. 

 

2. Cyclometalated complexes 

Cyclometalation is a convenient method of stabilizing metals in different oxidation states. This is 

particularly useful in the case of Au(III) compounds which are otherwise prone to be reduced to their 

respective Au(I) species as well as to colloidal gold. In general, cyclometalation is defined as the metal 

mediated C-R bond activation of a cyclic organic ligand system. The chelating ring consists of a 

strong, covalent C-M σ bond and a coordination D-M bond. These ligands incorporate one or more 

donor atoms (such as O-, N-, P-, S- or -Se).  Fig. 3 illustrates a general representation of the different 

classes of cyclometalated compounds. However, it is worth mentioning that a variety of processes 

other than cyclometalation have been developed in order to prepare metallacycles, especially 

oxidative addition involving C–X bond activation (X = F, Cl, Br, I etc.), and transmetalation. Similarly, 

metallacycles may be generated by elimination reactions, by cycloaddition and by hydrometalation. 

 

 

 
Figure 3. General representation of cyclometalated complexes. 

 

In this review the main results obtained on the synthesis and biological activities of cyclometalated 

Pt(II) and Au(III) compounds are summarized. Numerous ligand systems utilizing different donor 

atoms have been reported18. In particular, cyclometalation reactions producing five-membered ring 

products proceed very easily, at room temperature with a variety of substrates, such as amines, 

imines, 2-phenylpyridines, benzo[h]quinones, other nitrogen donor ligand, oxygen-containing 

compounds, phosphorus and sulfur donors etc. Thus, a consistent number of reports include these 

families of complexes. 

Since a complete overview of all ligand systems would go beyond the scope of this review, in 

the following chapters only C^N, C^N^C, C^N^N and C^N^S Pt(II) and Au(III) pincer complexes shall 
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be discussed, as these ligands show the highest stability in physiological environment and suitable 

chemicophysical properties for therapeutic applications. In addition, a number of studies report on the 

promising biological effects of these compounds and constitute the basis for future drug design. 

 

2.1 Pt(II) compounds 

Although the cisplatin analogues already in the clinic circumvented its severe side effects to some 

extent, still new platinum complexes with improved pharmacological and toxicological profiles would 

be highly valuable 62. Therefore, research has been evolved towards finding new structural motifs for 

platinum(II) compounds, including those achievable in the cyclometalated scaffolds described below. 

C^N complexes 

Following the structural idea of cisplatin, a variety of bidentate Pt(II) compounds was synthesized in 

the early stage of the identification of biologically active cyclometalated anticancer complexes. The 

C^N ligand is kinetically rather inert and offers therefore higher stability than most other bidentate 

ligands. Giving that most bidentate ligands are also relatively easy accessible, it is not surprising that 

Pt(II) C^N complexes make up a vast part of cyclometalated platinum complexes as experimental 

anticancer agents63. As previously mentioned, cyclometalation reactions that give five-membered ring 

products are very favourable, since five-membered ring compounds display higher stability than most 

other ring sizes. The five-membered ring chelate effect also allows a higher selectivity and increased 

yields. Therefore, many of the reported C^N metal complexes are indeed five-membered ring 

complexes 63a.   

The early stage bidentate C^N ligands mostly followed the structural design of Pt(II)(C^N)LX 

(L and X ancillary ligands) (Fig. 4). The group of Alonso et al. reported already in 1993 on the 

synthesis of a Pt(II) complex (20) utilizing a benzoylbenzylidenamine backbone and chlorido- or 

acetate-bridged labile ligand64. The structural analogous Pd(II) complexes reported in this paper were 

synthesized via CH activation of the respective ligand by Pd(OAc)2. However, the standard 

orthoplatination method for the Pt complexes, using K2PtCl4 in MeOH as a precursor, only resulted in 

the formation of the coordination compound of 4-methoxyaniline, as these derivatives are not stable in 

aqueous media.  The respective orthoplatinated compounds could only be achieved when using the 

dimeric precursor [Pt(µ-Cl)(η3-C4H7)]2. This dimeric complex can increase its coordinative unsaturation 

level and is strong electrophilic. The respective acetate complex was obtained via reaction with 

AgOAc (see Fig. 4). Interestingly, these complexes were shown to exhibit significantly higher 

antiproliferative activity than their isostructural palladium compounds. By electrophoresis studies, the 

authors could demonstrate that these compounds are able to modify the plasmid DNA structure, since 

significant alteration in the gel electrophoretic mobility of plasmid DNA was observed upon binding of 

the metal complexes64. 
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Figure 4. Chlorido- and aceto-bridged Pt(II) C^N complex as reported by Alonso et al.[65]. 

 

Another example for earlier Pt(II) C^N complexes is the 2-phenylpyridine Pt(II) complex 21 that was 

reported by Okuno et al. in 200165 (Fig. 5). In this case, the synthesis is straightforwardly carried out 

by reacting [PtCl3(NH3)]+ (substituting one chlorido ligand in cisplatin with NEt4Cl) with 2-phenylpyridine 

in water. This compound was found to accumulate in the cisplatin-resistant mouse sarcoma 180 cell 

(S-180cisR) in line with its high cytotoxicity66. 

Hemmateenejad et al. introduced a chelating bisphospine ligand to the platinum metal center (22)67. 

