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ABSTRACT 

We designed and synthesized a series of chiral indolyarylsulfones (IASs) as new HIV-1 NNRTIs. The 

new IASs 8-37 showed potent inhibition of the HIV-1 WT NL4-3 strain and of the mutant K103N, 

Y181C, Y188L and K103N-Y181C HIV-1 strains. Six racemic mixtures, 8, 23-25, 31 and 33, were 

separated at semipreparative level into their pure enantiomers. The (R)-8 enantiomer bearing the chiral 

(-methylbenzyl) was superior to the (S)-counterpart. IAS derivatives bearing the (S) alanine unit, (S)-

23, (S,R)-25, (S)-31 and (S)-33, were remarkably more potent than the corresponding (R)-enantiomers. 

Compound 23 protected hippocampal neuronal cells from the excitotoxic insult, while efavirenz (EFV) 

did not contrast the neurotoxic effect of glutamate. The present results highlight the chiral IASs as new 

NNRTIs with improved resistance profile against the mutant HIV-1 strains and reduced neurotoxic 

effects. 

 

 

  



INTRODUCTION 

Human immunodeficiency virus type 1 (HIV-1) is the etiological agent of the acquired 

immunodeficiency syndrome (AIDS), a serious health problem which globally affects more than 30 

million people and caused about 1.1 million deaths in 2015.1 Approved antiretroviral medicines include 

drugs falling in five main classes which target different steps of the viral life cycle: reverse 

transcription (nucleoside reverse transcriptase inhibitors (NRTIs), which also include the nucleotide 

agents, and non-nucleoside reverse transcriptase inhibitors (NNRTIs)), viral maturation inhibitors 

(protease inhibitors), viral entry (fusion inhibitors and co-receptor antagonists), and integration 

(integrase inhibitors). Antiretroviral therapy (ART) for the treatment of AIDS/HIV infection combines 

antiretroviral drugs targeting different steps of the HIV life cycle. At present, standard first-line ART 

for adults consists of two NRTIs plus a non-nucleoside reverse-transcriptase NNRTI or an integrase 

inhibitor.2 The ART regimens have proven to control the HIV-1 replication and delay the progression 

of HIV infection, in particular in early stages of the disease. In most patients undergoing ART therapy 

the plasma viremia remains below the limit of detection for at least six months.3 However, drug 

resistance and cross resistance, adverse side effects and toxicity problems leading to fail compliance, 

still remain pending problems of ART regimens.4-6 Therefore, there is a considerable need for new anti-

HIV drugs that show better profile against the predominant mechanism of resistance and improved 

tolerability. 

Indolylarylsulfone (IAS) has proven to be a valuable scaffold for the design of potent HIV-1 

NNRTIs. IASs bearing the 3’,5’-dimethylphenylsulfonyl moiety at position 3 of the indole nucleus and 

different substituents (for example amino acid, hydroxyalkyl or Mannich base) at the indole-2-

carboxamide nitrogen, e.g. 1 (type A, Chart 1), displayed inhibitory activities against wild-type (WT) 

and drug-resistant HIV-1 in nanomolar range.7-11 



Efforts to overcome the problem of drug resistance led to the discovery of the second generation 

NNRTIs Etravirine (ETR) and Rilpivirine (RPV) which showed improved profile compared with the 

first generation NNRTIs.12 The presence of three aromatic rings allow ETR and RPV to adopt variable 

binding conformations, which are minimally affected by mutations of the amino acid residues into the 

allosteric binding site of the NNRTIs.13 Accordingly to this idea,13,14 introduction of the third aromatic 

nucleus to the parent IAS compound provided NNRTIs, e.g. 2  (type B, Chart 1), with broad activity 

against the WT HIV-1 and the mutant K103N and Y181C HIV-1 strains.15 

Asymmetric geometry of the HIV-1 non-nucleoside binding pocket, regiochemistry and 

stereochemistry of NNRTIs can dramatically influence their anti-HIV activity. Chiral HIV-1 NNRTIs 

are highly attractive since the enantiomers often show great differences of activity against the HIV-1 

WT and the drug resistant mutant strains (for example, see Ref.s16-19). The effect of chirality on the 

activity of HIV-1 NNRTIs have been recently reviewed.20 With respect to IAS, introduction of a 

methyl group at position  of the benzyl of 2 afforded (R)-3 and (S)-3 enantiomers (type B - chiral) 

which showed remarkably different activities against the K103N mutant HIV-1 strain: (R)-3, EC50 = 

4.3 nM; (S)-3, EC50 =128 nM (Table 3).21 On the contrary, the alanine enantiomers (R)-4 and (S)-4 

(type A - chiral) showed much lower (5 times) difference of activity.9 Replacement of the phenyl of 3 

with a pyridin-4-yl ring provided compound 5, with an even greater difference of activity.22 The (R)-5 

enantiomer proved to be highly potent against HIV-1 WT, EC50 = 0.2 nM, K103N, EC50 = 0.2 nM, and 

Y181C, EC50 = 2.1 nM (Table 3).22 Besides 5, introduction of the pyrimidin-4-yl ring (6) or furan-2-yl 

(7) rings also led to potent anti-HIV-1 agents.22 However, chemical modification of these substituents 

was not exhaustively explored. Herein, we designed and synthesized new IASs to explore structure-

affinity relationships (SARs) of chiral units at the nitrogen of the indole-2-carboxamide. In particular, 

we report new IAS derivatives 8-37, which exhibit potent anti-HIV-1 activity at low nano- and 

subnanomolar concentration (Chart 1 and Table 1). Contrary to previously reported results,9 we found 



that IAS derivatives bearing the (S)-alanine unit, 23, 25, 31 and 33 show high enantiospecific activity 

against HIV-1. 

 

 

Chart 1. Structure of New IASs 8−37 and Reference 

Compounds 1−7.a 
 

 
a8−37: see Table 1 for R substituent. 

 

Despite significant progress, nearly half of people with HIV develop primary neurological 

conditions during ART treatment in both developed and undeveloped countries. There is an unmet need 



of safer anti-HIV drugs for the long-term treatment of HIV infected people. The effect on damaged 

neurons of IAS 23, a representative member of the IAS NNRTI class, was assessed by administration 

to hippocampal neuronal cultures in the presence of 100 M glutamate as a neurotoxic stimulus. IAS 

23 showed higher protective effect than EFV from the excitotoxicity. 

 

 

CHEMISTRY 

Carboxamides 8-14, 18 and 19 were synthesized by coupling reaction of 5-chloro-3-((3,5-

dimethylphenyl)sulfonyl)-1H-indole-2-carboxylic acid (38)7 with the appropriate amine in the presence 

of benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate (PyBOP reagent) and 

triethylamine in anhydrous DMF at 25 °C for 12 h. Alternatively, 38 was transformed into the 

corresponding acid chloride with oxalyl chloride and pyridine in anhydrous dichloromethane at room 

temperature for 2 h, or into carboxylic acid imidazolide with 1,1′-carbonyldiimidazole in anhydrous 

THF at 25 °C for 2 h. Subsequent treatment of the activated acid with the appropriate amine provided 

the carboxamides 15-17. Compounds 20-37 were obtained under the same reaction conditions of 

carboxamides 8-14 and 17-19 starting from the corresponding acid 398 or 408 and the proper amine 

(Scheme 1).  

Separations of the (R,S) racemic mixtures 8, 23-25, 31 and 33 were performed by 

enantioselective HPLC using polysaccharide-based chiral stationary phases (CSPs) and an appropriate 

CSP/eluent system (see Experimental section). After optimization of the analytical methods, 

semipreparative enantioseparations were set-up to obtain the pure enantiomers at milligram scale for 

screening. The absolute configurations of the enantiomers of 8, 23, 24, 31, 33 and four stereoisomers of 

25 were empirically assigned by a combination of chemical correlation/enantioselective HPLC/circular 



dichroism methods. Commercially available (S)-enantiomers of the amines were used as starting 

material for the stereospecific synthesis of the (S) forms. The enantiomeric excess of each enantiomer 

separated from the racemic mixtures 8, 23-25, 31 and 33 was determined by HPLC (Figures 5S-10S of 

Supporting Information). 

 

 

Scheme 1. Synthesis of compounds 8-37.a 

 

aReagents and reaction conditions: (a) amine, PyBOP 

reagent, triethylamine, anhydrous DMF, 25 °C, 12 h, 35-

98%; (b) (i) pyridine, oxalyl chloride, dichloromethane, 

25 °C, 2 h, (ii) amine, 25 °C, 12 h, 7-11%; (c) (i) 1,1′-

carbonyldiimidazole, anhydrous THF, 25 °C, 2 h, (ii) 3-

(aminomethyl)aniline, 25 °C, 2 h, 71%. 

 

 

 

 



RESULTS AND DISCUSSION 

 Anti-HIV-1 activity. The effective concentrations (EC50 values, nM) to inhibit by 50% the HIV-

1 WT (NL4-3 strain) in MT-4 cells (MTT method), and cytotoxic concentrations (CC50 values, nM) to 

induce 50% death of non-infected cells of IASs 8-37 are shown in Table 1. Except compounds 10 

(EC50 = 132.7 nM) and 26 (EC50 = 3.8 nM), all new IASs showed EC50 values at subnanomolar 

concentration, which were below the limit of detection of the assay. Compounds 8-15, 17, 19-22, 24-26, 

28 and 30-36 displayed CC50 values >20000 nM, and 23, 29 and 37 were in the 10000-20000 nM range. 

Several IASs showed selectivity indexes (SI = CC50/EC50 ratio) >50000, three derivatives, 22, 23 and 

28, SI>100000. IAS 22 showed the highest SI value (SI > 244620) within the series. The SI values 

were clearly superior to NVP, EFV, and ETR and comparable to the reference IASs 2-7.  

 We initially synthesized IAS derivative 8-14 bearing different benzyl groups at the indole-2-

carboxamide nitrogen. Introduction of a fluorine atom at position 2 of the phenyl group gave compound 

8 that was as potent as 3 against the NL4-3 HIV-1 WT and superior to 3, NVP and EFV against the 

mutant K103N (EC50 = 0.7 nM) and Y181C (EC50 = 103 nM)  HIV-1 strains (Table 2). However, these 

values were slightly superior to those of compound 2.15 We separated at the semipreparative level the 

racemic mixture 8 into the pure enantiomers (S)-8 and (R)-8 by enantioselective HPLC on 

polysaccharide-based chiral stationary phases (CSPs). The (S)-8 and (R)-8 enantiomers proved to be 

equipotent (EC50 = 0.7 nM) against the NL4-3 HIV-1 WT strain and showed similar cytotoxicity 

(Table 3). Most importantly, the enantiomer (R)-8 demonstrated potent antiretroviral activity against 

the mutant K103N and Y181C HIV-1 strains (EC50 = 0.7 nM) in the cellular assay, being 147-fold 

(K103N) and 871-fold (Y181C), respectively, more potent than (S)-8. Against the K103N and Y181C 

resistant mutants, (R)-8 was more potent than reference drugs NVP, EFV and ETR. Also against 

recombinant HIV-1 RT carrying the K103N and Y181C mutations, (R)-8 was several-fold more potent 

than (S)-8 (Table 4). 



 Introduction of a methyl group at the methylene of IAS 7 gave 9 which except the Y181C  

(EC50 = 22 nM), showed modest inhibition of the mutant K103N, Y188L and K130N-Y181C HIV-1 

strains (Table 2). The potent antiretroviral activity showed by 8 prompted the synthesis of fluoro-

containing IAS derivatives 12-14. Introduction of a fluorine atom at the -methyl group of 3 afforded 

IAS 13, a racemate that was superior to 3 against the K103N (EC50 = 0.7 nM) and Y181C (EC50 = 82 

nM) HIV-1 resistance mutations, but did not inhibit the double mutant K130N-Y181C HIV-1 strain 

(Table 2). The 2,3-difluoro-IAS 14 proved to be potent inhibitor of the NL4-3 HIV-1 WT, and the 

mutant K103N (EC50 = 0.7 nM) and Y181C (EC50 = 2.0 nM) strains, but was ineffective against the 

double mutant K103N-Y181C strain (Table 2). 

IASs  15 and 16 were designed as constrained analogues of 5 and 6, where the nitrogen of the 

cyano group mimicked the nitrogen at position 1 of the pyridine/pyrimidine ring. Compound 15 proved 

to be a strong inhibitor of the K103N (EC50 = 0.6 nM) and Y181C (EC50 = 2.2 nM) HIV-1 mutations, 

but was unable to inhibit the double mutant K130N-Y181C strain. Extrusion of the basic nitrogen atom 

from the pyridinyl ring led to 17 and the structurally related derivatives 18 and 19. The 3-aminobenzyl 

derivative 17 uniformly inhibited all HIV-1 strains: NL4-3 WT, K103N and Y181C, EC50 = 0.7 nM; 

Y188L, EC50 = 24 nM and K103N-Y181C, EC50 = 86 nM. Incorporation of the 3-amino group into a 2-

aminoimidazolyl moiety (compound 18) caused considerable decrease of activity against all viral 

strains and recombinant HIV-1 RT (Table 2 and Table 5). On the contrary, the indazol-3-yl derivative 

19 inhibited the NL4-3 HIV-1 WT and the mutant K103N and Y181C strains with EC50 = 0.6 nM, and 

showed significant inhibition of the Y188L and K103N-Y181C strains with EC50 of 142 nM and 548 

nM, respectively (Table 2). 

