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Chip-scale integrated light sources are a crucial component in a broad range of photonics 

applications. III-V semiconductor nanowire emitters have gained attention as a fascinating 

approach due to their superior material properties1,2, extremely compact size3, and the capability 

to grow directly on lattice-mismatched silicon substrates4,5. Although there have been remarkable 

advances in nanowire-based emitters6-8, their practical applications are still in the early stages 

due to the difficulties in integrating nanowire emitters with photonic integrated circuits (PICs). 

Here, we demonstrate for the first time optically pumped III-V nanowire array lasers 

monolithically integrated on silicon-on-insulator (SOI) platform. Selective-area growth of purely 

single-crystalline InGaAs/InGaP core/shell nanowires on an SOI substrate enables the nanowire 

array to form a photonic crystal nanobeam cavity with superior optical and structural properties, 

resulting in the laser to operate at room temperature. We also show that the nanowire array lasers 

are effectively coupled with SOI waveguides by employing nanoepitaxy on a pre-patterned SOI 

platform. These results represent a new platform for ultra-compact and energy-efficient optical 

links, and unambiguously point the way toward practical and functional nanowire lasers.   

 

Integrating III-V semiconductors on a silicon platform has been widely studied to achieve high-

performance and energy-efficient lasers since the demonstration of hybrid III-V/Si lasers. Flip-chip 

integration and wafer bonding techniques have been employed in commercially available solutions to 

integrate III-V emitters on lattice-mismatched silicon9, but these processes require the sacrifice of costly 

III-V wafers and are not suitable for high-volume integration10. Although monolithic integration of III-

V lasers on silicon by heteroepitaxy is a more straightforward approach, the mismatches in lattice 

constants and thermal expansion coefficients between III-V semiconductors and silicon have been the 

major issue severely degrading the optical properties of epitaxial III-V materials by the formation of 

high density of crystal defects4. Because of this, current quantum dot or quantum well-based III-V lasers 

on silicon are grown by employing thick buffer layers to reduce the density of threading dislocations11.  

Recently, the growth of III-V nanowires on silicon has been proposed as a novel approach enabling 

monolithic integration of high-quality III-V semiconductors on silicon, as the nanoscale interface 

between nanowires and substrates effectively relaxes the strain without the need of buffer layers4,12. 

Nanowire lasers exhibit extremely small device footprints and sub-wavelength scale mode volumes, 

which support the nanowire approach to be one of the fascinating candidates towards ultra-compact and 

energy-efficient on-chip light sources on silicon7. The ability to grow radial and axial heterostructures 

in nanowires enables further improvement of optical properties by effective surface passivation13,14 and 

incorporation of quantized nanostructures15. However, difficulties in integrating nanowire lasers with 

PICs and silicon electronics have hindered practical applications so far5-7. In this Letter, we demonstrate 

InGaAs nanowire array lasers directly grown on an SOI platform and operating at room temperature. 



Superior optical field confinement is achieved by forming nanobeam cavities composed of vertically 

standing nanowires, which contrasts our work from previously reported nanowire lasers attaining 

optical feedback from end facets of single nanowires5,16,17 or randomly generated cavities18. Room 

temperature lasing from nanowire array cavities is accomplished by providing a suitable thickness of 

SOI layer and in-situ surface passivation with InGaP shells. Advancing from the lasing demonstration 

of nanowire array cavities formed on planar SOI substrates, we also demonstrate SOI waveguide-

coupled nanowire array lasers integrated on silicon mesas, which supports the compatibility of the 

proposed lasers with PICs. 

We adopt a one-dimensional (1D) photonic crystal cavity, which can achieve an extremely high 

quality (Q) factor comparable with the 2D counterpart19,20, while requiring a much smaller footprint and 

number of nanowires. The schematic illustration of our nanowire array laser is shown in Fig. 1a. The 

total volume of the cavity is only 6.7 × 0.14 × 0.8 μm3, composed of 21 nanowires. Periodically arranged 

nanowires provide strong in-plane optical feedback, where the position of 11 nanowires in the center is 

linearly tapered to form an artificial defect to confine the field in the photonic bandgap. A thin SOI(111) 

layer of 40 nm thickness is used to achieve out-of-plane confinement and attain a high Q factor. Fig. 1b 

exhibits the electric field profile of the fundamental TM mode derived by a 3D finite-difference time-

domain (FDTD) method, which reveals that the field is strongly confined in nanowires of the defect 

area. The proposed structure shows a calculated Q factor of ~81,000, a confinement factor of Γ=0.64, 

and mode volume of Veff = 0.81(λ/n)3. It should be highlighted that the calculated Q factor is more than 

two orders of magnitude higher than previously reported single-nanowire lasers which rely on optical 

feedback from nanowire end and side facets5,17, and such a high Q factor, high confinement factor, and 

small mode volume can lead to low lasing threshold21 and fast direct modulation speeds22. 