The synthesis is carried out in a two-step mechanism, similar to complex 21. First [Pt(dmso)2Cl2] is 

reacted with 2-phenylpyridine; afterwards, the dmso ligands are substituted with 

bis(diphenylphosphino)amine. The pentacoordinated compounds were found to have good 

proteasome-inhibitory activity and induced apoptosis in vitro. DNA binding studies in aqueous media 

confirmed that the complexes maintain their pentacoordinated configuration, acting as the 

pharmacologically active species68. Interaction of the complexes with herring sperm DNA was 

investigated via fluorescence emission spectroscopy, suggesting that Pt(II) containing biphosphine 

complexes with DNA binding capabilities can also target and inhibit the tumor proteasome69. 
In 2005, Che et al. reported a thiophene-containing complex series 23a-c containing amino 

acid ligands70. Interestingly, both protein binding affinity and cytotoxicity of 23a-c are affected by the 

amino acid ligand. Thus, while 23a has an IC50 over 100 µM in various carcinoma cell lines (non-toxic 

compound) and scarce HSA binding, complex 23b exhibits marked cytotoxicity against cisplatin-

resistant cells (e.g. human liver cancer cell line HepG2 and human lung cancer cell NCI-H460) as well 

as selectivity towards human serum albumin (HSA) via H-bonding interactions. Overall, the IC50 values 

decrease in the order 23a > 23c > 23b, mirroring a corresponding decrease in HSA binding affinity. 

Moreover, the compounds display luminescent properties which can be enhanced by protein binding, 

and that make them suitable as chemical probes for imaging.  

Bautista et al. synthesized a series of Pt(II) compounds based on a 2-(dimethylaminomethyl)phenyl as 

the C^N backbone (24-26) (Fig. 5)71. These complexes are derived from N,C-chelating 2-

(dimethylaminomethyl)phenyl (dmba) and pentafluorophenyl groups in cis-[Pt(C6F5)2(THF)2], and  all of 

them show up to 20-fold higher cytotoxicity against various cancer cell lines than cisplatin. By circular 

dichroism and electrophoretic mobility assays it could be observed that interactions of the complexes 

with the DNA alter the degree of super-helicity. With the aim of coupling bioactive ligand to 

organometallic compounds, the cationic complex 25 of structural formula [Pt(dmso)(bpzm*)(1-Mecyt)]+ 

(with (1-Mecyt) = methyl-cytosine, (bpzm*) = bis(3,5-dimethylpyrazol-1-yl)methane) featured the model 
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nucleobase methyl-cytosine as a ligand72. This approach enables new ways of incorporating 

biologically important scaffolds into the complexes.  

 

  

Figure 5. Pt(II) C^N complexes with cytotoxic properties. 

 

Platinum coordination complexes with acridinylthiourea as a potent DNA intercalator have been 

reported before, acting through monofunctional platination of DNA nucleobases73. Bautista, Laguna et 

al. introduced complex 26, a Pt(II) C^N complex with an 9-aminoacridine ligand, as a DNA 

intercalator74. The compound is luminescent in the solid state at room temperature, making it a 

suitable candidate for distinctive uptake studies. Complex 26 shows 20-fold higher toxicity against the 

leukaemia cancer cell line HL-60 than cisplatin. DNA adduct formation on plasmid DNA pBR322 was 

observed by circular dichroism and electrophoretic mobility as well.  

 Similar Pt(II) C^N complexes have also been reported to exert dual antitumor and 

antiangiogenic effects in cell lines in vitro75; while two oxoisoaporphine Pt(II) C^N complexes were 

characterized as G-quadruplex stabilizers and shown to be able to induce apoptosis in cancer cells via 

inhibition of telomerase76. 

Topoisomerase inhibition as possible mechanism of anticancer action has been a subject of 

intensive research during the last years. The cytotoxicity of topoisomerase inhibitors has been 

assumed to result from the induction of enzyme-mediated DNA breaks77. Complexes 27 and 28  of the 

general formula [Pt(phpy)(C≡NR)2]+ (phpy = 2-phenylpyridine, R = 2- naphthyl) were introduced by 
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Che et al. in 2011 as effective topoisomerase IIα inhibitors (Fig. 5)78. By the displayed square-planar 

Pt(II) geometry within the C^N moiety these complexes were shown to act as major grove binder to 

the DNA. Using UV-Vis absorption and emission titration Che et al. could demonstrate that a 

stabilization of the covalent topoisomerase IIα–DNA cleavage complex occurs with consequent 

induction of apoptosis. 

Complex 29 represents a very recent field of Pt(II) C^N complexes, being tethered to a 

ferrocene moiety to give an heteronuclear compound79. Due to the symmetry of the ferrocenyl moiety, 

two isomers exist, that differ in the planar chirality of the ferrocenyl ligand (Sp and Rp, respectively). 

The Rp isomer exhibits up to four times higher cytotoxic activity against various cell lines (such as 

colon cancer (HCT116) and breast cancer (MDA-MB-231)) than the Sp isomer, thus indicating that the 

orientation of the ferrocenyl unit in relation to the environment of the Pt(II) metal influences their 

cytotoxic activity.  