 

  



Table 1. Anti-HIV-1 Activity of IASs 8-37, Reference Compounds 2, 3, 5-7, and NVP, EFV, 

ETR and AZT against HIV-1 NL4-3 Strain.a,b 

 

 

 

   HIV-1 NL4-3  

compd R CC50
b 

(nM) 

EC50
c
 ± SD 

(nM) 
SId 

8f 

 

>51545 0.7e >73642 

9f 
 

>54711 0.7e >78159 

10f 

 

>47397 132.7 ± 12 >359 

11 

 

>49903 0.6e >83172 

12f 

 

>49706 0.6e >82842 

13f 

 

49178 ± 4103 0.7e >70255 

14 
 

>51132 0.7e >73046 

15 
 

>53773 0.6e >89621 

16 
 

6840 ± 1420 0.7e >9771 

17 
 

>53422 0.7e >76317 



18 
 

5886 ± 335 0.6e >9810 

19 

 

>50711 ± 0 0.6e >84518 

20f 
 

29387 ± 8 0.6e >48978 

21f 
 

21745 ± 5626  0.6e >36856 

22 
 

>48924 0.2e >244620 

23f 

 
19465 0.2e 102452 

24f 
 

47045 ± 762 0.6e >78408 

25f 
 

21890 ± 557  0.6e >36483 

26 
 

35730 3.8 ± 2.1 9478 

27f 
 

9502 0.2 e 52789 

28 

 

24466 0.2e 143922 

29f 

 

16012 0.2e 94188 

30 
 

>48830 0.6e >81383 

31f 
 

28068 ± 2083 0.6e >46780 

32 
 

>50043 0.6e >83405 

33f 
 

24241 ± 9687  0.6e >40402 



34 
 

>47349 0.6e >78916 

35f 
 

23265 ± 7343 0.6e 23265 

36f 
 

23007 ± 4908 0.6e >38345 

37f 
 

15232 ± 199  0.6e >25387 

2g 
 

37994 ± 12164 0.2e 172700 

3f,h 

 
>53535 0.6e >205903 

5f,i 
 

30216 ± 2308 0.2 ± 0.2 151078 

6i 
 

>54953 0.22e >249786 

7i 
 

>56433 0.2 ± 0.1 >282218 

NVPj — >18776 112.4 ± 74.9 >167 

EFVk — >15839 15.9 ± 12.7 >996 

ETRl — >22973 16.1 ± 14.2 >1426 

AZTm — >30595 3.7 ± 3.7 >8269 

aData are mean values of two to three independent experiments each one in triplicate. bCC50: cytotoxic 

concentration (nM) to induce 50% death of noninfected cells, as evaluated with the MTT method in MT-4 

cells. cEC50 (HIV-1 NL4−3): effective concentration (nM) to inhibit by 50% HIV-1 (NL4−3 strain) 

induced cell death, as evaluated with the MTT method in MT-4 cells. dSI: selectivity index calculated as 

CC50/EC50 ratio. eLowest detectable nM concentration. fData of the racemic mixture. gLit.15 hLit.16 iLit.22 

jNVP, nevirapine. kEFV, Efavirenz. lETR, etravirine. mAZT, azidothymidine. 

 

  

NN



We synthesized IASs 20-25 by coupling a type A unit, the amino acid glycine (1) or alanine (4), 

with a type B unit, the benzyl of 2, the -methylbenzyl of 3 or the 1-(pyridin-4-yl)ethyl group of 5. All 

compounds strongly inhibited the WT NL4-3 HIV-1 strain. Racemic compounds 21, 23 and 25, bearing 

the alanine unit inhibited the mutant K103N HIV-1 strain at nanomolar concentrations with EC50 

values of 1.9, 1.9 and 7.4 nM, respectively (Table 2). On the other hand, compound 22 and racemates 

23 and 24 bearing the (pyridin-4-yl) group as a terminal tail showed potent inhibition of the mutant 

Y181C HIV-1 strain with EC50 values of 20, 21 and 0.6 nM, respectively. Compound 23 and 24 

inhibited the mutant K103N-Y181C and Y188L HIV-1 strains with of EC50 = 838 nM and EC50 = 610 

nM, respectively.  

 The racemic mixtures 23 and 24 were resolved at the semipreparative level by enantioselective 

HPLC into the corresponding pure enantiomers (R)-23, (S)-23, and (R)-24, (S)-24; the diastereomeric 

mixture 25 was separated into the four stereoisomers (R,S)-25, (S,R)-25, (R,R)-25 and (S,S)-25 (Table 

3). Enantiomers (R)-23 and (S)-23 proved to be equipotent (EC50 = 0.7 nM) against the NL4-3 HIV-1 

WT; however, (S)-23 was remarkably superior to (R)-23 against the mutant K103N (EC50 = 0.7 nM, 

162-fold), Y181C (EC50 = 0.7 nM, 258-fold), Y188L (EC50 = 666 nM, >35-fold) and K103N-Y181C 

(EC50 = 857 nM, 8-fold) HIV-1 strains. Similar results were obtained against the corresponding 

mutated HIV-1 RT enzymes (Table 4). Enantiomers (R)-24 and (S)-24 showed small differences of 

activity against all HIV-1 mutants. IAS derivatives (R,S)-25 and (S,R)-25 showed significant 

differences: (S,R)-25 was 3-fold (WT, EC50 = 0.6 nM), 340-fold (K103N, EC50 = 0.6 nM), 1113-fold 

(Y181C, EC50 = 0.6 nM), 38-fold (Y188L, EC50 = 742 nM) and 15-fold (K103N−Y181C, EC50 = 1261 

nM), respectively, more potent than (R,S)-25 in the cellular assay; (S,S)-25 was superior to (R,R)-25 

against the NL4-3 WT (EC50 = 0.6 nM, 6-fold), K103N (EC50 = 1.3 nM, 927-fold), Y181C (EC50 = 0.6 

nM, 1948-fold), Y188L (EC50 = 612 nM, 44-fold) and K103N-Y181C (EC50 = 1280 nM, 21-fold). The 

cellular activity of the enantiomers 25 correlated with the enzymatic data (Table 4). 



 

Table 2. Activity of Compounds 8-37, Reference Compounds 2, 3, 5-7, and NVP, 

EFV, ETR and AZT against Mutant HIV-1 Strains.a,b 

 EC50 (nM) 

compd K103N Y181C Y188L K103N-Y181C 

8f 
0.7c 

1d 

103 ± 6 

>147 

969 ± 680 

>1384 

3959 ± 1253  

>5656 

9f 
109 ± 22 

155 

22 ± 4.4 

31 

350 ± 160 

500 

12037 ± 11489 

17195 

10f nde nd nd nd 

11 
0.6 

1 

399 ± 39 

665 
nd 

27746 ± 31339 

46243 

12f 
1.2 ± 0.8 

2 

716 ± 179 

1198 
nd 

>49706 

>82843 

13f 
0.7 

1 

82 ± 62 

117 
nd 

27321 ± 34270 

39030 

14 
0.7 

1 

2.0 ± 2.0 

2.9 
nd 

>51132 

>73046 

15 
0.6 

1 

2.2 ± 0.7 

3.7 
nd 

>53773 

>89622 

16 
0.7 

1 

65 ± 22 

92 
nd 

>6840 

>9771 

17 
0.7 

1 

0.7 

1 

24 ± 8.7 

34 

86 ± 107 

123 

18 
18 ± 20 

30  

79 ± 59 

132 
nd 

>5886 

>9810 

19 
0.6 

1 

0.6 

1 

142 ± 101 

237 

548 ± 12 

913 

20f 
210 ± 19 

350 

76 ± 76 

127 

1622 ± 1278 

2703 

>29387 

>48978 

21f 
1.9 ± 3.7 

3.2 

167 ± 67 

283 

3792 ± 780 

6427 

24868 ± 6440 

42149 

22 
190 ± 12 

316 

20 ± 6 

100 

1401 ± 72 

700 

6086 ± 206 

30430 

23f 
1.9 ± 0.2 

52 

21 ± 8 

105 

819 ± 221 

4095 

838 ± 21 

4190 



24f 
38 ± 19 

64 

0.6 

1 

610 ± 38 

1017 

13333 ± 13752 

22227 

25f 
7.4 ± 0.4 

12 

167 ± 74 

278 

12893 ± 13226 

21488 

>36483 

>60805 

26 
1340 ± 652 

352 

321 ± 112 

84 

>3576 

>941 

>3576 

>941 

27f 
18 ± 0.9 

30 

129 ± 54 

215 

>9802 

>16336 

>9802 

>16336 

28 
279 ± 124 

1395 

17 ± 11 

85 

2321 ± 815 

11605 

4677 ± 2012 

23285 

29f 
170 ± 115 

850 

170 ± 84 

850 

4770 ± 2118 

23850 

5281 ± 2021 

26405 

30 
19.6 ± 19.6 

33 

0.6 

1 

449 ± 27 

>743 

2305 ± 2500 

>3842 

31f 
0.6 

1 

0.6 

1 

760 ± 95 

>1267 

798 ± 456 

>1330 

32 
60 ± 80 

>86  

<0.6 

nd 

1120 ± 500 

>1600 

18534 ± 21570 

>26477 

33f 
1.9 ± 1 

3 

27 ± 3.9 

45 

2432 ± 972 

4053 

4513 ± 2015 

>7521 

34 
1326 ± 1288 

1894 

1.3 ± 1.5 

1.9 

6155 ± 3863 

10258 

>47349 

>72248 

35f 
26 ± 1.9 

43 

93 ± 56 

155 

4240 ± 2015 

7067 

>23265 

>38775 

36f 
387 ± 239 

552 

13 ± 7.4 

19 

3671 ± 110 

6118 

>23007 

>38345 

37f 
36 ± 36 

6 

108 ± 77 

180 

>15232 

>25387 

6474 ± 3156 

10790 

2g 
0.9 ± 0.4 

4 

18 ± 7.0 

80 

90 ± 83 

409 

1921 ± 2050 

8691 

3f,h 
33 ± 6.4 

55 

720 ± 690 

1200 
nd 

 3267 ± SD 

5445 

5f,i 
9.4 ± 2.3 

47 

87 ± 75 

435 
nd 

1111 ± 940 

5555 

6i 
0.22d 

1 

2.20 ± 1.3 

10 

50.6 ± 21.9 

257 

132 ± 153 

600 

7i 
0.2d 

1 

0.8 ± 0.2 

4 

45 ± 0.23 

225 

971 ± 474 

4855 



NVP 
>3756 

>33 

>3756 

>33 

>3756 

>33 

>3756 

>33 

EFV 
130 ± 180 

8.2 

160 ± 180 

10 

760 ± 630 

48 

>317 

>20 

ETR 
0.7 ± 0.4 

0.04 

18 ± 14 

1.1 

16 ± 9 

1 

4.6 ± 2 

0.2 

AZT 
16 ± 12 

4.3 

6.0 ± 3.4 

1.6 

33 ± 18 

8.9 

16 ± 13 

1.0 

aData are mean values of two to three independent experiments each one in triplicate. bEC50: 

effective concentration (nM) to inhibit by 50% cell death induced by the indicated mutant HIV-

1 strain, as evaluated with the MTT method in MT-4 cells. cLowest detectable nM 

concentration. dFC: fold change obtained as ratio between EC50s of the indicated drug resistant 

mutant HIV-1 strain and HIV-1 WT NL4-3 strain. end: no data. fData of the racemic mixture. 

gLit.15 hLit.16 iLit.22 

 

 

 

 

 In the cellular assay, the (R)-enantiomer of IAS derivatives bearing a single type B unit was 

superior to the (S)-counterpart (compare (R)-8 with (S)-8, (R)-3 with (S)-3,21 and (R)-5 with (S)-522) 

(Table 3). In previous studies, the chirality of the alanine only weakly affected the antiretroviral 

activity (e.g.: 4: single type A unit).9 On the contrary, coupling of alanine with pyridin-4-

ylmethanamine (type A+B, chiral) resulted in high stereospecific activity: (S)-23 was superior to the 

corresponding (R)-enantiomer, and (S,R)-25 and (S,S)-25 were superior to the corresponding (R,S)-25 

and (R,R)-25 enantiomers. To confirm these observations, we separated racemates 31 and 33 having the 

chiral alanine. As inhibitors of the HIV-1, the (S) enantiomers of these chiral derivatives, (S)-31 and 

(S)-33, proved to be more potent than their (R) counterparts (Table 3). 

 

 

 

 



 

 

Table 3. Anti-HIV-1 Activity of Racemates 8, 23-25, 31, 33, Reference Compounds 3, 5, and the 

corresponding Enantiomers against Mutant HIV-1 Strains.a,b 

  EC50 (nM) 

compd WT K103N Y181C Y188L K103N-Y181C 

8g 0.7c 0.7c 103 ± 6 969 ± 680 3959 ± 1253  

(R)-8 0.7c 0.7c 0.7c 165 ± 21 2486 ± 2743 

(S)-8 0.7c 103 ± 8 680 ± 432 >51551 >51551 

23g 0.2c 1.9 ± 0.6 21 ± 9 819 ± 315 838 ± 215 

(R)-23 0.7c 114 ± 4 181 ± 38 >23104 7123 ± 2324 

(S)-23 0.7c 0.7c 0.7c 666 ± 38 857 ± 723 

24g 0.6c 305 ± 95 11.2 ± 4 610 ± 38 13333 ± 13752 

(S)-24 0.7c 438 ± 229 2.5 ± 3 3048 ± 114 4628 ± 1581 

(R)-24 0.7c 152 ± 38 5.71 ± 2 3272 ± 818 12246 ± 171 

25g 0.6c 7.4 ± 0.4 167 ± 74 
12893 ± 

13226 
>364 

(R,S)-25 1.9 ± 0.4 204 ± 37 668 ± 37 >28532 19348 ± 14246 

(S,R)-25 0.6c 0.6c 0.6c 742 ± 260 1261 ± 612 

(S,S)-25 0.6c 1.3 ± 1.1 0.6c 612 ± 202 1280 ± 556 

(R,R)-25 3.8 ± 0.2 1206 ± 111 1169 ± 779 >27010 >27010 

31g 0.6c 0.6c 0.6 c 760 ± 95 798 ± 456 



(R)-31 0.6c 76 ± 76 171 ± 57 5738 ± 1748 >24543 

(S)-31 0.6c 0.6c 0.6c 380 ± 128 779 ± 532 

33g 0.6c 1.9 ± 1 27 ± 3.9 2432 ± 972 4513 ± 2115 

(R)-33 0.6c 311 ± 123 933 ± 369 >30195 >30195 

(S)-33 0.6c 0.6c 3.5 ± 3.9 700 ± 175 1886 ± 715 

3e,g 0.6c 33 ± 6.4 720 ± 690 ndd  3267 ± SD 

(R)-3e 

 

2.1 ± 1.9 

 

4.3 ± 3.2 86 ± 43 193 ± 64 nd 

(S)-3e 6.3 ± 4.2 128 ± 107 3469 ± 1735 >36404 nd 

5f,g 0.2c 9.4 ± 2.3 87 ± 75 nd 1111 ± 453 

(R)-5f 0.2c 0.2c 2.1 ± 1.5 933 ± 2.3 150 ± 17 

(S)-5f 0.2c 4.3 ± 1.7 128 ± 11 5169 ± 3160 4124 ± 913 

NVP 112.4 ± 74.9 >3756 >3756 >3756 >3756 

EFV 15.9 ± 12.7 130 ± 180 160 ± 180 760 ± 630 >317 

ETR 16.1 ± 14.2 0.7 ± 0.4 18 ± 14 16 ± 9 4.6 ± 2 

AZT 3.7 ± 3.7 16 ± 12 6.0 ± 3.4 33 ± 18 16 ± 13 

aData are mean values of two to three independent experiments each one in triplicate. bEC50: effective 

concentration (nM) to inhibit by 50% cell death induced by the indicated mutant HIV-1 strain, as evaluated with 

the MTT method in MT-4 cells. cLowest detectable nM concentration. dnd, not done. eLit.21 fLit.22 gData of the 

racemic mixture. 

