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Capsule	Summary	

Under	inflammatory	conditions	where	IL-1β	is	present,	iTh2	cells	

exacerbate	allergic	responses	critical	in	orchestrating	asthmatic	lung	

immunopathology,	suggesting	IL-1	signalling	on	CD4	as	a	critical	target	in	

allergic	asthma.	

	 	



Interleukin-1	beta	enhances	inflammatory	Th2	differentiation	

	

To	the	Editor:	

	 Type	2	immune	responses	are	critically	dependent	on	the	canonical	

cytokines,	IL-4	and	IL-13,	two	related	cytokines	that	both	utilize	IL-4Ra for	

signalling.		These	mediators	have	both	overlapping	and	independent	functions	

with	IL-4	involved	in	the	initiation	of	Th2	differentiation	and	immunoglobulin	

class	switching	and	IL-13	in	Th2	inflammatory	responses	(iTh2).		Hallmarks	of	

infections	associated	with	type	2	immune	responses	are	the	infiltration	of	

affected	tissues	by	helper	T	cells,	eosinophils	and	basophils,	activation	of	

macrophages,	smooth	muscle	and	tissue	remodelling,	and	elevated	levels	of	IgE.	1			

	 We	have	previously	reported	that	IL-1β	strikingly	enhances	CD4	T	cell	

survival,	antigen-driven	expansion,	differentiation	and	cytokine	in	vivo	

production.	2,	3		To	investigate	the	impact	of	IL-1β	on	Th2	differentiation	in	

greater	detail,	pigeon	cytochrome	c	(PCC)-specific	5C.C7	CD4	T	cells	were	

cultured	under	Th2	polarizing	conditions.		Anti-IL-1a/b or	IL-1Ra	(anakinra)	

were	included	in	control	cultures	to	generate	Th2	cells	in	the	absence	of	IL-1	

signalling	for	comparison	to	those	exposed	to	IL-1β.		IL-4	production	was	

reduced	in	Th2	cells	primed	with	IL-1β	compared	to	the	anti-IL-1	and	anakinra	

groups;	by	contrast,	IL-13	production	was	dramatically	increased	among	cells	

primed	with	IL-1b	(Fig.	1A).		IL-1R1	was	also	detected	on	over	50%	of	Th2	cells	

at	72h	and	maintained	at	higher	levels	on	Th2	IL-1b	cells	as	compared	to	anti-IL-

1	treated	Th2	cells	at	96h	(Fig.	1B).		To	assess	the	contribution	of	IL-1R	

expression	to	this	pattern	of	cytokine	production,	T	cells	were	cultured	for	2	

days	with	anti-IL-1a/b	or	IL-1b,	sorted	for	IL-1R1,	and	then	placed	back	in	their	

original	culture	conditions	for	2	days	before	analysis	(Fig.	1C).		The	data	suggest	

that	cells	acquiring	expression	of	IL-1R	during	early	Th2	differentiation	are	

especially	susceptible	to	adopting	a	dominant	IL-13	producing	phenotype	when	

exposed	to	IL-1	at	this	time.		IL-5	expression	showed	similar	enhancement	in	the	

IL-1R+,	IL-1	group	(Fig.	1D).	Similar	results	were	obtained	using	wild	type	and	

other	TCR-Tg	CD4+T	cells	suggesting	that	the	phenomenon	was	not	restricted	to	

a	single	antigen	or	TcR	(data	not	shown).	



	 To	assess	their	phenotypic	stability,	both	Th2	groups	differentiated	in	

vitro	were	sorted	for	IL-1R1	and	either	reprimed	in	vitro	under	neutral,	Th1	or	

Th2	conditions	or	transferred	in	vivo	into	mice	rechallenged	intranasally	(IN):	

Fig.	E1A	and	B	show	that	independently	of	the	secondary	condition,	the	original	

phenotypes	were	stably	maintained.	

