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Abstract  1 

 2 

Chorioamnionitis is associated with adverse neurodevelopmental outcomes in preterm infants.  3 

Ureaplasma spp. are the microorganisms most frequently isolated from the amniotic fluid of 4 

women diagnosed with chorioamnionitis. However, controversy remains concerning the role of 5 

Ureaplasma spp. in the pathogenesis of neonatal brain injury. We hypothesize that re-exposure to 6 

an inflammatory trigger during the perinatal period might be responsible for the variation in brain 7 

outcome of preterms following Ureaplasma driven chorioamnionitis. To investigate these clinical 8 

scenarios, we performed a detailed multi-modal study in which ovine neurodevelopmental 9 

outcomes were assessed following chronic intra-amniotic Ureaplasma parvum (UP) infection, 10 

either alone or combined with subsequent lipopolysaccharide (LPS) exposure.   11 

We show that chronic intra-amniotic UP exposure during the second trimester provoked a 12 

decrease of astrocytes, increased oligodendrocyte numbers and elevated 5-methylcytosine levels. 13 

In contrast, short-term LPS exposure before preterm birth induced increased microglial 14 

activation, myelin loss, elevation of 5-hydroxymethylcytosine levels and lipid profile changes. 15 

These LPS-induced changes were prevented by chronic pre-exposure to UP (preconditioning).  16 

These data indicate that chronic UP exposure provokes dual effects on preterm brain 17 

development in utero. On one hand, prolonged UP exposure causes detrimental cerebral changes 18 

which may predispose to adverse postnatal clinical outcomes. On the other, chronic intra-19 

amniotic UP exposure preconditions the brain against a second inflammatory hit. This study 20 

demonstrates that microbial interactions, timing and duration of inflammatory insults will 21 

determine the effects on the fetal brain. Therefore, this study helps to understand the complex and 22 

diverse postnatal neurological outcomes following UP driven chorioamnionitis.   23 

 24 



4 
 

Introduction 1 

 2 

Neonatal brain injury acquired during pregnancy remains a major cause of adverse 3 

neurodevelopmental outcomes throughout life [1, 2]. Chorioamnionitis which is defined as a 4 

microbial invasion and infection of the amniotic cavity is one of the most important risk factors 5 

for adverse neurodevelopmental outcomes of the newborn [3, 4]. Ureaplasma spp. are the most 6 

common isolated micro-organisms associated with chorioamnionitis [5]. Clinical recognition of 7 

amniotic fluid infections is challenging given its asymptomatic course despite sustained fetal 8 

exposure to intrauterine inflammation, particularly during the critical period of fetal brain 9 

development [6].   10 

Intra-amniotic exposure to Ureaplasma spp. is associated with development of fetal and neonatal 11 

brain injury [7-10]. Clinical data show that there is an increased risk for intraventricular 12 

hemorrhage and impaired neurodevelopmental outcomes later in life after intra-amniotic 13 

Ureaplasma spp. exposure [7, 9, 10]. This association was confirmed by Normann et al. who 14 

showed that intra-amniotic Ureaplasma parvum (UP) exposure resulted in increased microglial 15 

activation, delayed myelination, and disturbed cortical development of the fetal murine brain 16 

[11]. In contrast, clinical studies reported that antenatal exposure to Ureaplasma spp. and brain 17 

injury did not correlate [12, 13]. Diversities in microbial interplay, timing, duration and severity 18 

of the inflammatory response after onset of chorioamnionitis are considered to determine the 19 

neurodevelopmental outcome which most likely explains the considerable differences in 20 

antenatal UP exposure and brain injury incidences among studies [14, 6]. In particular, the onset 21 

of cerebral inflammation during the brain’s most vulnerable period from 23 to 32 weeks of 22 

gestation can have detrimental consequences for the fetal brain, particularly white matter damage. 23 

Multiple animal models demonstrate that the brain becomes more (i.e. sensitization) or less (i.e. 24 
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preconditioning) susceptible to a second injurious hit following pre-exposure to inflammation 1 

[15, 16]. Besides cerebral inflammation, epigenetic mechanisms (such as DNA methylation and 2 

DNA hydroxymethylation) may mediate the processes leading to brain injury in response to 3 

environmental challenges in utero [17]. In line, DNA-methylation levels in genes involved in 4 

growth and development are found to be increased in premature infants with chorioamnionitis 5 

compared with infants without chorioamnionitis [18].  6 

Moreover, alterations of phospholipids which are highly abundant in the brain and play important 7 

functions in cell membrane formation, as energy reservoirs and as precursors for second 8 

messengers (i.e. arachidonic acid (AA)) [19] have been implicated in multiple brain pathologies. 9 

In particular, changes in lipid metabolism, as seen in lysosomal storage diseases, can cause severe 10 

impaired brain function with lipids accumulating within the brain [20]. 11 

Detailed investigations of the interactions between different infectious triggers and the timing and 12 

duration of inflammatory exposures in the context of a polymicrobial syndrome such as 13 

chorioamnionitis is essential to understanding the complex and diverse neurodevelopmental 14 

outcomes after birth. We therefore investigated the effects of chronic intra-amniotic UP exposure 15 

in the presence or absence of a second (acute) inflammatory stimulus on fetal neurodevelopment. 16 

We used a well-established translational ovine model of intrauterine inflammation in which 17 

fetuses were chronically exposed to intra-amniotic UP, followed by acute exposure to 18 

Escherichia coli-derived lipopolysaccharide (LPS). Cerebral outcome was studied by analyzing 19 

inflammation, structural injury, epigenetic markers and lipid profile composition of the fetal 20 

brain. 21 

 22 

 23 

 24 
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Methods 1 

 2 

Animal experiments  3 

The animal procedures were performed with approval of the animal ethics committee of the 4 

University of Western Australia (Perth, Australia). 5 

Thirty-seven date-mated Merino ewes were randomly assigned to study groups of 5-7 animals. 6 