Well-aligned InGaAs nanowire arrays are grown on SOI substrates using a catalyst-free selective-

area epitaxy technique, as this technique enables controlling the position of vertical nanowires without 

the use of foreign catalysts which generate deep-level traps in silicon23. Fig. 1c shows the scanning 

electron microscope (SEM) image of a nanowire array cavity grown by metal-organic chemical vapor 

deposition (MOCVD). The InGaAs nanowires are capped by InGaP shells to reduce non-radiative 

surface recombination and improve the radiation efficiency. The lasing action is measured at room 

temperature by optically pumping the nanowire array cavity with a 660 nm wavelength pulsed laser. 

Photoluminescence (PL) spectra in Fig. 2a show that the cavity peak around 1,100 nm is much weaker 

than the broad spontaneous emission when the pump power is low. As the pump power is increased, the 

spontaneous emission broadens and blue-shifts due to the band filling effect and the cavity peak rapidly 

increases, and finally dominates the spontaneous peak. The integrated intensities of these emission 

peaks are plotted as a function of input pump power (light-out versus light-in (L-L) curve) in Fig. 2b, 

to further investigate lasing characteristics. The cavity peak intensities show an S-shaped response in 



the logarithmic scale, whereas the spontaneous emission is clamped above the lasing threshold, which 

are clear indicators of lasing action. A low threshold pump fluence of 15 μJ/cm2 is achieved, and a 

spontaneous emission factor β of 0.0065 and a Q factor of 1,150 is derived by fitting the integrated peak 

intensities using rate equations. The linewidth of the cavity peak decreases to ~1.9 nm around the lasing 

threshold, and significantly broadens above the threshold due to the refractive index fluctuation induced 

by pulsed pumping, which agrees well with previous reports15,24. The emission patterns reveal an 

interference fringe pattern above the threshold (Fig. 2c), indicating coherent radiation.  

In fact, the compatibility of proposed vertically standing nanowire array cavities with PICs is 

plagued by the limitation that the SOI layer has to be very thin to achieve vertical optical confinement 

for lasing, whereas standard PIC platforms employ thicker SOI layers (220 nm) with passive 

components25. Thus, we next show an improved architecture (Fig. 3a) that realizes not only lasing on 

220 nm-thick SOI substrates, but also coupling of the lasers with SOI waveguides, which is crucial for 

the compatibility with silicon photonics platforms. The key idea enabling high Q cavities on standard 

SOI is creating silicon trenches around the nanowires, so that the out-of-plane confinement is achieved 

in a similar way as nanowire cavities on thin SOI layers26. The Q factor is calculated as ~83,000, which 

is similar with the nanowire array cavity on 40 nm-thick planar SOI, while the confinement factor is 

decreased to Γ=0.51 as the portion of the electric field overlapping with nanowires on thicker silicon is 

decreased (Fig. 3b). 

The nanowires are directly integrated on pre-patterned SOI by employing the growth technique we 

have recently reported in Ref. 27. Each nanowire is positioned on the center of SOI mesas, and the 

nanowire array cavity is attached to a rib waveguide with an output grating coupler (Fig. 3c). We stress 

that purely single-crystalline nanowires without threading dislocations or stacking defects are achieved 

by direct growth on the SOI mesas as shown in Fig. 3d. The nanowires grown on SOI mesas exhibit 

20 % indium content in the InGaAs core, which is capped by lattice-matched InGaP shell with higher 

indium content to ensure high core/shell interface quality. The PL spectra measured from the cavity 

show multiple cavity peaks below lasing threshold, whereas the fundamental mode at the shortest 

wavelength reaches lasing and dominates other peaks above threshold (Fig. 3e). The lasing peak is 

slightly blue-shifted above lasing threshold due to the refractive index change caused by band filling28. 