Finally, an interesting C^N ligand system containing iminophosphoranes has been reported by 

Contel et al. in 201580, which lead to the formation of Pt(II)C^N and Au(III)C^N complexes (Figure 6) 

via transmetalation of the mercury precursor. Both complex types exhibit more pronounced cytotoxic 

activity than cisplatin against numerous cell lines (such as the ovarian cancer cell line A2780). Gold 

complex 31 induces mainly caspase-independent cell death, an effect described before for analogous 

cycloaurated iminophosphorane compounds81. The Pt(II) complex 30 is also able to activate 

alternative caspase-independent apoptosis mechanisms: experiments of DNA-drug interactions with 

plasmid DNA demonstrated that 30 induces the formation of left-handed helix of Z-form DNA through 

strong electrostatic interactions. 

 

  

Figure 6. Synthesis of 30 and 31 [79]. 

Conventional chemotherapeutics, but also innovative precision anticancer compounds, are commonly 

perceived to target primarily the cancer cell compartment. However, recently it was discovered that 

some of these compounds can also exert immunomodulatory activities which might be exploited to 

synergistically enhance their anticancer effects. One specific phenomenon of the interplay between 

chemotherapy and the anticancer immune response is the so-called “immunogenic cell death” (ICD)82. 
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In this context, in 2015, Ang et al. evaluated the ICD activity of a library of thirteen Pt-based 

compounds, including cisplatin, oxaliplatin and carboplatin as well as their Pt(IV) prodrugs83. Based on 

the fact that a critical step for ICD is the engulfment of dying cancer cells by dendritic cells, authors 

first screened the compounds with an in vitro phagocytosis assay. Interestingly, just one compound in 

the entire series – a C^N Pt(II) complex of 2-phenylpyridine bearing bis(NHC) ligands, previously 

synthesized by Che and co-workers84 – was able to increase the tumor cell phagocytosis at low 

concentration. In the same study, the evaluation of the C^N Pt(II) complex was conducted and the 

obtained results showed that it fulfils the hallmarks of ICD, namely calreticulin exposure, ATP 

secretion, and extracellular HMGB1 release83. Furthermore, they demonstrated that ER stress 

triggered by Pt-NHC was ROS-mediated, probably placing this drug in the type II ICD inducer class. 

C^N^N complexes 

Cyclometalated Pt(II) compounds featuring a C^N^N ligand represent an interesting family, since they 

have been shown not only to be able to covalently link to the nucleobases of the DNA, but also to 

function as metallointercalators by inserting between two adjacent DNA nucleobases through π-π 

stacking85. As for the Pt(II) C^N type of compounds, the majority of the Pt(II) C^N^N complexes are 

also five-membered ring compounds, resulting from cyclometalation reactions63a.  

In 2010 Che et al. reported on the synthesis of Pt(II) C^N^N complex 32, displaying an ancillary NHC 

ligand with differing N,N side chain lengths86. The synthesis was carried out by reacting K2PtCl4 with 

the H-C^N^N ligand in acetonitrile under reflux. The carbene moiety was subsequently attached via 

deprotonation of the respective imidazolium precursor with KOtBu in a one pot-synthesis. Imidazolium 

salts with varying side-chain lengths were obtained by reacting methyl-imidazole with the respective 

alkyl halide. Binding of the NHC moiety to the Pt(II) center results in luminescence properties and 

significantly enhances the complex stability against ligand exchange reactions or biological reductions. 

The complexes in this series were shown to be stable against GSH reduction/substitution, which can 

be considered as an important feature for future drug design, since the elevated cellular GSH level 

has been linked to cisplatin-resistant cancer cells, probably through sequestration of cisplatin87. The 

lipophilicity of the cationic complex 32 can be fine-tuned by varying the N,N chain length. Complex 

32d was thereby found to display more than 200-fold higher cytotoxic activity against cervical cancer 

cells (HeLa) than cisplatin. Via fluorescence microscopy it could be observed that complex 32d 

preferably accumulates in cytoplasmic structures. Furthermore, the authors could demonstrate that 

32d has a synergistic effect with cisplatin in vitro. Even more notably, 32d was capable of significantly 

inhibiting tumor growth in a nude mouse model. 

Subsequently, the same group synthesized two N,N-bridged Pt(II) C^N^N complexes 33a and 

33b with N-heterocyclic carbenes as ancillary ligands86. Although showing higher cytotoxic activity 

than cisplatin, they displayed lower IC50 values than their mononuclear analogues. Based on X-ray 

structures it was demonstrated that the short bridge between the two NHC moieties of 33a confines 

the two Pt(II) C^N^N planes in close proximity rendering intra-molecular Pt–Pt interactions feasible. 

In 2011, Biot et al. reported on a pyrazole Pt(II) C^N^C complex 3488. This complex was obtained by 

reacting the Pt(II) precursor cis-[PtCl2(DMSO)2] with 1-(2-dimethylaminoethyl)-3,5-diphenyl-1H-

pyrazole in toluene under reflux conditions. This complex shows higher cytotoxic activity in lung 
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cancer cells (A549) and breast cancer cells (MDA-MB-231 and MCF-7) than cisplatin. However, it 

does not alter plasmid DNA mobility, suggesting a different mechanism of action. 

  

Figure 7. Recent Pt(II) C^N^N systems with cytotoxic properties. 