 

 

 



Table 4. Anti-HIV-1 Activity of pure Enantiomers of 8, 23, 25, 31, 33, and NVP, 

EFV and ETR against the WT RT, K103N, Y181I and K103N-Y181C Mutant RTs.a 

 IC50 (nM)b 

compd WT K103N Y181I K103N-Y181C 

(R)-8 87 ± 7 228 ± 21 456 ± 52 222 ± 19 

(S)-8 175 ± 11 ndc 17220 ± 1214 >10000 

(R)-23 13010 ± 3000 >50000 60980 ± 3214 >200000 

(S)-23 506 ± 74 417 ± 64 870 ± 52 >40000 

(R,S)-25 1190 ± 74 3550 ± 780 9510 ± 1123 8420 ± 950 

(S,R)-25 610 ± 85 300 ± 67 1700 ± 112 490 ± 88 

(S,S)-25 430 ± 28 2590 ± 800 440 ± 61 860 ± 120 

(R,R)-25 410 ± 52 23700 ± 5000 5790 ± 622 13800 ± 1900 

(R)-31 1800 ± 250 19910 ± 380 3350 ± 262 nd 

(S)-31 470 ± 63 2860 ± 420 3140 ± 168 14280 ± 2000 

(R)-33 145 ± 25 70 ± 9 276 ± 18 233 ± 33 

(S)-33 113 ± 11 1120 ± 250 14210 ± 915 9640 ± 1200 

NVP 400 ± 36 7000 ± 690 >20000 nd 

EFV 80 ± 7 >20000 400 ± 22 nd 

ETR 10 ± 0.5 20 ± 3 164 ± 15 97 ± 11 

aData are the mean values of at least three separate experiments. bCompound concentration (IC50, 

nM) required to inhibit the RT activity of the indicated strain by 50%. cnd: no data.  

 



 

Table 5. Anti-HIV-1 Activity of Compounds 16-18, 30, 32, and NVP, EFV and 

ETR against the WT RT, K103N, Y181I and K103N-Y181C Mutant RTs.a 

 IC50 (nM)b 

compd WT K103N Y181I K103N-Y181C 

16 23 ± 3 72 ± 11 306 ± 49 514 ± 102 

17 41 ± 7 66 ± 11 64 ± 10 35 ± 5 

18 278 ± 44 183 ± 27 284 ± 49 470 ± 70 

30 202 ± 37 548 ± 93 529 ± 99 835 ± 110 

32 145 ± 20 538 ± 93 461 ± 461 586 ± 85 

NVP 400 ± 36 7000 ± 690 >20000 ndc 

EFV 80 ± 7 >20000 400 ± 22 nd 

ETR 10 ± 0.5 20 ± 3 164 ± 15 97 ± 11 

aData are the mean values of at least three separate experiments. bCompound concentration 

(IC50, nM) required to inhibit the RT activity of the indicated strain by 50%. cnd: no data.  

 

 

 

The inhibitory concentrations (IC50 values, nM) to inhibit by 50% the HIV-1 WT RT and the 

K103N, Y181I and K103N-Y181C mutated RTs are depicted in Tables 4 and 5. Among the tested 

compounds, eutomers, (R)-8, (S)-23, (S,R)-25, (S,S)-25 (except Y181I), (R)-33, and compounds 16-18 

inhibited the HIV-1 WT RT and the K103N and Y181C mutated RTs with IC50 values at high 

nanomolar concentration. Compounds (R)-8, 16-18, (S,R)-25, (S,S)-25, 30, 32 and (R)-33 inhibited the 

HIV-1 K103N-Y181C mutated RT in the same range of concentration. In general, antiviral data in cell 



cultures correlated with inhibitory enzymes data. Enantiomers with the highest inhibition of HIV-1 WT 

and mutant strains in MT-4 cells showed the best inhibition of HIV-1 WT and mutated RTs (compare 

cellular and enzymatic data of (R)-8 with (S)-8, (R)-23 with (S)-23, (R,S)-25 with (S,R)-25, (R,R)-25 

and (S,S)-25, (R)-31 with (S)-31. (Tables 1-5). In MT-4 cells, compound (R)-8 inhibited the HIV-1 WT 

and the K103N and Y181C mutant strains with EC50 of 0.7 nM (Tables 1 and 2), and the corresponding 

RTs with IC50s of 87, 228 and 456 nM (Table 4), respectively. Compound 17 showed the same EC50 

values against HIV-1 WT, K103N and Y181C strains in MT-4 cells (Tables 1 and 2), and inhibited the 

corresponding RTs with IC50s of 41, 66 and 64 nM, respectively (Table 5). Interestingly, in MT-4 cells, 

17 potently inhibited the HIV-1 K103N-Y181C double mutant with EC50 of 86 nM (Table 2) and the 

corresponding RT with IC50 of 35 nM (Table 5). IAS derivative (S,R)-25 inhibited the HIV-1 WT and 

the K103N and Y181C mutant strains with EC50s of 0.6 nM, and the HIV-1 K103N-Y181C with EC50 

of 1261 nM (Table 3). For comparison, (R,S)-25 showed notably higher inhibitory concentrations in 

both cellular and enzymatic assays.  

 

 Molecular modeling. The binding mode of the reported compounds was evaluated by a series 

of molecular docking simulations using a previously reported procedure.13 The docking results showed 

consistent binding modes in the HIV-1 WT RT as well as in the mutated K103N, Y181C and K103N-

Y181C RTs. The key interactions observed are: (i) a H-bond between the indole NH and the K101 

carbonyl oxygen; (ii) the chlorine atom fitted into a hydrophobic cavity near V106 and L234; (iii) the 

3,5-dimethylphenyl moiety placed in the aromatic cleft formed by the side chains of Y181, Y188, and 

W229; (iv) a series of hydrophobic interactions between the linker and the heteroaryl moieties with the 

side chains of V179 and E138:B. The reported binding mode, in accordance with the biological data, 

was consistent between the enantiomeric couples. The binding modes of derivatives (R)-8 and (S)-8 

proposed by PLANTS are shown in Figure 1.   



 

 

    

    

Figure 1. PLANTS proposed binding modes for derivatives (R)-8 (yellow) and (S)-8 (blue) into the non-nucleoside binding 

site of the RT: top left panel, WT (cyan); top right panel, K103N (magenta); bottom left panel, Y181C (orange); bottom 

right panel, K103N-Y181C (pink). Residues involved in interactions are reported as lines. Mutated residues are depicted as 

stick. RTs are shown as cartoon. H-bonds are depicted as yellow dotted lines.   

 

 

 

 



    

Figure 2. Trajectories snapshots versus the Y181C RT: left panel, (S)-8 (magenta); right panel, (R)-8 (cyan). Residues 

involved in interactions are reported as lines. Mutated residue is depicted as stick. RT is shown as cartoon. H-bonds are 

depicted as yellow dotted lines. 

 

Interestingly, the biological results showed specific correlation between the linker length and 

the configuration of the asymmetric center: the most active enantiomer of IASs bearing the short linker 

(chiral type B) unit was generally in the (R) configuration, while the (S) enantiomer was superior in the 

longer linker (chiral type A unit) series. To gain further insight of the different behavior of the various 

enantiomers, we carried out a series of molecular dynamic simulations of two representative pairs of 

derivatives: (R)-8, (S)-8 (short linker) and (R)-23, (S)-23 (long linker). We used the Y181C mutated RT 

in the simulations because of the greatest differences of IC50 values within the enantiomeric pairs.  

In comparing the trajectories of the (R)-8 and (S)-8/Y181C RT complexes, the breakage of  the 

interaction between the dimethylphenyl moiety of (R)-8 and Y181 was compensated by the new 

interaction between the fluorinated aromatic ring and the C181 residue.23 (Figure 2). Furthermore, the 

asymmetric methyl group was positioned into a hydrophobic cleft located toward the inner part of the 

binding pocket formed by V179, C181 and Y188 residues. With (S)-8, the methyl moved far from 

above indicated hydrophobic residues and thus failed these key interactions. The other contacts 

observed in the docking studies were retained during the whole simulations by both enantiomers 

(Figure 2). 



    

Figure 3. Trajectories snapshots versus K103N RT: left panel, (S)-23 (white); right panel, (R)-23 (pink). Residues involved 

in interactions are reported as lines. Mutated residue is depicted as stick. RT is shown as cartoon. H-bonds are depicted as 

yellow dotted lines. 

 

 

 

 A similar behavior was observed in the trajectories of (R)-23 and (S)-23/Y181C RT complexes. 

The (S) asymmetric methyl group laid in the V179, C181 and Y188 cleft forming hydrophobic contacts, 

while the (R) methyl did not. For both (R)-23 and (S)-23 enantiomers the dimethylphenyl group was 

stabilized by interaction with C181 and the pyridine ring, due to the longer linker, formed contact with 

E138:B (Figure 3). 

 The simulations confirmed the crucial role of the linker. Indeed, the enantiomer with the best 

antiviral activity shifted from (R) to (S) moving from short to long linker because of its best fitting at 

the binding site. (Figure 1S, Supporting Information). The correlation between the calculated binding 

free energy for four compounds with the experimental IC50 (r
2 of 0.75) supports the proposed structural 

binding model (Table 6). 

 

 



Table 6. Experimental IC50 versus computed binding free energy. 

Comp Exp. Y181C IC50 Calc. G 

(R)-8 0.456 -9.876 

(S)-8 17.22 -9.279 

(R)-23 60.98 -9.135 

(S)-23 0.87 -9.731 

 

  

 Neurotoxicity studies. ART has significantly increased life expectancy of HIV infected 

people.24 However, neurological problems emerge in approximately 50% of HIV patients.25 The 

neurocognitive damage often accelerates during the clinical treatment of the AIDS/HIV infection,26 and 

remains even after suppression of the peripheral viral infection.27 Neuronal injury during the 

antiretroviral therapy may arise from unknown mechanisms through toxins, pro-inflammatory 

cytokines, reactive oxygen species (ROS) and nitric oxide (NO) released by activated glial cells in 

response to residual viral replication.28  

 Activation of microglia, the brain’s resident macrophages, has been extensively reported as one 

of the most important contributors of HIV-related neuroinflammation,29 and in some case the 

antiretroviral therapy is able to revert this activation.30 To verify whether IAS derivatives could 

interfere with the inflammatory status of microglia, BV2 cells were treated with lipopolysaccharide 

(LPS) (50 ng/mL), a pro-inflammatory stimulus that is elevated in the blood of HIV+ individuals,31 in 

presence or absence of different doses of compound 23, one of most potent HIV-1 NNRTI of the series, 

and the amount of NO released by the cells was measured, EFV was used as reference compound. Data 

showed that both 23 and EFV treatments were able to reduce LPS-induced NO release at 1 μM and 10 

μM concentrations (Figure 2S, Supporting Information). 

 The pro-inflammatory or anti-inflammatory profile of BV2 cells treated with 23 or EFV was  

analyzed as expression of M1 (pro-inflammatory) and M2 (anti-inflammatory) mRNAs. Compounds 23 



and EFV differently decreased the expression of CD86 and iNOS M1 genes. As shown in Figure 4, 

both iNOS and CD86 were significantly reduced by 23, while only iNOS was reduced by EFV 

treatment. These treatments did not alter the expression of the anti-inflammatory genes CD163 and 

Fizz. 

 

  

      

     

Figure 4. 23 reduced the pro inflammatory M1-related genes on BV2 cells. BV2 cells were treated with 103 nM (R,S)-23 or 

EFV. mRNA expression of M1 (iNOS and CD86) and M2 (CD163 and FIZZ) related genes was assayed by RT-PCR. Data 

are expressed as fold increase vs ctl. N=4; *p<0,05 and **p<0,001 vs ctrl by Student’s t-test. 

 

 



 To exclude the possibility that the effects could be due to a different rate of cell proliferation, 

BV2 microglial cells were cultured in presence of 23 or EFV at different doses (10 nM, 102 nM, 103 

nM and 104 nM) and the proliferation rate of these cells was evaluated. Data show that the treatments 

did not alter the BV2 cell proliferation at any doses (Figure 3S, Supporting Information). 

 HIV-mediated microglia activation is responsible of release of neurotoxic factors such as 

excitatory molecules32 and inflammatory cytokines,33 resulting in neuronal dysfunction and cell death. 

To verify the effect on damaged neurons, compound 23 was administrated to hippocampal neuronal 

cultures in the presence of 100 M glutamate as a neurotoxic stimulus. The compound proved to 

protect neurons from the excitotoxic insult. Notably, EFV was not efficacious to contrast the neurotoxic 

effect of glutamate (Figure 5). 

 

 

Figure 5. 23 treatment protect neurons against glutamate excitotoxicity. Neuronal cultures were stimulated with 100 M 

glutamate in presence or absence of 103 nM 23 or EFV. Data are expressed as number of cell/optical field. N=3, *p<0,05 vs 

CTL by Kruskal-Wallis One Way Analysis of Variance (Dunn’s method). 

 



In Silico Prediction of Physicochemical Properties. The physicochemical properties of 

compounds 8, 23 and 25 assessed by SwissADME34 and QikProp35 programs are shown in Table 7. 

The predicted physicochemical properties of derivatives 9-22, 24 and 26-37 are reported in Table 1S, 

Supporting Information. Compounds 8, 23 and 25 matched Lipinski's rule of five,36 namely logP <5, H-

bond donors ≤5, H-bond acceptors ≤10 and a molecular weight <500.36 Derivative 8 did not show 

violation of Lipinski's rule of five (Rule of five = 4), while derivatives 23 and 25 showed one violation 

(molecular weight >500; Rule of five = 3). Compounds 8, 23 and 25 exhibited significant values in the 

topological polar surface area (TPSA),37 apparent Caco-2 and madin-carby canine kidney (MDCK) 

cells permeability predictions. These results show that compounds 8, 23 and 25  have the potential to 

diffuse across membranes. 

Table 7. In silico physicochemical properties of 8, 23 and 25. 

Cmpd LogPa 
H-bond 

Acc.b 

H-bond 

Don.c 
MWd TPSAe QPP Cacof QPP MDCKg 

8 4.26 4 2 484.97 87.41 1595.51 3021.29 

23 2.03 5 3 525.03 129.40 202.03 333.34 

25 2.22 5 3 539.06 129.40 286.71 457.122 

Physicochemical properties predicted by SwissADME:34 aOctanol-water partition coefficient predictor by 

topological method implemented from Moriguchi;38,39 bNumber of H-bond acceptors; cNumber of H-bond 

donors; dMolecular Weight; eMolecular polar surface area: this parameter correlates with human intestinal 

absorption (<140).37 Physicochemical properties predicted by QikProp: fQPP Caco - Apparent Caco-2 

permeability (nm/sec) (<25 poor, >500 great); gQPP MDCK - Apparent MDCK permeability (nm/sec) 

(<25 poor, >500 great). 

