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Recently, Kristensen, Ge, and Hughes [Phys. Rev. A 92, 053810 (2015)] have compared three different methods

for normalization of quasinormal modes in open optical systems and concluded that they all provide the same

result. We show here that this conclusion is incorrect and illustrate that the normalization of P. T. Kristensen

et al., Opt. Lett. 37, 1649 (2012), is divergent for any optical mode having a finite quality factor, and that the

Silver-Müller radiation condition is not fulfilled for quasinormal modes.

DOI: 10.1103/PhysRevA.96.017801

In a recent paper [1], Kristensen et al. have considered

three different normalizations of quasinormal modes: (i) the

normalization given in [2], which is a generalized version

of the work by Leung et al. [3] and thus called here Leung-

Kristensen (LK), (ii) the normalization introduced in [4], which

is analytically exact, and (iii) the normalization suggested

in [5], based on perfectly matched layers (PML). Kristensen

et al. concluded that all three normalizations provide the same

result. We show in this Comment that (i) the LK normalization

is divergent, and therefore ill defined. A regularized variant

of the LK normalization, put forward in [1], is not suited

for numerically determined resonant states (RSs), and (ii)

the claimed equivalence of LK and PML normalizations is

incorrect since the Silver-Müller radiation condition used

in the argumentation is not valid for RSs. We emphasize

that the spectral representation of the Green’s function is

converging to the exact Green’s function, and the resulting

spectral summation for the Purcell factor is converging to the

exact Purcell factor, only if the exact mode normalization is

used. It is therefore of utmost importance to have a well-defined

expression for the exact normalization which can be evaluated

efficiently. We clarify here that the LK normalization does not

have such properties.

The LK normalization, Eq. (5) of [1], for an optical system

surrounded by vacuum is defined by an infinite-volume limit

N∞
LK = lim

V →∞
NLK (1)

of the normalization

NLK =
∫

V

ε(r)E2(r)dV +
i

2k

∮

SV

E2(r)dS, (2)

calculated over the finite volume V and its surface SV , using

the electric field E(r) and the wave vector k of the quasinormal

mode, which we call here resonant state, adopting its original

name in the literature [6]. Let us assume for now that the

volume is a sphere of radius R with the system in its center.

We first show that NLK diverges for R → ∞, so that

the LK normalization N∞
LK mathematically does not exist.

The dependence of NLK on R was evaluated in [1] by

expanding E(r) into vector spherical harmonics, with the

spherical harmonics Ylm(θ,ϕ) and Hankel functions of first

kind hl(z) as basis (here l is the orbital quantum number).

Since k is complex for any RS having a finite quality factor

(Q factor) Q = |Re(k)/[2 Im(k)]|, the argument of hl(z) is

also complex: z = kR. The limiting form of i l+1hl(z) → eiz/z

given in Eq. (9) of [1] neglects diverging contributions, since

the exact form is given by

i l+1hl(z) =
eiz

z
Pl(ξ ), (3)

where

Pl(ξ ) =
l

∑

m=0

(l + m)!

(l − m)!m!
ξm, ξ =

1

−2iz
. (4)

Now, Pl(ξ ) is a polynomial of order l, and all resulting terms of

Eq. (3) diverge for complex z, owing to the exponentially large

factor eiz. Consequently, Eq. (10) in [1], based on Eq. (9) and

stating that ∂R Î r
l (R) = 0, is incorrect, and should read instead

∂R Î r
l (R) = R2hl(z)

[

hl(z) + ih′
l(z) + i

hl(z)

z

]

=
h2

l (kR)

2k2

P ′
l (ξ )

Pl(ξ )
. (5)

In particular, P ′
l (0)/Pl(0) = l(l + 1), and thus ∂R Î r

l (R) =
0 holds only for l = 0. However, electromagnetic modes

with l = 0 do not exist in finite three-dimensional optical

systems. Therefore, in general, ∂R Î r
l (R) → ∞ for R → ∞.

For example, considering l = 1 we find

∂R Î r
1 (R) =

e2ikR

k4R2

(

1 +
i

kR

)

. (6)

The authors of [1] write: “In practice, direct application of

Eq. (5) leads to an integral that seems to quickly converge

towards a finite value, but in fact oscillates about this value

with an amplitude that eventually starts to grow (exponentially)

with the distance, albeit slowly compared to the length scales

in typical calculations. This was noted in Ref. [5], where the

oscillations were observed only for the cavity with the lowest

quality factor (Q ≈ 16).” In the cited reference (Ref. [2] in this

Comment), we find: “For very low-Q cavities, however, the

convergence is nontrivial due to the exponential divergence of

the modes that may cause the inner product to oscillate around

the proper value as a function of calculation domain size,”

and otherwise “quick convergence” is claimed. The residual

f res
LK (R) of the LK normalization, which is given in Eq. (11)
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of [1] diverges—its precise form is

f res
LK (R) =

R3

2

[

h2
l (z) − hl−1(z)hl+1(z) +

i

z
h2

l (z)

]

=
e2ikR

k5R2
Q2l−2(ξ ), (7)

where Qn(ξ ) is an nth order polynomial of ξ = (−2ikR)−1,

with the leading term at small ξ (i.e., at large R) given

by Q2l−2(0) = −i(−1)l+1l(l + 1)/2; see [7] for more details.