	 Myd88	and	NF-kB	are	involved	in	the	IL-1R1	canonical	signalling	

pathway.		To	analyze	their	contributions	in	our	system,	we	cultured	OT-II,	OT-II	

IL-1R1-/-	or	OT-II	Myd88-/-	T	cells	together	with	wild	type	APCs.		Fig.	E1C	shows	

that	IL-1β-dependent	enhancement	of	IL-13	production	required	both	IL-1R1	

and	Myd88	expression	on	the	responding	CD4	T	cells	but	not	on	APCs	(data	not	

shown).		To	test	the	contribution	of	NF-kB,	Th2	cells	±	anti-IL-1a/b were	treated	

with	an	NF-kB	activation	inhibitor.		No	effect	was	observed	with	anti-IL-1,	but	IL-

13	expression	was	significantly	diminished	and	IL-4	production	enhanced	in	the	

IL-1β	group	indicating	a	contribution	of	IL-1R/NF-kB	pathway	to	the	cytokine	

production	phenotype	we	observe	after	IL-1b	exposure	(Fig.	E1D).	

	 Chromatin	immunoprecipitation	analysis	of	Il13,	Il4	and	Ifng	promoter	

regions	was	carried	out	on	both	Th2	groups	using	antibody	to	the	activating	

AcH3K27	modification	(Fig.	E2A).	4		Il13	HSII	and	Il13	HSIII,	but	not	Il13	or	Il4	

HSIII	showed	a	clear	enhanced	immunoprecipitation	in	the	“IL-1β,	IL-1R+”	

group.		Thus,	Th2	priming	in	the	presence	of	IL-1b	causes	the	promoter	and	

second	intron	of	Il13	to	become	more	transcriptionally	active.	

	 Microarray	(not	shown)	and	RT-PCR	analysis	of	both	Th2	groups	showed	

that	Pth,	IL-13,	IL-5,	Ccl17,	Timd2,	Slc15a3,	Slc2a6	and	Nts	were	more	highly	

expressed	in	the	“IL-1β,	IL-1R+”	group	and	IL-4,	IL-10	and	Myo6	were	more	

highly	expressed	in	the	“anti-IL-1,	IL-1R-“	group	.		Parathyroid	hormone	(Pth)	

showed	the	greatest	enhancement	in	the	“IL-1β	IL-1R+”	group.		Its	expression	

has	previously	been	reported	in	activated	Th2	cells	but	not	in	Th1	cells	(Fig.	

E2B).	5	We	confirmed	PTH	secretion	by	ELISA	and	measured	biologically	active	

PTH	via	cAMP	functional	assay	(Fig.	E2C,	D).	

Th2	differentiation	is	central	to	cell	recruitment,	induction	of	

inflammation	and	mucus	production	in	the	lungs.	6		Using	PCC-specific	5C.C7	

CD4+T	cells,	lymphocytes	from	the	anti-IL-1	treated	and	the	IL-1b	exposed	

groups	were	sorted	for	IL-1R1,	adoptively	transferred	into	wild	type	mice	and	



the	mice	challenged	IN	with	antigen	+	anakinra	only	-	to	avoid	any	potential	

secondary	effect	of	endogenous	IL-1β	(Fig.	2A).  The	number	of	eosinophils	in	

the	bronchoalveolar	lavage	(BAL)	and	in	the	lungs	were	significantly	greater	in	

mice	that	received	IL-1R+cells	primed	with	IL-1b.		These	differences	were	

maintained	when	the	mice	were	challenged	13	weeks	after	transfer	(Fig.	2B,	D).		

PAS	staining	of	lung	sections	shows	greater	peribronchial	infiltration	of	

inflammatory	cells,	goblet	cells	metaplasia	and	striking	enhancement	of	mucus	

production	(magenta)	in	the	“IL-1β,	IL-1R+”	group	with	an	average	

histopathology	score	significantly	higher	than	the	controls	(Fig.	2C,	E,	F).	

	 To	examine	the	possible	role	of	IL-1β	during	an	in	vivo	house	dust	mite	

Th2	allergic	response,	wild	type	mice	were	sensitized	IN	with	HDM	+	anakinra	or	

IL-1b,	and	rechallenged	7	days	later	for	5	consecutive	days	(Fig.	2G).	7		IL-13	

expression	by	CD44hi	effector	CD4+	T	cells	in	the	lung	and	in	the	BAL	was	

dramatically	increased	when	HDM	priming	was	accompanied	by	IL-1β	(Fig.	2H).		