 

 

 

CONCLUSION 

We designed and synthesized new IAS derivatives 8-37 to explore the SARs at the nitrogen of 

the indole-2-carboxamide. The new IASs inhibited the HIV-1 WT NL4-3 strain in MT-4 cells with 

EC50 values at subnanomolar concentrations (except compounds 10 and 26), and showed potent 



inhibition of the mutant K103N, Y181C, Y188L and K103N-Y181C HIV-1 strains. Six racemic 

mixtures, 8, 23-25, 31 and 33, were separated into their pure enantiomers. The (R)-enantiomers of IAS 

derivatives bearing the chiral type B unit (-methylbenzyl) were superior to the (S)-counterparts 

(compare (R)-8 with (S)-8, (R)-3 with (S)-3,21 and (R)-5 with (S)-522). On the contrary, in the case of 

IAS derivatives bearing the chiral type A unit (alanine) the (S)-enantiomer was more potent than the 

corresponding (R)-enantiomer (compare (S)-23 with (R)-23), (S)-31 with (R)-31, (S)-33 and (R)-33). 

The IASs (S,R)-25 and (S,S)-25 bearing the chiral type A+B units ((S)-alanine and (R)- or (S)-(1-

(pyridin-4-yl)ethyl moieties) were superior to the corresponding (R,S)-25 and (R,R)-25 counterparts. 

The docking results showed consistent binding modes in the HIV-1 WT RT as well as in the mutated 

K103N, Y181C and K103N-Y181C RTs. The biological results generally correlated with the length of 

the linker and the configuration of the asymmatric center: the (R) enantiomer of IASs bearing the short 

linker (chiral type B) and the (S) enantiomer with the longer linker (chiral type A unit) were superior to 

the corresponding counterparts. Compound 23 reduced the expression of both iNOS and CD86 (M1 

genes) in BV2 cells while only iNOS was reduced by EFV treatment. On administration to 

hippocampal neuronal cultures in the presence of 100 M glutamate as a neurotoxic stimulus, 

compound 23 protected neurons from the excitotoxic insult, while EFV did not contrast the neurotoxic 

effect of glutamate. The present results highlight the introduction of chiral unit(s), such us of (S)-

alanine and (R)-(-heterocyclylethyl), as a valuable strategy for the design of new series of IAS 

NNRTIs with improved resistance profile against the mutant HIV-1 strains and reduced neurotoxic 

effects. Based on these valuable information, the synthesis of new IAS derivatives is in progress in our 

laboratory and the results will be reported in due course. 

 

 

 



EXPERIMENTAL SECTION 

1. Chemistry. All reagents and solvents were handled according to material safety data sheet of 

the supplier and were used as purchased without further purification. Organic solutions were dried over 

anhydrous sodium sulfate. Evaporation of the solvents was carried out on a Büchi Rotavapor R-210 

equipped with a Büchi V-850 vacuum controller and a Büchi V-700 vacuum pump. Column 

chromatography was performed on columns packed with silica gel from Macherey-Nagel (70−230 

mesh). Silica gel thin layer chromatography (TLC) cards from Macherey-Nagel (silica gel precoated 

aluminum cards with fluorescent indicator visualizable at 254 nm) were used for TLC. Developed 

plates were visualized with a Spectroline ENF 260C/FE UV apparatus. Melting points (mp) were 

determined on a Stuart Scientific SMP1 apparatus and are uncorrected. Infrared spectra (IR) were 

recorded on a PerkinElmer Spectrum 100 FT-IR spectrophotometer equipped with universal attenuated 

total reflectance accessory and IR data acquired and processed by Spectrum 10.03.00.0069 software. 

Band position and absorption ranges are given in cm−1. Proton nuclear magnetic resonance (1H NMR)  

and carbon-13 nuclear magnetic resonance (13C NMR) spectra were recorded with a Varian Mercury 

(300 MHz) or a Bruker Avance (400 MHz) spectrometer in the indicated solvent. Fid files were 

processed by MestreLab Research SL MestreReNova 6.2.1−769 software. Chemical shifts are 

expressed in  units (ppm) from tetramethylsilane. Elemental analyses of biologically evaluated 

compounds were found to be within ±0.4% of the theoretical values and their purity was found to be 

>95% by high pressure liquid chromatography (HPLC). The HPLC system used (Dionex UltiMate 

3000, Thermo Fisher Scientific Inc.) consisted of a SR-3000 solvent rack, a LPG-3400SD quaternary 

analytical pump, a TCC-3000SD column compartment, a DAD-3000 diode array detector, and an 

analytical manual injection valve with a 20 μL loop. Samples were dissolved in acetonitrile (1 mg/mL). 

Thermo Fisher Scientific Inc.), at 25 ± 1 °C with an appropriate solvent gradient (acetonitrile/water), 



flow rate of 1.0 mL/min and signal detector at 206, 230, 254 and 365 nm. Chromatographic data were 

acquired and processed by Chromeleon 6.80 SR15 Build 4656 software (Thermo Fisher Scientific Inc.). 

General Procedure A: Derivatives 8-14 and 17-37. A mixture of acid (0.60 mmol) in anhydrous 

DMF (10 mL/mmol), amine (1.8 mmol), triethylamine (1.8 mmol) and  PyBOP reagent (0.60 mmol) 

was stirred at 25 °C for 12 h. The reaction mixture was diluted with water and extracted with ethyl 

acetate. The organic layer was washed with brine, dried and filtered. Removal of the solvent gave a 

residue that was purified by column chromatography (silica gel, ethyl acetate:n-hexane = 1:2 as eluent). 

General Procedure B: Derivatives 15 and 16. To a solution of acid (0.385 mmol) in anhydrous 

CH2Cl2 (15 mL/mmol), pyridine (0.155 mmol) and oxalyl chloride (0.424 mmol) were added at room 

temperature. The mixture was stirred for 2 h and then the amine (0.424 mmol) was added. The mixture 

was stirred overnight, then diluted with water and extracted with ethyl acetate. The organic layer was 

washed with brine, dried and filtered. Removal of the solvent gave a residue that was purified by 

column chromatography (silica gel, ethyl acetate:n-hexane = 1:2 as eluent). 

General Procedure C: Derivative 17. 1,1′-Carbonyldiimidazole (0.29 mmol) was added to a 

suspension of acid (0.27 mmol) in anhydrous THF (20 mL/mmol). The reaction mixture was stirred at 

25 °C for 2 h, then the amine (0.27 mmol) was added. The reaction mixture was stirred at 25 °C for 2 h 

and diluted with water and extracted with ethyl acetate. The organic layer was washed with brine, dried 

and filtered. Removal of the solvent gave a residue that was purified by column chromatography (silica 

gel, ethyl acetate:n-hexane = 3:2 as eluent) and then triturated in n-hexane:acetonitrile = 7:3. 

1.1. 5-Chloro-3-((3,5-dimethylphenyl)sulfonyl)-N-(1-(2-fluorophenyl)ethyl)-1H-indole-2-

carboxamide (8). Synthesized following general procedure A, starting from 387 and 1-(2-

fluorophenyl)ethanamine. Yield 78 %, mp 215-217 °C (from ethanol). 1H NMR (400 MHz, DMSO-d6): 

δ 1.53 (s, 3H), 2.27 (s, 6H), 5.38-5.46 (m, 1H), 7.19-7.25 (m, 3H), 7.32-7.34 (m, 2H), 7.51-7.56 (m, 

4H), 7.95 (s, 1H), 9.47 (br s, 1H disappeared on treatment with D2O), 13.03 ppm (br s, 1H, disappeared 



on treatment with D2O). 13C NMR (300 MHz, DMSO-d6):  21.17, 21.78, 44.04, 111.92, 115.37, 

115.69, 115.98, 119.40, 123.98, 125.01, 125.06, 125.23, 125.78, 127.76, 128.18, 128.24, 129.47, 

129.58, 130.49, 130.67, 133.37, 135.16, 137.18, 139.44, 143.01, 158.81 ppm. IR: ν 1651, 3252 cm-1. 

Anal. (C25H22ClFN2O3S (484,97)) C, H, N, Cl, F, S. 

1.2. 5-Chloro-3-((3,5-dimethylphenyl)sulfonyl)-N-(1-(furan-2-yl)ethyl)-1H-indole-2-carboxamide 

(9). Synthesized following general procedure A, starting from 387 and 1-(furan-2-yl)ethanamine. Yield 

36%, mp 193-195 °C (from ethanol). 1H NMR (400 MHz, DMSO-d6): δ 1.54 (d, J = 7.0 Hz, 3H), 2.29 

(s, 6H), 5.26-5.30 (m, 1H), 6.43-6.45 (m, 2H), 7.26 (s, 1H), 7.33 (dd, J = 2.2 and 8.8 Hz, 1H), 7.52-

7.54 (m, 1H), 7.58 (s, 2H), 7.63-7.64 (m, 1H), 7.95 (d, J = 1.6 Hz, 1H) ), 9.36 (d, J = 8.2 Hz, 1H, 

disappeared on treatment with D2O), 13.03 ppm (br s, 1H, disappeared on treatment with D2O). 13C 

NMR (300 MHz, DMSO-d6): 

125.23, 125.75, 127.76, 133.35, 135.19, 139.45, 142.74, 142.94, 155.38, 158.82 ppm. IR: ν 1650, 3235 

cm-1. Anal. (C23H21ClN2O4S (456.94)) C, H, N, Cl, S.  

1.3. 5-Chloro-N-((4-chlorophenyl)(cyclopropyl)methyl)-3-((3,5-dimethylphenyl)sulfonyl)-1H-indole-2-

carboxamide (10). Synthesized following general procedure A, starting from 387 and (4-

chlorophenyl)(cyclopropyl)methanamine. Yield 54%, mp 243-245 °C (from ethanol). 1H NMR (400 

MHz, DMSO-d6): δ 0.51-0.61 (m, 4H), 1.23-1.31 (m, 1H), 2.27 (s, 6H), 4.48-4.52 (m, 1H), 7.25 (s, 1H), 

7.33 (dd, J = 2.1 and 8.9 Hz, 1H), 7.41-7.43 (m, 2H), 7.51-7.54 (m, 3H), 7.59 (s, 2H), 7.94 (d, J = 2.0 

Hz, 1H), 9.60 (d, J = 7.0 Hz, 1H, disappeared on treatment with D2O), 13.00 ppm (br s, 1H, 

disappeared on treatment with D2O). 13C NMR (300 MHz, DMSO-d6): 

57.38, 111.82, 115.41, 119.41, 123.97, 125.22, 125.86, 127.77, 128.68, 129.12, 132.11, 133.42, 135.18, 

137.15, 139.46, 141.74, 143.00, 158.91 ppm. IR: ν 1647, 3180, 3288 cm-1. Anal. (C27H24Cl2N2O3S 

(527.46)) C, H, N, Cl, S. 



1.4. 5-Chloro-3-((3,5-dimethylphenyl)sulfonyl)-N-(2-fluoro-6-methoxybenzyl)-1H-indole-2-

carboxamide (11). Synthesized following general procedure A, starting from 387 and (2-fluoro-6-

methoxyphenyl)methanamine. Yield 52%, mp 295-297 °C (from ethanol). 1H NMR (400 MHz, 

DMSO-d6): δ 2.23 (s, 6H), 3.85 (s, 3H), 4.61 (d, J = 4.9 Hz, 2H), 6.86 (t, J = 8.5 Hz, 1H), 6.94 (d, J = 

7.9 Hz, 1H), 7.23 (s, 1H), 7.30-7.40 (m, 2H), 7.44 (s, 2H), 7.51 (d, J = 8.2 Hz, 1H), 7.99 (d, J = 2.0 Hz, 

1H), 9.23 (br s, 1H, disappeared on treatment with D2O), 13.06 ppm (br s, 1H, disappeared on 

treatment with D2O). 13C NMR (300 MHz, DMSO-d6): 

56.09, 107.21, 107.70, 108.04, 112.52, 115.18, 117.96, 119.97, 123.54, 125.53, 126.70, 126.94, 128.31, 

130.25, 130.40, 133.32, 135.19, 139.78, 162.14 ppm. IR: ν 1645, 3195 cm-1. Anal. (C25H22ClFN2O4S 

(500.97)) C, H, N, Cl, F, S. 

1.5. 5-Chloro-N-(1-(3,5-difluorophenyl)ethyl)-3-((3,5-dimethylphenyl)sulfonyl)-1H-indole-2-

carboxamide (12). Synthesized following general procedure A, starting from 387 and 1-(3,5-

difluorophenyl)ethanamine. Yield 73%, mp 238-240 °C (from ethanol). 1H NMR (400 MHz, DMSO-

d6): δ 1.50 (d, J = 7.0 Hz, 3H), 2.28 (s, 6H), 5.19-5.22 (m, 1H), 7.10-7.14 (m, 1H), 7.21-7.24 (m, 3H), 

7.34 (d, J = 2.1 and J = 8.8 Hz, 1H), 7.53-7.55 (m, 1H), 7.60 (s, 2H), 7.92 (d, J = 2.0 Hz, 1H), 9.42 (d, 

J = 7.3 Hz, 1H disappeared on treatment with D2O), 13.04 ppm (br s, 1H, disappeared on treatment 

with D2O). 13C NMR (300 MHz, DMSO-d6,): 

110.08, 111.95, 115.29, 119.29, 124.16, 125.08, 127.66, 133.41, 135.05, 137.83, 139.34, 143.03, 

159.42, 161.17, 164.42 ppm. IR: ν 1648, 2923, 3215 cm-1. Anal. (C25H21ClF2N2O3S (502.96)) C, H, N, 

Cl, F, S. 

1.6. 5-Chloro-3-((3,5-dimethylphenyl)sulfonyl)-N-(2-fluoro-1-phenylethyl)-1H-indole-2-

carboxamide (13). Synthesized following general procedure A, starting from 387 and 2-fluoro-1-

phenylethanamine. Yield 52%, mp 216-218 °C (from ethanol). 1H NMR (400 MHz, DMSO-d6): δ 2.26 

(s, 6H), 4.66-4.68 (m, 1H), 4.78-4.80 (m, 1H), 5.42-5.52 (m, 1H), 7.25 (s, 1H), 7.32-7.42 (m, 4H), 



7.51-7.55 (m, 3H), 7.59 (s, 2H), 7.97 (d, J = 1.9 Hz, 1H), 9.74 (d, J = 7.9 Hz, 1H, disappeared on 

treatment with D2O), 13.08 ppm (br d, J = 4.6 Hz, 1H, disappeared on treatment with D2O). 13C NMR 

(300 MHz, DMSO-d6,): 

125.83, 127.73, 127.85, 128.26, 128.96, 133.42, 135.22, 136.57, 137.80, 137.87, 139.50, 142.88, 

159.36 ppm. IR: ν 1650, 3235 cm-1. Anal. (C25H22ClFN2O3S (484.97)) C, H, N, Cl, F, S. 