Fetuses of either sex were used. Ewes received an ultrasound-guided intra-amniotic injection of 7 

culture media (2 mL) as control or strain HPA5 of Ureaplasma parvum (UP) serovar 3 (2 × 10
5
 8 

colony changing units (CCU)) at 80 days of gestation (term ~ 150 days). To minimize any 9 

inflammatory effects from culture media, both UP and control injections were created from stock 10 

cultures/sterile media diluted 1:100 in sterile saline. To assess the effect of an additional 11 

inflammatory hit following long-term pre-exposure with UP, both groups received a second intra-12 

amniotic injection of 10mg Escherichia coli-derived LPS (O55:B5; Sigma-Aldrich, St. Louis, 13 

MO) at 2 or 7  days before preterm delivery at 122±2 days of gestation or an equivalent dose of 14 

saline (SAL; controls) (Fig. 1).  15 

 16 

Data acquisition and analysis 17 

All fetuses were surgically delivered via Caesarean section at 122±2 days of gestation (equivalent 18 

of 32–34 weeks human gestation) and euthanized with intravenous pentobarbitone (100 mg/kg) 19 

immediately after birth. Amniotic fluid (AF), blood and cerebrospinal fluid (CSF) were collected 20 

at delivery and cultures for UP were performed. Brains were immersion fixed in 4% 21 

paraformaldehyde.  22 

 23 

 24 
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Culture analysis of UP infection 1 

Samples of amniotic fluid (1 ml) collected by amniocentesis at LPS or control saline injection, as 2 

well as plasma, CSF and amniotic fluid collected at Caesarean-section delivery were cultured for 3 

UP growth as previously described [21].  For each animal, twenty microliters of biological fluid 4 

was serially diluted 1:10 in Ureaplasma Selective Medium (Mycoplasma Experience plc., 5 

Reigate, UK) in triplicate for each sample and incubated at 37
o
C.  Assays were performed in 96 6 

well plates and bacterial growth was quantified by the titration of the urease activity (conversion 7 

of urea to ammonium ions leading to pH color change). Plates were observed until bacteria-8 

mediated color change ceased and the titration of the bacteria present determined.   9 

 10 

 Analysis of IL-6 concentration 11 

The pro-inflammatory cytokine IL-6 was measured in fetal plasma as marker for systemic 12 

inflammation using a sheep-specific sandwich enzyme-linked immunosorbent assay (ELISA). 13 

Briefly, a mouse-anti-ovine monoclonal antibody (MAB1004, Millipore, Darmstadt, Germany, 14 

working concentration 1:200) was the coating antibody. Plasma samples (100 μL) were loaded 15 

per well in duplicate and incubated for 2 hours at room temperature. Incubation with the 16 

detection antibody (rabbit-anti-ovine IL-6, AB1839, Millipore, Darmstadt, Germany, working 17 

concentration 1:500) was performed for 60 minutes, followed by incubation for 30 minutes with 18 

100 μL of a goat-anti-rabbit-HRP (Jackson ImmunoResearch Laboratories Inc, West Grove, PA, 19 

USA, working concentration 1:500). After washing, incubation with 3,3′,5,5′-20 

tetramethylbenzidine (TMB) substrate solution for 15 minutes. The reaction was stopped by 21 

addition of 50 μL 2N sulfuric acid. The optical density (OD) was measured using a micro-plate 22 

reader at 450 nm. Concentrations were expressed relative to a standard curve of ovine IL-6 23 

recombinant protein (ImmunoChemistry Technologies, Bloomington, MN, USA).   24 
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Histology and immunohistochemistry 1 

After fixation, the right hemisphere was divided into four defined anatomical regions. The region 2 

of the posterior hippocampus/mid-thalamus was embedded in paraffin and serial coronal sections 3 

(4 µm) were cut with a Leica RM2235 microtome. At this level, we analyzed the hippocampus 4 

and cerebral white matter for inflammatory and structural changes since these regions are most 5 

affected following intra-uterine infection at this developmental stage [22]. Four slides per 6 

staining per animal were used (every 10
th

 consecutive slide) for immunohistochemical analysis. 7 

Hematoxylin and eosin (H&E) staining was performed for morphological and anatomical 8 

analysis. Adjacent sections were stained as previously described  with a rabbit anti-ionized 9 

calcium binding adaptor molecule 1 (IBA-1) antibody (Wako Pure Chemical Industries, Osaka, 10 

Japan) for microglia, a rabbit anti-glial fibrillary acidic protein (GFAP) antibody (DAKO Z0334) 11 

for astrocytes, a rat anti-myelin basic protein (MBP) antibody (Merck Millipore, MAB386) for 12 

myelin sheaths, a rabbit anti-oligodendrocyte transcription factor 2 (Olig2) antibody (Millipore, 13 

AB9610) for oligodendrocyte lineage cells, a rabbit anti-myeloperoxidase (MPO) (DAKO, 14 

A0398) for neutrophils, a mouse anti-cluster of differentiation (CD) 68 (DAKO, M0718) for 15 

active microglia/phagocytizing macrophages, a rabbit anti-CD3 (DAKO A0452) for T-16 

lymphocytes and a mouse anti-5-Methylcytosine (5-mc) (Genway GWB-CB561B) and rabbit 17 

anti-5-Hydroxymethylcytosine (5-hmc) (Active Motif, 39769) were used as epigenetic markers.  18 