 

In 2012, the group of Cascante et al. reported on the synthesis of seven-membered Pt(II) C^N^N 

complexes 3589 by reaction of the dimeric Pt(II) precursor [Pt(4-C6H4Me)2(µ-SEt2)]2 with the imine 2-

F,6-ClC6H3CH=NCH2CH2NMe2 in toluene under reflux. The reaction proceeds via a Pt(IV) 

intermediate, due to the intramolecular activation of one ortho C-Cl bond of the Pt(II) ligand. This novel 

framework complex shows higher cytotoxic activity in lung cancer cells (A549) and breast cancer cells 

(MDA-MB-231and MCF-7) than cisplatin, being comparable in this respect to 34. However, DNA 

electrophoretic mobility studies show that complex 35 modifies the DNA tertiary structure. 

Furthermore, induction of S-G2/M arrest and apoptosis were also observed. 

In 2015 Che et al. described the luminescent properties of a series of Pt(II) complexes of the 

general formula [Pt(C^N^N)(C≡NR)]ClO4
90. These pincer complexes act as metallo-intercalators 

adducts with emission properties sensitive to the structure of nucleic acids. Various complexes were 

synthesized (Fig. 8), but only complex 36-1a shows highly active inhibiting behaviour towards various 

cancer cell lines in vitro (SH-5YSY (neuroblastoma), NCI-H460 (non-small-cell lung carcinoma), 

SUNE1 (nasopharyngeal carcinoma)) and inhibited tumor growth in mouse model. This is one of the 

first examples of a metallo-intercalator that acts as an emission probe for nucleic acids, while having 

anti-cancer properties at the same time. The intercalation is carried out via the C^N^N ligand plane 

being inserted in a parallel fashion to the DNA bases. As mentioned before, the emission occurs by π-

stacking interactions between the intercalator and the double-stranded DNA nucleobases 91. 
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Figure 8. Luminescent Pt(II) C^N^N complexes as reported by Che et al.[86] 

 

The mode of action is believed to include cleavage-enhancement of the double-stranded DNA 

substrate, as indicated by the appearance of the 13-mer product. The stabilization of the 

topoisomerase-I-DNA complex, resulting in DNA damage, is thereby assumed to synergize the 

anticancer activity of 36-1a. Fig. 9 depicts how 36-1a selectively forms an emissive exciplex with 

double-stranded DNA. The difference observed in the emitted wavelength is indicative of differences 

between binding to dsRNA or dsDNA, respectively. 

 

 

Figure 9. Emission spectrum of 35-1a with dsDNA and dsRNA [86]. Reprinted with permission 
of Wiley-VCH. 

 

C^N^C complexes 
So far, only a handful of platinum(II) C^N^C pincer complexes are known, which have been used 

mainly as photoluminescence emitters92 or as hydrovinylation catalysts93. 
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The prominence of palladium(II) pincer complexes over their platinum(II) analogues is given by the 

fact that Pt(II) is one of the most kinetically inert metal ions known, making a double carboplatination 

more challenging than a single one, as observed for the C^N, C^N^N or C^N^S systems94.  

Thus, a unique Pt(II) C^N^C pincer carbene complex 37 was reported by Santra et al. in 2014 

(Fig. 10)95. The synthesis was carried out via transmetalation of the respective silver C^N^C complex 

with Ag2O. The C^N^C pincer ligand was obtained by reacting 1-methylbenzimidazole and 2,6-

bis(bromomethyl)pyridine under reflux in dioxane. Complex 37 displays modest activity against breast 

(MCF7), colon (HCT116) and lung (A549) cancer cell lines. This field certainly has potential for further 

expansion in the future. 

  
Figure 10. Pt(II) C^N^C pincer as reported by Santra et al. [91]. 

 

C^N^S complexes 

Representative members of this family are reported in Fig. 11 below. Pt(II) C^N^S systems as 

anticancer agents were also pioneered by Alonso, Navarro-Ranninger et al. in 1998 by introducing 

complex 3896. This complex is obtained by reacting the Pt(II) precursor Pt2Cl4 in equimolar amounts 

with p-isopropylbenzaldehyde thiosemicarbazone in MeOH. This complex shows cytotoxic activity 

comparable to cisplatin against various human cancer and murine cell lines but also cytotoxic activity 

against cisplatin resistant cancer cell lines such as Pam-ras cells. DNA interaction studies suggest 

that complex 38 forms interhelical cross links with the DNA. 

Following this initial work, Veith et al. presented a 2-acetylthiophenethiosemicarbazone (ATTSC) Pt(II) 

complex 39 in 201297. Interestingly, this complex is obtained when reacting K2PtCl4 with the Schiff 

base ATTSC in 1:2 ratio. For a K2PtCl4 to ATTSC ratio of 1:1 the tetrameric complex 40 is obtained 

with four platinum atoms displaying an almost square planar geometry, being coordinated 

intermolecularly to a sulfur atom of a neighbouring ligand. The crystal structures of these platinum 

complexes were solved and differentiated by single-crystal X-ray diffraction structure determinations. 