In	this	model,	IL-4	production	was	also	slightly	enhanced.		Additionally,	as	

anticipated	from	the	increased	IL-13	production,	the	number	of	infiltrating	

eosinophils	was	increased	in	the	BAL	of	the	HDM	+	IL-1b	group	(Fig.	2I).		To	

exclude	possible	IL-1	enhancement	of	IL-17	priming,	RORgt-/-	mice	were	used	8:		

histological	analysis	revealed	striking	peribronchial	inflammatory	cell	infiltrates,	

an	increase	of	mucus	production	(magenta)	and	goblet	cell	metaplasia	in	IL-1β-

treated	mice	and	an	average	score	of	inflammation	higher	compared	to	the	

anakinra	control	(Fig.	2J-L).		These	results	indicate	that	IL-1β	present	during	in	

vivo	Th2	priming	causes	increased	allergic	effector	responses.		Subsequently,	IL-

1β	blockade	maintains	low	levels	of	IL-13,	limiting	the	infiltration	and	mucus	

production.	

Based	on	these	findings	we	propose	that	natural	Th2	priming	that	occurs	

in	inflammatory	settings	where	IL-1b	is	present	gives	rise	to	iTh2	cells	that	are	

specialized	to	induce	allergic	inflammatory	responses,	while	those	primed	in	its	

absence	are	more	important	as	regulatory	cells,	i.e.	amplifiers	of	Th2	cells	and	

antibody	response	by	B	cells.		Signalling	through	the	IL-1	receptor	during	

priming	is	the	major	determinant	of	the	distinctive	phenotypes	of	these	two	

types	of	Th2	cells	and	translates	into	differences	in	in	vivo	inflammatory	

responses.	
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Material	&	Methods	

	

Mice	

C57BL/6	and	B6	RORgt-/-	mice	were	obtained	from	Jackson	Laboratory,	C57BL/6	

OT-II	Rag2-/-	CD45.1,	B6	OT-II	Rag2-/-	IL-1R1-/-,	B10.A,	B10.A	5C.C7	Rag2-/-	

CD45.1,	BALB/c	DO11.10	Rag2-/-	CD45.1	and	BALB/c	mice	were	obtained	from	

Taconic	Farms	Germantown,	NY.		B6	OTII-Myd88-/-	mice	were	obtained	from	

Ryoji	Yagi.		All	mice	were	housed	under	specific	pathogen-free	animal	conditions	

at	the	National	Institute	of	Allergy	and	Infectious	Diseases	(NIAID),	and	used	

between	6	and	12	weeks	of	age	in	accordance	with	guidelines	provided	by	the	

Institutional	Animal	Care	and	Use	Committee	of	the	NIAID.	

	

In	vitro	T	cell	differentiation	

T	cell	differentiation	was	performed	as	previously	described9.		Briefly,	naïve	CD4	

T	cells	were	cultured	with	irradiated	T-depleted	splenocytes	or	DCs	in	presence	

of	their	cognate	peptide	with	combinations	of	antibodies	and	cytokines	for	4-5	

days:	IL-2,	IL-12	and	anti-IL-4	for	Th1	differentiation;	IL-2,	IL-4,	anti-IFN-γ	and	

anti-IL-12	for	Th2	and	anti-IL-4,	anti-IFN-γ,	anti-IL-12,	IL-6,	TGFb,	and	IL-21	for	

Th17	differentiation.		Th2	cells	were	rested	in	IL-2	supplemented	medium	prior	

in	vivo	transfer	when	required.		When	specified	a	combination	of	1µg/ml	anti-IL-

1a 	+	1µg/ml	anti-IL-1β	(R&D	Systems)	or	IL-1β	10ng/ml	(Peprotech)	was	

used.			

In	some	experiments,	6-Amino-4-(4-phenoxyphenylethylamino)	quinazoline	

(Calbiochem),	a	NF-kB	activation	inhibitor	was	also	added.		To	generate	IL-1R-	

and	IL-1R+	cells,	Th2	cells	primed	for	2	days	in	the	presence	of	anti-IL-1a/b	or	

IL-1b	were	washed	and	resuspended	with	fresh	Th2	medium	to	remove	IL-1b	

bound	to	the	IL-1R.		14h	later,	activated	TCR-Tg	CD4	T	cells	were	harvested,	

sorted	for	IL-1R1	expression	amplified	with	PE	FASER	kit	(Miltenyi)	and	put	

back	in	the	original	culture	medium.	

