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Abstract 
Rupture of the medial head of the gastrocnemius muscle (GM) is a common injury 
of the calf muscles. Magnetic resonance imaging (MRI) and ultrasound (US) are the 
medical imaging modalities that are usually used to assess such injuries. 
Texture analysis is a digital image processing technique that quantifies the 
relationship between pixel intensities (grey levels) and pixel positions. Texture can 
reveal valuable information that cannot be perceived by the naked eye. Dedicated 
image processing software is required to extract texture parameters. Texture analysis 
has been implemented for medical imaging modalities such as MRI, US and 
computed tomography (CT) for the evaluation sports muscle injury. 
Peripheral quantitative tomography (pQCT) is an adaptation of conventional CT. In 
this project, texture analysis was implemented on MRI and pQCT images of the 
gastrocnemius muscle (GM). MRI is an expensive technique that requires specialised 
facilities. Conversely, pQCT utilises a small-bore, low-dose X-ray scanner, which is 
portable and less costly than MRI. It has traditionally been used mainly for bone 
analysis. The aim of this study was to assess the suitability of pQCT for GM tissue 
characterisation using texture analysis compared with MRI. The study is novel in that 
it is the first to apply texture analysis to GM images using pQCT 
Texture analysis was done on image data acquired from MRI (GE, 1.5T) and pQCT 
(Stratec XCT 2000) in a group of healthy human subjects and an injured subject. A 
water phantom was also scanned with pQCT. An existing standard imaging protocol 
was observed for MRI acquisition, while pQCT image acquisition parameters were 
explored and optimised to yield a standard protocol. 
The pQCT scanner was shown to be capable of acquiring calf muscle images and 
distinguishing calf muscle boundaries. Texture parameters (grey level, variance, 
skewness, kurtosis, co-occurrence matrix, run length matrix, gradient, autoregressive 
(AR) model and wavelet transform) were extracted from the acquired images. The 
repeatability of these quantities for pQCT in a healthy human subject and a water 
phantom was assessed by calculating the coefficient of variation (%CV). The effect 
of pQCT parameters (scan speed and pixel size) was tested using multiple variate 
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analysis of variance (MANOVA). The effect of region of interest (ROI) area and 
anatomical position were evaluated using simple linear regression. 
The t-test was used to compare the mean values of the texture features in the right 
and left leg for both MRI and pQCT in a group of healthy human subjects. Neither 
MRI nor pQCT showed significant differences between the two legs for any of the 
texture features. In addition, there was no significant difference between the two 
modalities for the AR model and wavelet transform texture parameters. Reference 
ranges for the medial head of the GM were defined for both modalities. A study of a 
single injured subject revealed that the values of the AR model texture parameter fell 
outside the reference ranges for both MRI and pQCT, and so the AR model was 
identified as the most sensitive texture parameter for distinguishing injured from 
uninjured GM. 
The principal conclusion from this work is that pQCT has the potential to be used for 
imaging the gastrocnemius muscle and that GM images from both MRI and pQCT 
scanners can be objectively characterised by texture analysis. In addition, the auto-
regressive model texture parameter may be the most appropriate for muscle 
characterisation. 
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Chapter 1 Introduction 
1.1 Introduction 

Muscle injuries are the most common type of injuries and often occur during sport or 
training activity. This is particularly important for élite athletes where decisions 
regarding a return to activity have significant financial and/or strategic consequences 
for both the player and the team (Armfield et al., 2006, Blankenbaker and Tuite, 2010). 
These injuries are prevalent in sports such as football and rugby. Moreover, in football 
they constitute 31% of all injuries (Mueller-Wohlfahrt et al. 2012) . The most common 
muscle injuries occur within the lower extremities including: the quadriceps, the 
hamstring, and the calf muscle, specifically the gastrocnemius muscle (Blankenbaker 
and Tuite, 2010). In a specific sports activity, like football, muscle injuries present as 
a heterogeneous group of muscle disorders; 92% of injuries affect the lower limbs 
with 37% in the hamstring, 23% in the adductors, 19% in the quadriceps, and 13% in 
calf muscles. Furthermore, 96% of the  injuries result from non-contact situations 
(Mueller-Wohlfahrt et al., 2012). The chance of re-occurrence of injuries in football, 
for example, is 16%, and this is associated with a 30% longer time before a return to 
competition compared with the return time after the original injury (Mueller-
Wohlfahrt et al., 2012). This emphasises the importance of a correct diagnosis, and 
the assessment of progress for healing. 
Muscle injury diagnosis starts by clinical examination and is followed by the RICE 
principle (Rest, Ice, Compression and Elevation). Particularly, this is used as first aid 
to stop injury-induced bleeding into the muscle tissue in order to minimise the extent 
of the injury. However, if a more detailed characterisation is needed, medical imaging 
modalities can be used (Jarvinen et al., 2007). 
The modalities that are most commonly used for the assessment of muscle injury are 
Magnetic Resonance Imaging (MRI) and Ultrasound (US) imaging (Nsitem, 2013; 
Crema et al., 2015). MRI uses a very strong magnet field to align the nuclei of 
hydrogen atoms inside the body, and a variable magnetic field that causes the atoms 
to resonate, while US uses high frequency sound waves and their echoes. However, 
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each technique has its benefits and drawbacks, which can have a bearing on both 
quality and cost of the diagnosis of muscle injury. In general, both modalities are non-
invasive and painless. 
Another imaging technology that may overcome some of the disadvantages of MRI 
(cost, scan time) and US (operator dependence, image quality) is Computed 
Tomography (CT) and its variant, peripheral Quantitative Computed Tomography 
(pQCT). The CT scanner uses x-rays to produce cross sectional layers that display 
detailed images of the inner body in a quick and painless procedure. It can be used for 
primary diagnosis and to examine whether a previously treated illness has recurred. In 
a situation, where, for instance, patients have implanted medical devices, a CT scan is 
a good alternative to MRI for imaging of the lower limbs. A pQCT scanner is a 
dedicated CT scanner for limbs. It has a lower radiation dose than conventional CT 
and may become an alternative to conventional CT and MRI for the investigation of 
muscle injury and the assessment of the muscle healing process. 
In recent years, there has been considerable interest in developing objective 
quantitative methods for medical diagnosis, rather than relying on subjective methods. 
Subjective methods relate to visual identification of specific tissue. The possibility of 
human error is always present (Chan and Mccarty, 1990). Moreover, Giger et. al. 
(2008) have shown that there are limitations in the human eye-brain visual system: 
distraction, reader fatigue and the presence of overlapping structures that camouflage 
abnormality in images. These may lead to detection and interpretation errors. 
In medical imaging, quantitation is based on the analysis of digital images using a 
variety of computational approaches. Such images consist of individual picture 
elements (pixels) with assigned brightness values, which can be evaluated objectively.  
For example, digital images analysis is the core of computer-aided diagnosis (CAD), 
which has become one of the major research subjects in medical imaging and 
diagnostic radiology. At present, the concept of CAD is to provide a valuable second 
opinion to assist image interpretation made by radiologists and thus to improve the 
accuracy of radiological diagnosis and reduce image reading time. 
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Possible methods for quantitative image evaluation include texture analysis, shape 
analysis and parametric mapping analysis (Kim et.al, 2011). The texture analysis 
method will be the standard method in this project. Image texture analysis is a 
technique to evaluate the spatial relationships (position and intensity) between image 
pixels to provide an objective approach to image property quantification. The spatial 
information of any material is a description of the material’s internal structure 
(texture). Any changes in the material texture can therefore be numerically computed 
and may be used as a measure of changes. Similarly, changes in internal tissue texture, 
due to the development of disease for example, change the texture of tissue images. 
Hence, numerical texture analysis can be implemented to detect tissue abnormality 
(disease) and for the assessment of the size of the tissue region affected by the disease. 
Tissue texture analysis can improve the accuracy and objectivity of medical diagnosis 
(Hajek et al., 2006). 
Previous studies have investigated the use of quantitative texture analysis for the 
characterisation of muscle tissue using US (Nielsen et al., 2000; Nielsen et al., 2006; 
Pillen et al., 2009; Alqahtani et al., 2010) and MRI (Herlidou et al.,1999; Skoch et al., 
2004). It is possible that the same approach could be used to enhance the diagnosis of 
muscle injury with pQCT. 
Following a review of the literature, it is hypothesised that a pQCT scanner is capable 
of acquiring soft tissue images, and that the application of texture analysis techniques 
provides information which can aid the detection of changes in muscle during the early 
stages of injury. Furthermore, the availability, cost-effectiveness, operator 
independence and time saving of pQCT, may make it superior to MRI and CT for 
following up muscle injuries and for the assessment of muscle healing. 