Both complexes show higher cytotoxic activity in colorectal (HT-29) and duodenal adenocarcinoma 

cells (HuTu-80) than cisplatin, with the tetrameric complex being slightly more active. This leads to the 

hypothesis that the tetrameric complex intercalates very well between the nucleobases of DNA tumor 

cells, causing greater conformational changes in the double helix of DNA, leading to apoptosis. 
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Figure 11. Recent Pt(II) C^N^S complexes. 

In 2016, Grévy et al. reported on the synthesis of non-symmetric Pt(II)C^N^S complexes that include 

thioether functionalized iminophosphoranes (41-42)98 (Fig. 11). These compounds were obtained by 

reacting the thioether moiety containing iminophsphorane PPh3=NC6H4SR [R = CH3 (41), CH2C6H5 

(42)] with the Pt(II) precursor [Pt(SMe2)Cl2] in refluxing dichloromethane. Preliminary cytotoxic studies 

show that both complexes have better cytotoxic activity than cisplatin against cervical (HeLa) and 

erythroleukemic (K562) cancer cell lines. 

  



 22 

2.2 Au(III) compounds 
Au(III) compounds as anticancer agents appeared a logical step forward from platinum(II)-based 

compounds, since gold(III) is isoelectronic (d8) and isostructural to platinum(II) featuring the same 

square-planar geometry. However, at variance with Pt(II) complexes, numerous studies have shown 

that anticancer gold compounds have other biomolecules and biological pathways as possible 

targets99. As Au(III) is easily reduced to its more stable Au(I)/Au(0) forms, Au(III) complexes are 

generally strongly oxidizing agents. Reductions can be easily driven by thiols groups of biological 

systems, making Au(III) potentially toxic100. Therefore, Au(III) complexes were long believed not to be 

suitable for medicinal applications101. As a consequence, Pt(II) cyclometalated complexes for the 

treatment of cancer cells are (yet) more numerous. Cyclometalation, however, offers a convenient way 

for the stabilization of the Au(III) center and “fine tuning” of the physiochemical properties within the 

cyclometalated moiety. 

 

C^N complexes 

Representative members of this family are reported in Fig. 12 below. The class of Au(III) C^N 

complexes with cytotoxic properties was first introduced by Parish, Buckley et al. in 1996102. They 

synthesized a series of Au(III) complexes of the structure [(damp)AuX2] with a 

2[dimethylamino)methyl]-phenyl (damp) backbone (43). The compounds displayed cytotoxic activities 

comparable to cisplatin against various cancer cell lines, such as bladder (HT1376) and ovarian (CH1) 

cancer cells, with the malonato and acetato substituted complex being the most selective and active of 

the series in vitro, and showing moderate anticancer effects in vivo. Although the structure appears to 

be very similar to cisplatin, an alkaline elution study showed that the series does not cause interstrand 

DNA cross-links. Instead, both complexes lead to submicromolar inhibition of cysteine protease 

cathepsin B103 and inhibition of TrxR104. 

  

Figure 12. Au(III) C^N complexes with cytotoxic properties. 
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Messori et al. reported on the synthesis of complex 44 enabling a dimethybenzyl-pyridine backbone in 

2005105. This complex proved to be stable under cellular reducing conditions; although the cytotoxic 

activity against ovarian cancer cell line A2780 is comparable to cisplatin, complex 44 displays 

significant cross-resistance, suggesting a different mechanism of action. It was demonstrated that 44  

selectively inhibits TrxR activity, which is presumed to be caused by progressive oxidative damage of 

(seleno)cysteine residues of the active site of TrxR8a. Other studies showed that the hydrolysis product 

of 44 is able to disrupt mitochondrial function and alter the glycolytic pathway in A2780 cancer cells, 

leading to apoptosis106. 

The cationic complex 45, bearing a biguanide moiety, was synthesized by Che et al. in 

2012107. By introducing the polar biguanide ligand, a water-soluble complex was obtained that is able 

to form Au(III)-GSH complex detectable by ESI-MS. The complex displays higher toxicity than cisplatin 

against several cancer cell lines, such as cervical cancer (HeLa) cells. The toxicity of complex 45 is 

believed to be caused by swelling of the endoplasmic reticulum (ER), being supported by 

oligonucleotide microarray analysis and western blotting assays cells. Irreversible ER stress triggers 

apoptosis, with the activation of the canonical mitochondrial cell death pathway playing an essential 

role108. A structural analogue (46) was reported by the same group, also utilizing a dimethybenzyl-

pyridine C^N backbone and a dithiocarbamate ligand109. This complex selectively inhibits breast 

cancer cells (MCF-7) but is less toxic to non-tumorigenic immortalized liver cells (MIHA). Complex 46 

was demonstrated to form adducts with cysteine-containing peptides and proteins (e.g. 

deubiquitinases) by ESI-MS experiments. Notably, Au(III) C^N complexes bearing a dithiocarbamate 

ligand had been previously proven by Contel et al. to cause mitochondria dysfunction induced by 

reactive oxygen species (ROS) and Bax/Bak activation110.   