	

Secondary	culture	



Th2	cells	primed	for	5	days	in	the	presence	of	anti-IL-1a/b	or	IL-1b	were	

reprimed	under	neutral	(IL-2	+	1µM	PCC	with	T-depleted	irradiated	APC),	Th1,	

or	Th2	conditions.	

	

Cell	transfer	and	in	vivo	immunization	

0.5	to	1	million	cells	were	transferred	intravenously	and	mice	were	immunized	

intranasally	with	100µg	ovalbumin	or	pigeon	cytochrome	c	(Sigma)	+	25µg	

lipopolysaccharide	(InVivogen).		For	cytokine	instillation,	mice	were	given	1µg	of	

recombinant	IL-1b	(Peprotech)	or	500µg	IL-1Ra	(anakinra,	Kineret)	intranasally.		

For	induction	of	allergic	asthma,	mice	were	sensitized	intranasally	with	1µg	HDM	

+	IL-1β	or	anakinra,	and	rechallenged	with	100µg	HDM	+	IL-1β	or	anakinra	for	5	

consecutive	days	6	days.	

	

Isolation	of	Lung	cells	

Lungs	were	extensively	perfused	with	PBS	before	being	harvested.		Lungs	were	

minced	with	gentleMACS	dissociator	(Miltenyi	Biotec)	and	digested	in	Liberase	

TM	with	DNase	I	(Invitrogen)	for	30	minutes	at	37˚C.		The	digested	tissue	was	

processed	on	a	40µm	cell	strainer	(BD	Biosciences),	and	a	single	cell	suspension	

was	enriched	on	a	40/60%	Percoll	gradient	centrifugation	(GE	Healthcare).		

Broncho	alveolar	fluid	was	collected	by	5	consecutive	washes	with	PBS+BSA.	

	

Flow	Cytometry	

Lymph	nodes,	BAL,	spleen	and	lungs	were	harvested	and	single-cell	suspensions	

were	prepared.		For	intracellular	staining,	cells	were	stimulated	with	1µM	

ionomycin	and	10ng/ml	PMA	for	4-6h	and	5µM	of	monensin.		Cell	were	stained	

with	live/dead	(In	vitrogen),	CD4	(RM4.5),	CD44	(IM7),	CD45.1	(A20),	CD45.2	

(104),	IL-2	(JES6-5H4),	IL-4	(11B11),	IL-5	(TRFK5),	IL-17A	(TC11-18H10),	IFN-γ	

(XMG1.2)	(BD	Bioscience),	IL-13	(eBio13A)	(eBioscience)	antibodies.		IL-1R1	

(JAMA	174)	antibody	was	purchased	from	BioLegend,	and	stained	using	Faser	

Kit-PE	amplification	system	(Miltenyi).		Data	were	collected	with	BDLSRII	and	

analyzed	with	FlowJo	(TreeStar).	

	

Immunohistochemistry	and	Histopathology	



Lung	lobes	were	perfused	and	immersed	in	5%	Formalin.	Samples	were	

prepared	and	stained	with	periodic	acid	schiff	(HistoServe,	Germantown,	MD;	

American	Histolab,	Gaithersburg,	MD).		Images	were	acquired	using	a	Leica	

Episcope	inverted	microscope,	and	processed	with	Leica	LASX	software.		Siglec-

F+	CD11b+	CD11c-	expressions	were	used	to	identify	eosinophils.	

Histopathologic	scoring	system	was	developed	as	follows:		(0)	normal	lungs;		(1)	

minor	perivascular	inflammation	around	large	blood	vessels;		(2)	moderate	

perivascular	and	peribronchial	inflammation,	minimal	evidence	of	goblet	cell	

hyperplasia;		(3)	increased	perivascular	and	peribronchial	inflammation	with	

increased	goblet	cell	hyperplasia	beginning	in	smaller	airways;		(4)	severe	

formation	of	perivascular,	peribronchial,	and	interstitial	inflammation	as	well	as	

goblet	cell	hyperplasia	in	small	and	large	airways.		Grading	was	performed	

blinded	on	unidentified	sections.	

	

PTH	ELISA	

Th1,	Th2,	Th17,	iTreg	CD4	T	cells	primed	for	4	days	were	stimulated	with	plate	

bound	anti-CD3	(10µg/ml)/	anti-CD28	(10µg/ml).		Supernatants	were	collected	

24h	later	and	tested	for	PTH	production	by	ELISA	kit	according	to	

manufacturer’s	recommendation	(Immutopics).	