Endogenous peroxidase activity was inactivated with 0.3% H₂O₂ treatment (or 1% H₂O₂ for 5-19 

mc and 5-hmc). Antigen retrieval was performed by microwave boiling of tissue sections in 20 

citrate buffer (pH 6.0). Nonspecific binding was blocked by incubation with bovine, goat or 21 

donkey serum in PBS. Sections were incubated overnight at 4°C with the diluted primary 22 

antibody (5-hmc 1:2500; IBA-1, GFAP and MBP 1:1000; 5-mc 1:500; Olig2, MPO 1:200). The 23 

following day sections were incubated with the specific secondary antibody and staining was 24 
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enhanced with a Vectastain ABC peroxidase Elite kit (Vector Laboratories Inc, Burlingame, CA) 1 

and (nickel) 3,3’-diaminobenzidine (DAB) staining. If required, appropriate background staining 2 

was performed. 3 

 4 

Matrix assisted laser desorption ionization mass spectrometry imaging 5 

A more detailed molecular analysis of the cerebral tissue was done by matrix assisted laser 6 

desorption ionization mass spectrometry imaging (MALDI-MSI) to map variations in lipid 7 

profiles of the white and grey matter. MALDI-MSI to image lipid distribution can be invaluable 8 

in understanding complex lipid changes and it has been used to study these molecular patterns in 9 

models of brain injury [23]. With MALDI-MSI we avoid all extraction and purification steps for 10 

lipid analysis while retaining their spatial distribution. For this technique, post fixation tissues of 11 

controls, 42UP, 2LPS and UP&LPS groups were frozen in liquid nitrogen and subsequently 12 

samples were cryo-sectioned (10 µm thickness) in a cryostat (Leica CM3050S), deposited on 13 

indium tin oxide high-conductive slides (Delta Technologies, US), and stored at –20°C. 14 

Subsequently, the matrix solution consisting of norharman (7 mg/ml) in 2:1 chloroform:methanol 15 

was sprayed on top of the tissue section by a vibrational sprayer (Suncollect; SunChrom, 16 

Germany) for positive ion mode and 9-aminoacridine (10 mg/mL) in 70% ethanol for negative 17 

ion mode MALDI-MSI analysis. Digital optical scans of all tissue sections were obtained prior to 18 

MALDI-MSI experiments using a 2,400 dots per inch desktop scanner. The resulting digital 19 

images were imported into the MALDI Imaging HDI software v1.4 (Waters Corporation). A 20 

MALDI-quadrupole time-of-flight SYNAPT HDMS G2Si system (Waters Corporation) 21 

operating with a 200-Hz Nd:YAG laser was configured to acquire data in positive and negative 22 

V-reflectron mode. Data were acquired at a raster size of 100 by 100 µm. Instrument calibration 23 

was performed using a standard calibration solution of red phosphorus.  24 
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Principal components analysis (PCA) and discriminant analysis (DA) were used to investigate 1 

spectral similarities and differences between all samples. PCA was performed as a data 2 

compression and noise filtering step before application of DA, only 1/4 of the functions (216) 3 

were used as input for DA. In short, PCA is an unsupervised statistical method that aims at 4 

pooling a maximum amount of variance in a minimum number of independent variables. Data 5 

pre-treatment, PCA and DA were performed using our in-house built ChemomeTricks toolbox 6 

for MATLAB version 2014a (The MathWorks, Natick, MA, USA). The peak assignments were 7 

performed according to the bibliography and LIPID MAPS software (http://www.lipidmaps.org/). 8 

 9 

Qualitative analysis 10 

H&E-stained sections were analyzed by two independent investigators and a neuropathologist, 11 

blinded for the experimental set up, to assess overall brain structure and inflammatory changes. 12 

The sections were examined for the presence of gliosis, hemorrhages, (cytotoxic) edema and 13 

structural damage, including cyst formation. 14 

 15 

Immunohistochemical analysis 16 

Immunohistochemical stainings were analyzed using a light microscope (Leica DM2000) 17 

equipped with Leica QWin Pro version 3.4.0 software (Leica Microsystems, Mannheim, 18 

Germany). Regions of interest of the white matter and hippocampus were defined as previously 19 

described [24]. These regions were chosen since they are most affected by intra-uterine infections 20 

at this developmental stage. In the white matter 4-6 adjacent images were taken at 100x 21 

magnification and from the hippocampus one image at 20x magnification was taken. To assess 22 

regional vulnerability within the hippocampus separate images were taken at 200x magnification 23 

of the Cornu Amonis (CA) 1&2, 3 and 4 and the dentate gyrus (DG). Area fractions of IBA-1, 24 
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GFAP, MBP, 5-mc and 5-hmc expression were determined using a standard threshold to detect 1 

positive staining with Leica QWin Pro V 3.5.1 software (Leica, Rijswijk, the Netherlands). 2 

Regions of interest were delineated in the image with large blood vessels and artefacts excluded 3 

from analysis. Since the level of DNA methylation and hydroxymethylation can differ per cell, 4 

the integrated density of 5-mc and 5-hmc was calculated by multiplying the area fraction by the 5 

mean gray value, and these values were normalized to the data of the control group as previously 6 

described by Lardenoije et al. In addition to area fraction analysis, IBA-1 and GFAP positive 7 

cells were counted in 3 fields of view within the regions of interest at a magnification of 400x. 8 

The Olig2 positive cells were counted using Qwin software and expressed as cells/mm2. MPO 9 

positive cells were counted focusing on the cerebral vasculature, meninges and choroid plexus. 10 

To quantify the density (cells per mm2) of MPO-, CD68- and CD3-positive cells, representative 11 

images of the choroid plexus present in the lateral ventricles aligning the hippocampus were 12 

counted using ImageJ software (Rasband, W.S., Image J US National Institutes of Health, 13 

Bethesda, Maryland, USA; RRID:SCR_003070). The images were acquired and analyzed by an 14 

independent observer who was blinded to the experimental groups.  15 

 16 

Data analysis.  17 

All values are shown as means with 95% confidence interval or standard deviations with 18 

significance level at p < 0.05. Comparison between different experimental groups was performed 19 

with analysis of variance (ANOVA) or with a random intercept mixed model in case of repeated 20 

measurements per animal (e.g., different sections per brain). We applied log-transformation to 21 

obtain normal distributed data when data or variables were positively skewed before statistical 22 

testing. Statistical analysis was performed with IBM SPSS Statistics Version 22.0 (IBM COrp., 23 
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Armonk, NY, USA; SPSS, RRID: SCR_002865). Considering the relative low number of 1 

animals per group, we have depicted the exact p-values in Fig. 4-6.  2 

 3 

Results 4 

 5 

Ureaplasma parvum cultures and detection 6 

Chronic UP infection in animals inoculated at 80 days of gestation was confirmed by culture of 7 

amniotic fluid at the time of subsequent LPS or saline injections by amniocentesis (Fig. 2).  No 8 

significant differences in the UP levels were observed between the three groups (42UP 1.1±0.8 9 

x10
6
 CCU/ml; UP&2LPS 1.1±0.8 x10

7
 CCU/ml; UP&7LPS 9.4±0.7 x 10

6
 CCU/ml).  Cultures of 10 

amniotic fluid at time of delivery were positive for UP in all experimentally infected animals 11 

except one of the animals of the UP&7LPS group. No endogenous UP growth was observed in 12 

the amniotic fluid of animals that were not inoculated with UP (SAL, 2LPS and 7LPS groups). 13 