Other peaks originate from low-Q modes, with the electric field exhibiting multiple antinodes along the 

x-axis and penetrating into the periodic nanowire reflectors on both sides of the defect area (Fig. 3f). 

The threshold pump fluence is estimated to be ~100 μJ/cm2 from the sharp kink observed from the 

linear L-L curve in Fig. 3e, which is higher than the laser grown on 40 nm-thick planar SOI substrates. 

We attribute this to lower Γ and degraded Q factor, because the Q factor of cavities on mesas is 

influenced by mesas fabrication and alignment imperfections, in addition to the degradation from the 

non-uniformity of nanowire geometries that the cavities on both planar SOI and pre-patterned SOI 



experience.  

Direct coupling of nanowire array lasers with SOI waveguides is confirmed by measuring the light 

emission from output grating couplers, which substantiates the compatibility of proposed lasers with 

PIC platforms. Interference fringe patterns are observed above lasing threshold from both the nanowire 

array cavity and the output grating coupler (Fig. 4a), indicating that coherent light is coupled and 

transmitted through the waveguide. It is interesting to note that all cavity modes are efficiently coupled 

with the waveguide as shown in Fig. 4b, while the coupling of spontaneous emission is negligible. It 

should be noted that the coupling efficiency of nanowire array lasers with the waveguides can be up to 

> 50 % while maintaining high Q factor, by tailoring the cavity structure. This is in stark contrast to 

previously reported single nanowire-type lasers employing Fabry-Perot or helical cavity modes, which 

are difficult to couple with in-plane waveguides and achieve high Q factor29. It is also worthwhile to 

mention that the lasing wavelengths can be controlled either lithographically or epitaxially to cover 

entire telecommunication wavelengths. These functionalities support our claim that this platform could 

be a stepping stone for ultra-compact and energy-efficient optical links. 

In summary, we have demonstrated InGaAs/InGaP core/shell nanowire array lasers on SOI 

operating at room temperature. The lasing action reveals the validity of the proposed design as a 

compact light source on silicon photonics platforms, whereas SOI waveguide-coupled lasers integrated 

by growing nanowires on pre-patterned mesas verify the compatibility with PICs. Our bottom-up 

approach to form nanowire-based photonic crystals on SOI substrates offers an attractive degree of 

freedom in designing novel photonic devices in a low-cost and high-volume process. It should be noted 

that proposed nanowire array photonic crystal structures can also be employed for other components 

for on-chip nanophotonic devices and lab-on-a-chip applications, including photonic crystal 

waveguides, resonators/couplers, filters, and photodetectors. We believe that the proposed III-V 

nanowire-based lasers will not only pave the way for chip-scale optical links, but also have huge 

potential for diverse applications such as quantum electrodynamics, single-photon sources, all-optical 

switching and memories, and bio- and chemical sensors.   



Methods 

Fabrication. A lightly p-doped (Boron, 10 Ω.cm) 6-inch SOI (111) wafer with an SOI layer 

thickness of 450 nm and a buried oxide layer thickness of 2 μm is used for the nanowire growth. The 

sample was prepared for MOCVD growth, by wafer thinning, silicon etching, dielectric mask deposition 

(20 nm-thick Si3N4), and nanohole patterning (70 nm diameters). The equipment and process conditions 

used were identical with our previous report27. Rectangular SOI mesas fabricated on 220 nm-thick SOI 

layers by dry etching showed a width of 150 nm and a height of 180 nm. Grating output couplers with 

a period of 900 nm, a width of 4 μm, and a duty cycle of 50 % were connected at the end of rib 

waveguides with a length of 35 μm and a width of 440 nm.  