1.2 The General Objective 
The general objective is to investigate whether pQCT offers an alternative to MRI, 
which is used as the current standard method of imaging muscle injury in elite sports 
people, for tissue characterisation of the gastrocnemius muscle. 
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1.3 Specific Objectives 
1. To investigate the suitability of pQCT for imaging normal and injured muscles. 
2. To investigate the suitability of pQCT in monitoring the healing process of soft 

tissue injury over time. 
3. To evaluate the accuracy of a texture analysis technique of pQCT muscle images. 
4. To characterise and quantify gastrocnemius muscle tissue texture for two different 

imaging modalities (MRI and pQCT). 
5. To employ descriptive statistics, linear regression and correlation to compare 

texture features between the two modalities. 
6. To investigate the influence of the size of a muscle region of interest (ROI) on 

textural features. 
7. To compare texture features between the left and right legs in MRI and pQCT 

images. 
8. To acquire images in a pathological case of muscle injury and compare them with 

normal case images. 
As this work involved human participants, approval was sought and obtained from the 
Ethics Committee of the Cardiff University School of Engineering. The first 
application was for the scanning of healthy subjects, using MRI and pQCT. The 
second application was for the scanning of a pathological muscle injury case using 
pQCT. 

1.4 Thesis Structure 
To demonstrate the importance and significance of the research carried out, this thesis 
has been arranged as follows (Figure 1.1): 
Chapter 1: Introduction, including general and specific objectives of this thesis, 
research methodology and the thesis structure. 
Chapter 2: Literature review, including muscle anatomy, muscle injury and healing, 
imaging and diagnosis of muscle injury with MRI, ultrasound and CT, texture analysis 
techniques and their applications in medical imaging, and the potential of pQCT. 
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Chapter 3: Investigation of the influence of pQCT scan setting parameters on extracted 
texture parameters in a water phantom and a single healthy subject, testing pQCT 
repeatability, defining ROI cut-off area, demonstrating a standard pQCT image 
acquisition protocol and studying the influence of image transformation on extracted 
texture parameters. 
Chapter 4: Acquiring images of recruited healthy subjects using MRI and pQCT 
modalities, comparing muscle texture in the right leg to that in the left leg, comparing 
MRI and pQCT using linear regression and obtaining reference ranges of normal 
muscle. 
Chapter 5: Imaging in an Injured Subject. 
Chapter 6: Summary and conclusion. 
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Figure 1.1: Methodology Diagram. 
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Chapter 2 Literature Review 
2.1 Muscle Structure and Function 
The muscular system of the human body is made up of three different types of muscle 
tissue: skeletal, smooth and cardiac. The most common type is skeletal muscle, which 
comprises striated and voluntary muscles (Erik et al. 2008). The whole human body 
mass is comprised of about 40% to 50% skeletal muscle (Joe et al. 2007, Roel et al. 
2011); it is the largest single tissue in the human body (El-Khoury et al., 1996). Most 
skeletal muscles cross at least one joint, but many cross two joints (Blankenbaker et 
al. 2004). Muscles generate force that leads to body motion. In addition, during the 
body’s inactive phase, deep muscles are responsible for body posture and joint 
stability and the generation of body heat (Joe & Derrickson 2007). 
Skeletal muscle consists of various components working together to function 
efficiently (Erik et al. 2008). Muscle tissue is composed of thousands of elongated, 
cylindrical cells that are known as muscle fibres. The muscle fibres are aligned in 
bundles called fascicles (Kawakami, et al., 1998), each of which is surrounded by 
collagenous connective tissue called endomysium. Fascicles are enclosed in a stronger 
collagenous connective tissue which is known as epimysium. The two layers of 
connective tissue fuse together at each muscle end to form highly specialized 
connective tissue tendons, as shown in Figure 2.1 (Holsbeeck and Introcaso 2001, 
Fornage 1995, Peetrons 2002). 

 
Figure 2.1:Composition of Muscle tissue (Joe & Derrickson 2007) 
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Muscle fibres are made up of myofibrils. The largest working units of the filaments of 
muscle fibre, myofibrils are cylindrical in shape and cover the entire length of the 
muscle fibre. They are composed of two types of protein filaments, called the thin 
filament and the thick filament(Joe & Derrickson 2007). Both filaments overlap in 
specific patterns and form compartments that are known as sarcomeres, which are 
aligned end to end. A sarcomere is the smallest functional unit in a muscle that can 
perform all the functions of muscle. The sarcomeres are separated from each other by 
a dense protein in a zig-zagging zone called the Z-discs. Furthermore, within each 
individual sarcomere there is a darker area called the A-band. At the centre of each A-
band there is a zone called H, which contains the thick filament only. Moreover, at 
both ends of the A-band, overlapping of the thick and thin filaments takes place. The 
rest of the thin filament (with no overlapping portion) is called the I-band, which 
extends into two sarcomeres but is divided in half by the Z-disc as shown in Figure 
2.2 (Joe and Derrickson 2007). 

 
Figure 2.2: Muscle belly split into various component parts 
(https://home.comcast.net/~pegglestoncbsd/muscular.htm). 
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The shape of the thick filament (myosin) is like two golf clubs twisted together. The 
tails are arranged in parallel to each other, not unlikegolf club handles to form the shaft 
of the thick filament, and the head of the golf clubs projects outwards from the surface 
of the shaft and are called myosin heads (Joe & Derrickson 2007). 
The thin filaments are attached to the Z discs. The main component of the thin 
filaments is the protein actin. Each actin molecule joins in a twisted helix shape to 
form an actin filament. Furthermore, each actin molecule includes a myosin-binding 
site, where a myosin head can attach. The thin filaments are composed of two other 
proteins, tropomyosin and troponin. During the muscle relaxation phase, myosin is 
blocked from binding to the actin as a result of strands of tropomyosin that cover the 
myosin-binding sites on the actin. The tropomyosin proteins are held in place by 
troponin molecules as shown in Figure 2.3 (Joe and Derrickson 2007). 

 
Figure 2.3:Longitudinal section of filaments within one sarcomere of a myofibril (http://classs.midlandstech.edu). 
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2.2 Types of Skeletal Muscle Fibres 
Skeletal muscles contains three types of muscle fibres: type I (slow oxidative/slow-
twitch), type IIA (fast oxidative-glycolytic/fast-twitch) and type IIB (fast glycolytic) 
(Joe & Derrickson 2007). All three types differ from each other according to their 
structural, metabolic, molecular and contractile properties (Schiaffino and Reggiani 
1996). Table 2.1 illustrates some key characteristics of muscle fibres.  Most skeletal 
muscles are composed of a mixture of all three types of fibres. For example, leg 
muscles have large numbers of both slow oxidative and fast oxidative-glycolytic 
fibres. 
 
Table 2.1: Characteristics of muscle fibres, adapted from Staron (1997). 
 Type I (slow 

oxidative) 
Type IIA (fast 

oxidative-glycolytic) 
Type IIB (fast 

glycolytic) 
Diameter Small Intermediate Large 
Myoglobin 
content High Intermediate Low 
Speed of 
contraction Slow Fast Fast 
Rate of fatigue Slow Intermediate Fast 
Muscle colour Red Red White 

 

2.3 Anatomy of the Lower Leg 
The lower leg is mainly divided into three groups of muscles. The first group 
comprises the anterior compartment, at the front of the leg, which includes the 
following muscles: tibialis anterior, extensor halluces longus, and extensor digitorum 
longus as shown in Figure 2.4. These muscles play a role in upward movement 
(dorsiflexion) of the foot, raising the foot at the ankle during walking (Agur and Dalley 
2005). 
The second group comprises the lateral compartment, on the outer side of the leg, 
which includes the following muscles: peroneus brevis and peroneus longus. These 
muscles attach to the fibula at the top and run down the leg, passing through tendon 
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sheaths at the ankle and joining the fifth metatarsal of the foot. These muscles provide 
plantar flexion and the eversion movement of the foot (Agur and Dalley 2005). 
The third group is located at the back of the leg. This posterior compartment is divided 
into two sections: the superficial posterior compartment and the deep posterior 
compartment. The superficial posterior compartment includes the gastrocnemius, 
soleus and plantaris, whereas the deep posterior compartment includes the following 
muscles: flexor halluces longus, flexor digitorum longus, tibialis posterior and 
popliteus. The muscles of the superficial posterior compartment are responsible for 
the plantar flexion of the ankle, lowering the foot at the ankle joint. The muscles of 
the deep posterior compartment enable the foot to push off from the ground (Agur and 
Dalley 2005). 
 