No UP growth in CSF or plasma was observed for any animal.   14 

 15 

Animal characteristics 16 

Overall, no sex differences in susceptibility were observed in all readouts. LPS exposure for 2 17 

days decreased the body weight (SAL vs. 2LPS; p = 0.002) and increased brain-to-body ratio 18 

(SAL vs. 2LPS; p = 0.038) compared to controls (Table 1). These significant changes were not 19 

observed in animals that were chronically exposed to UP prior to 2 days of LPS exposure 20 

(UP&2LPS). Moreover, no change in brain weight or brain-to-body ratio was observed in 21 

animals of the 42UP, 7LPS and UP&7LPS groups compared to control animals.  22 

 23 

 24 
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Circulatory pro-inflammatory cytokine levels 1 

Elevated plasma IL-6 concentrations were found in 50% (3/6) of the 2 day LPS exposed animals 2 

and in 20% (1/5) of the 42 days UP and 2 days LPS exposed animals when compared to controls 3 

(Fig. 3).  Plasma IL-6 concentrations in the SAL, 42UP, 7LPS and UP&7LPS animals were not 4 

detectable. 5 

 6 

Structural analysis of the brain  7 

Qualitative analysis of H&E stained sections revealed increased cell densities in the gyral crest of 8 

the white matter which primarily consisted of glial cells. These gliotic foci were most prominent 9 

in 3/6 (50%) of the 2d LPS exposed animals. Furthermore, in 1/6 (16%) of the 42d UP exposed 10 

animals and in 1/6 (16%) of the 7d LPS exposed animals these gliotic foci were present. Control 11 

animals and animals of the UP & LPS combined groups had mild to no gliotic foci. No evidence 12 

of structural changes including intraventricular hemorrhages and cystic lesions were present in 13 

any of the experimental groups. 14 

 15 

Dual effects of chronic UP infection on cerebral development.  16 

The neuroinflammatory changes, as indicated by the more pronounced presence of gliotic foci in 17 

the 2d LPS exposed animals were further evaluated by cell counts and area fraction analysis of 18 

the microglial marker IBA-1 and astrocytic marker GFAP in the cerebral white matter and 19 

hippocampus. Chronic intra-amniotic exposure to UP decreased GFAP immunoreactivity (IR) 20 

(SAL vs. 42UP; p = 0.020) and the number of astrocytes (SAL vs. 42UP; p = 0.100), compared to 21 

controls (Fig. 4). IBA-1 IR and IBA-1 positive cell numbers remained unaltered following 22 

chronic intra-amniotic UP exposure (Fig. 4). In contrast, acute exposure to LPS increased IBA-1 23 

IR (SAL vs. 2LPS; p = 0.008) and the number of IBA-1 positive cells (SAL vs. 2LPS; p = 0.036) 24 
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in the cerebral white matter (Fig. 4). In addition, morphological analysis revealed a higher density 1 

of amoeboid microglia present in the white matter after 2 days of LPS exposure (Fig. 4 inserts). 2 

However, if the animals were chronically exposed to UP prior to LPS, no IBA-1 IR or IBA-1 3 

positive cell increase was observed in the cerebral white matter at 2 or 7 days post-LPS challenge 4 

(Fig. 4d&f). Equally, LPS administration did return GFAP IR in chronically UP infected animals 5 

to control levels (Fig. 4c).  This preconditioning effect of UP was also found in the hippocampus 6 

in which an increase of IBA-1 IR was found at 2 and 7 days following LPS exposure but not in 7 

the groups with pre-exposure to UP (SAL vs. 2LPS; p = 0.002 and SAL vs. 7LPS; p = 0.000) 8 

(data not shown). No changes of GFAP IR or GFA positive cell numbers were found following 9 

LPS exposure in the white matter (Fig. 4) and in the hippocampus (data not shown).  10 

Since the choroid plexus is primarily dominated by macrophages, T-lymphocytes and dendritic 11 

cells for continuous immune surveillance, and the resolution of cerebral inflammation [25] we 12 

analyzed the distribution of CD68+ macrophages, CD3+ lymphocytes and MPO+ neutrophils 13 

within the choroid plexus.  MPO-positive cells tended to be increased following 7d LPS exposure 14 

compared to control animals and this increase was prevented by pre-exposure to 42d UP (SAL 15 

vs. 7LPS; p = 0.086) (Tabel 2). In line, this increase in MPO-positive cells at 7d post LPS 16 

exposure was accompanied by a decrease in IBA-1 IR in the cerebral white matter compared to 17 

2d LPS exposed animals. No differences in CD68 and CD3- positive cells were found in the 18 

choroid plexus. No CD3- and MPO-positive cells were detected in the brain parenchyma.  19 