	

cAMP	fluorescence	resonance	energy	transfer	(FRET)	assay	

Th1	or	Th2	supernatants	were	mixed	with	serum-free	DMEM	containing	IBMX	

and	Ro	20-1724	(Sigma,	MO).		hPTH1R-transfected	HEKP7	cells	were	treated	

with	30µl	of	this	mix	at	37C	for	1h.		cAMP-d2	and	cAMP-kryptate	were	added	for	

1h.		cAMP	was	measured	using	FRET	at	665nm	and	620nm	(cisbio,	MA).	

	

Chromatin	immunoprecipitation	

Chromatin	immunoprecipitation	was	performed	as	previously	described10.		In	

brief,	cells	were	extensively	washed	with	0.5%	BSA/PBS	and	then	resuspended	

in	digestion	buffer	(Roche).		Cells	were	incubated	with	5U	of	Micrococcal	

Nuclease	(MNase,	New	England	BioLabs)	and	sonicated	to	break	chromatin	to	

about	200-500bp.		The	chromatin	preparation	was	dialyzed	against	RIPA	buffer,	

incubated	with	anti-acetylated	histone	3	H3K27	or	control	IgG	(Abcam),	and	then	



precipitated	with	Dynabeads	protein	A	beads	(Life	Technologies).		The	

immunoprecipitated	DNA	was	purified	and	quantified	using	real-time	PCR	with	

SYBR®	Green	reagents	(ABI).		

Primers	Il13	HSI:	5’-GCC-CCT-CAA-GAC-AAG-CAG-AA-3’	and	5’-ATC-GAC-CCC-

ATC-TCC-CGT-TA-3’.	Il13	HSII:	5’-CCC-CTG-GTC-TCT-GCT-TTG-	TT-3’	and	5’-

CTG-GAA-ACC-CTG-TCC-CAG-AC-3’.	Il13	HSIII:	5’-GCC-TAG-AAT-GTC-GGG-GCT-

TT-3’	and	5’-GTA-GCC-TAG-GCC-AGC-CAA-AA-3’.	Ifnγ	promoter:	5’-CGA-GGA-

GCC-TTC-GAT-CAG-GT-	3’	and	5’-GGT-CAG-CCG-ATG-GCA-GCT-A-3’.	

	

Microarray	and	Real-time	PCR	

For	microarray	analysis,	RNA	was	prepared	from	Th2	anti-IL-1a/b,	IL-1R-	and	

Th2	IL-1b,	IL-1R+	cells	using	the	Qiagen	RNeasy	Mini	kit.		Total	RNA	was	sent	to	

microarray	research	facility	at	NIAID	Research	Technologies	Branch	for	

hybridization	using	the	Illumina	BeadChip	platform.	

For	RT-PCR,	total	RNA	was	purified	from	in	vitro	cultures	according	to	the	

manufacturer's	protocol	(Life	Technologies).		Reverse	transcription	was	

performed	with	oligo(dT)20	primers.		TaqMan	probes	were	used	for	

measurement	of	various	gene’s	expression,	and	mRNA	relative	expression	was	

adjusted	to	Gapdh	(Mm03302249_g1;	Life	Technologies).	

Primers:	mPth	(Mm01271501_m1		Mm00451600_g1),	mNts	

(Mm00481140_m1),	mIl13	(Mm00434204_m1),	mIl5	(Mm00439646_m1),	m	

Slc15a3	(Mm00491666_m1),	mSlc2a6	(Mm00554217_m1),	mCcl17	

(Mm00516136_m1),	mTimd2	(Mm00506693_m1),	mIl10	(Mm00439614_m1),	

mIl4	(Mm00445259_m1),	mMyo6	(Mm00500651_m1),	mIl1r1	

(Mm00434237_m1),	mgata3	(Mm00484683_m1).	

	

Statistical	analysis.	