1.7. 5-Chloro-N-(2,3-difluorobenzyl)-3-((3,5-dimethylphenyl)sulfonyl)-1H-indole-2-carboxamide (14). 

Synthesized following general procedure A, starting from 387 and (2,3-difluorophenyl)methanamine. 

Yield 47%, mp 255-257 °C (from ethanol). 1H NMR (400 MHz, DMSO-d6): δ 2.27 (s, 6H), 4.65 (d, J = 

5.7 Hz, 2H), 7.20-7.24 (m, 2H), 7.32-7.41 (m, 3H), 7.52-7.54 (m, 1H), 7.59 (s, 2H), 7.93 (d, J = 1.9 Hz, 

1H), 9.50 (t, J = 5.6 Hz, 1H, disappeared on treatment with D2O) 13.07 ppm (br s, 1H, disappeared on 

treatment with D2O). 13C NMR (300 MHz, DMSO-d6): 

116.93, 119.34, 124.10, 125.20, 125.61, 127.72, 127.99, 128.14, 133.40, 135.10, 137.19, 139.37, 

142.93, 160.05 ppm.  IR: ν 1649, 3214 cm-1. Anal. (C24H19ClF2N2O3S (488.93)) C, H, Cl, F, N, S. 

1.8. 5-Chloro-N-(4-cyanopyridin-2-yl)-3-((3,5-dimethylphenyl)sulfonyl)-1H-indole-2-carboxamide (15). 

Synthesized following general procedure B, starting from 387 and 2-aminoisonicotinonitrile. Yield 7%, 

mp 233-235 °C (from ethanol). 1H NMR (400 MHz DMSO-d6): δ 2,29 (s, 6H), 7.26 (s, 1H), 7.37 (dd, J 

= 2.0 and 8.5 Hz, 1H), 7.58-7.60 (m, 1H), 7.65 (s, 2H), 7.71 (dd, J = 1.4 e 5.1 Hz, 1H), 7.95 (d, J = 2.0 

Hz, 1H), 8.49 (s, 1H), 8.69 (d, J = 5.1 Hz, 1H), 11.78 (br, s, 1H disappeared on treatment with D2O), 

13.28 ppm (br s, 1H, disappeared on treatment with D2O). 13C NMR (300 MHz, DMSO-d6,): 

115.94, 116.20, 117.21, 117.89, 119.40, 121.80, 122.36, 124.29, 125.08, 125.11, 126.13, 127.66, 

135.07, 139.36, 150.60, 152.16, 159.70 ppm. IR: ν 1664, 2923, 3324 cm-1. Anal. (C23H17ClN4O3S 

(464.92)) C, H, N, Cl, S. 

1.9. 5-Chloro-N-(2-cyanopyridin-4-yl)-3-((3,5-dimethylphenyl)sulfonyl)-1H-indole-2-carboxamide (16). 

Synthesized following general procedure B, starting from 387 and 4-aminopicolinonitrile. Yield 11%, 



mp 223-225 °C (from ethanol). 1H NMR (400 MHz DMSO-d6): δ 2.31-2.32 (m, 6H), 7.26-7.28 (m, 

1H), 7.37 (dd, J = 2.7 and  8.9 Hz, 1H), 7.43 (dd, J = 2.1 e 8.8 Hz, 1H), 7.59-7.61 (m, 2H), 7.65 (s, 1H), 

7.93-7.95 (m, 1H), 8.21 (d, J = 1,6 Hz, 1H), 8.72-8.73 (m, 1H), 11.68 (br, s, 1H disappeared on 

treatment with D2O), 13.30 ppm (br s, 1H, disappeared on treatment with D2O). 13C NMR (300 MHz, 

DMSO-d6): 

128.25, 131.14, 133.72, 134.14, 134.95, 135.11, 137.02, 139.08, 139.37, 142.77, 143.14, 146.46, 

152.98, 159.47, 160.27 ppm. IR: ν 1693, 2923, 3275 cm-1. Anal. (C23H17ClN4O3S (464.92)) C, H, Cl, N, 

S. 

1.10. N-(3-Aminobenzyl)-5-chloro-3-((3,5-dimethylphenyl)sulfonyl)-1H-indole-2-carboxamide (17). 

Synthesized following general procedure C, starting from 387 and 3-(aminomethyl)aniline.  Yield 71%, 

mp 239-241 °C (from ethanol). 1H NMR (400 MHz, DMSO-d6): δ 2.27 (s, 6H), 4.42 (d, J = 5.8 Hz, 

2H), 5.04 (s, 2H, disappeared on treatment with D2O), 6.47-6.49 (m, 1H), 6.57-6.59 (m, 2H), 7.0 (t, J = 

7.7 Hz, 1H), 7.24 (s, 1H), 7.33 (dd, J = 1.7 and 8.6 Hz, 1H), 7.52-7.54 (m, 1H), 7.58 (s, 2H), 7.95 (d, J 

= 2.0 Hz, 1H), 9.35 (t, J = 7.0 Hz, 1H, disappeared on treatment with D2O), 13.04 ppm (br s, 1H, 

disappeared on treatment with D2O). 13C NMR (300 MHz, DMSO-d6): 

113.63, 115.40, 115.53, 119.45, 124.06, 125.21, 125.87, 127.74, 129.40, 133.32, 135.18, 137.11, 

139.01, 139.47, 142.92, 149.18, 159.41 ppm. IR: ν 1655, 2936, 3297 cm-1. Anal. (C24H22ClN3O3S 

(467.97)) C, H, N, Cl, S. 

1.11. N-((2-Amino-1H-benzo[d]imidazol-5-yl)methyl)-5-chloro-3-((3,5-dimethylphenyl)sulfonyl)-1H-

indole-2-carboxamide (18). Synthesized following general procedure A, starting from 387 and 5-

(aminomethyl)-1H-benzo[d]imidazol-2-amine. Yield 51%, mp 245-248 °C (from ethanol). 1H NMR 

(400 MHz, DMSO-d6/D2O): δ 2.20 (s, 6H), 4.56 (s, 2H), 6.96-6.98 (m, 1H), 7.09 (d, J = 7.8 Hz, 1H), 

7.21-7.22 (m, 2H), 7.34 (dd, J = 2.1 and 8.6 Hz, 1H), 7.50-7.54 (m, 3H), 7.93 (d, J = 1.6 Hz, 1H). IR: ν 

1648, 3276, 3364 cm-1. 13C NMR (300 MHz, DMSO-d6,): 



115.38, 119.45, 119.93, 123.99, 125.18, 125.90, 127.74, 129.51, 133.32, 135.14, 137.20, 139.44, 

142.94, 155.70, 159.23 ppm. Anal. (C25H22ClN5O3S (507.99)) C, H, N, Cl, S. 

1.12. N-((1H-Indazol-3-yl)methyl)-5-chloro-3-((3,5-dimethylphenyl)sulfonyl)-1H-indole-2-carboxa-

mide (19). Synthesized following general procedure A, starting from 387 and (1H-indazol-3-

yl)methanamine. Yield 35%, mp 248-250 °C (from ethanol). 1H NMR (400 MHz, DMSO-d6): δ 2.20 (s, 

6H), 4.93 (d, J = 5.6 Hz, 2H), 7.10 (t, J = 7.1 Hz, 1H), 7.21 (s, 1H), 7.30-7.37 (m, 2H), 7.50-7.55 (m, 

4H), 7.90-7.93 (m, 1H), 7.97 (d, J = 2.0 Hz, 1H), 9.51 (br s, 1H, disappeared on treatment with D2O), 

12.96 (s, 1H, disappeared on treatment with D2O), 13.06 (br s, 1H, disappeared on treatment with D2O). 

13C NMR (400 MHz, DMSO-d6): 

120.81, 121.51, 121.56, 124.05, 126.68, 134.72, 135.10, 141.54, 154.43, 163.58 ppm.  IR: ν 1646, 2924, 

3195 cm-1. Anal. (C25H21ClN4O3S (492.98)). C, H, N, Cl, S. 

1.13. 5-Chloro-3-((3,5-dimethylphenyl)sulfonyl)-N-(2-oxo-2-((1-phenylethyl)amino)ethyl)-1H-indole-2-

carboxamide (20). Synthesized following general procedure A, starting from 39 and 1-

phenylethanamine. Yield 27%, mp 227-230 °C with decomposition (from ethanol). 1H NMR (400 MHz, 

DMSO-d6): δ 1.39 (d, J = 7.0 Hz, 3H), 2.27 (s, 6H), 4.07-4.10 (m, 2H), 4.97-5.02 (m, 1H), 7.21-7.34 

(m, 7H), 7.54 (d, J = 8.6 Hz, 1H), 7.71 (s, 2H), 7.98 (s, 1H), 8.39 (d, J = 8.6 Hz, 1H, disappeared on 

treatment with D2O), 9.41 (s, 1H, disappeared on treatment with D2O), 13.08 ppm (br s, 1H, 

disappeared on treatment with D2O). 13C NMR (400 MHz, DMSO-d6,):  21.12, 22.90, 43.35, 48.59, 

112.02, 115.69, 119.46, 124.21, 125.29, 125.94, 126.42, 127.16, 127.78, 128.71, 135.29, 136.59, 

139.56, 142.77, 144.82, 159.97, 167.45 ppm. IR: ν 1535, 1648, 2921, 3258 cm-1. Anal. 

(C27H26ClN3O4S (524.03)): C, H, N, Cl, S. 

1.14. 5-Chloro-3-((3,5-dimethylphenyl)sulfonyl)-N-(1-oxo-1-((1-phenylethyl)amino)propan-2-yl)-1H-

indole-2-carboxamide (21). Synthesized following general procedure A, starting from 40 and 1-

phenylethanamine. Yield 38%, mp 209-212 °C (from ethanol). 1H NMR (400 MHz, DMSO-d6): δ 



1.36-1.43 (m, 6H), 2.22-2.30 (m, 6H), 4.61-4.66 (m, 1H), 4.95-5.01 (m, 1H), 7.21-7.37 (m, 7H), 7.52-

7.57 (m, 1H), 7.69 (s, 2H), 8.00-8.02 (m, 1H), 8.49 (br s, 1H, disappeared on treatment with D2O), 9.40 

(br s, 1H, disappeared on treatment with D2O), 13.06 ppm (br s, 1H, disappeared on treatment with 

D2O). 13C NMR (400 MHz, DMSO-d6): 

49.59, 49.70, 119.50, 124.08, 124.12, 126.23, 126.41, 127.11, 128.71, 128.74, 135.27, 139.53, 142.91, 

144.70, 144.99, 170.85, 170.98 ppm. IR: ν 1524, 1642, 3234 cm-1. Anal. (C28H28ClN3O4S (538.06)): C, 

H, N, Cl, S. 

1.15. 5-Chloro-3-((3,5-dimethylphenyl)sulfonyl)-N-(2-oxo-2-((pyridin-4-ylmethyl)amino)ethyl)-1H-

indole-2-carboxamide (22). Synthesized following general procedure A, starting from 39 and pyridin-

4-ylmethanamine. Yield 45%, mp 276-279 °C (from ethanol). 1H NMR (400 MHz, DMSO-d6): δ 2.27 

(s, 6H), 4.13 (d, J = 5.7, 2H), 4.39 (d, J = 6.0, 2H), 7.24 (s, 1H), 7.30-7.33 (m, 3H), 7.55 (d, J = 9.0 Hz, 

1H), 7.70 (s, 2H), 7.97 (s, 1H), 8.47 (d, J = 4.9 Hz, 2H,), 8.64 (br s, 1H, disappeared on treatment with 

D2O), 9.43 (s, 1H, disappeared on treatment with D2O), 13.14 ppm (br s, 1H, disappeared on treatment 

with D2O). 13C NMR (400 MHz, DMSO-d6):  21.16, 21.34, 41.59, 43.41, 111.83, 115.86, 119.34, 

122.57, 124.27, 124.90, 126.14, 127.52, 135.05, 139.36, 143.09, 148.79, 149.85, 160.49, 169.01 ppm. 

IR: ν 1558, 1647, 2922, 3310 cm-1. Anal. (C25H23ClN4O4S (510.99)): C, H, N, Cl, S. 

1.16. 5-Chloro-3-((3,5-dimethylphenyl)sulfonyl)-N-(1-oxo-1-((pyridin-4-ylmethyl)amino)propan-2-yl)-

1H-indole-2-carboxamide (23). Synthesized following general procedure A, starting from 40 and 

pyridin-4-ylmethanamine. Yield 49%, mp 112-115 °C (from ethanol). 1H NMR (400 MHz, DMSO-d6): 

δ 1.45 (d, J = 6.6 Hz, 3H), 2.28 (s, 6H), 4.38 (s, 2H), 4.61-4.65 (m, 1H), 7.26-7.29 (m, 3H), 7.35 (d, J = 

8.1 Hz, 1H), 7.56 (d, J = 8.6 Hz, 1H), 7.68 (s, 2H), 8.00 (s, 1H), 8.48 (d, J = 4.4 Hz, 2H), 8.69 (t, J = 

4.7 Hz, 1H, disappeared on treatment with D2O) 9.43 (br s, 1H, disappeared on treatment with D2O), 

13.04 ppm (br s, 1H, disappeared on treatment with D2O). 13C NMR (300 MHz, DMSO-d6,):  18.66, 

21.11, 41.60, 49.83, 112.25, 115.56, 119.55, 121.84, 122.38, 124.09, 125.46, 125.92, 127.90, 133.33, 



135.33, 136.10, 139.57, 142.71, 148.69, 149.93, 159.03, 172.22 ppm. IR: ν 1566, 1648, 2936, 3220 cm-

1. Anal. (C26H25ClN4O4S (525.02)): C, H, N, Cl, S. 

1.17. 5-Chloro-3-((3,5-dimethylphenyl)sulfonyl)-N-(2-oxo-2-((1-(pyridin-4-yl)ethyl)amino)ethyl)-1H-

indole-2-carboxamide (24). Synthesized following general procedure A, starting from 39 and 1-

(pyridin-4-yl)ethanamine. Yield 40%, mp 238-240 °C dec. (from ethanol). 1H NMR (400 MHz, 

DMSO-d6): δ 1.39 (d, J = 6.5 Hz, 3H), 2.26 (s, 6H), 4.13 (d, J = 5.6 Hz, 2H), 4.96-4.99 (m, 1H), 7.25 (s, 

1H), 7.35 (d, J = 4.8 Hz, 3H), 7.54 (d, J = 8.9 Hz, 1H), 7.71 (s, 2H), 7.97 (s, 1H), 8.48-8.49 (m, 2H), 

8.52 (br s, 1H, disappeared on treatment with D2O), 9.47 (t, J = 3.8 Hz, 1H, disappeared on treatment 

with D2O), 13.10 ppm (br s, 1H, disappeared on treatment with D2O). 13C NMR (300 MHz, DMSO-

d6):  21.10, 22.11, 43.35, 47.94, 170.49, 119.50, 121.64, 124.19, 128.08, 135.44, 139.60, 142.71, 

150.02, 153.60, 159.92, 162.21, 167.89, 171.85, 172.48, 174.76, 177.84, 181.21 ppm. IR: ν 1561, 1648, 

2926, 3258 cm-1. Anal. (C26H25ClN4O4S (525.02)) C, H, N, Cl, S. 