White matter injury was studied by assessing the densities of mature (MBP) and overall (Olig2) 20 

oligodendrocytes in the cerebral white matter. An apparent increase in Olig2 positive cells was 21 

found for all groups relative to control levels; however, this only reached significance for 22 

chronically UP-infected animals (SAL vs. 42UP; p = 0.012) and animals exposed to LPS for 2 23 

days (SAL vs. 2LPS; p = 0.037) (SAL vs. 7LPS; p = 0.211, SAL vs. 42UP&2LPS; p = 0.558, 24 
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SAL vs. 42UP&7LPS; p = 0.467) (Fig. 5c). In addition, MBP IR tended to be decreased at 42d 1 

following UP exposure (SAL vs. 42UP; p = 0.097) (Fig. 5). Short term LPS exposure for 2 days 2 

resulted in a decrease of MBP IR within regions of overt microgliosis (SAL vs. 2LPS; p = 0.001) 3 

which was prevented by pre-exposure to UP. At 7d of LPS exposure no changes in MBP IR were 4 

found (2LPS vs. 7LPS; p = 0.000).  5 

We analyzed 5-mc and 5-hmc integrated density as epigenetic markers for DNA-methylation in 6 

the dentate gyrus of the hippocampus. We focused our analysis on the dentate gyrus since this is 7 

the region in the hippocampus were neurogenesis takes place and DNA methylation and 8 

demethylation are important contributors to this process [26, 27].  Both short term LPS exposure 9 

as well as chronic UP exposure resulted in an increase of the gene repression marker 5-mc 10 

integrated density compared to controls (SAL vs. 2LPS; p = 0.008 and SAL vs. 7LPS; p = 0.002 11 

and SAL vs. 42UP; p = 0.008) (Fig. 6). The increase in 5-mc following LPS exposure tended to 12 

be prevented by pre-exposure to UP. An increase in transcription activation marker 5-hmc 13 

integrated density was only found in 2d LPS exposed animals compared to controls which was 14 

prevented by pre-exposure to UP (SAL vs. 2LPS; p = 0.000; 2LPS vs. 7LPS; p = 0.000) (Fig. 6).  15 

 16 

  17 
 18 
Accumulation of lipids and changes in the white and grey matter lipid profile following 19 

acute LPS exposure is prevented by pre-exposure to UP.  20 

We demonstrated with MALDI-MSI unique regional differences of the lipid composition in the 21 

preterm ovine brain between animals from the control, 42UP, 2LPS and UP&LPS group. Fig. 7 22 

shows the reconstructed image that represents the molecular differences of lipids between white 23 

(red area) and grey matter (green area). The lipid composition, characteristic for healthy white 24 

and grey matter of the preterm brain was not altered following chronic UP exposure (Fig. 7a-c). 25 
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In particular, in the white matter of control and 42UP animals, typical tentative assigned m/z 1 

values of different phosphocholine (PC) species such as m/z 782.5 PC 34:1+Na
+
, m/z 810.5 PC 2 

36:1+Na
+
 or sphingomyelin m/z 725.5 SM 34:1+Na

+
 are found which are known to be 3 

representative for the white matter [28, 29] (Fig. 7c). m/z 756.5 PC 32:0+Na
+
 which is a 4 

characteristic grey matter lipid [30], were detected in the grey matter of control and 42UP 5 

animals, demonstrating that control and chronic UP exposed animals had a similar and 6 

constitutive lipid profile.  7 

Mosaic PCA-images demonstrated that short-term LPS exposure resulted in lipid accumulation in 8 

the white matter and diffusion of white matter specific molecular patterns into the grey matter 9 

and vice versa (Fig. 7d-i; Principal component 4 & 6). These changes were reduced when LPS 10 

exposure was preceded by 42 days of UP infection (Fig. 7e & h). In particular, the abundance of 11 

the white matter specific component m/z 725.5 in the grey matter of LPS exposed animals was 12 

not present in the grey matter of control or UP animals (Fig. 7g-i; negative spectrum of principal 13 

component 6). Whereas, m/z 734.5 PC 32:0+H
+ 

was accumulated in the grey matter of LPS 14 

animals (negative spectrum of principal component 4), and increased in the white matter (positive 15 

spectrum of principal component 6). In addition, principal component 6 showed that other peaks 16 

such as m/z 760 PC 34:1+H
+
 accumulate in the white matter at 2d of LPS exposure which did not 17 

correspond with the pattern seen in our controls and those from others [28] in which these peaks 18 

were evenly distributed. 19 

Other lipid species including phosphatidylinositols (PI) and sulfatide (SF) can be identified using 20 

the negative ion mode in MALDI-MSI. Regions of interest corresponding to the white matter 21 

were selected based on the results with the positive ion mode. The DF1 (Fig. 8a) reveals that the 22 

highest differences are observed between the control (negative scores) and LPS group (positive 23 

scores). The UP&LPS group had negative scores and therefore possessed a molecular 24 
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composition more similar to the control group. The DF1 spectrum (Fig. 8b) shows the lipid 1 

composition of the white matter of the 2 days of LPS exposed animals. This spectrum showed 2 

that LPS exposure reduced the amount of tentative assigned sulfatide (SF) species such as m/z 3 

806.5 SF 18:0-H
-
, m/z 888.6 SF 24:1-H

-
, m/z 890.6 SF 24:0-H

-
, which were described as lipids 4 

characteristic of white matter [28].  These species were mainly present in the white matter of 5 

control, UP and UP&LPS groups (spectrum not shown) whereas m/z 885.5 PI 38:4-H
-
 or m/z 6 

718.6 PC 31:0-H
-
 were representative of the white matter in animals of the 2LPS group (fig.8b).  7 

 8 

Discussion 9 

 10 

Chronic intra-amniotic Ureaplasma parvum (UP) exposure decreased GFAP immunoreactivity 11 