Therefore, NLK → ∞ as R → ∞.

The authors of [1] describe this divergence as follows:

“Thus, while Eqs. (9) and (10) appear to be formally correct

also for complex arguments, the limit R → ∞ in practice leads

to a position dependent phase difference between the Hankel

function and its limiting form, which makes the limit nontrivial

to perform along the real axis.” We note that (i) there is no

difference between formalism and practice in mathematical

limits; (ii) the limit V → ∞ is defined for real volumes, and

thus real R; (iii) the limit of NLK along the real axis of R is not

“nontrivial”; it simply does not exist due to the divergence.

We show in Figs. 1–3 the R dependence of NLK for

RSs of a dielectric sphere of radius a with high and low

Q factors, and for the fundamental plasmonic RS of a gold

sphere. All RS fields used have been normalized using the

exact normalization, having analytical expressions [7,8]. We

commence using a RS with a Q factor of about 35 (similar

to the RS illustrated in Fig. 3 of [1]), the l = 7 transverse

electric (TE) whispering gallery mode (WGM) of a dielectric

sphere with refractive index nr = 2 in vacuum. Figure 1 is

formatted similar to Fig. 3 of [1], showing in blue the R region

of convergence (spiralling in), and in red the R region of

divergence (spiralling out) of NLK in the complex plane. We

note that the spiralling out region is not shown in Fig. 3 of [1].

One could argue that for high-Q modes, the LK normal-

ization can be sufficiently accurate, as the error reaches 10−3

at R ≈ 10a in the present example. One could even refine

this result by evaluating the center of the spiral, as suggested

in [1]. However, one has to keep in mind that simulating the

required extended spatial domain in numerical calculations is

computationally costly. On the other hand, evaluating the LK

normalization close to the system leads to significant errors

due to the slow 1/R2 dependence of the residual term Eq. (7),

as is clearly shown by the blue line in Figs. 1(b) and 1(d).

The LK normalization used for high-Q RSs is thus at least

inconvenient, due to the large computational domain required

to obtain sufficient accuracy. More discussion and data are

given in the Appendices C and G of [7].

A RS with a low Q factor of about 1 in the same dielectric

sphere, a TE l = 7 leaky mode, is used in Fig. 2. We see that

NLK starts close to zero at R = a and then spirals out in the

complex plane. This results in an initial error of about 100%,

increasing to 40 000% at R = 2a, prohibiting to extract a value

for the LK normalization.

Finally, we show in Fig. 3 the LK normalization of

the fundamental surface plasmon mode of a nanoplasmonic

resonator—a gold sphere in vacuum, 200 nm in diameter, also

used in [5]. This mode has a Q factor of about 1.3. There is an

initial decrease of the error from 200% down to about 10%,

followed by an exponential divergence. A single loop in the
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FIG. 1. LK normalization NLK (a),(c)–(d) and its absolute error

|NLK − 1| (b) as a function of the radius R of the spherical volume, for

a TE l = 7 WGM of a dielectric sphere of refractive index nr = 2 and

radius a, in vacuum. The wave vector of the WGM is ka = 6.888 −
0.099i, corresponding to Q = 34.8. Blue (red) color shows the region

of error decreasing (increasing) with R. The exact normalization is

shown by a black line (a) and a black cross (c)–(d).

complex plane is observed, circling the correct normalization.

The minimum of the error is observed at about R = 3a, thus

requiring a much larger computational domain than the system

size. A reliable extraction of the RS normalization from NLK

in this case is questionable.

A regularized version of the LK normalization suggested

in [1] is based on an analytic continuation of the electric field

into the complex plane of R. While [1] fails to define the

contour of integration used, we can find in [9] that the contour

can involve taking the limit of R → −∞ + iǫ. For this to be

applied, the fields of RSs have to be known analytically. This

regularization is thus not suited for numerically determined

RSs. We emphasize that this “regularized” LK normalization

is a different quantity compared to the divergent LK normal-

ization defined by Eqs. (1) and (2), the one that was actually

used in [2] and in numerous followup publications of the same

group, including the numerical examples of [1]. In particular,

Eq. (27) of [1] is incorrect, because its left-hand side is the LK

normalization taking infinite value, while its right-hand side is

the regularized LK normalization taking a finite value.
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FIG. 2. As in Fig. 1 but for a leaky mode with the wave vector

ka = 5.46 − 3.25i, corresponding to Q = 0.84.