 
Figure 2.4: Anatomy of the lower leg (http://media.omedix.com?healthwise/nr55552069.jpg). 
2.4  Anatomy of the Gastrocnemius Muscle 
The gastrocnemius muscle is located at the posterior part of the lower leg. With the 
soleus muscle, it forms the calf muscle and it is the most superficial part of the calf 
muscle. It attaches to the heel via the Achilles tendon and runs behind the knee to the 
femur, crossing two joints. The gastrocnemius muscle is composed of two heads, the 
lateral and medial heads, as shown in Figure 2.5. The lateral head is smaller than the 
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medial head and rises from the lateral condyle of the femur, whereas the medial head 
originates from the medial condyle of the femur. The two heads of the gastrocnemius 
join and merge with the soleus muscle-tendon complex to form the Achilles tendon, 
which is inserted into the calcaneus posterior surface (Dark et al. 2009). It contributes 
to standing, walking, running and jumping. It induces plantar flexion of the foot at the 
ankle joint, flexing of the leg at the knee and plays an important role in the gait cycle 
(Dark et al. 2009). 

 
Figure 2.5: Anatomy of gastrocnemius muscle (http://www.droualb.faculty.mjc.edu). 
The gastrocnemius is composed of a high proportion of type 2 fast-twitch muscle 
fibres to produce quick strong movements (Herzog et al. 1993). The soleus muscle is 
composed of twice as many type 1 slow-twitch fibres (slow oxidative) as type 2 fibres. 
Its function is the same as that of the gastrocnemius, i.e. to raise the heel, except that 
it works in a different position with the knee bent. During physical exercise the volume 
of the gastrocnemius muscle is modified, which may also lead to variation in the size 
and density of the fibres. Furthermore, blood flow increases to five or six times more 
than that of a muscle at rest (Basset et al. 1994).  This can hamper methods of diagnosis 
that focus on swelling as an indicator of injury, immediately following exercise. 



13 
 

2.5  Muscle injuries 
Muscle injuries are one of the most common sports injuries among athletes. Fuller et 
al (2006) defined sports injury as “any physical complaint sustained by an athlete that 
results from a match, competition or training, irrespective of the need for medical 
attention or time loss from sportive activities” Muscle injuries may have different 
causes, such as strain, contusion or laceration (Jarvinen 2005, 2007). Of these, strains 
and contusions are the most common muscle lesions, accounting for more than 90% 
of all sports-related injuries (Umile 2012). The most frequently injured muscles are in 
the lower extremities, particularly the hamstring, adductor, rectus femoris, biceps 
femoris, semitendinosis and the medial head of the gastrocnemius (El-Khory et al. 
1996, Garrett 1996, Steinbach et al.,1997, De Smet and Best 2000, Varela et al.,2000, 
Blankenbaker and De Smet 2004, Ehman and Berquist 1986). 
Muscle injuries can be assigned into two classes: direct injuries and indirect injuries 
(Jarvinen et al., 2007). Direct injuries are caused by external force. They include 
contusion, haematoma and laceration (uncommon in sports-related injuries, as 
mentioned earlier), while indirect injuries do not result from direct contact but can 
result from the actions of the performer, such as a lack of fitness or poor technique. 
They include muscle strain and delayed onset muscle soreness (excessive muscle 
stretching) (Blankenbaker and De Smet 2004, Wong 2005). 
 
There are two types of muscles in respect to the way they cross joints. Most muscles 
cross one joint, but many muscles cross two. Muscles crossing two joints are strained 
and perform eccentric contraction; examples include the calf, the hamstring and the 
quadriceps. If the resisting force is greater than the force generated by the muscle, this 
is known as eccentric contraction, whereas concentric contraction occurs if the 
resisting force is less than the force generated by the muscle. Muscles that cross two 
joints are the most susceptible to injury (Blankenbaker and De Smet 2004). 
Muscle fibre type has a significant influence on muscle injury. As shown earlier, in 
Table 2.1, most muscles are composed of both type one and type two muscle fibres. 
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Type one muscle fibres are more resistant to muscle fatigue because they have slower 
contraction (slow twitch fibres). Type two fibres, on the other hand, have a fast 
contraction time (fast twitch fibres), and thus this type of muscle is more prone to 
injury (Blankenbaker and De Smet 2004, Wong 2005). Other factors that lead to 
muscle injuries include the following: insufficient stretching before exercise and 
warm-up, lack of flexibility, abnormal muscle contraction during running, awkward 
running style, and a return to sports after incomplete rehabilitation programme 
(Blankenbaker and De Smet 2004). The latter factor demonstrates the importance of 
the ability to adequately diagnose and monitor the healing of muscle injuries. 

2.5.1 Muscle strain 
Muscle strain results from indirect stretch-induced injury. It is common among 
athletes who are involved in activities that depend on high-speed running, such as 
football, rugby and basketball. Muscle strain is the rupture of muscle fibres as a result 
of overstretching. Muscle strain occurs mostly at the myotendinous junction 
(Blankenbaker 2004, Wong 2005). 
Strain injuries are classified into the three following categories: grade one, two and 
three strain, or mild, moderate and severe, respectively (Peetrons 2002,Wong 2005, 
Jarvinen 2007). Grade one (mild) strain occurs when the muscle is extended beyond 
its elastic capability, leading to a tear in a few muscle fibres, typically less than 5%. 
Other symptoms include minor swelling and discomfort, with no or only limited loss 
of muscle strength and restriction of movement. The pain is intense, but there will be 
rapid recovery after conservative treatment (Wong 2005, Jarvinen 2007). 
Grade two (moderate) strain involves greater (partial) rupture to the muscle with a 
clear loss of contraction. There will be acute pain accompanied by swelling. 
Furthermore, there will be partial detachment of muscle from the adjacent fascia or 
aponeurosis. Haematoma formation at the myotendinous junction occurs very often 
(Palmer et al.,1999). An example of grade two strain is the detachment of the medial 
gastrocnemius muscle from its common aponeurosis with the soleus muscle (tennis 
leg) (Wong 2005, Jarvinen 2007). 
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Figure 2.6: Schematic diagram showing possible sequence of injury and delayed onset muscle soreness, 
adapted from Declan et al. (2003). 

Grade three (severe) strain involves complete rupture of the entire muscle cross-
section and complete loss of muscle function (Jarvinen 2007). It is usually associated 
with spasm, retraction and shortening of the muscle (Blankenbaker 2004). 

2.5.2 Delayed Onset Muscle Soreness 
Delayed onset muscle soreness (DOMS) is a muscular pain, soreness and swelling, 
that appears several hours or days after unaccustomed or strenuous exercise, such as 
the commencement or resumption of sports activity in athletes after a period of time 
without training. It is also called muscle fever (Wong 2005, Kubo et al. 2012). Delayed 
onset muscle soreness is characterised by tenderness and movement pain. In addition, 
the severity of damage depends on several factors, e.g. exercise intensity, familiarity 
with exercise, muscle stiffness, the angle of contraction and the velocity of 
contraction. DOMS is most frequent with eccentric exercise, like downhill running. 
The nature of the injury is mechanical disruption to the sarcomeres (Connolly et al., 
2003, Warren et al., 1993). Injury follows a sequential event pattern, typically: 
mechanical damage, inflammation and swelling and free radical proliferation. Figure 
2.6 depicts this sequence (Declan et al., 2003). 
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2.5.3 Haematoma 
Haematoma is the accumulation of blood within a limited space in soft tissue, 
following direct or indirect injury. In soft tissue, haematoma has two injury 
mechanisms: following direct contusion, or following a tear in the muscle fibres 
(indirect) (Klein et al. 1990, Blankenbaker 2004). Contusion can be classified into 
mild, moderate and severe (Beiner and Jokl 2001; Kary 2010). Injury may lead to 
damage to the tissue capillaries at the level of the skin or the subcutaneous muscle 
tissue, resulting in blood leakage. Haematomas very frequently occur among athletes 
incurring sports related injuries (Nozaki et al. 2008). Furthermore, haematomas are 
most common in direct contact sports, such as football and rugby (Smith et al. 2006). 
In sports-related injuries, haematoma is common and very frequently involves the 
quadriceps and gastrocnemius muscles, as shown in Figure 2.7 (Kneeland 1997). 
Haematoma is a key sign of a muscle tear (Peetrons 2002), and thus an ability to image 
haematoma is very useful in making a diagnosis of a number of muscle injuries.  
 