(IR) and increased Olig2 positive cells and 5-methylcytosine (5-mc) IR in the brain. These 12 

changes have potential clinical implications postnatally.  13 

The observed decrease of GFAP IR and number of astrocytes (GFAP+ cells) at 42d of UP 14 

exposure is important since these cells possess several essential functions in brain development 15 

including regulation of the extracellular glutamate homeostasis, providing structural and 16 

metabolic support to surrounding cells (e.g. oligodendrocytes) and modulate neuronal 17 

connections [31]. Changes in astrocyte function or density result in altered neurological 18 

outcomes. In particular, altered astrocyte protein expression (GFAP) and disrupted astrocyte 19 

maturation have been implicated in the pathogenesis of neurodevelopmental disorders such as 20 

autism and cerebral palsy [32, 33]. Moreover, Sharma et al. [34] showed that LPS injection in the 21 

spinal cord of rodents decreased astrocytes which was followed by hypomyelination. This 22 

suggests that white matter injury, a hallmark of preterm brain injury, can still occur in these 23 

fetuses considering the loss of GFAP IR at 42d post UP exposure. Collectively, the astrocyte cell 24 
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and protein loss in our study indicates that chronic UP exposure during the second trimester of 1 

gestation predisposes to brain pathologies that are often seen in newborns.   2 

Second, the increase of oligodendrocyte lineage cells, as seen following 42d of UP exposure 3 

might indicate replenishment of oligodendrocytes upon initial loss in the acute phase following 4 

UP exposure [35]. Importantly, UP was administered at 80d of gestation which is the 5 

premyelinating stage of brain development with abundant vulnerable immature pre-6 

oligodendrocytes, sensitive to glutamate receptor induced injury [36]. Interestingly, the mature 7 

oligodendrocytes tended to be decreased following chronic UP exposure. Given these combined 8 

findings of increased Olig2+ cell numbers and reduced MBP+ IR, it iss tempting to speculate that 9 

this indicates  a maturation arrest of oligodendrocyte progenitor cells,  a key feature of white 10 

matter injury of preterms [37-39]. This oligodendrocyte maturation arrest can be linked to the 11 

decreased astrocytes that we found in this study. Astrocytes are essential contributors to 12 

extracellular glutamate homeostasis which will be disturbed by a loss of astrocytes [31]. Since 13 

immature oligodendrocytes are particularly vulnerable to glutamate receptor induced injury, this 14 

can lead to oligodendrocyte injury [36]. In addition, oligodendrocytes rely on astrocytes for their 15 

metabolic support via gap junctions [40]. Failure of metabolic support for oligodendrocytes 16 

following astrocyte loss results in energy failure and eventually maturation arrest or death. 17 

Alternatively, it is tempting to speculate that oligodendrocyte maturation arrest may be connected 18 

to the apparent increase of the DNA-methylation marker 5-mc at 42 days of UP exposure, which 19 

is a very important repressor of gene transcription [41]. This theory is supported by several 20 

reports stating that changes in epigenetic regulatory mechanisms contribute to disturbed 21 

maturation and differentiation of immature oligodendrocytes [42-44]. Moreover, inflammation 22 

induced epigenetic changes during early development can cause substantial lasting 23 

neurodevelopmental impairments later in life [45, 46]. Altogether, these data offer mechanistic 24 
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insight in the association between intra-amniotic UP exposure and the increased incidence of 1 

adverse neurodevelopmental outcomes postnatally.  2 

Interestingly, the cerebral phenotype following short term LPS exposure was remarkably 3 

different when compared to chronic UP exposure. In particular, we demonstrated that short term 4 

LPS exposure induced a rapid and temporal increase of the number of microglia and decreased 5 

myelin immunoreactivity, reflecting diffuse cerebral inflammation with hypomyelination. 6 

Microglia are important for inflammatory perinatal brain injury [42]. Aberrant or excessive 7 

microgliosis can be detrimental for the immature brain resulting in white matter injury [14], 8 

which corresponds to the loss of myelin that we found in our study. The cerebral inflammatory 9 

response following LPS in this study seems to be temporal since no increase in microglial density 10 

was found following 7d of LPS exposure. This dynamic response of activated microglia is 11 

consistent with distinct phases of cerebral inflammation [47] and can be explained by the 12 

presence of neutrophils in the choroid plexus, which are known to be important to the resolution 13 

of cerebral inflammation [25]. However, our immunohistochemical analysis does not rule out the 14 

possibility that phenotypic conversion of microglia might be induced following short term LPS or 15 

chronic UP exposure, which might influence the cerebral immune response.  16 

Although such short time UP effects were not investigated in our model, in a study performed by 17 

Normann et al. [11] in rodents short term UP exposure during early pregnancy resulted in 18 

increased microglial density and decreased myelin basic protein density in the fetal brain. This 19 

cerebral phenotype is consistent with our data following short term LPS exposure indicating that 20 

timing and not the inflammatory trigger is more important in the neurological outcome of the 21 

fetal brain.  22 

Besides the DNA-methylation marker 5-mc, the hydroxylated product and transcription 23 

activation marker 5-hmc was increased following 2d of LPS exposure. 5-hmc is very important 24 
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for proper neurodevelopment and 5-hmc is altered in the umbilical cord of babies born after pre-1 

eclampsia and gestational diabetes mellitus [48] and in the hippocampus of 7-week old mice 2 

exposed to non-infectious stress [49]. In addition, 5-hmc alterations are associated with severe 3 

neurodevelopmental disorders such as Rett syndrome which is caused by mutations in the MeCP2 4 

gene that encodes for proteins that directly bind to methylated DNA domains [50]. Therefore, the 5 

alterations we found in epigenetic markers following acute LPS exposure might explain, at least 6 

in part, the association between chorioamnionitis and the development of psychopathology later 7 

in life [51]. Since epigenetic changes are reversible, these findings provide new therapeutic 8 

targets to prevent long lasting neurodevelopmental morbidities following prenatal stress [17].  9 

In addition, our lipid data provide supporting evidence that short-term LPS exposure results into 10 

lipid accumulation and “diseased” lipid patterns in the preterm brain. Such lipid accumulation in 11 

the brain is associated with severe neurological damage and altered brain functions [20]. In 12 

addition, we show a relative decrease of the myelin-specific sphingolipids in the white matter of 13 

the LPS exposed animals, which confirms and extends our findings concerning the loss of MBP 14 

in these animals. The abundance of phosphatidylinositols (PI) following 2d of LPS exposure was 15 

primarily seen within the region of increased IBA-1 IR. In line, the phosphorylated form of PI, 16 

phosphoinositide, is known to be upregulated in microglia and contributes to activation of 17 

microglia following ischemia [52].  18 

Third, we found that chronic intra-amniotic UP exposure prevented an increase of IBA-1 IR and 19 