1.18. 5-Chloro-3-((3,5-dimethylphenyl)sulfonyl)-N-(1-oxo-1-((1-(pyridin-4-yl)ethyl)amino)propan-2-

yl)-1H-indole-2-carboxamide (25). Synthesized following general procedure A, starting from 40 and 1-

(pyridin-4-yl)ethanamine. Yield 12%, mp 130-133 °C (from ethanol). 1H NMR (400 MHz, DMSO-d6): 

δ 1.38-1.43 (m, 6H), 2.23-2.28 (m, 6H), 4.60-4.66 (m, 1H), 4.91-4.98 (m, 1H), 7.23-7.26 (m, 1H), 7.33-

7.35 (m, 3H), 7.54-7.56 (m, 1H), 7.67 (s, 2H), 7.99 (s, 1H), 8.45-8.50 (m, 2H), 8.55-8.62 (m, 1H, 

disappeared on treatment with D2O), 9.39 (s, 1H, disappeared on treatment with D2O), 13.08 ppm (br s, 

1H, disappeared on treatment with D2O). 13C NMR (400 MHz, DMSO-d6,):  18.74, 21.08, 21.14, 

22.11, 47.96, 49.68, 108.92, 115.70, 119.48, 121.51, 121.61, 124.11, 127.82, 135.32, 139.56, 149.99, 

150.05, 152.29, 153.02, 153.71, 154.51, 155.42, 159.02, 171.22 ppm. IR: ν 1551, 1650, 2924, 3266 cm-

1. Anal. (C27H27ClN4O4S (539.05)) C, H, N, Cl, S. 

1.19. 5-Chloro-3-((3,5-dimethylphenyl)sulfonyl)-N-(2-oxo-2-((2-(thiophen-2-yl)ethyl)amino)ethyl)-1H-

indole-2-carboxamide (26). Synthesized following general procedure A, starting from 39 and 2-



(thiophen-2-yl)ethanamine. Yield 42%, mp 160-164 °C (from ethanol). 1H NMR (400 MHz, DMSO-

d6): δ 2.31 (s, 6H), 2.95-2.99 (m, 2H), 3.36-3.41 (m, 2H), 4.04 (d, J = 4.5 Hz, 2H), 6.90-6.95 (m, 2H), 

7.27 (s, 1H), 7.31-7.37 (m, 2H), 7.55 (dd, J = 2.4 and 9.2 Hz, 1H), 7.73 (s, 2H), 8.00 (s, 1H), 8.19 (br s, 

1H, disappeared on treatment with D2O), 9.39 (br s, 1H, disappeared on treatment with D2O), 13.07 

ppm (br s, 1H, disappeared on treatment with D2O). 13C NMR (DMSO-d6, 300 MHz):  21.18, 29.67, 

41.53, 43.31, 109.98, 112.29, 115.56, 119.57, 124.20, 124.48, 125.46, 125.68, 127.44, 127.89, 133.37, 

135.35, 139.58, 141.69, 142.71, 159.59, 164.08, 168.35 ppm. IR: ν 1545, 1638, 2922, 3213 cm-1. Anal. 

(C25H24ClN3O4S2 (530.06)) C, H, N, Cl, S. 

1.20. 5-Chloro-3-((3,5-dimethylphenyl)sulfonyl)-N-(1-oxo-1-((2-(thiophen-2-yl)ethyl)amino) propan-2-

yl)-1H-indole-2-carboxamide (27). Synthesized following general procedure A, starting from 40 and 2-

(thiophen-2-yl)ethanamine. Yield 41%, mp 227-230 °C (from ethanol). 1H NMR (400 MHz, DMSO-

d6): δ 1.36 (d, J = 7.1 Hz, 3H), 2.30 (s, 6H), 2.95-2.99 (m, 2H), 3.36-3.45 (m, 2H), 4.51-4.58 (m, 1H), 

6.89-6.91 (m, 1H), 6.93-6.95 (m, 1H), 7.27 (s, 1H), 7.32-7.37 (m, 2H), 7.56 (d, J = 8.6 Hz, 1H), 7.70 (s, 

2H), 8.02 (s, 1H), 8.25 (t, J = 6.2 Hz, 1H, disappeared on treatment with D2O), 9.37 (br s, 1H, 

disappeared on treatment with D2O), 13.04 ppm (br s, 1H, disappeared on treatment with D2O). 13C 

NMR (300 MHz, DMSO-d6):  18.86, 21.13, 29.60, 40.93, 49.70, 112.29, 115.52, 119.63, 124.10, 

124.48, 125.51, 125.73, 125.97, 127.39, 127.94, 133.23, 135.38, 135.90, 139.60, 141.71, 142.73, 

158.66, 171.74 ppm. IR: ν 1566, 1648, 2936, 3217 cm-1. Anal. (C26H26ClN3O4S2 (544.09)) C, H, N, Cl, 

S. 

1.21. 5-Chloro-3-((3,5-dimethylphenyl)sulfonyl)-N-(2-((2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl) 

amino)-2-oxoethyl)-1H-indole-2-carboxamide (28). Synthesized following general procedure A, 

starting from 39 and 2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethanamine. Yield 98%, mp 212-215 °C 

(from ethanol). 1H NMR (300 MHz, DMSO-d6): δ 2.30 (s, 6H), 2.42 (s, 3H), 3.48-3.55 (m, 2H), 3.97 (d, 

J = 5.7 Hz, 2H), 4.33-4.36 (m, 2H), 7.26 (s, 1H), 7.32-7.36 (m, 1H), 7.54 (d, J = 9.0 Hz, 1H), 7.70 (s, 



2H), 7.99 (d, J = 9.8 Hz, 2H), 8.27 (t, J = 6.4 Hz, 1H, disappeared on treatment with D2O), 9.37 (br s, 

1H disappeared on treatment with D2O), 13.84 ppm (br s, 1H, disappeared on treatment with D2O). 13C 

NMR (400 MHz, DMSO-d6):  14.30, 21.15, 38.63, 43.07, 45.81, 115.71, 119.56, 121.01, 124.21, 

125.40, 126.08, 127.82, 133.70, 135.33, 138.54, 138.92, 139.59, 140.54, 142.78, 151.93, 169.08 ppm. 

IR: ν 1642, 1678, 2922, 3255 cm-1. Anal. (C25H25ClN6O6S (573.02)) C, H, N, Cl, S. 

1.22. 5-Chloro-3-((3,5-dimethylphenyl)sulfonyl)-N-(1-((2-(2-methyl-5-nitro-1H-imidazol-1 

yl)ethyl)amino)-1-oxopropan-2-yl)-1H-indole-2-carboxamide (29). Synthesized following general 

procedure A, starting from 40 and 2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethanamine. Yield 74%, mp 

138-140 °C with decomposition (from ethanol). 1H NMR (300 MHz, DMSO-d6): δ 1.25 (d, J = 7.0 Hz, 

3H), 2.29 (s, 6H), 2.42 (s, 3H), 3.42-3.48 (m, 2H), 4.29-4.36 (m, 2H), 4.38-4.47 (m, 1H), 7.26 (s, 1H), 

7.31-7.35 (m, 1H), 7.54 (d, J = 8.8 Hz, 1H), 7.66 (s, 2H), 7.98-8.00 (m, 2H), 8.32 (t, J = 6.1 Hz, 1H, 

disappeared on treatment with D2O), 9.30 (br s, 1H, disappeared on treatment with D2O), 13.00 ppm 

(br s, 1H, disappeared on treatment with D2O). 13C NMR (300 MHz, DMSO-d6):  14.39, 18.42, 21.13, 

38.38, 45.75, 49.51, 112.26, 115.54, 119.58, 124.06, 125.49, 125.95, 127.92, 133.28, 133.62, 135.35, 

135.87, 138.99, 139.60, 142.70, 151.90, 158.73, 172.34 ppm. IR: ν 1561, 1641, 2967, 3234 cm-1. Anal. 

(C26H27ClN6O6S (587.05)) C, H, N, Cl, S. 

1.23. 5-Chloro-3-((3,5-dimethylphenyl)sulfonyl)-N-(2-oxo-2-((pyrimidin-4-ylmethyl)amino)ethyl)-1H-

indole-2-carboxamide (30). Synthesized following general procedure A, from 39 and pyrimidin-4-

ylmethanamine. Yield 67%, mp 233-235 °C (from ethanol). 1H NMR (400 MHz, DMSO-d6): δ 2.25 (s, 

6H), 4.16 (d, J = 7.4 Hz, 2H), 4.43 (d, J = 7.8 Hz, 2H), 7.24 (s, 1H), 7.33 (dd, J = 2.1 and 11.5 Hz, 1H), 

7.47 (d, J = 6.5 Hz, 1H), 7.54 (d, J = 11.6, 1H), 7.69 (s, 2H), 7.98 (d, J = 2.6 Hz, 1H), 8.69-8.72 (m, 

2H), 9.09 (br s, 1H, disappeared on treatment with D2O), 9.45 (t, J = 6.5 Hz, 1H, disappeared on 

treatment with D2O), 13.05 ppm (br s, 1H, disappeared on treatment with D2O). 13C NMR (300 MHz, 

DMSO-d6,):  21.08, 43.41, 44.11, 112.41, 115.53, 118.92, 119.58, 124.16, 125.48, 125.89, 127.92, 



133.32, 135.30, 135.96, 139.55, 142.70, 157.71, 158.70, 159.76, 167.66, 169.05 ppm. IR: ν 1555, 1649, 

2928, 3265 cm-1. Anal. (C24H22ClN5O4S (511.98)) C, H, N, Cl, S. 

1.24. 5-Chloro-3-((3,5-dimethylphenyl)sulfonyl)-N-(1-oxo-1-((pyrimidin-4-ylmethyl)amino) propan-2-

yl)-1H-indole-2-carboxamide (31). Synthesized following general procedure A, starting from 40 and 

pyrimidin-4-ylmethanamine. Yield 80%, mp 108-110 °C (from ethanol). 1H NMR (400 MHz, DMSO-

d6): δ 1.46 (d, J = 7.1 Hz, 3H), 2.26 (s, 6H), 4.42-4.44 (m, 2H), 4.64-4.67 (m, 1H), 7.25 (s, 1H), 7.36 

(dd, J = 2.0 and 8.8 Hz, 1H), 7.46 (d, J = 5.0 Hz, 1H), 7.56 (d, J = 8.8 Hz, 1H), 7.68 (s, 2H), 8.0 (d, J = 

2.0 Hz, 1H), 8.71 (d, J = 5.2 Hz, 1H), 8.81 (t, J = 6.0 Hz, 1H), 9.09 (d, J = 1.1 Hz, 1H, disappeared on 

treatment with D2O), 9.46 (d, J = 6.7 Hz, 1H, disappeared on treatment with D2O), 13.07 ppm (br s, 1H, 

disappeared on treatment with D2O). 13C NMR (300 MHz, DMSO-d6,):  18.55, 21.08, 44.10, 49.84, 

112.29, 115.54, 118.76, 119.55, 124.06, 125.47, 125.92, 127.91, 133.33, 135.32, 136.06, 139.56, 

142.71, 157.75, 158.47, 159.07, 167.71, 172.48 ppm.  

IR: ν 1554, 1649, 2967, 3268 cm-1. Anal. (C25H24ClN5O4S (526.01)) C, H, N, Cl, S. 

1.25. 5-Chloro-3-((3,5-dimethylphenyl)sulfonyl)-N-(2-((furan-2-ylmethyl)amino)-2-oxoethyl)-1H-

indole-2-carboxamide (32). Synthesized following general procedure A, starting from 39 and furan-2-

ylmethanamine. Yield 56%, mp 200-202 °C (from ethanol). 1H NMR (300 MHz, DMSO-d6): δ 2.27 (s, 

6H), 4.05 (d, J = 5.4 Hz, 2H), 4.32 (d, J = 4.32 Hz, 2H), 6.25-6.26 (m, 1H), 6.35-6.36 (m, 1H), 7.23 (s, 

1H), 7.30-7.33 (m, 1H), 7.51-7.54 (m, 2H), 7.69 (s, 2H), 7.97 (s, 1H), 8.48 (t, J = 5.3 Hz, 1H, 

disappeared on treatment with D2O), 9.34 (br s, 1H, disappeared on treatment with D2O), 13.02 ppm 

(br s, 1H, disappeared on treatment with D2O). 13C NMR (300 MHz, DMSO-d6,):  21.10, 36.00, 43.22, 

107.47, 110.90, 112.41, 115.52, 119.60, 124.20, 125.49, 125.88, 127.91, 133.26, 135.33, 135.90, 

139.57, 142.64, 152.39, 159.55, 168.26 ppm. IR: ν 1544, 1643, 2922, 3217 cm-1. Anal. 

(C24H22ClN3O5S (499.97)) C, H, N, Cl, S. 



1.26. 5-Chloro-3-((3,5-dimethylphenyl)sulfonyl)-N-(1-((furan-2-ylmethyl)amino)-1-oxopropan-2-yl)-

1H-indole-2-carboxamide (33). Synthesized following general procedure A, starting from 40 and 

furan-2-ylmethanamine. Yield 87%, mp 215-217 °C (from ethanol). 1H NMR (300 MHz, DMSO-d6): δ 

1.38 (d, J = 5.3 Hz, 3H), 2.29 (s, 6H), 4.33-4.35 (m, 2H), 4.55-4.62 (m, 1H), 6.27 (d, J = 3.0 Hz, 1H), 

6.38-6.39 (m, 1H), 7.26 (s, 1H), 7.32-7.35 (m, 1H), 7.54-7.57 (m, 2H), 7.68 (s, 2H), 8.01 (d, J = 1.9 Hz, 

1H), 8.56 (t, J = 5.8 Hz, 1H, disappeared on treatment with D2O), 9.36 (br s, 1H, disappeared on 

treatment with D2O), 13.04 ppm (br s, 1H, disappeared on treatment with D2O). 13C NMR (DMSO-d6, 

300 MHz):  18.84, 21.12, 36.12, 49.63, 107.28, 110.91, 115.51, 119.61, 124.09, 125.50, 125.96, 

127.93, 133.25, 135.35, 135.90, 139.59, 142.61, 142.72, 152.42, 158.71, 171.71 ppm. IR: ν 1541, 1648, 

3276 cm-1. Anal. (C25H24ClN3O5S (513.99)) C, H, N, Cl, S. 