 
Figure 2.7: Injured tissue showing haematoma (Adapted from http://www.essentialoilspedia.com/wp-
content/uploads/bruise.jpg). 
Haematoma is classified according to its location, the types are intramuscular and 
inter-muscular haematoma. In intramuscular haematoma, the muscle sheath and the 
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fascia remain intact, which results in an increase in intramuscular pressure. The 
symptoms include pain and tenderness, a decrease in muscle function, and swelling 
after 48 hours. The second type of haematoma, inter-muscular haematoma, results 
from a torn fascia and sheath. Blood will thus seep between the muscle and the fascia; 
the symptoms include severe bruising and swelling (Smith et al. 2006).  
A recent study carried out by Mueller-Wohlfahrt et al (2014) presented a new and 
comprehensive classification system for athletic muscle injuries. The research group 
proposed the term ‘tear’ for structural injuries of muscle fibres, instead of ‘strain’. The 
group concluded that the previous grading systems have a lack of sub-classification 
within the grades or types. Furthermore, the group classified indirect muscle injuries 
into functional muscle disorder and structural muscle injury. Functional muscle 
disorder is defined as “acute indirect muscle disorder without macroscopic evidence 
(in MRI or ultrasound) of muscular tear”. Structural muscle injury is defined as “any 
acute indirect muscle injury with macroscopic evidence (in MRI or ultrasound) of 
muscle tear” (Mueller-Wohlfahrt et al. 2012). The new classification is represented in 
Table 2.2. 
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Table 2.2: New suggested muscle injury classification (Mueller-Wohlfahrt et al. 2012). 
 Type Sub-type 
 
 
 
 
 
 
Indirect muscle 

injury 

 
 
 
Functional 
muscle disorder 

 
1:Over-exertion 
muscle disorder 

A: Fatigue-induced 
muscle disorder. 
 

B: Delayed-onset 
muscle soreness  
(DOMS). 

 
2:Neuromuscular 
disorder 

A: Spine-related 
neuromuscular 
Muscle disorder. 
B: Muscle-related 
neuromuscular 
Muscle disorder. 

 
 
Structural muscle 
injury 

 
3: Partial muscle tear 

A: Minor partial 
muscle tear. 
B: Moderate partial 
muscle tear. 

 
4: (Sub)total tear 

Subtotal or complete 
muscle tear and 
tendinous avulsion 

Direct muscle 
injury 

 
 

Contusion & 
Laceration 

 
 

 
2.6  Mechanism of Skeletal Muscle Healing 
It is very important to understand the mechanism of skeletal muscle cellular healing 
process, in order to achieve successful treatment and healing monitoring. Skeletal 
muscle reacts to injury in a constant pattern, irrespective of the cause of the injury. 
The healing process is a repair mechanism which consists of three distinct phases: 
degeneration and inflammation, regeneration, and fibrosis (Fukushima et al. 2001, 
Garrett et al. 1989, Garrett et al. 1990, Kasemkijwattana et al. 2000, Jarvinen 2007). 
The first phase starts a few days after trauma and is characterised by local swelling 
and haematoma formation to fill the gap in the stump of the myofibres. Necrosis takes 
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place at both ends of the ruptured myofibres. The degeneration and inflammation 
response starts with the infiltration of activated macrophages from the torn blood 
vessels (Honda et al., 1990, Hurme et al., 1991). 
The regeneration phase starts five to ten days after trauma and is characterized by 
phagocytosis of the damaged tissue and the regeneration of the injured muscle. The 
release of numerous growth factors has been noticed (Alameddine et al. 1989, Carlson 
and Faulkner 1983). 
The final phase, fibrosis, normally starts two to three weeks post-injury and it is 
characterized by the formation of scars as the final product of muscle repair (Li et al., 
2004, Li and Huard 2002). However, partial tears normally heal completely without 
fibrosis, whereas moderate partial tears can result in a fibrous scar (Mueller-Wohlfahrt 
et al. 2012). 

2.7  Injury to the Gastrocnemius Muscle 
The first reported case of injury to the gastrocnemius muscle was presented by Powel 
in 1883 in a patient who had a sudden sharp pain during tennis activity (Powel 1883). 
Much later, Froimson described injury to the gastrocnemius following a tennis serve, 
during the push-off movement, as a painful condition of parital tearing of the medial 
belly, resulting from the overstretching of the muscle by concomitant ankle 
dorsiflexion and full knee extension (Froimson 1969). Injury to the gastrocnemius 
muscle most commonly occurs in the medial head (Bryan 2009). Rupture of the medial 
head of the gastrocnemius muscle, also known as tennis leg, is common in sports 
activities, e.g. hill running, tennis and jumping (Bianchi et al. 1998, Delgado et al. 
2002). 
The gastrocnemius is susceptible to a high risk of injury because it crosses the knee 
and ankle (two joints) and is composed of a high density of type two fast twitch muscle 
fibres (DeLee et al. 2003, Garrett 1996, Armfield 2006, Simon et al. 2006, Nsitem 
2013). 
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Gastrocnemius muscle injury results from the application of an eccentric force during 
knee extension (flexion). Gastrocnemius muscle injury occurs near the 
musculotendinous junction, where the muscle attaches to the fascia leading to the 
Achilles tendon. Patients usually describe the injury as a ‘pop’ in the calf, and they 
suffer severe pain and swelling during the first 24 hours (Delgado et al. 2002). 

2.8  Clinical Assessment of Muscle Injury 
Clinical examination consists of inspection and palpation of the injured muscles. 
Furthermore, testing the function of the muscles involved, with and without external 
resistance, is also carried out. The diagnosis is relatively easy if a typical history of 
muscle contusion or strain is accompanied by an obvious swelling, whereas if there is 
deep haematoma within the muscle belly, clinical diagnosis becomes more difficult 
(Jarvinen et al., 2007). 
Studies by different research groups have suggested that muscle injury assessment 
should start with taking a precise history of the occurrence and circumstances of the 
injury, the patient’s symptoms and any previous relevant history. This should be 
followed by a careful clinical examination with inspection, palpation of the injured 
area, comparison with the uninjured side and the testing of muscle function (Askling 
et al., 2007; Askling et al., 2008). 
The clinical assessment of muscle injury can be divided into two categories: subjective 
and objective, as presented in detail in the flow charts below (Tables 2.3 and 2.4) 
(Porter 2013). 
The purpose of subjective assessment is to collect all relevant information about the 
injury, such as its site, nature and behavior, and also information about the onset of 
symptoms. Furthermore, it includes reviewing the patient’s history, such as general 
health, medication and social issues. In this system of classification, subjective 
assessment also includes a review of past imaging and laboratory investigations. 
Imaging might include planar radiography, ultrasound, x-ray computed tomography 
or magnetic resonance imaging. One of the main components of laboratory testing is 
the measurement of creatinine kinase (CK) concentration in blood to help detect 
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muscle damage. CK is a skeletal muscle enzyme and its blood concentration is used 
as a marker of the functional status of muscle tissue. An increase in blood levels of 
this enzyme might indicate cellular necrosis or tissue damage following acute and 
chronic muscular injuries (Brancaccio et al., 2010). However, a single non-
pathological cramp might also cause a substantial rise in CK levels (Brancaccio et al., 
2007). 
The outcome of subjective assessment should lead to the next step in assessment. The 
aims of objective assessment are to find abnormalities of function by implementing 
different approaches, such as passive, active, resisted and neurological tests of the 
injured area. The goal of this task is to reproduce all or part of the patient’s symptoms 
and to determine the range, resistance, pattern, and pain response for each movement. 
In addition, it includes trying to obtain signs of the disorder and monitoring the injury 
for a re-assessment of the effectiveness of the treatment. 
Subjective and objective assessment flowcharts are presented in Tables 2.3 and 2.4 
(Porter 2013). 
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Table 2.3: Flow chart of subjective clinical assessment of muscle injury (Porter 2013). 
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Table 2.4: Flow chart of objective clinical assessment of muscle injury (Porter 2013), 

 
 Writing final assessment report  
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2.9  Imaging Muscle Injury 
2.9 

Investigation of muscle injury should always start with activities such as careful 
history taking, and physical examination such as inspection and palpation. It may also 
include muscle testing with and without resistance. However, information obtained 
about the nature and extent of the injury is often limited because of factors such as 
pain and swelling. In these circumstances, muscle imaging with modalities, such as 
ultrasound (US), magnetic resonance imaging (MRI) or x-ray computed tomography 
(CT) is useful to verify and characterize the injury. In particular, ultrasound and MRI 
have become widely adopted for the assessment of muscle injury (Jarvinen et al. 
2007). 
The modalities used for muscle imaging have their own technical characteristics and 
these are compared and contrasted in Table 2.5. 
 
