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Abstract—  Diagnosis of mild Traumatic Brain Injury 

(mTBI) was difficult due to the variability of obvious brain 

lesions using  magnetic resonance imaging (MRI) or computed 

tomography (CT) scans.  A promising tool for exploring potential 

biomarkers for mTBI is magnetoencephalography which has the 

advantage of high spatial and temporal resolution. By adopting 

proper analytic tools from the field of symbolic dynamics like 

Lempel-Ziv complexity (LZC), we can objectively characterize 

neural network alterations compared to healthy control. LZC is 

an estimator of the complexity of the system by enumerating the 

different patterns of the sequence. LZC needs first to binarize  

the time series using mean amplitude as the threshold. This 

procedure oversimplifies the rich information of brain activity 

captured via MEG. For that reason, we adopted neural-gas (NG) 

algorithm which has already been used for multichannel common 

symbolization. NG can transform a time series into more than 

two symbols by learning brain dynamics with a small error. To 

compare LZC with the NG symbolization approach, we adopted 

a proper complexity estimator called complexity index (CI). 

The whole analysis was presented to magneto-

encephalographic (MEG) recordings of 30 mild Traumatic Brain 

Injury (mTBI) patients and 50 normal controls in δ frequency 

band. We compared CI and LZC via a classification procedure  

with k-NN and Support Vector Machines. Our results 

demonstrated that mTBI patients could be separated from 

normal controls with more than 97% classification accuracy 

based on CI with highest values considering to right frontal 

areas. In addition, a reversal relation between complexity and 

transition rate was demonstrated for both groups. These findings 

indicate that symbolization complexity could have a significant 

predictive value in the development of reliable biomarkers to 

help with the early detection of mTBI. 

Keywords—component; complexity; MEG; mTBI; 

Symbolization; Lempel-Ziv; Symbolic Dynamics 

I. INTRODUCTION 

Mild traumatic brain injury (mTBI) is one of the most 
important cause of brain insult [1 – 3] including approximately 
the 90% all of brain injuries [2]. Approximately 5 to 20% of 
the irremediable patients [4] still suffer from post-concussion 
symptoms several months after the initial injury [3]. 
Management of mTBI is crucial due to its deleterious effects 
on certain brain functions [5 – 7]. One of the most successful 
techniques to investigate the brain abnormalities caused by 
mTBIs is magnetoencephalography (MEG). Using advance 
signal processing and statistical methods, it is possible to 
specify the mTBIs.  

Through MEG, it is possible to analyze the recorded time 
series into functional connectivity networks in order to map the 
mTBIs. Four studies [8-11] are already published using the 
current dataset investigating the functional connectivity nature 
of these injuries. Both intra [8, 9] and inter-frequency 
functional brain networks [10, 11] have been investigated for 
potential biomarkers for the diagnosis of mTBIs. A 
complementary approach to brain networks is to explore the 
complexity of brain activity on a single sensor level. 

To our knowledge, this is the first study of exploring LZC 
of MEG resting state in mTBIs . A previous study found lower 
LZC for TBIs compared to control using MEG resting-state 
demonstrating also correlations of LZC with several 
neuropsyhological measures [12]. Theoretically, a loss of 
neurons and synapses can cause a reduction of complexity in 
Alzheimer’s patients and the healthy elderly populations 
[13,14]. Moreover, it was found that less matured brains and 
neural circuits show lower LZC [15]. We therefore 
hypothesized that symbolic dynamics and namely metrics 
related with symbolic time series like complexity indexes can 
be valuable biomarkers for mTBIs. 
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In summary, we compared two alternative ways of 
symbolizing single-sensor MEG activity: the binarization using 
the mean amplitude as a threshold and the NG algorithm [16]. 
Complexity was estimated with two different algorithms, the 
LZ for the binarized time series [17] and the CI based on 
symbolic time series without any restrictions of the number of 
codebooks/symbols [18]. Our aim is to quantify the 
classification accuracy of the two groups with both methods 
and to underline the importance of appropriate methodology 
for revealing the (ab)normal  complexity of brain activity. 

II. METHODS 

A. Participants 

Current study analyzed thirty right-handed individuals with 
mTBI (29.33 ± 9.2 years of age) [11] and 50 age- and gender-
matched neurologically intact controls (29.25 ± 9.1 years of 
age). All subjects provided informed consent and all 
procedures were approved by the appropriate review boards at 
participating institutions. Resting state MEG activity was 
recorded from each subject, using a 248-channel Magnes 
WH3600 system (4D Neuroimaging Inc., San Diego, CA) with 
a sampling rate of 1017.25 Hz and for approximately 3-5 
minutes of eyes closed. Axial gradiometer recordings were 
transformed to planar gradiometer field approximations using 
the sincos method of Fieldtrip [19]. 

B. Elimination of Non-cerebral activity 

A fourth order two-pass Butterworth filter between 0.5–
80 Hz and a notch filter at 60 Hz were used for filtering of 
recordings and to remove line noise, respectively. The 
extended Infomax algorithm [20] was used to estimate 
independent components (ICs) on individual channel 
recordings. The data were then whitened and reduced in 
dimensionality using Principal Component Analysis with 
threshold set at 95% of the total variance [10, 11]. The 
statistical values of kurtosis and skewness of each IC were 
used to eliminate ocular and cardiac artifacts, respectively. An 
IC was considered as artifact if more than 30% of its z-score 
values were outside ±2 [4, 9, 10]. Finally, the data were back-
projected to the original 248-channel MEG space using the 
artifact-free ICs. 