1.27. 5-Chloro-3-((3,5-dimethylphenyl)sulfonyl)-N-(2-((2-fluorobenzyl)amino)-2-oxoethyl)-1H-indole-

2-carboxamide (34). Synthesized following general procedure A, starting from 39 and (2-

fluorophenyl)methanamine. Yield 52%, mp 230-232 °C (from ethanol). 1H NMR (300 MHz, DMSO-

d6): δ 2.27 (s, 6H), 4.10 (d, J = 5.3 Hz, 2H), 4.39 ( d, J = 5.5 Hz, 2H), 7.11-7.18 (m, 2H), 7.24-7.41 (m, 

4H), 7.52-7.55 (m, 1H), 7.69 (s, 2H), 7.98 (d, J = 1.6 Hz, 1H), 8.53 (t, J = 5.9 Hz, 1H, disappeared on 

treatment with D2O), 9.40 (br s, 1H, disappeared on treatment with D2O), 12.91 (br s, 1H, disappeared 

on treatment with D2O). 13C NMR (300 MHz, DMSO-d6):  21.07, 36.47, 43.30, 112.40, 115.34, 

115.58, 119.60, 124.18, 124.72, 125.46, 125.93, 126.24, 127.91, 129.47, 130.07, 133.35, 135.30, 

136.01, 139.56, 142.73, 159.67, 168.52 ppm. IR: ν 1542, 1632, 2920, 3216 cm-1. Anal. 

(C26H23ClFN3O4S (527,99)) C, H, N, Cl, F, S. 

1.28. 5-Chloro-3-((3,5-dimethylphenyl)sulfonyl)-N-(1-((2-fluorobenzyl)amino)-1-oxopropan-2-yl)-1H-

indole-2-carboxamide (35). Synthesized following general procedure A, starting from 40 and (2-

fluorophenyl)methanamine. Yield 52%, mp 210-212 °C (from ethanol). 1H NMR (400 MHz, DMSO-

d6): δ 1.41 (d, J = 7.0 Hz, 3H), 2.28 (s, 6H), 4.39 (d, J = 5.3 Hz, 2H), 4.60-4.63 (m, 1H), 7.13-719 (m, 



2H), 7.25 (s, 1H), 7.27-7.39 (m, 3H), 7.54-7.56 (m, 1H), 7.68 (s, 2H), 8.01 (d, J = 1.8 Hz, 1H), 8.60 (t, 

J = 6.6 Hz, 1H, disappeared on treatment with D2O), 9.37 (br s, 1H, disappeared on treatment with 

D2O), 13.02 (br s, 1H, disappeared on treatment with D2O).  13C NMR (300 MHz, DMSO-d6):  18.79, 

21.09, 36.46, 49.72, 112.32, 115.35, 115.53, 119.61, 124.09, 124.77, 125.48, 125.96, 126.26, 127.92, 

129.32, 129.43, 129.80, 133.29, 135.33, 135.96, 139.57, 142.72, 158.83, 171.95 ppm. IR: ν 1568, 1647, 

3275 cm-1. Anal. (C27H25ClFN3O4S (542,02)) C, H, N, Cl, F, S. 

1.29. 5-Chloro-3-((3,5-dimethylphenyl)sulfonyl)-N-(2-((1-(2-fluorophenyl)ethyl)amino)-2-oxoethyl)-

1H-indole-2-carboxamide (36). Synthesized following general procedure A, starting from 39 and 1-(2-

fluorophenyl)ethanamine. Yield 29%, mp 230-232 °C (from ethanol). 1H NMR (400 MHz, DMSO-d6): 

δ 1.38 (d, J = 7.0 Hz, 3H), 2.26 (s, 6H), 4.10-4.11 (s, 2H), 5.21-5.24 (m, 1H), 7.12-7.16 (m, 2H), 7.25-

7.28 (m, 2H), 7.34 (d, J = 9.2 Hz, 1H), 7.44 (t, J = 8.4 Hz, 1H), 7.54 (d, J = 8.6 Hz, 1H), 7.71 (s, 2H), 

7.98 (s, 1H), 8.50 (d, J = 7.2 Hz, 1H, disappeared on treatment with D2O), 9.42 (br s, 1H, disappeared 

on treatment with D2O), 13.07 ppm (br s, 1H, disappeared on treatment with D2O). 13C NMR (400 

MHz, DMSO-d6,):  21.08, 21.90, 43.00, 43.25, 115.57, 115.71, 115.78, 119.47, 124.20, 124.88, 

124.91, 125.29, 127.70, 127.75, 129.11, 129.19, 131.63, 131.77, 135.29, 139.56, 142.76, 158.63, 

161.05, 167.58 ppm.  IR: ν 1538, 1637, 2925, 3219 cm-1. Anal. (C27H25ClFN3O4S (542.02)) C, H, N, Cl, 

F, S. 

1.30. 5-Chloro-3-((3,5-dimethylphenyl)sulfonyl)-N-(1-((1-(2-fluorophenyl)ethyl)amino)-1-oxopropan-

2-yl)-1H-indole-2-carboxamide (37). Synthesized following general procedure A, starting from 40 and 

1-(2-fluorophenyl)ethanamine. Yield 70%, mp 200-202 °C (from ethanol). 1H NMR (400 MHz, 

DMSO-d6): δ 1.34-1.42 (m, 6H), 2.22-2.28 (m, 6H), 4.60-4.66 (m, 1H), 5.15-5.22 (m, 1H), 7.10-7.18 

(m, 2H), 7.23-7.44 (m, 4H), 7.51-7.56 (m, 1H), 7.67-7.68 (m, 2H), 7.80 (s, 1H), 8.57 (d, J = 10.2 Hz, 

1H, disappeared on treatment with D2O), 9.36 (d, J = 12.4 Hz, 1H, disappeared on treatment with D2O), 

13.04 ppm (br s, 1H, disappeared on treatment with D2O). 13C NMR (300 MHz, DMSO-d6,):  18.76, 



18.96, 21.09, 21.83, 43.02, 49.54, 112.19, 115.51, 115.77, 119.56, 124.06, 124.87, 125.45, 125.91, 

127.36, 127.63, 127.90, 129.03, 131.69, 131.86, 133.31, 135.32, 139.55, 142.67, 158.90, 161.47, 

170.81 ppm. IR: ν 1529, 1638, 2932, 3198 cm-1. Anal. (C28H27ClFN3O4S (556.05)) C, H, N, Cl, F, S.  

 

2. Enantiomers 

2.1. Enantioselective separations. Enantioselective HPLC analysis were performed by using 

stainless-steel Chiralpak IA (250 mm x 4.6 mm I.D. and 250 mm x 10 mm I.D.) and Chiralpak IC (250 

mm x 4.6 mm I.D. and 250 mm x 10 mm I.D.) (Daicel, Chemical Industries, Tokyo, Japan) columns. 

HPLC-grade solvents were used as supplied by Aldrich (Milan, Italy). The HPLC apparatus consisted 

of a Perkin Elmer (Norwalk, CT, USA) 200 lc pump equipped with a Rheodyne (Cotati, CA, USA) 

injector, a 1000 L sample loop, a HPLC Perkin Elmer oven and a Perkin Elmer 290 detector. The 

signal was acquired and processed by Clarity software.40 

 HPLC resolutions were carried out by using polysaccharide-based chiral stationary phases 

(CSPs). The CSP/eluent system and the corresponding chromatographic data for each compound 

analyzed are resumed as follows: 8: Chiralpak IA/ethanol-DEA 100:0.2, k1 = 0.67 (R), k2 = 1.03 (S), 

temp.: 40 °C; 23: Chiralpak IA/ethanol-DEA 100:0.2, k1 = 0.33 (R), k2 = 0.75 (S), temp.: 40 °C; 24: 

Chiralpak IC/ethyl acetate-methanol-DEA 100:0.2, k1 = 0.76 (S), k2 = 1.51 (R), temp.: 25 °C; 25: 

Chiralpak IC/n-hexane-ethanol-dichloromethane-DEA 40:15:45:0.3, k1 = 0.58 (R,S), k2 = 0.81 (S,R), k3 

= 1.20 (S,S), k4 = 2.72 (R,R), temp.: 25 °C; 31: Chiralpak IA/ethanol-dichloromethane-DEA 100:1:0.1, 

k1 = 0.40 (R), k2 = 1.05 (S), temp.: 40 °C; 33: Chiralpak IA/n-hexane-ethyl acetate-DEA 50:50:0.1, k1 = 

1.94 (S), k2 = 2.51 (R), temp.: 25 °C. k1 and k2 are the retention factors of the less retained enantiomer 

and the more retained enantiomer, respectively. 

 The CD spectra of (S)-8 obtained by stereospecific synthesis and the enantiomers of 23 isolated 

at semipreparative scale were dissolved in ethanol (concentration about 0.2 mg/ml) in a quartz cell (0.1 



cm-path length) at 25 °C and measured by using a Jasco41 Model J-700 spectropolarimeter in the 400-

200 nm spectral range. The spectra were average computed over three instrumental scans and the 

intensities were presented in terms of ellipticity values (mdeg).  

2.2. Absolute configuration assignment. The absolute configurations of the enantiomers of 8, 23, 24, 

31, 33 and four stereoisomers of 25 were empirically assigned by a combination of chemical 

correlation/enantioselective HPLC/circular dichroism methods. Commercially available (S)-

enantiomers of the amines were used as starting material for the stereospecific synthesis of the (S)-IAS 

derivatives. The coupling reaction between the chiral amine and the corresponding carboxylic acid did 

not affect the stereogenic center and the designed enantiomer retained its absolute configuration during 

the conversion. The stereochemical course of the reactions was monitored by the HPLC conditions 

described in the experimental section. 

 The ee values ranged from 60 to 99% with the only exception of 23, for which a complete 

racemization was observed. The stereochemical assignment of the enantiomers of 23 was obtained by 

comparing their CD spectra with those of the enantiomers of 8 of known stereochemistry (Figure 4S, 

Supporting Information). 

 

3. Molecular Modeling. All molecular modeling studies were performed on a MacPro dual 2.66 

GHz Xeon running Ubuntu 12. The images in the manuscript were created with PyMOL.42 The RTs 

structures were downloaded from the PDB website:43 WT RT, 2RF2;44 K103N RT, 3MED;45 Y181C 

RT, 1UWB.46 Hydrogen atoms were added to the protein using the Protonate #D option in Molecular 

Operating Environment (MOE) 2014.47 Ligand structures were built with MOE and minimized using 

the MMFF94x force field until a rmsd gradient of 0.05 kcal/(mol·Å) was reached. The docking 

simulations were performed using PLANTS.48 We set a binding lattice of 15 Å radius using all default 

settings used. Molecular dynamics was performed with the Amber 12 suite.49 The minimized structure 



was solvated in a periodic octahedron simulation box using TIP3P water molecules, providing a 

minimum of 10 Å of water between the protein surface and any periodic box edge. Ions were added to 

neutralize the charge of the total system. The water molecules and Cl- ions were energy-minimized 

keeping the coordinates of the protein-ligand complex fixed (1000 cycle), and then the whole system 

was minimized (5000 cycle). Following minimization, the entire system was heated to 298 K (20 ps). 

The production (50 ns) simulation was conducted at 298 K with constant pressure and periodic 

boundary condition. Shake bond length condition was used (ntc = 2). Production was carried out on 

GeForce gtx780 gpu. Compounds were parametrized by Antechamber50,51 using BCC charges. 

Trajectories analysis were carried out by cpptraj program.52 Molecular dynamics snapshots were 

obtained by computing the average for the latest 3500 steps and then was selected as representative step 

the one with the lowest RMSD versus computed average. Binding free energy were computed by 

sietraj.53,54 

 

4. Biological Assays 

4.1. Inhibition of HIV-induced cytopathicity. Biological activity of the compounds was tested in the 

lymphoid MT-4 cell line (received from the NIH AIDS Reagent Program) against the WT HIV-1 NL4-

3 strain and the different mutant HIV-1 strains, as described before.55 Briefly, MT-4 cells were infected 

with the appropriate HIV-1 strain (or mock-infected to determine cytotoxicity) in the presence of 

different drug concentrations. At day five post-infection, a tetrazolium-based colorimetric method 

(MTT method) was used to evaluate the number of viable cells. 

4.2. Enzymatic assay procedures. Chemicals. [3H]dTTP (40 Ci/mmol) was from Perkinelmer and 

unlabelled dNTP's from Promega. Perkinelmer was the supplier of the GF/C filters. All other reagents 

were of analytical grade and purchased from Sigma. Nucleic acid substrate. The homopolymer 

poly(rA) (Pharmacia) was mixed at weight ratios in nucleotides of 10:1, to the oligomer oligo(dT)12-18 



(Pharmacia) in 20 mM Tris-HCl (pH 8.0), containing 20 mM KCl and 1 mM EDTA, heated at 65 °C 

for 5 min and then slowly cooled at room temperature. Enzymatic assay. The coexpression vectors 

pUC12N/p66(His)/p51with the wild-type or the mutant forms of HIV-1 RT p66 were kindly provided 

by Dr. S. H. Hughes (NCI-Frederick Cancer Research and Development Center). Proteins were 

expressed in E. coli and purified as described.56 RNA-dependent DNA polymerase activity was assayed 

as follows: a final volume of 15 µL contained reaction buffer (50 mM Tris-HCl pH 7.5, 1 mM DTT, 

0.2 mg/mL BSA, 4% glycerol), 10% DMSO, 10 mM MgCl2, 0.5 µg of poly(rA)/oligo(dT)10:1 (0.3 µM 

3'-OH ends), 10 µM [3H]-dTTP (1Ci/mmol) and 2-4 nM RT. Reactions were incubated at 37 °C for the 

indicated time. 10 µL-Aliquots were then spotted on glass fiber filters GF/C which were immediately 

immersed in 5% ice-cold TCA. Filters were washed twice in 5% ice-cold TCA and once in ethanol for 

5 min, dried and acid-precipitable radioactivity was quantitated by scintillation counting. Reactions 

were performed under the conditions described for the HIV-1 RT RNA-dependent DNA polymerase 

activity assay. Incorporation of radioactive dTTP into poly(rA)/oligo(dT) at different substrate (nucleic 

acid or dTTP) concentrations was monitored in the presence of increasing fixed inhibitor dose was 

monitored, and data were then plotted according to equation 1 using Graphpad Prism 5.0 software 

 

ID50 = V= v/(1+([I]/ID50)) 

Equation 1. V: maximum velocity of the reaction; v: reaction velocity; [I]: inhibitor concentration; ID50: calculated 

inhibitor dose that conferred 50% enzymatic activity. 