Table 2.5: Comparison of muscle imaging modalities, adapted from Clague et al. (1995). 

 Ultrasound CT MRI 
Availability Readily available Readily available Increasingly 

available 
Relative cost Inexpensive Expensive Very expensive 
Portability Portable Fixed Fixed 
Soft tissue 
contrast 

Fair Good Excellent 
Muscle 

visualisation 
Fair Good Very good 

Repeated 
investigation 

Yes Limited Yes 
Safety Non-ionizing 

radiation 
Ionizing radiation Non-ionizing 

radiation 
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2.9.1 Muscle Imaging with MRI 
2.9.1.1 Physical Basis of MRI 

MRI is a very sophisticated medical imaging technology. It is based on the magnetic 
properties of hydrogen nuclei (protons) when placed in a strong external magnetic 
field. Within the human body, protons are abundant in water and in fat. Under the 
influence of the external field, they develop a net magnetization in the same direction 
as the field and they also precess about the field direction at a characteristic frequency. 
When a pulse of radio frequency (RF) radiation of the same frequency is applied, 
resonance occurs and the magnetization is deflected from the field direction. 
Immediately afterwards, relaxation occurs: longitudinal magnetization recovers along 
the external field direction with a characteristic time T1 while transverse magnetization 
(in the plane normal to the external field) decays with a characteristic time T2. Proton 
density (the number of protons per unit volume) and the relaxation times T1 and T2 
vary between tissues and for a particular tissue, between its condition in health, disease 
and injury. 
In magnetic resonance image acquisition, RF pulse sequences may be chosen such that 
the detected RF signal is weighted according to T1, T2 or proton density. This allows 
great flexibility in creating image contrast. In particular, MRI demonstrates much 
better natural contrast between soft tissues than other modalities; in some situations, 
contrast may be enhanced by the administration of agents that modify values of the 
relaxation times. More complex pulse sequences may be used to highlight or suppress 
fat or fluid. 
Spatial localization of RF signal source within tissue is accomplished with the use of 
gradient magnetic fields, which may be applied along the external field or 
orthogonally to it. Gradients are applied to select slice position, orientation and 
thickness and to encode positional information using signal frequency and phase. 
Projection data are collected in such a way as to allow a set of tomographic slices to 
be reconstructed using two-dimensional Fourier transformation; in these slice images 
pixel values are related to detected RF signal amplitude. Appropriate combination of 
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gradient magnitude, signal sampling rate and reconstruction parameters yields images 
with very good spatial resolution. However, there is a trade-off between resolution 
(small pixel size and slice thickness) and noise. In addition, noise is relatively high in 
images whose weighting results in small signal amplitudes. 
A more complete description of the physics and technology of MRI is given in 
Appendix A. 
2.9.1.2 Advantages and Disadvantages of MRI 
MRI has many advantages as a medical imaging technology; these include the 
following: 

 There is no hazard from ionizing radiation; 
 It may be applied to the diagnosis of a wide range of medical conditions; 
 It is capable of producing direct coronal, transverse and sagittal slice images 

and, indeed, slices in any arbitrary direction; 
 It does not produce artefacts at air-bone interfaces. 

The disadvantages of MRI can be listed as follows: 
 The imaging procedure is lengthy and noisy; 
 In general, only static images are produced; 
 The technology is very expensive and availability is still limited in some areas; 
 A special site, remote from stray magnetic fields and RF radiation, is needed 

for operation of the MRI equipment; 
 It cannot be used for patients with certain implanted medical devices; 
 Patient movement over a prolonged image acquisition time may cause image 

artefacts and the need for a re-scan - in some cases, this may be overcome by 
sedating the patient but this causes drowsiness for the remainder of the day; 

 Some patients experience discomfort, worry and stress because of 
claustrophobia induced by the tunnel-like scanner gantry; 

 When required, the use of artificial contrast material may cause kidney 
problems or result in an allergic reaction at the injection site or elsewhere. 
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2.9.1.3 MRI of Muscle 
MRI has gained widespread application for muscle imaging. One reason for this is that 
it is relatively less operator dependent (than ultrasound imaging for example), through 
the use of well-designed and standardized imaging protocols. It is also the case that 
magnetic resonance images can be interpreted globally. 
MRI is very efficient in visualizing both deep and superficial muscles, with most 
studies being confined to the leg. It generates a set of contiguous thin tomographic 
slices, which means that it can provide panoramic views of the body. Therefore, it has 
the capability to assess deep muscle and detect lesions that may be missed by 
ultrasound. Congenital myopathies and congenital muscular dystrophies are both 
characterized by muscle weakness and wasting; MRI studies have shown that several 
of these conditions display specific patterns of muscle involvement, which can help in 
the differential diagnosis of these disorders (Jungbluth, 2004). Muscle MRI is able to 
detect and differentiate between fatty infiltration and oedema; the latter can be an early 
sign of inflammatory myopathy, a condition characterized by muscle inflammation 
and weakness. Thus MRI is of additional value in cases of suspected inflammatory 
myopathy when ultrasound findings are normal (Pillen 2011). 
2.9.1.4 Application to Muscle Injury 
Although all muscle injuries should have a clinical assessment, MRI is a useful tool 
to confirm clinical findings. Indeed, MRI is now considered essential for muscle injury 
assessment at most centres worldwide where the technology is available. It has 
application across the range of muscle injuries. 
Contusion leads to oedema and interstitial haemorrhage, which cause muscle swelling. 
In the magnetic resonance fat suppressed image, the injured muscle shape is feather-
like, as presented in Figure 2.8. In a T1 weighted image, the presence of blood may 
result in a faint high signal, as presented in Figure 2.9. This finding is similar to that 
in a Grade 1 muscle strain injury, but it is easy to distinguish between the two cases 
by clinical assessment of the injury. The morphology of haematoma development 
follows the following pattern. At the beginning, there is an irregular muscle laceration 
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and after 48 hours, there is a clear fluid collection within the muscle. The muscle 
surrounding the haematoma usually remains as a high signal on fluid-sensitive 
magnetic resonance pulse sequences, as presented in Figure 2.10. The signal 
characteristics of haematoma vary with time, depending on the predominant blood 
product, as illustrated in Table 2.6. Moreover, there will be further haematoma healing 
phases: fibrosis (scar formation) and/or calcification. The fibrosis of the margins of 
the haematoma will contract the lesion over time, whereas calcification will lead to 
the development of a condition known as myositis ossificans (Lee et al. 2012). 
 

 
Figure 2.8: Transverse magnetic resonance fat suppressed image in a 26 year old professional male footballer 
with a minor thigh contusion. The arrow indicates the direction of the impact of the blow. Note the high signal 
within the vastus lateralis and vastus intermedius muscles in the line of the force vector (Lee et al. 2012). 
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Figure 2.9: Transverse magnetic resonance image in a 32 year old professional footballer with a deep surface 
haematoma of the thigh. Note the faint high signal margins of the haematoma indicated by the white arrows (Lee 
et al. 2012). 
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Figure 2.10: Magnetic resonance images in a 32 year old male professional footballer with a deep surface thigh 
haematoma: (a) coronal and (b) axial (transverse) images demonstrating a large haematoma deep to the vastus 
intermediate muscle (arrow heads) adjacent to the femoral cortex (F). Note the laceration into the muscle (arrow) 
and the layering of blood products on the axial image (curved arrow) (Lee et al. 2012). 
 