Synthesis of the 2-benzylpyridine derivative 47 was reported by Cinellu et al. 111 already in 

1996 by reacting NaHAuCl4 with 2-benzylpyridine in refluxing MeCN/H20 overnight. In 2015 Casini, 

Cinellu et al. synthesized the structural analogue by replacing one chlorido ligand in the presence of 

excess KPF6 with 1,3,5-triaza-7-phosphaadamantane (PTA)112. PTA offers multiple benefits as a 

ligand, as it is non-toxic and increases the water solubility of the resulting complexes. The cytotoxic 

properties of complex 47 and 48 against various cancer cell lines such as ovarian adenocarcinoma 

(A2780), mammary carcinoma (MCF-7) and lung carcinoma (A549) were explored. Both complexes 

demonstrate good cytotoxic activity, with complex 48 displaying higher cytotoxic activity than 47, which 

can probably be contributed to the increased water solubility induced by the PTA moiety and the 

overall positive charge of the compound.  Among the possible mechanism of actions, potent inhibition 

of the zinc-finger protein PARP-1 is reported, which has been already demonstrated for several 

coordination gold(III) complexes with N-donor ligands 113. Of note, organic compounds as PARP-1 

inhibitors are currently in clinical trials for their selective cytotoxic properties, and their DNA damage 

repair (DDR) inhibiting abilities114 115. 

C^N^N complexes 

In 2003, Cinellu and coworkers reported on the synthesis of the Au(III) complex 49 with a 

dimethylbenzyl-bipyridine C^N^N backbone (Fig. 13) 116. By choosing a OH- ligand in ancillary position 
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to the Au(III) center, good solubility of the complex under physiological conditions was obtained. Upon 

reaction with bovine serum albumin (BSA), tight metal–protein adducts were formed. It is believed that 

binding of complex 49 to BSA is achieved via histidine moieties on the protein surface. Interaction 

studies of organometallic complexes with serum albumin have attracted considerable interest during 

the last years117. Serum albumin is the most abundant plasma protein and serves many physiological 

functions, such as maintaining both the colloid osmotic blood pressure and – together with other 

compounds - the blood pH value. Furthermore, it is suspected that serum albumin protects cells 

against oxidative stress118. Complex 49 shows higher cytotoxic activity and selectivity against a series 

of 12 human tumor cell lines than cisplatin. Inhibition of biomolecular systems, such as mammalian 

target of rapamycin/rapamycin (mTOR), have been suggested as possible mechanism of action119. 

 
Figure 13. Mononuclear and dinuclear Au(III) C^N^N complexes. 

The same group reported on the dinuclear, oxo-bridged complex variants of general formula 

[(N^N^C)2Au2(µ-O)][PF6]2 (50) (Fig. 13) and their cytotoxic properties in 2011116. Coordination oxo-

bridged Au(III) N^N complexes had been previously reported before120 (named “Auoxo” compounds) 

showing antiproliferative effects toward various human cancer cell lines. However, the latter 

compounds displayed stability issue of the Au(III) center in the reducing intercellular milieu, which 

were overcome introducing the strong Au-C bond in the organometallic analogues. Notably, these 

compounds reveal pronounced redox stability even in the presence of effective biological reductants 

such as ascorbic acid and glutathione. In comparison to complex 49, complexes 50a-b showed in 

general rather moderate cytotoxic activity against the series of 12 human tumor cell lines. However, 

50a proved to be particularly active against human breast cancer cells (401NL), while 50b displayed 

only scarcely selective cytotoxic activity. Mass spectrometry studies with model proteins (hen egg 

white lysozyme and horse cytochrome c) indicate that upon reaction with proteins, complexes 50a-b 

form monometallic adducts, preserving the Au(III) center and retaining the multidentate ligand. This 

also indicates that the complex-protein interaction facilitates the cleavage of the oxo-bridge and the 

conversion into the more active monometallic species.   

C^N^C complexes 

The field of Au(III) C^N^C complexes with anticancer properties have been closely examined by Che 

and coworkers (Fig. 14). As C^N^C pincer ligands allow the highest stabilization of the Au(III) center 

among the herewith presented ligands, it is not surprising that this family, at variance with the case of 

Pt(II) complexes, makes up for the majority of the reported cyclometalated Au(III) compounds.  
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The Au(III) complex class utilizing the 2,6-diphenylpyridine as a C^N^C ligand was reported by Che et 

al. already in 1998121 via reaction of K[AuCl4] and [Hg(C^N^CH)Cl] under reflux in acetonitrile. 

Substitution of the chlorido ligand of complex 51 leads to a number of cationic Au(III)C^N^C 

complexes with different ancillary ligands (52-54). Complex 52 and 53, containing non-toxic N-donor 

ligands, display cytotoxic activities similar to cisplatin against various cancer cell lines, such as HeLa 

cancer cells122. However, they do not show cross-resistance with cisplatin against nasopharyngeal 

(NPC) cancer cells. Gel-mobility shift assays and viscosity analysis show that 52 intercalates with 

DNA, causing DNA elongation. It has been reported that DNA intercalators enhance the assembly of 

G-quadruplexes. Consequently, native polyacrylamide gel electrophoresis (PAGE) was employed to 

examine the ability of 52 to intercalate with DNA and induce the formation of intramolecular G-

quadruplexes from a model oligonucleotide122. This indicates that 52 behaves similarly to the classical 

[Pt(terpy)Cl]+ from the perspective of DNA intercalation and potential telomerase inhibition. In addition, 

by flow cytometry analysis in SUNE1 cells, it was demonstrated that 52 and 53 target cellular DNA via 

S-phase cell arrest, leading to apoptosis.   