C. Complexity Estimation 

Complexity analysis was performed after first filtering 

each MEG time series on the δ frequency band [0.5 4 Hz] 

using a zero-phase filter of 3rd order in both directions using 

filtfilt function in matlab. We then transformed MEG signals 

into a finite number of symbols. In the case of LZC, the 

symbols were two [0,1] while in the case of NG, the symbols 

were optimized based on the reconstructed error [19-21]. 

1) Lempel-Ziv Complexity: LZC is an algorithm that 

enumerate different substrings in the binarized symbolic time 

series STSLZ=[01110…]. Here, we transformed δ oscillations 

into a binary time series using the mean amplitude as a 

threshold. 

For more details see the LZC algorithm [17]. 

 

 

2) Neural Gas (NG) Algorithm and Complexity Index 

(CI): 

As an alternative way to transform a MEG signal into 

symbols is to adopt a proper algorithm that can learn the 

manifold of a reconstructed phase space and finding a 

mapping between trajectories and symbols (alphabet). Here, 

we reconstructed each MEG sensor activity across each group 

in a common reconstructed space and then we applied NG 

algorithm in order to get the number of symbols that can 

describe the original signal with less error . For details on the 

procedure see [21-23]. 

Each concatenated MEG sensor time series across each 

group was first embedded in a multidimensional space as 

described in equation  (1)  

(1)1)T)]- (d  y(n ; ...... T);  y(n [y(n);  x(n) E  

where the time lag T is determined using mutual information 

and one of the ways to determine embedding dimension dE is 

the false nearest neighbors test [24]. 

Afterward, using NG and the reconstructed error between 

original MEG time series and the one described by the 

codebook derived from the application of NG, we fixed the 

number of symbols for each time series. Here, using as a 

threshold the reconstructed error < 8% , we found that k=6 

symbols can describe the brain activity of each MEG sensor. 

Finally,each MEG sensor was transformed to a symbolic time 

series STSNG=[1 2 3 4 5 6 2 1 …] with k=6. 

  

3) Transition Rate: 

We estimated an index of how fast the activity within each 

MEG sensor changes from one state to another [25]. The 

function that describes the transition rate is given below : 

)2(
1)STS(length

stransitionofno
TR


  

A value of 0 means no transition while a value of 1 can be 

interpreted as an unstable system where always ‘jumb’ from 

one state to the other. 

D. Classification Scheme 

We accessed the predictability of both complexity 

estimators (LZC and CI) via machine learning techniques. We 

first detected the most informative MEG sensors using 

laplacian score [26] after applying a threshold extracted by a 

bootstrapping technique. We shuffled the labels of the two 

groups and we reestimated laplacian score for each feature. 

Then, we applied a threshold to the original laplacian scores 

derived by the mean + 2 st.ds of 1.000 laplacian scores 

estimated via the randomization procedure. The 

aforementioned procedure was repeated separately for each of 

the complexity indexes. 

We estimated the classification performance of each 

complexity index to discriminate healthy controls from mTBIs 

via k – nearest neighbor (k-NN) algorithm and Support Vector 

Machines (SVMs) 
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E. Expore Differences on Complexity over Brain 

To explore topological differences on complexity value , 

we applied Wilcoxon rank-sum test per sensor (p < 0.05) 

between the two groups in both LZC and CI via NG 

algorithm. 

III. RESULTS 

A. Classification Performance on Complexity 

TABLE I.  CLASSIFICATION PERFORMANCE FOR SYMBOLIZATION 

  Complexity Classification Performance 

  Accuracy (%) Sensitivity (%) Specificity (%) # of Selected features 

kNN 97.49±1.574 97.02±1.764 98.27±2.977 51/248 

SVM 96.99±1.57 96.28±1.73 98.17±2.737   

  Transition Rate Classification Performance 

  Accuracy (%) Sensitivity (%) Specificity (%) # of Selected features 

kNN 98.75±0 100±0 96.67±1.27e-13 15/248 

SVM 98.7±0.2462 99.98±0.2 96.57±0.5715   

Feature Combination 

  Accuracy (%) Sensitivity (%) Specificity (%) # of Selected features 

kNN 98.19±1.072 97.3±1.541 99.67±1.005 243/496 

SVM 97.69±0.9124 100±0 93.83±2.433   

 

TABLE II.  CLASSIFICATION PERFORMANCE FOR LEMPEL-ZIV 

Complexity Classification Performance 

  Accuracy (%) Sensitivity (%) Specificity (%) # of Selected features 

kNN 52.33±3.441 73.9±4.258 16.37±5.127 167/248 

SVM 50.43±2.71 63.2±3.122 15.237±3.628   

Transition Rate Classification Performance 

  Accuracy (%) Sensitivity (%) Specificity (%) # of Selected features 

kNN 80.19±2.938 79.58±4.152 81.2±3.655 181/248 

SVM 75.28±2.59 65.9±3.86 90.9±3.572   

Feature Combination 

  Accuracy (%) Sensitivity (%) Specificity (%) # of Selected features 

kNN 76.5±3.193 65.88±3.737 94.2±4.174 385/496 

SVM 74.25±2.718 63.26±4.027 92.57±4.016   

B. Statistical Differences on complexity 

 

Fig. 1. Representation of averaged complexity across the subjects of each 

group (a and b) and its correnspoding transition rate (c and d). The black 

cyrcles represent the statistical significant values (p-value < 0.05) and the 

magenta points represented the selected (for each case) features for the 

described classification scheme and resutls of table I and II. 

IV. DISCUSSION AND CONCLUSION 

After 

a) . 
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