IBA-1+ cells, 5-hmc IR, lipid profile changes and a decrease of MBP IR upon a second 20 

inflammatory hit with LPS. This phenotype, also referred to as ‘preconditioning’, has been 21 

previously described in animal models in which pre-exposure to inflammation induced by LPS 22 

renders the brain less susceptible to a second hypoxic-ischemic insult, thereby resulting in less 23 

brain injury [53, 54]. This preconditioning effect of chronic UP exposure could be explained by 24 
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work from Cao et al. [55] which showed in pregnant sheep that microglia once activated in vivo 1 

by intra-amniotic LPS exposure, display diminished inflammatory responses following re-2 

exposure to LPS. Moreover, they state that the memory acquired by microglia upon the first 3 

exposure to inflammation might be mediated by epigenetic regulatory processes [55]. Although 4 

this hypothesis needs to be tested in future studies, it is noteworthy that changes in the global 5 

level of 5-hmC and 5-mC were observed in our study following acute LPS exposure that was 6 

prevented by chronic UP exposure. Clearly, long term protection after inflammation induced 7 

preconditioning needs to be confirmed in a longitudinal study, but it is considered to be 8 

permanent since structural and functional protection up to 8 weeks was established following 9 

hypoxic preconditioning in a neonatal rodent model [56].  10 

One important limitation of a large animal study is the relative low number of animals per group. 11 

Given the relative small animal numbers per group, we report actual p-values and tend to 12 

interpret p-values between 0.05 and 0.1 as biologically relevant. This assumption will decrease 13 

the chance of a false negative finding but increases the chance that one of these differences is a 14 

false positive result.  15 

In this double-hit study, in which sequential different infectious hits were tested, we show that 16 

microbial interactions, the moment of onset and duration of these potential injurious triggers 17 

determine the neurological outcome. These findings seem to be an important explanation for the 18 

diversity of neurological outcomes associated with intra-amniotic UP exposure. Altogether, these 19 

data emphasize that an accurate history of infections during pregnancy is essential to guide 20 

neonatal management which warrants the need for biomarkers to diagnose antenatal infections.  21 
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Figure legends 1 

 2 

Figure 1 Experimental groups. Animals were intra-amniotically exposed to Ureaplasma 3 

parvum (UP; red arrow) for 42 days with (n=11) or without (n=6) subsequent lipopolysaccharide 4 

(LPS; black arrow) exposure at 2 (n=5) or 7 (n=5) days before preterm delivery at 122 days of 5 

gestation (GA) and sacrificed immediately after birth (†). Control animals received intra-6 

amniotic injection with saline (SAL; open arrow) 7 

 8 

Figure 2 Ureaplasma titer at time of subsequent LPS or saline injection. Establishment of 9 

chronic infection was confirmed in amniocentesis samples taken at time of LPS or saline 10 

injection. Mean and standard error of the mean are shown for each group (culture titration of 11 

viable UP determined in triplicate for each animal). No statistical difference was found by one-12 

way ANOVA testing 13 

 14 

Figure 3 Systemic immune activation was ascertained by measuring circulatory IL-6 15 

concentrations. For statistical analysis, undetectable values were assigned an arbitrary value of 1 16 

pg/mL. No statistical difference was found by one-way ANOVA testing 17 

 18 

Figure 4 Intra-amniotic exposure to Ureaplasma parvum (UP) induces a decrease of 19 

astrocytes and preconditions the fetal brain against re-exposure to lipopolysaccharide 20 

(LPS). A significant decrease (*, p<0.05) of the area fraction of GFAP immunoreactivity (IR) 21 

was observed in animals of the chronic UP group (42UP) compared to controls (SAL) (SAL vs. 22 

42UP; p=0.020) (a & c).  GFAP positive cells tended to be decreased following chronic UP 23 

exposure (SAL vs. 42UP; p = 0.100) (e). No changes in GFAP IR were found in animals of the 24 



28 
 

LPS exposed groups regardless of the presence or absence of UP pre-exposure. Significant 1 

increase (*, p<0.05) of the area fraction of IBA-1 IR and IBA-1 positive cells was observed in 2 

animals of the 2 d LPS group (2LPS) (SAL vs. 2LPS; p = 0.008 and p = 0.036 respectively) 3 

which was prevented by pre-exposure to UP (UP&2LPS) (b & d & f). No changes of IBA-1 IR 4 

and cell numbers were found in animals of the 7 d LPS group (SAL vs. 7LPS; p = 0.342 and p = 5 

1.00 respectively) (d & f). Representative histological figures of the GFAP positive astrocytes 6 

and IBA-1 positive microglia are shown in (a) and (b) respectively. Morphological analysis 7 

showed a higher density of amoeboid microglia present in the white matter after 2 days of LPS 8 

exposure (b, inserts). Figures of animals of the 7 d LPS group (7LPS) and 42 d UP and 7 d LPS 9 

group (UP&7LPS) are not depicted. GFAP and IBA-1 IR are represented in the graphs as mean 10 

% area fraction ± 95% CI. Images taken at 100x magnification (insert at 400x magnification), 11 

scale bar = 200 µm 12 

 13 

Figure 5 Intra-amniotic exposure to Ureaplasma parvum (UP) induces changes in white 14 

matter development and preconditions the fetal brain upon re-exposure to a second 15 

inflammatory hit with lipopolysaccharide (LPS). Significant increase (*, p<0.05) of Olig2 16 

positive cells was observed in animals of the chronic UP group (SAL vs. 42UP; p = 0.012) and of 17 

the 2d LPS group (SAL vs. 2 LPS; p = 0.037) compared to controls (b & c). This increase of 18 

Olig2 positive cells was accompanied by a decrease in MBP (SAL vs. 42UP; p = 0.097 and SAL 19 

vs. 2LPS; p = 0.001) (a & d). This decrease of MBP IR was prevented in the short term LPS 20 

exposed animals that were pre-exposed to UP. At 7d of LPS exposure no changes in MBP IR 21 

were found (2LPS vs. 7LPS; p = 0.000). Olig2 is represented as mean positive cells/mm2 ± 95% 22 