Table 2.6: Changing magnetic resonance signal characteristics of a haematoma with time, dependent on the nature 
of the predominant blood product within (Lee et al. 2012). 
Stage Blood product T1 signal 

intensity 
T2 signal 
intensity 

Hyperacute (< 4h) Intracellular 
oxyhaemoglobin 

Intermediate Bright 
Acute (4 - 6 h) Extracellular 

oxyhaemoglobin 
Intermediate Dark 

Early sub-acute (6 - 
72 h) 

Intracellular 
methaemoglobin 

Bright Dark 
Late sub-acute (72 h 
- 4 weeks) 

Extracellular 
methaemoglobin 

Bright Bright 
Chronic (> 4 weeks) Haemosiderin Dark Dark 
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MRI is capable of grading muscle injury although this ability depends on the magnetic 
field strength and RF pulse sequence, both of which influence image quality (Kujala 
et al., 1997, Jarvinen et al., 2007, Elliott et al., 2008, Ekstrand et al., 2012). 
In a Grade 1 muscle strain, a high signal is expected at the injury site on fluid sensitive, 
fat suppressed magnetic resonance pulse sequences due to oedematous blood radiating 
from the musculotendinous junction along fascicles of the muscle. This leads to 
feather shaped region within the muscle image, as presented in Figure 2.11. Similarly 
to ultrasound, perifascial fluid may be observed on MRI in Grade 1 strain (Lee et al., 
2012). 

                                   
Figure 2.11: Sagittal MRI scan of a 28 year old male professional footballer with Grade 1 distal hamstring strain. 
Note the feathery high signal along the muscle fibres (curved arrow) and the small slither of fluid in the epifascial 
space (arrows)(Lee et al. 2012). 
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In a Grade 2 strain, the main finding is the distortion of the normal muscle architecture 
at the injury location, which leads to haematoma formation at the musculotendinous 
junction, as illustrated in Figure 2.12. The feather type shape of Grade 1 strain is also 
present. Furthermore, laxity of the central tendon may be noticed, as illustrated in 
Figure 2.13 (Lee et al., 2012). 

 
Figure 2.12: Transverse short tau inversion-recovery MRI scan of a 29 year old male professional footballer with 
Grade 2 calf strain. Note the separation of the muscle (arrow heads) away from the deep soleus tendon (arrow) 
and the prominent epifascial fluid on the deep medial and lateral surface of the muscle (Lee et al. 2012). 
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Figure 2.13: Coronal fat saturated proton density MRI scan of the calf of a 29 year old male professional footballer 
with Grade 2 calf strain. Note the laxity within the central tendon (arrows) at the epicentre of the muscle injury 
(Lee et al. 2012). 
 
In Grade 3 muscle strain, there is complete disruption of the musculotendinous unit, 
with haematoma filling the space in between. When there is avulsion of the 
musculotendinous unit from the bony attachment, as illustrated in Figure 2.14, this is 
sometimes described as Grade 3B disorder. This is common in the calf, where muscle 
fibres stay normal and without rupture (Lee et al., 2012; Peetrons 2002). 
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Figure 2.14: Sagittal MRI scan of a 38 year old female footballer with Grade 3 hamstring avulsion. The hamstring 
tendons have avulsed (arrow) and the tear gap is filled by a heterogeneous signal intensity haematoma 
(arrowheads) (Lee et al. 2012). 
 
MRI also has a role in predicting recovery from muscle injury. For example, in a five-
year study, Gibbs et al (2004) showed that injury lesion length and cross-sectional area 
measured with MRI could be used to predict recovery time from acute Grade 1 strains 
in Australian Rules football players. However, neither of these indices of size nor the 
recovery time were reliable indicators of the likelihood of recurrence of strain within 
the same sporting season. 
 
2.9.2 Muscle Imaging with Ultrasound 
2.9.2.1 Physical Basis of Ultrasound Imaging 
Ultrasound imaging uses pulses of high-frequency sound (2-20 MHz) and their echoes 
to produce real-time images of body organs and tissues. This is called the pulse-echo 
technique. The pulses are produced by a multi-element transducer (probe), which 
operates on the piezoelectric principle. The probe is applied directly to the skin with 
good acoustic contact being ensured through the use of a coupling gel. The pulses are 
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transmitted from the transducer through the gel into the scanned body. The transducer 
also collects the echoes that return and these are processed by a computer to develop 
an image (Kremkau 2006). 
Echoes are produced through reflection at tissue boundaries and scattering by small 
tissue structures as a result of differences in acoustic impedance. The time between 
the issue of a pulse and the detection of an echo is used to calculate the depth within 
tissue of the echo source, assuming a standard vale of the speed of sound (1540 m/s). 
The attenuation of ultrasound increases with the distance traversed in tissue. Time-
gain compensation is used to overcome this phenomenon so that signals derived from 
scatters of equal strength are displayed with equal intensity irrespective of depth. 
The image is generated by electronically sweeping the ultrasound beam through the 
tissue region of interest. The result is an image of a slab or slice of tissue, although 
this is not reconstructed from projections as is the case with MRI and CT. The beam 
is focused to improve lateral spatial resolution. Axial resolution is determined by 
spatial pulse length while slice thickness depends on transducer width. In general, the 
greater the ultrasound frequency, the better is the image quality, although depth of 
penetration in tissue is reduced since attenuation is proportional to frequency. 
 
2.9.2.2 Advantages and Disadvantages of Ultrasound Imaging 
The advantages of medical imaging with ultrasound include the following: 

 It is non-invasive, safe and relatively painless; 
 It uses no ionizing radiation; 
 It does not usually require injection of a contrast medium; 
 It may be used to diagnose a range of conditions in different parts of the body, 

such as the abdomen, pelvis, blood vessels, breast, kidneys, muscles, bones 
and joints; 

 It can be used to assess the health and development of a baby during 
pregnancy. 
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The disadvantages of ultrasound imaging can be listed as follows: 
 The quality and interpretation of the image is operator dependent; 
 The image can be affected by the presence of air and calcified areas in the body 

(e.g. bones, plaques and hardened arteries), and by a person's body size. 
2.9.2.3 Ultrasound imaging of Muscle 
As a medical imaging modality, ultrasound has the advantages of availability, low 
cost, rapid image acquisition and ease of use during examination. The technology has 
improved dramatically over the past few years. For example, high frequency 
transducers provide excellent image spatial resolution of 200-450 µm in-plane 0.5-1.0 
mm section thickness, which exceed the values obtainable with MRI (Lin et al.2008). 
However, high frequencies limit penetration depth in muscle and other tissue and are 
best suited for the assessment of superficial structures. Deeper muscles, are difficult 
to visualise, especially when overlying muscles are affected. To display deeper 
muscles, transducers that can emit ultrasound at lower frequencies have to be used 
(Pillen, 2010). New ultrasound developments have resulted in the ability to image a 
volume of tissue giving panoramic images, which make it possible to visualize several 
muscles in one particular plane. 
Ultrasound may be used to image muscles in the arms as well as the legs; this can be 
of additional value when selective arm muscle involvement is present. The 
sonographic appearance of muscle is fairly distinct and it can easily be discriminated 
from surrounding structures such as subcutaneous fat, bone, nerves and blood vessels. 
Normal muscle is relatively black, i.e. has low echo intensity. In the transverse plane, 
perpendicular to its long axis, muscle has a speckled appearance because of reflections 
from perimysial connective tissue, which is moderately echogenic. 
An important application of muscle ultrasound is screening for the presence of general 
neuromuscular abnormalities, especially in patients who cannot remain still. 
Neuromuscular disease is a very broad term that encompasses many conditions that 
impair the functioning of the muscles, either directly due to pathologies of the 
voluntary muscle, or indirectly due to pathologies of nerves or neuromuscular 
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junctions. Furthermore, ultrasound can be used for guidance in selecting the optimal 
site for muscle biopsy, or when nerves and vessels need to be avoided (Pillen 2011). 
However, the use of diagnostic ultrasound for the assessment of muscle disorders is 
limited by operator and patient dependent factors. In some situations, such as patients 
with large thighs, ultrasound imaging can miss deep lesions (Lee et al. 2012) due to 
attenuation of the acoustic signal. Under these circumstances, alternative imaging 
modalities (such as MRI and CT) that are not susceptible to depth effects are more 
effective. 
A prospective pilot study of 33 patients with suspected neuromuscular disorder, 
followed by a larger study of 150 patients, showed that muscle ultrasound is a useful 
and reliable tool in the diagnostic evaluation of these patients. Muscle ultrasound was 
capable of detecting neuromuscular disorders with an overall positive predictive value 
of 91% and a negative predictive value of 86%. Above the age of 3 years, muscle 
ultrasound was very reliable with a negative predictive value of 95%. Below the age 
of 3 years, more false negative results were found giving a positive predictive value 
75%. This was caused by the fact that often only few structural changes are present in 
early stages of a neuromuscular disorder, resulting in no or only slightly increased 
muscle echo intensity (Pillen 2011). 
Figure 2.15 shows digital ultrasound images taken from two individuals of 3.5 years 
of age. The rectus femoris muscle is encircled. The distribution of echo intensity is 
shown in the frequency histograms below the images (on a scale in which black = 0 
and white = 255). The rectus femoris of the DMD patient has increased muscle echo 
intensity, with the corresponding histogram being displaced to the right. The 
attenuation of the ultrasound beam with depth is clear, i.e. the echo intensity in deeper 
areas of the muscle is decreased compared to that in superficial areas. 
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Figure 2.15: Transverse ultrasound images of a normal left quadriceps muscle (A) and of a patient with Duchenne 
muscular dystrophy (DMD) (B). Key: VM, vastus medialis; VL, vastus lateralis; VI, vastus intermedius; F, femur; 
double arrow, subcutaneous tissue. 
 