Nanowire growth. A low-pressure (60 Torr) vertical reactor (Emcore D-75) was used for the 

MOCVD growth. Triethylgallium (TEGa), trimethylindium (TMIn), tertiarybutylarsine (TBAs), and 

tertiarybutylphosphine (TBP) were used as precursors and hydrogen was used as a carrier gas. The 

sample was first held at 880 °C for 13 mins for thermal de-oxdiation, followed by TBAs flow for 5 mins 

with the molar flow rate of 7.94 × 10-5 mol/min at 680 °C. A small GaAs stub was first grown by flowing 

TEGa with the molar flow rate of 8.78 × 10-7 mol/min, while keeping the TBAs flow constant. An 

InGaAs core growth was followed by supplying TMIn of 3.41 × 10-7 mol/min, TEGa of 8.08 × 10-7 

mol/min, and TBAs of 7.94 × 10-5 mol/min, which corresponds to the gas phase composition of 

In0.29GaAs and the V/III flow rate ratio of 69. After the core growth, the temperature is ramped down to 

600 °C under TBAs flow, and an InGaP shell was grown at 600 °C for 45 secs. Molar flow rates of 

TMIn, TEGa, and TBP were 3.64 × 10-7 mol/min, 1.10 × 10-7 mol/min, and 6.38 × 10-5 mol/min, 

respectively, which corresponds to the gas phase composition of In0.77GaP and the V/III flow rate ratio 

of 134. After the growth, the reactor temperature was cooled down to 300 °C supplying TBP of 6.97 × 

10-5 mol/min to prevent desorption of nanowires. 

Optical characterization. Lasing operation was measured by optically pumping nanowire array 

cavities at room temperature. A supercontinuum laser (SuperK EXTREME EXW-12, NKT Photonics) 

with a wavelength of 660 nm, a pulse duration of 30 ps, and a repetition rate of 1.95 MHz was used as 

a pump source. The pump source is applied from the direction normal to the SOI substrate, and focused 

by a 50× objective lens (NA = 0.42) resulting in the estimated pump spot size of 1.8 μm. The emission 

from nanowires were collected by the same objective lens, and resolved spatially and spectrally by an 

Acton SP-2500i spectrometer (Princeton instruments) and a nitrogen-cooled 2D focal plane array 

InGaAs detector (2D-OMA, Princeton instruments). Filters were used for all measurements to prevent 

the pump light from reaching the detector.   
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Figures and Figure legends 

 

  

Figure 1. Nanowire array laser monolithically integrated on SOI. a, Schematic of the nanowire 

array laser on a planar SOI substrate. b, Electric field profile (|E|) of the fundamental cavity mode, 

showing tightly confined field in nanowires. c,d, 30˚-tilted SEM images of an InGaAs/InGaP 

core/shell nanowire array laser (c) and close-up view (d). Scale bars, 500 nm (c) and 100 nm (d). 



 

 

  

Figure 2. Room-temperature lasing characteristics. a, Photoluminescence spectra of a nanowire 

array laser with increasing pump power, showing the transition from spontaneous emission to lasing. 

b, integrated emission intensities of the stimulated emission (filled blue circle) and spontaneous 

emission (filled red circle), and cavity peak linewidth (open circle). S-shaped response of the stimulated 

output is fitted to a rate-equation model (blue line), and the extracted spontaneous emission factor is 

β=0.0065. Inset: light-light curve of the lasing peak shown in a linear scale. c, Emission patterns 

measured by a commercial 2D focal plane array detector. Interference patterns are observed above the 

lasing threshold. Scale bars, 5 μm. 



 

  

Figure 3 | Nanowire array laser on SOI mesas with a waveguide. a, Schematic of the nanowire array 

laser on SOI mesas. b, Electric field profile (|E|) of the fundamental cavity mode. c, 30˚-tilted SEM 

images of a nanowire array cavity integrated with a waveguide and an output coupler (upper), and a 

close-up image of the nanowire array in the dashed box (lower). Scale bars, 5 μm (upper) and 500 nm 

(lower). d, SEM image (left) and cross-sectional STEM image (right) of a nanowire grown on an SOI 

mesa. Scale bar, 100 nm. e, Photoluminescence spectra of the laser below (red) and above (blue) the 

threshold. Inset: light-light curve of the lasing peak in a linear scale, indicating the lasing threshold around 

100 μJ/cm
2
. f, Electric field profiles (|E|) of higher modes. 



 

 

Figure 4. Coupling of nanowire array lasers with SOI waveguides. a, Emission patterns of a 

nanowire array laser coupled with an SOI waveguide, exhibiting interference patterns above the 

lasing threshold. Scale bars, 5 μm. b, Photoluminescence spectra measured on top of a nanowire 

array (red line) and on top of an output coupler (blue line) below the lasing threshold (left) and 

above the lasing threshold (right), indicating that the cavity peaks are effectively coupled to the 

waveguide. 