CI and MBP IR is represented in the graphs as mean % area fraction ± 95% CI. Images taken at 23 

100x magnification (insert at 400x magnification), scale bar= 200 µm 24 
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 1 

Figure 6 Changes of the epigenetic markers 5-mc and 5-hmc following intra-amniotic 2 

exposure to Ureaplasma parvum (UP) and short-term exposure to lipopolysaccharide (LPS) 3 

in the dentate gyrus of the hippocampus. Significant increase (*, p<0.05) of the gene 4 

repression marker 5-mc IR was observed in short term LPS exposed animals and chronic UP 5 

exposed animals when compared to controls (SAL vs. 2LPS; p = 0.008 and SAL vs. 7LPS; p = 6 

0.002 and SAL vs. 42UP; p = 0.008) (a & c). Significant increase (*, p<0.05) in transcription 7 

activation marker 5-hmc IR was restricted to the 2d LPS group compared to controls (SAL vs. 8 

2LPS; p = 0.000; 2LPS vs. 7LPS; p = 0.000), which was prevented by pre-exposure to UP. 5-mc 9 

and 5-hmc are represented in the graphs as mean integrated density ± 95% CI. The integrated 10 

density was calculated by multiplying the area fraction and gray intensity measurements. Values 11 

were normalized to the data of the control group. Images taken at 200x magnification (insert at 12 

400x magnification), scale bar= 200 µm 13 

 14 

Figure 7 Matrix assisted laser desorption ionization mass spectrometry imaging (MALDI-15 

MSI) performed in positive ion mode followed by principal component analysis (PCA). a 16 

shows the reconstructed image that represents the molecular differences of lipids between white 17 

(red area) and grey matter (green area) of control and UP animals. PCA 3 demonstrates similar 18 

lipid compositions of white and grey matter of control and UP animals (a-c). In particular, 19 

phosphocholine (PC) species m/z 782.5 PC 34:1+Na+, m/z 810.5 PC 36:1+Na+ or 20 

sphingomyelin m/z 725.5 SM 34:1+Na+ are present in white matter (positive spectrum principal 21 

component 3) whereas PC  m/z 756.5 32:0+Na+ is present in grey matter of control and 42UP 22 

animals (negative spectrum principal component 3). Short-term LPS exposure results in lipid 23 

accumulation in the white matter as illustrated by an increased intensity of the white matter 24 
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related peaks, especially m/z 725.5 (d & g) (positive spectrum of principal component 4). In 1 

addition, a shift of white and grey matter specific molecular patterns is observed at 2d LPS 2 

exposure illustrated by more white matter specific lipids present in the grey matter such as m/z 3 

725.5 (d, negative spectrum of principal component 6); and grey matter specific lipids into the 4 

white matter such as m/z 734.5 PC 32:0+H+ and m/z 760 PC 34:1+H+ (g, positive spectrum of 5 

principal component 6). These changes were prevented by pre-exposure to UP (e & h) 6 

 7 

Figure 8 Matrix assisted laser desorption ionization mass spectrometry imaging (MALDI-8 

MSI) performed in negative ion mode followed by PCA. The DF1 (a) revealed that the highest 9 

differences were observed between the control (negative scores) and LPS group (positive scores). 10 

Both 42UP and UP&LPS groups had negative scores which were comparable to the control 11 

group. The DF1 spectrum of the 2 days of LPS exposed animals (b) showed that LPS infection 12 

reduced the amount of sulfatide (SF) species such as m/z 806.5 SF 18:0-H-, m/z 888.6 SF 24:1-13 

H-, m/z 890.6 SF 24:0-H-. These species were mainly present in the white matter of control, UP 14 

and UP&LPS groups (spectrum not shown) whereas m/z 885.5 PI 38:4-H- or m/z 718.6 PC 31:0-15 

H- were representative of the white matter in animals of the 2LPS group (b) 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 
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 Tables 1 

 2 

Table 1 Animal characteristics. 3 

 4 

Animal characteristics are expressed as mean (±SD). One-way ANOVA with Dunnett’s multiple comparison testing 5 

was performed. * p < 0.05 versus control; 
#
 p < 0.1 versus control 6 

 7 

 Table 2 Immune cells present in the choroid plexus. 8 

 9 

Cell counts of MPO+, CD68+ and CD3+ cells in the choroid plexus are expressed as cells/mm
2 
(±SD). One-way 10 

ANOVA with Dunnett’s multiple comparison testing was performed. * p < 0.05 versus control; 
#
 p < 0.1 versus 11 

control 12 

  SAL (n=7) 42UP (n=6) 2LPS (N=5) 7LPS (N=5) UP&2LPS (N= 5) UP&7LPS (n= 5) 

Body weight (g) 3021 ± 328 2765 ± 312 2256 ± 305* 3040 ± 285 2580 ± 285 2652 ± 396 

Brain weight (g) 52.2 ± 4.5 50.8 ± 4.9 46.0 ± 2.8# 51.7 ± 7.0 47.9 ± 2.1 51.7 ± 4.1 

Brain/body Ratio (%) 1.7 ± 0.02  1.9 ± 0.02 2.1 ± 0.02* 1.7 ± 0.02 1.9 ± 0.02 2.0 ± 0.02 

 cells/mm2 SAL (n=7) 42UP (n=6) 2LPS (N=5) 7LPS (N=5) UP&2LPS (N= 5) UP&7LPS (n= 5) 

MPO+ cells 3.31±2.72 6.80±10.29 8.58±2.84 14.66±8.96# 1.06±0.87 5.68±9.36 

CD68+ cells 67.99±47.40 48.45±33.92 69.91±51.64 80.62±32.07 64.49±49.05 59.31±40.18 

CD3+ cells 28.98±24.96 11.14±7.21 30.82±34.98 47.24±23.73 26.11±35.25 15.92±19.32 