However, visual evaluation of muscle ultrasound images gives a sensitivity of only 67 
to 81% for the detection of neuromuscular disorders in children. This value of 
sensitivity is relatively low if the purpose of muscle ultrasound imaging is to serve as 
a screening tool for neuromuscular disorders. 
Peetrons (2002) used linear-array transducers to visualise a large surface of muscle 
tissue within one slice of that muscle in order to identify deep as well as superficial 
lesions. With respect to muscle tumours, the study demonstrated limitations of the 
modality including lack of specificity and loss of sensitivity in the presence of tumour 
extension. 
2.9.2.4 Application to Muscle Injury 
Ultrasound imaging is a significant modality for the diagnosis of most types of muscle 
injury. It is becoming increasingly popular in elite sport and is frequently performed 
by radiologists and sports clinicians in the acute and hyper-acute injury setting (up to 
7 days post injury). However, the ideal time to conduct the initial assessment is 
between 2 and 48 h after muscle trauma. It can be used for muscle injury grading and 
to assess the extent of haematoma. In this context, the high frame-rate capability of 
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ultrasound is important because it permits real-time dynamic imaging. Thus imaging 
can be done while mobilizing an injured limb, which increases the sensitivity of 
detection of muscle fibre disruption and assessment of muscle injury healing (Crema 
et al. 2015). 
The earlier the diagnosis, the easier it is to monitor injury healing. Ultrasound may be 
used to in the follow-up of muscle injuries (5-7 weeks) to assess healing and it is a 
favourable modality for observing muscle injury complications such as cysts, hernias 
and ossification. In his study, Peetrons (2002) found that ultrasound was superior to 
MRI for following-up lesions and detecting problems such as fibrosis, cystic 
haematomas or myositis ossificans. 
On an ultrasound image, a contusion is seen as an ill-defined area of hyper-
echogenicity within the muscle that crosses fascial boundaries (Figure 2.16). In the 
hyper-acute situation, the injured muscle initially appears swollen and may be 
isoechoic with adjacent unaffected muscle. If the impact force is great enough, there 
will be significant rupture of muscle fibres and bleeding into a potential space, 
resulting in haematoma formation. In the first 24–48 h, the haematoma will appear as 
an irregularly outlined muscle laceration separated by hypoechoic fluid with marked 
increased reflectivity in the surrounding muscle (Figure 2.17). During this period, the 
haematoma may solidify and become hyper-echoic to the surrounding muscle. After 
48–72 h, the haematoma develops into a clearly defined hypo-echoic fluid collection 
with an echogenic margin. 
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Figure 2.16: A 27-year-old male elite boxer presenting with pectoralis muscle contusion following punch injury 
to the chest. Note the generalised reflectivity within the clavicular (CH) and sternocostal (SCH) heads of the 
pectoralis major muscle. 

 
This echogenic margin gradually enlarges and “fills in” the haematoma in a centripetal 
fashion (Figure 2.17). If the haematoma causes intense pain, exerts a local mass effect 
on adjacent neurovascular structures or places the limb at risk of compartment 
syndrome, evacuation of the clot may be necessary. This is usually performed under 
ultrasound guidance 10–14 days after the initial injury. 

 
    Figure 2.17: A 26-year-old male professional footballer with thigh haematoma. (a) Axial sonogram of the 

anterolateral thigh 2 days following a direct blow to the lateral side. Note the echogenic torn muscle tissue 
(arrow). (b) Axial sonogram taken 2 weeks later showing filling in of the haematoma. 
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2.9.3 Muscle Imaging with X-Ray CT 
2.9.3.1 Physical Basis of CT 
Like MRI, x-ray CT is a technology that reconstructs tomographic slice images of the 
body.  An x-ray source (tube) and x-ray detectors are attached to a rigid gantry that 
rotates rapidly about the longitudinal axis of the patient. As it does so, x-ray 
attenuation is measured along multiple paths through the body and the imparting of 
radiation dose to the patient is an inevitable consequence of this process. The resulting 
projection data are reconstructed into transverse slices using filtered back-projection 
or iterative techniques. Pixel values represent tissue linear attenuation coefficients, 
although the latter are usually expressed relative to the attenuation coefficient of water 
as CT numbers. Linear attenuation coefficient is strongly dependent on tissue density. 
In CT, there is high contrast between bone and soft tissue because of the large density 
difference and other factors. However, density does not vary much between different 
soft tissues and so soft tissue contrast is subtle, but it can be revealed by limiting noise 
and careful windowing of the digital images. As with MRI, small pixels and thin slices 
give the best spatial resolution at the cost of relatively high noise. Spatial resolution is 
primarily determined by detector size and choice of reconstruction algorithm, while 
noise increases with patient size and decreases with radiation dose. 
2.9.3.2 Advantages and Disadvantages of CT 

CT has many advantages as a medical imaging technology; these include the 
following: 

 It is quick and painless; 
 It costs less than MRI; 
 It has excellent spatial resolution; 
 It can image both bone and soft tissue; 
 Modern CT scanners are fast enough to provide real-time images. 
The disadvantages of CT can be listed as follows: 
 There is a risk to patients because of the relatively high radiation dose; 
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 Intravenous contrast agents are required under some circumstances e.g. blood 
vessel imaging; 

 It is expensive in comparison to ultrasound imaging; 
 Interfaces at which there is a large change in density produce artefacts e.g. 

bone-air and tissue-metal (implant); 
 It is not always available. 

 
2.9.3.3 CT Imaging of Muscle 
Advances in CT technology, such as helical scanning with a multi-row detector, have 
helped in imaging muscle tissue with this modality. Since contrast depends on density 
differences, CT is able to visualize fatty infiltration, but not scar formation (fibrosis) 
in deep and superficial muscles. CT has the disadvantage of using ionizing radiation, 
and this makes it a relatively unattractive modality for repeated imaging, such as 
follow-up studies to assess the progression of muscle disease (Pillen 2011). 
In a CT angiography study conducted by Mulatti et al (2012) to diagnose arteriovenous 
fistula, it was evident from the contrast-enhanced images that with appropriate 
windowing of the digital images, it is possible to distinguish thigh muscle boundaries 
as shown in Figures 2.18 and 2.19. The study also highlighted the effect of motion 
artefacts on the acquired images; these artefacts appeared as streaks as shown in Figure 
2.20. Despite this drawback, it is clear that CT may be used to image muscle and, with 
appropriate enhancement, reveal muscle boundaries. Swash et al. (1995) demonstrated 
the ability of CT to acquire calf muscle images and to depict the borders of the medial 
and lateral heads of gastrocnemius muscle (Figure 2.21). 
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               Figure 2.18: Transverse CT image of the thighs (Malatti et al 2012). 
 

        
Figure 2.19: Coronal view CT image of the thighs (Malatti et al 2012). Arrows indicate muscle boundaries. 
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                Figure 2.20: CT axial view with motion artefact (Malatti et al 2012). 
 

                                               
Figure 2.21: Transverse CT images of calf muscles - gastrocnemius, soleus and peroneal (Swash et al 1995). 