The exact normalization [4] is independent of V and differs

from the LK normalization only by the surface term. To

understand the physical difference between the surface terms,

we consider a small piece �S of the surface of integration

and assume for simplicity that the local electric field of the

RS has the form of a plane wave E = E0e
ik·r propagating in

the direction of k, with k2 = k2 and a constant amplitude E0.

Then, after simple algebra, we find that the selected part of the

surface integral in the exact normalization is given by

i

2k2

∫

�S

(k · n̂)E2dS, (8)

where n̂ is the surface normal, while for the LK normalization

the corresponding part is

i

2k

∫

�S

E2dS. (9)

This shows that the LK surface term assumes that the propaga-

tion direction of the field is always normal to the surface, while

the exact normalization takes the actual propagation direction

into account. The two terms are equal only if n̂ ‖ k over the

whole surface, which is not possible in electrodynamics due

to the vectorial nature of the electromagnetic field.
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FIG. 3. As in Fig. 1 but for a surface plasmon l = 1 transverse

magnetic (TM) mode in a gold sphere in vacuum. The mode wave

vector is ka = 0.897 − 0.353i, corresponding to Q = 1.27. The

radius of the sphere is a = 100 nm, and the gold permittivity was

treated using a Drude model [5].

The implicit assumption of normal outward propagation

makes the LK normalization not only diverging for V → ∞,

but also depending on the surface shape. Note that the shape

of SV in the LK normalization is not restricted to spherical

surfaces, and a cuboid was actually used in one of the examples

shown in [2] and [1]. However, since the surface term in NLK

is independent of the surface normal, it changes proportionally

to the surface area when the shape of the surface is modified.

For example, by “roughening” the spherical surface to R(ϕ) =
R0(1 + ǫ sin mϕ), the surface integral scales as

√
1 + αǫ2m2,

where α is a geometrical factor of order one, weakly dependent

on the argument ǫm. As a result, NLK can take arbitrary values,

adjustable by the modulation amplitude ǫ and the spatial

frequency m. At the same time, each piece of surface term

in the exact normalization is proportional to the flux of k,

as clear from Eq. (8), and thus independent of the surface

roughness.

Finally, we show that the claim in [1], that the LK

normalization is equivalent to the PML normalization of [5], is

incorrect. This should be clear considering that NLK diverges,

while the PML normalization is finite, as demonstrated in the
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Supplemental Material of [5] for the RS shown in Fig. 3.

The PML normalization uses a PML to convert the radiation

losses into absorptive losses within the PML, such that the

remaining radiation losses at the external border of the PML

can be neglected.

The equivalence of the LK and PML normalization is shown

in [1] analytically, using the Silver-Müller radiation condition.

This condition states that the vector field

F =
r

r
× ∇ × E + ikE (10)

vanishes at large distances from the optical system, i.e., F → 0

as r → ∞. Here E is the electric field of a wave emitted from

the system centered at the origin, with a wave vector k which

is real and positive [10]. However, for a RS, k is typically

complex, so that the Silver-Müller condition does not hold,

and a divergence F → ∞ as r → ∞ is found instead. To

exemplify this, we take TE vector spherical harmonics, which

can be used, along with their TM counterparts, for expansion

of any mode of a finite system in the outside area. Their field

can be written as

E = −r × ∇f, where f (r) = hl(kr)Ylm(θ,ϕ), (11)

so that

F =
r

r
× [2 − ikr + (r · ∇)]∇f

=
hl(kr)

2ikr2

P ′
l (ξ )

Pl(ξ )

(

eϕ∂θ − eθ

∂ϕ

sin θ

)

Ylm(θ,ϕ), (12)

in which eϕ and eθ are the unit vectors of the spherical

coordinate system, and ξ = (−2ikr)−1. We see that F diverges

for r → ∞ due to the exponentially growing factor in

hl(kr) and the nonvanishing factor P ′
l (ξ )/Pl(ξ ) → l(l + 1).

In particular, the claimed equivalence of Eqs. (17) and (5) in

[1], allowing the authors to obtain the LK normalization from

the PML normalization, uses the property F → 0 for r → ∞.

This shows actually that the two normalizations differ by a term

proportional to F which is diverging for r → ∞, consistent

with the fact that the LK normalization is diverging while the

PML normalization is not.
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