 

 

4.3. Cell line and neuronal cultures. BV2 cells were maintained in culture in DMEM containing 

10% FBS. Cells were used up to passage 40. Primary hippocampal neuronal cultures were prepared 

from 0-2-day old (p0–p2) C57BL/6 mice. Briefly, after careful dissection from diencephalic structures, 

the meninges were removed and hippocampal tissues chopped and digested for 20 min at 37 °C in 

0.025% trypsin and Hank’s balanced salt solution (HBSS). Cells were washed twice with HBSS to 



remove the excess of trypsin, mechanically dissociated in minimal essential medium (MEM) with 

Earl’s Salts and GLUTAMAX supplemented with 10% dialyzed and heat inactivated FBS. Cells were 

plated at a density of 2 x 105 in the same medium on poly-L-lysine (100 µg/mL)-coated plastic 24-well 

dishes. After 2 h, the medium was replaced with serum- free Neurobasal/B27. Cells were kept at 37 °C 

in 5% CO2 for 11 days. By this method we obtained 60-70% neurons, 30-35% astrocytes, 4-8% 

microglia, as previously reported.57 Procedures were approved by the Italian Ministry of Health in 

accordance with the guidelines on the ethical use of animals from the European Community Council 

Directive of 22 September 2010 (2010/63/EU) 

4.4. Nitrite assay. NO production of BV2 cells was assessed by measuring nitrite accumulation in 

the culture medium by Griess Reagent Kit according to manifacturer instructions (Molecular Probes, 

MA, USA). The absorbance was measured at 570 nm in a spectrophotometric microplate reader 

(BioTek Instruments Inc, VT, USA).  

4.5. MTT cell viability assay. BV2 cell lines were seeded into multi-well plates and treated with 

vehicle  or 10, 102, 103 or 104 nM (R,S)-23 or EFV for 0-24-48 h. MTT (500 μg/mL) was added into 

each well for 2 h. DMSO was then added to stop the reaction and the produced formazan was measured 

at 570 nm in a spectrophotometric microplate reader (BioTek Instruments Inc, VT, USA). Viability of 

cells was expressed as % relative to 0 h. 

4.6. Excitotoxicity assay. Hippocampal cultures were treated with 100 M glutamate in Locke’s 

buffer containing NaCl (154 mM), KCl (5.6 mM), NaHCO3 (3.6 mM), HEPES (5 mM), CaCl2 (2.3 

mM), glucose (5.6 mM), glycine (10 mM) at pH 7.4 for 30 min in the presence or absence of (R,S)-23 

or EFV and then re-incubated in the conditioned culture medium for 18 h in the presence or absence of 

(R,S)-23 or EFV. To evaluate neuron viability, hippocampal neuronal cultures were treated with 

detergent-containing buffer (0.05% ethyl hexadecyl dimethylammonium bromide, 0.028% acetic acid, 



0.05% Triton X-100, 0.3 mM NaCl, 0.2 mM MgCl2 in PBS pH 7.4) and viable nuclei counted in a 

hemacytometer as described.58,59 

4.7. Real Time PCR. BV2 cells were treated with (R,S)-23 or EFV. After 24 h total RNA was 

extracted with Trizol reagent (Invitrogen, Italy), quantified and retro-transcripted using IScriptTM 

Reverse Transcription Supermix (Biorad, Italy). Real Time PCR (RT-PCR) was carried out in an I-

Cycler IQ Multicolor RT-PCR Detection System (Biorad, Italy) using SsoFast Eva Green Supermix 

(Biorad, Italy). The PCR protocol consisted of 40 cycles of denaturation at 95 °C for 30 s and 

annealing/extension at 58 °C for 30 s. The Ct values from each gene were normalized to the Ct value of 

GAPDH. Relative quantification was performed using the 2-ΔΔCt method and expressed as fold increase. 

Primer sequences are: gapdh: fw TCGTCCCGTAGACAAAATGG, rev 

TTGAGGTCAATGAAGGGGTC; inos: fw, CATCGACCCGTCCACAGTAT, rev 

CAGAGGGGTAGGCTTGTCTC; cd86: fw, AGAACTTACGGAAGCACCCA, rev 

GGCAGATATGCAGTCCCATT; cd163: fw, TCTGGCTTGACAGCGTTTC, rev, 

TGTGTTTGTTGCCTGGATT; fizz1: fw, CCAATCCAGCTAACTATCCCTCC, rev, 

ACCCAGTAGCAGTCATCCCA. 
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Figure 1S. Left panel: trajectories snapshots of (R)-8 and (R)-23 versus Y181C RT. Right panel: trajectories snapshots of 

(S)-8 with (S)-23 versus Y181C RT. Residues involved in interactions are reported as lines. Mutated residue is depicted as 

stick. RT is shown as cartoon. H-bonds are depicted as yellow dotted lines. 

 

 



 

 

 

     
 

Figure 2S. Compound 23 and EFV treatments reduce NO release induced by LPS on BV2 cells. BV2 cells were treated 

with 10 nM, 102 nM, 103 nM or 104 nM concentrations of 23 or EFV in the presence or absence of 50 ng/mL LPS for 24 h. 

NO release was measured by Greiss reaction. Data are expressed as M. N=3; *p<0,05 vs CTL by Kruskal-Wallis One Way 

Analysis of Variance (Dunn’s method). 

 

 

 

 

 

 

 

      
 

Figure 3S. Compound 23 and EFV treatments do not modify BV2 cell proliferation. BV2 cells were treated with 10 nM, 

102 nM, 103 nM and 104 nM of 23 or EFV for 0, 24 and 48 h. Proliferation rate was measured by MTT assay. Data are 

expressed as % vs vehicle at 0h. N=3.   

 

 



 
 

Figure 4S.  Comparison of the CD spectra of (S)-8 and the enantiomers of 23 recorded in ethanol. 

 

 

 

 
 

Figure 5S. Enantiomeric purity of the enantiomers of 8 separated at semipreparative scale. 
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Figure 6S. Enantiomeric purity of the enantiomers of 23 separated at semipreparative scale. 

 
 

 

Figure 7S. Enantiomeric purity of the enantiomers of 24 separated at semipreparative scale. 

 
 



 
Figure 8S. Enantiomeric purity of the enantiomers of 25 separated at semipreparative scale. 

 

 

 
Figure 9S. Enantiomeric purity of the enantiomers of 31 separated at semipreparative scale. 

 

 



 

Figure 10S. Enantiomeric purity of the enantiomers of 33 separated at semipreparative scale. 

 

  



Table 1S. In silico physicochemical properties of 9-22, 24 and 26-37. 

Cmpd LogPa TPSAb 
H-bond 

Acc.c 

H-bond 

Don.d 
MWe QPP Cacof QPP MDCKg 

9 2.70 100.55 4 2 456.94 1359.11 1719.66 

10 4.75 87.41 3 2 527.46 1390.83 4295.93 

11 3.71 96.64 5 2 500.97 1702.21 3131.21 

12 4.62 87.41 5 2 502.96 1430.99 5407.89 

13 3.99 87.41 4 2 484.97 1184.16 2460.85 

14 4.42 87.41 5 2 488.94 1093.77 3640.43 

15 2.00 124.09 5 2 478.95 148.66 153.92 

16 2.00 124.09 5 2 478.95 131.72 134.9 

17 3.14 113.43 3 3 467.97 275.47 299.61 

18 2.97 142.11 4 4 507.99 74.95 74.46 

19 3.22 116.09 4 3 492.98 378.62 431.52 

20 3.01 116.51 4 3 524.04 305.67 603.56 

21 3.21 116.51 4 3 538.08 555.98 882.22 

22 1.82 129.40 5 3 511.00 140.77 269.22 

24 2.03 129.40 5 3 525.03 214.84 388.32 

26 2.65 144.75 4 3 530.07 235.21 725.6 

27 2.85 144.75 4 3 544.10 347.91 1050.92 

28 1.50 180.15 7 3 573.03 301.56 943.23 

29 1.70 180.15 7 3 587.05 190.26 201.45 

30 1.25 141.29 6 3 511.99 135.68 258.24 

31 1.45 142.29 6 3 526.02 176.09 279.78 

32 1.65 129.65 5 3 499.98 197.37 372.13 

33 1.86 129.65 5 3 514.00 277.73 554.97 

34 3.18 116.51 5 3 528.00 240.43 688.91 

35 3.38 116.51 5 3 542.03 464.70 1224.57 

36 3.38 116.51 5 3 542.03 400.35 860.26 

37 3.57 116.51 5 3 556.06 627.59 1446.23 
Physicochemical properties predicted by SwissADME:1S aOctanol-water partition coefficient predictor by 

topological method implemented from Moriguchi;2S,3S bMolecular polar surface area: this parameter 

correlates with human intestinal absorption (<140).4S cNumber of H-bond acceptors; dNumber of H-bond 

donors; eMolecular Weight. Physicochemical properties predicted by QikProp:5S fQPP Caco - Apparent 

Caco-2 permeability (nm/sec) (<25 poor, >500 great); gQPP MDCK - Apparent MDCK permeability 

(nm/sec) (<25 poor, >500 great). 

 
  



Table 2S. Elemental analyses of compounds 8-37. 
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compd Calculated (%) Found (%) 

8 C, 61.91; H, 4.57; Cl, 7.31; F, 3.92; N, 5.78; S, 6.61 C, 61.76; H, 4.52; Cl, 7.11; F, 3.80; N, 5.62; S, 6.42 

9 C, 60.46; H, 4.63; Cl, 7.76; N, 6.13; S, 7.02 C, 60.25; H, 4.59; Cl, 7.62; N, 6.02; S, 6.88 

10 C, 61.48; H, 4.59; Cl, 13.44; N, 5.31; S, 6.08 C, 61.37; H, 4.54; Cl, 13.36; N, 5.22; S, 5.90 

11 C, 59.94; H, 4.43; Cl, 7.08; F, 3.79; N, 5.59; S, 6.40 C, 59.85; H, 4.39; Cl, 6.91; F, 3.65; N, 5.48; S, 6.32 

12 C, 59.70; H, 4.21; Cl, 7.05; F, 7.55; N, 5.57; S, 6.38 C, 59.59; H, 4.17; Cl, 6.88; F, 7.37; N, 5.68; S, 6.19 

13 C, 61.91; H, 4.40; Cl, 7.31; F, 3.92; N, 5.78; S, 6.61 C, 61.84; H, 4.44; Cl, 7.19; F, 3.75; N, 5.69; S, 6.48 

14 C, 58.96; H, 3.92; Cl, 7.25; F, 7.77; N, 5.73; S, 6.56 C, 58.68; H, 3.88; Cl, 7.13; F, 7.58; N, 5.61; S, 6.88 

15 C, 59.42; H, 3.69; Cl, 7.63; N, 12.05; S, 6.90 C, 59.26; H, 3.61; Cl, 7.40; N, 11.95; S, 6.78 

16 C, 59.42; H, 3.69; Cl, 7.63; N, 12.05; S, 6.90 C, 59.34; H, 3.61; Cl, 7.51; N, 11.88; S, 6.71 

17 C, 61.60; H, 4.74; Cl, 7.58; N, 8.98; S, 6.85 C, 61.50; H, 4.68; Cl, 7.48; N, 8.81; S, 6.78 

18 C, 59.11; H, 4.37; Cl, 6.98; N, 13.79; S, 6.31 C, 58.89; H, 4.32; Cl, 6.88; N, 13.68; S, 6.20 

19 C, 60.51; H, 4.46; Cl, 7.24; N, 11.44; S, 6.55 C, 60.42; H, 4.42; Cl, 7.13; N, 11.29; S, 6.31 

20 C, 61.88; H, 5.00; Cl, 6.77; N, 8.02; S, 6.12 C, 61.73; H, 4.98; Cl, 6.64; N, 7.92; S, 5.97 

21 C, 62.50; H, 5.25; Cl, 6.59; N, 7.81; S, 5.96 C, 62.42; H, 5.16; Cl, 6.42; N, 7.70; S, 5.85 

22 C, 58.76; H, 4.54; Cl, 6.94; N, 10.96; S, 6.28 C, 58.59; H, 4.48; Cl, 6.78; N, 10.82; S, 6.07 

23 C, 59.48; H, 4.80; Cl, 6.75; N, 10.67; S, 6.11 C, 59.31; H, 4.72; Cl, 6.69; N, 10.58; S, 5.93 

24 C, 59.48; H, 4.80; Cl, 6.75; N, 10.67; S, 6.11 C, 59.26; H, 4.71; Cl, 6.66; N, 10.39; S, 5.90 

25 C, 60.16; H, 5.05; Cl, 6.58; N, 10.39; S, 5.95 C, 59.98; H, 4.99; Cl, 6.42; N, 10.25; S, 5.72 

26 C, 56.65; H, 4.56; Cl, 6.69; N, 7.93; S, 12.10 C, 56.51; H, 4.49; Cl, 6.45; N, 7.81; S, 11.95 

27 C, 57.40; H, 4.82; Cl, 6.52; N, 7.72; S, 11.79 C, 57.27; H, 4.80; Cl, 6.48; N, 7.52; S, 11.54 

28 C, 52.40; H, 4.40; Cl, 6.19; N, 14.67; S, 5.60 C, 52.12; H, 4.34; Cl, 5.98; N, 14.42;  S, 5.46 

29 C, 53.19; H, 4.64; Cl, 6.04; N, 14.32; S, 5.46 C, 53.04; H, 4.58; Cl, 5.89; N, 14.15; S, 5.21 

30 C, 56.30; H, 4.33; Cl, 6.92; N, 13.68; S, 6.26 C, 56.21; H, 4.29; Cl, 6.78; N, 13.38; S, 6.07 

31 C, 57.08; H, 4.60; Cl, 6.74; N, 13.31; S, 6.10 C, 56.91; H, 4.52; Cl, 6.51; N, 13.05; S, 5.88 

32 C, 57.66; H, 4.44; Cl, 7.09; N, 8.40; S, 6.41 C, 57.48; H, 4.37; Cl, 6.95; N, 8.21; S, 6.25 

33 C, 58.42; H, 4.71; Cl, 6.90; N, 8.18; S, 6.24 C, 58.25; H, 4.68; Cl, 6.75; N, 7.92; S, 6.11 

34 C, 59.14; H, 4.39; Cl, 6.71; F, 3.60; N, 7.96; S, 6.07 C, 58.92; H, 4.28; Cl, 6.64; F, 3.49; N, 7.72; S, 5.87 

35 C, 59.83; H, 4.65; Cl, 6.54; F, 3.51; N, 7.75; S, 5.92 C, 59.55; H, 4.59; Cl, 6.28; F, 3.42; N, 7.51; S, 5.70 

36 C, 59.83; H, 4.65; Cl, 6.54; F, 3.51; N, 7.75; S, 5.92 C, 59.61; H, 4.54; Cl, 6.37; F, 3.40; N, 7.49; S, 5.78 

37 C, 60.48; H, 4.89; Cl, 6.38; F, 3.42; N, 7.56; S, 5.77 C, 60.37; H, 4.82; Cl, 6.25; F, 3.28; N, 7.38; S, 5.41 