Sample	sizes	were	determined	empirically.		Differences	between	data	sets	of	

similar	variance	were	analyzed	by	unpaired	two-tailed	Student's	t-test.		A	p	value	

<0.05	was	considered	significant.		ns:	p>	0.05;		*:	p	≤	0.05;		**:	p≤	0.01;		***:	p≤	

0.001;		****:	p≤	0.0001	

	 	



Figure	legend	

	

FIG	1.	IL-13	is	increased	and	IL-4	decreased	when	Th2	cells	are	

differentiated	in	presence	of	IL-1β	

A,	IL-13	and	IL-4	expression	on	Th1,	Th17	and	Th2	cells	differentiated	in	the	

presence	of	IL-1β,	anti-IL-1a/β	or	anakinra.		B,	Kinetic	analysis	of	IL-1R1	

expression.		C,	D,	IL-13,	IL-4	and	IL-5	expression	on	Th2	groups	sorted	based	on	

IL-1R1	expression.	Statistical	analyses	were	compared	to	the	IL-1β	IL-1R+	group.	

	

FIG	2.	iTh2	cells	induce	lung	hyper	eosinophilia	and	goblet	cell	metaplasia	

A-F,		Wild	type	mice	were	transferred	with	5C.C7	Th2	cells	sorted	as	in	Fig.	1C	

and	rechallenged	IN.		B,	D,	I,	K,	Eosinophils	count	after	IN	challenge.		C,	E,	F,	J,	L,	

Lung	sections	stained	with	PAS,	and	scored	for	inflammation	as	described	in	

Methods.		Arrows	indicate	mucus-producing	cells	(magenta).		Wild	type	(G-I)	and	

RORgt-/-	mice	(J-L)	were	sensitized	with	HDM	+	anakinra	or	IL-1β	and	

rechallenged	IN.		H,	CD44hi	CD4+	T	cells	were	analyzed	for	IL-13	and	IL-4	

expression.		

	 	



FIG	E1.		IL-1R,	Myd88	and	NF-kB	expression	are	required	for	IL-13	IL-1b-

dependent	enhancement.			

A,	“anti-IL-1,	IL-1R1-“	and	“IL-1β,	IL-1R1+”	Th2	cells	were	reprimed	under	

neutral,	Th1	or	Th2	conditions	and	then	re-assessed	for	IL-4	and	IL-13	

expression.		B,	Sorted	5C.C7	Th2	cells	“anti-IL-1,	IL-1R-“	or	“IL-1β,	IL-1R+”	were	

transferred	into	normal	B10.A	CD45.2	mice,	and	rechallenged	intranasally	with	

PCC	+	anakinra	or	IL-1β	respectively.		Statistical	analysis	of	IL-4	and	IL-13	

expression	on	the	transferred	T	cells	found	in	the	lungs.		C,	OT-II,	OT-II	IL-1R-/-,	

or	OTII	Myd88-/-	CD4+T	cells	were	cultured	with	wild	type	T-depleted	

splenocytes	under	Th2	+	anti-IL-1	or	Th2	+	IL-1β	conditions,	and	then	tested	for	

IL-13	and	IL-4.		D,	5C.C7	Th2	cells	were	differentiated	±	anti-IL-1a/b	for	24h.		NF-

kB	activation	inhibitor	+	anti-IL-1a/b	or	IL-1β	were	added	and	cultured	for	an	

additional	3	days.	

	

FIG	E2.		Gene	expression	analysis	of	“IL-1b,	IL-1R+”	versus	“anti-IL-1,	IL-1R-

“	groups	

A,	IL-13	and	IL-4	regulatory	regions	and	map	of	locus	with	DNAse	I	HS	sites.		

5C.C7	Th2	cells	primed	with	anti-IL-1	or	IL-1β	were	sorted	as	in	Fig.	1C.		ChIP	

analysis	on	IL-13	and	IL-4	promoter	region	was	performed	immediately.		B,	RT-

PCR	analyzes	were	performed	with	total	RNA	isolated	from	Th2	“anti-IL-1,	IL-

1R-“	and	Th2	“IL-1β,	IL-1R+”	cell	cultures.	Representative	data	presented	is	the	

ratio	between	both	groups.		C,	cAMP	functional	response	to	biologically	active	

PTH	was	measured	on	24h	supernatant	collected	from	Th1,	Th2	“anti-IL-1,	IL-

1R-“	and	Th2	“IL-1β,	IL-1R+”	cell	cultures	primed	after	4	days	and	restimulated	

with	platebound	anti-CD3/CD28.	

D,	PTH	ELISA	was	measured	according	to	manufacturers’	recommendations.			
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