As reviewed by Sadler and Berners-Price already in 1987, phosphine containing compounds 

exhibit phosphine ligand-mediated cytotoxicity123. However, due to their poor stability under 

physiological conditions and non-specific binding affinities towards various biomolecules, these 

compounds’ application as anticancer compounds is hindered. By introducing the C^N^C scaffold, 

significantly higher complex stabilities were obtained. For example, complex 54 and its dinuclear 

analogue 55 are soluble and stable in aqueous media122. These compounds neither change the 

melting temperature of calf-thymus DNA (ctDNA) significantly nor cause S-phase cell arrest, 

suggesting a different mode of action with respect to cisplatin. The dinuclear complexes of type 55 

show higher cytotoxic activity against various cancer cell lines than their mononuclear counterparts. 

The highest cytotoxicities were displayed for n = 3, relating to the cytotoxicity of the free 1,2-

bis(diphenylphosphino)propane (dppp) ligand. In vivo studies in rats with liver cancer (HCC) 

orthografts showed that the dppp derivative is a nanomolar inhibitor of TrxR1 and induces ER 

stress124. 

By replacing the PPh3 moiety with a NHC ligand complex 56 and complex 57 - as the respective 

dinuclear compound - can obtained86. This results in a reduction of the cytotoxic activity and selectivity 

of the compounds, supporting the fact that indeed phosphine ligand-mediated cytotoxicity is crucial for 

complexes 54 and 55. In this case, the mononuclear complex 56 displays higher cytotoxic activity than 

its dinuclear analogue 57, being 167-fold more cytotoxic to non-small lung carcinoma cells (NCI-H460) 

than to normal lung fibroblast cells (CCD-19Lu). By DNA interaction studies with ctDNA it was 

demonstrated that complex 56 induces DNA strand breaks and subsequent cell death through the 

stabilization of TopoI-linked DNA125. 

A recent development in the field of Au(III) C^N^C complexes is the discovery of 

supramolecular polymers, self-assembled from cyclometalated Au(III) C^N^C complexes. In this 

framework, the mononuclear complex [Au(C,N,C)(4-dpt)]+ (4-dpt = 2,4-diamino-6-(4-pyridyl)-1,3,5-

triazine) 58 was chosen by Che et al. due to the ability of the antiangiogenic 4-dpt ligand to form 

intramolecular hydrogen bonds and to establish π-π interactions126. These factors proved to be 

essential for supramolecular complex formation by self-assembly in acetonitrile at ambient 
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temperature. The stability of 58 in phosphate-buffered saline in the absence and presence of the 

biological reductant glutathione (GSH) was examined. UV/Vis absorption spectrophotometry 

demonstrated that upon reaction with GSH, 58 shows an increased absorbance between 

approximately 260 and 380 nm. For incubation periods over 24 hours the 4-dpt ligand is released into 

the solution, and both [Au(C^N^C)Cl] and 4-dpt contribute to precipitation, as was demonstrated by 

ESI-MS and 1H NMR. These results suggest that 4-dpt of complex 58 can be replaced by chloride ion 

in PBS, with formation of [Au(C^N^C)Cl] and release of 4-dpt. The log–log plot of the concentration-

dependent specific viscosity of 58 in CH3CN measured at 294 ± 1 K shows a significant increase in 

viscosity at concentrations above 6.3 g  L−1; relating to typical characteristics of supramolecular 

polymer solutions. Via transmission electron (TEM) and scanning electron microscopy (SEM), partially 

aligned nanofibers with diameters and lengths of about 50 nm could be demonstrated for 58. The 

significant viscosity at high concentration of 58 (20 mM) is contributed to the partial entanglement of 

these nanofibers. Complex 58 displays high cytotoxic activity towards murine cancer cell line B16 and 

non-tumorigenic lung fibroblast cells (CCD-19Lu). It was suggested that the sustained release of free 

4-dpt ligand and simultaneous formation of Au(III)-glutathione adducts account for the observed 

cytotoxicity. GSH adduct formation was assessed via ESI-MS and UV-VIS for 58 in phosphate-

buffered saline containing GSH (2 mM), showing significant cluster peaks for [(C^N^C)Au(GSH)]+ and 

the dimeric species [(C^N^C)2Au2(GSH)2]2+. Furthermore, the nanofiber network of the polymer could 

be used to encapsulate other cytotoxic agents, thus enabling a localized drug delivery while reducing 

side toxicity.  

 

 

Figure 14. Representative Au(III) C^N^C complexes synthesized by Che et al. 
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All Au(III) C^N^C follow a general synthesis route as depicted in Fig. 15.  A direct C-H activation of the 

respective C^N^C ligand in the presence of a Au(III) precursor (usually KAuCl4) is theoretically 

possible, but requires high temperatures, which can also result into decomposition of the ligand. As an 

alternative, a transmetalation pathway using organomercury(II) reagents is the most common 

synthesis strategy nowadays, as it allows milder reaction conditions and less formation of by-products 

occurs127.  In a first reaction step the 2,6-diphenylpyridine derivative is reacted with  mercury(II) 

acetate,  followed  by  metathesis  with LiCl, yielding an organomercury(II) species. Subsequent 

transmetalation is achieved by reacting the organomercury(II) complex with KAuCl4 in acetonitrile 

under reflux. 

 

Figure 15. General complex formation of Au(III) C^N^C complexes via transmetalation. 

 

C^N^S complexes 

Bidentate 2-pyridyl carboxylate128 and 2-pyridyl amidate complexes129 of Au(III) have been reported to 

show both catalytic and biological activity. Tridentate analogues of bis(amidate), bis(carboxylate), and 

bis(iminothiolate) ligands as a C^N^S or S^C^S moiety, are reported for stabilizing other transition 

metals, mainly Pd(II)130 and Ru(II)131. Surprisingly, these ligand classes have not been extended to 

Au(III) and there are, to the best of our knowledge, practically no reports of Au(III) C^N^S with 

anticancer properties. Some related “pseudo-pincer” compounds have been reported though (Fig. 16). 

For example, Sommer et al. synthesized the Au(III) complex 59  with a tridentate thiosemicarbazone 

ligand of the formula  [Au(Hdamp-C1)Cl(H2pydoxmetsc)]Cl2 (pydoxmetsc = pyridoxal 

methylthiosemicarbazone) in 1999132. This complex is involved in extended hydrogen bonding 

networks with counter ions and solvent molecules. The antiproliferative effect of 59 was tested on 

breast cancer cells (MCF-7) in vitro with promising cytotoxic results. In 2014, Bergman, Toste et al. 

reported on the Au(III) S^C^S complex 60 with bis(iminothiolate) ligands, which displays high stability 

in reducing environments and was recommended for further testing in various fields of application, 

including as anticancer agent133.  
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Figure 15. Au(III) pseudo-pincer and Au(III) S^N^S complexes.  
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3. Conclusions and Perspectives 
In this review the use of organometallic compounds in medicinal chemistry is highlighted, with focus 

on cyclometalated Pt(II) and Au(III) C^N, C^N^N, C^N^C and C^N^S complexes. Cyclometalation 

offers multiple benefits, such as stabilization of the metal center (especially crucial for the easily 

reduced Au(III)) and fine-tuning of the redox properties by variations in the multidentate moiety. 

Overall, this allows the possibility of enhanced control of the physiochemical properties of the resulting 

complexes. Therefore, it is not surprising that research on cyclometalated Au(III) and Pt(II) complexes 

for anticancer treatment has significantly grown during the last years, with promising complexes being 

reported by numerous groups. As highlight in the field, Pt(II) C^N bis(NHC) complexes may be worth 

exploring for their ability to influence the immune system inducing ICD83. In fact, one of the several 

ways in which chemotherapeutics engage a tumor-specific immune response is by triggering 

immunogenic cell death, whereby the dying cancer cells initiate a robust immune response, acting as 

an “anticancer vaccine”134. Moreover, specifically concerning gold compounds, Au(III) C^N^C 

complexes have also been demonstrated to possess peculiar features as G-quadruplexes 

stabilizers,122 which could potentially be used either as therapeutic agents or (if luminescent) for 

imaging of such non-canonical DNA structures in cells. 

The understanding of the mode of action of the various mentioned families of experimental 

organometallic anticancer compounds is one of the most vital questions when studying their cytotoxic 

properties. In fact, so far, only limited studies have been conducted, most commonly in cancer cells in 

vitro. In particular, it would be very interesting to compare the cytotoxic properties of Pt(II) and Au(III) 

analogues to highlight possible differences in the mechanisms of action. 

Thus, in general, further exploration of the cellular uptake, subcellular distribution, as well as 

the fate of these metallodrugs (mono or poly-nuclear) inside cells is of major importance to get insights 

into their mechanism of action. Therefore, there is an increasing need for imaging methods that allow 

the direct mapping of the subcellular distribution of metal-based therapeutics. In this review, several 

complexes with luminescent properties have been described, which are highly relevant for uptake and 

cell distribution studies, and ultimately to provide insights into the compounds’ pharmacological 

targets. Future optimization of cyclometalated scaffolds should include ligands and substituents 

enhancing their solubility in aqueous environment while maintaining a certain lipophilic character, to 

enhance their accumulation in cancer cells.  

It is also worth mentioning that organometallic conjugates of receptor-targeting peptides are 

proposed as interesting candidates for novel targeted cancer therapies. To the best of our knowledge, 

this approach has not been applied to the delivery of cyclometalated Pt(II) and Au(III) complexes yet, 

and would be worth exploring via functionalization of the cyclometalated ligands. 

An interesting new approach is the previously mentioned synthesis of supramolecular 

polymers self-assembled from cyclometalated Au(III) C^N^C complexes126. The nanofiber network of 

the polymer could be used to encapsulate other cytotoxic agents, thus enabling a localized drug 

delivery while reducing toxicity for healthy tissue. This could also reduce the frequency of drug 

administration through a sustained-release of the cytotoxic compound.  

Finally, there are still several very interesting cyclometalated Au(III) and Pt(II) complexes reported in 

the literature (such as highly luminescent Au(III) C^N^C complexes with a pyrazine moiety135) that are 
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only applied in catalysis and have not been tested for their anticancer properties. It would be highly 

interesting to try to exploit them also for biological applications, for example as cytotoxic agents acting 

via a catalytic mechanism in cancer cells. 
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