 
CT has been applied relatively widely to the study of muscle dystrophy and similar 
conditions. For example, Saitoh (1991) concluded that measurement of muscle CT 
number and cross-sectional area could be used for the differential diagnosis of 
different types on muscular dystrophy. 
Horikawa et al. (1992) applied CT scans of lower limb and trunk muscles in 
facioscapulohumeral muscular dystrophy and showed that there was a decrease in 
muscle density and size. For the lower limb, scans showed proximal distribution; the 
effect was manifest in the hamstrings first, the adductor muscles second and then the 

Gastrocnemius medial head  
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muscular involvement progressed to the quadriceps femoris muscle. In the lower leg, 
the gastrocnemius and soleus muscles were relatively spared in comparison with the 
tibialis anterior muscle. 
Arai et al. (1995) used CT to investigate skeletal muscles in patients with Duchenne 
muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) during the 
preclinical and early stages. They measured muscle CT number at the levels of the 
mid-thigh, the maximum circumference of the calf and the third lumbar vertebra. No 
muscular degeneration was noted in the pre-clinical stage and only slight 
intramuscular low density areas and muscular atrophy were ascertained on gross visual 
inspection of the CT scans in patients from the age of 3 years onward in DMD. 
However, the mean CT numbers calculated for individual muscles clearly decreased 
with increasing age in all muscles except anterior and posterior tibialis, indicating that 
they were well preserved. Comparison of the rates of CT number decrease revealed 
that a rapid change in the paravertebral group commenced in the muscles on the lateral 
side, while among the adductors of the thigh, gracilis tended to be comparatively well 
preserved; this is the pattern of muscle involvement characteristic of symptomatic 
patients. In BMD, the atrophic change was extremely slight, and the CT numbers of 
the muscles were higher than the corresponding values for DMD in the same age 
group. It was concluded that CT numbers represent more objective indices for the 
assessment of muscular lesions as compared with gross visual inspection of skeletal 
muscle CT scans at the preclinical stage. 
Swash et al. (1995) assessed twenty patients with muscular dystrophy and other 
conditions clinically and by CT imaging. CT images revealed abnormalities in about 
half of the muscles that were graded as clinically normal. In another study, the 
reliability and accuracy of CT images of skeletal muscles to identify muscle 
dystrophies reported poor inter-observer agreement and the sensitivity of diagnosis 
was only 40% (Dam et al., 2012). Nevertheless, the authors suggested that CT images 
can be used as additional step to clinical diagnosis in determining muscle dystrophies. 
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2.9.3.4 Application to Muscle Injury 
CT is not routinely used in imaging muscle injury (Lee et al. 2012). As the assessment 
of this condition is usually undertaken by either MRI or ultrasound, there is no large 
body of published studies describing the role of CT in the diagnosis muscle injury. 
However, Brandser et al. (1995) investigated the differential impact of using different 
imaging modalities (projection radiography, conventional tomography, CT, and MRI) 
on the diagnosis of clinically proven hamstring muscle injury in 22 patients. They 
found that radiological and conventional tomographic appearances were confusing but 
CT was helpful in identifying healing of an avulsion of the ischial apophysis. 
However, MRI was the most useful modality at all times post injury for the evaluation 
of tendon and bone as well as muscle. 
 

2.10. Accuracy of imaging muscle injury 
The clinical assessment of muscle injury based on inspection, palpation and testing is 
not always conclusive and is not completely accurate.  Imaging has been used to 
improve diagnostic accuracy but this depends on the modality and the site and nature 
of the injury. Cross-sectional imaging of muscle and muscle injury is usually 
undertaken by MRI and/or ultrasound. Other techniques such projection radiography, 
CT and nuclear medicine are not routinely used in imaging muscle injury (Lee et al., 
2012). Thus, it is not surprising that no published studies have been found that assess 
the accuracy of CT for imaging muscle injury. 
Connel et al. (2002) compared ultrasound with MRI for hamstring muscle injuries in 
the thigh, and concluded that both modalities were sensitive and effective. Because 
ultrasound was as sensitive as MRI and its costs were lower, it was reckoned to be the 
most cost-effective modality for diagnosis. However, MRI was the preferable choice 
for monitoring the healing process. Zhi-Jun et al. (2014) found that MRI was useful in 
the initial investigation of Grade 1 hamstring strains footballers and in the 
determination of recovery time for an individual injury. 
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DOMS (delayed onset of muscular soreness) refers to the pain that is felt several hours 
or even days after hard training. In DOMS, there is structural damage to the 
microscopic contracting functional units present in muscular fibres with metabolic 
changes, which lead to an alteration of the muscular tone. However, there is no 
macroscopic damage to the fibres and all that appears with ultrasound is greater 
echogenicity of the whole muscle and a slight enlargement of the muscle due to 
oedema. MRI, on the other hand, reveals diffuse signal hyperintensity with undefined 
edges due to interstitial and perifascial oedema. Given these factors, MRI is a preferred 
imaging modality for the diagnosis of DOMS (Manara et al., 2013). 
Megliola et al. (2006) evaluated the role of ultrasound compared with MRI as the 
reference method in football players with a history of traumatic muscle injury in the 
lower leg. In this study, 81 subjects were examined by both modalities. The MRI scans 
revealed 26 minor and 55 major cases of trauma while ultrasound gave 10 false 
negative results (6 minor and 4 major traumas). Both modalities showed complete 
agreement in 71 subjects in terms of site, type and extent of injury. For the correct of 
identification of muscle injury, ultrasound had an overall sensitivity of 88%; for major 
traumas, the sensitivity was 93% and it was 77% for minor traumas, 57% for DOMS, 
83% for contractures, 80% for lengthenings, 84% for strains, 88% for mild contusions 
and 100% for severe contusions. The researchers concluded that ultrasound could be 
used as the first line modality for assessing muscle injuries. However, MRI was able 
to reveal injuries that might be missed by ultrasound and could yield a more accurate 
total assessment of site and extent of injury. 
A rigorous review (Jean et al., 2015) of shoulder injury imaging, which included 82 
articles identified during a systematic search of three databases, revealed high and 
stable specificity and diagnostic accuracy for both ultrasound and MRI. The injuries 
were mainly those of the rotator cuff (RC), a group of tendons and muscles in the 
shoulder connecting the humerus to the scapula; the RC tendons provide stability to the 
shoulder while the muscles allow the shoulder to rotate. This study revealed equivalent 
performance for the modalities with sensitivity in the range 0.90–0.91 and specificity 
in the range 0.86–0.90. Based on accuracy, cost and safety, ultrasound was 
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recommended for the confirmation of pathologies in patients with severe full-
thickness RC tears associated with pain in the shoulder, on the basis of clinical 
evaluation tests in acute cases. However, the modality may not perform as well in 
cases of lower grade muscle trauma. 
The findings of this study were matched by those reported by Samira et al. (2016), 
which showed that ultrasound and MRI were comparable in terms of sensitivity and 
specificity in RC tear, although the former was considered preferable for screening 
due to its availability and low cost, on condition that high-resolution equipment and 
well-trained radiologists were available. 

Naqvi et al. (2009) compared the accuracy of ultrasound and MRI for the detection of 
full thickness RC tears and used operative findings as the reference standard. 
Ultrasound correctly diagnosed 15 out of 17 tears giving a sensitivity of 88%, while 
there were 17 true negative and 2 false positive results giving a specificity of 89%. 
MRI, on the other hand, correctly identified 33 of 36 tears (sensitivity 91%), while 
there were 3 false positive and 16 true negative tears (specificity 84%). Positive 
predictive values for MRI and ultrasound were 92% and 88% respectively and the 
corresponding negative predictive values were 84% and 89%. The overall accuracy of 
MRI was 89.1% as compared to 88.9% for US. The researchers concluded that both 
modalities were of comparable accuracy, but that ultrasound could be used as the first 
line investigation for rotator cuff tear because of its relatively low cost and availability. 

In a more recent study of RC injury conducted by Day et al. (2016), 80 patients were 
enrolled to diagnose muscle tears. Of these, 74 had MRI within 3 months of ultrasound 
imaging and therefore were suitable for evaluation. With MRI as the reference method, 
ultrasound correctly diagnosed the presence or absence of a tear in 74% of patients. 
However, the accuracy decreased to 61% for the correct diagnosis of RC pathology 
(no tear, partial thickness tear or full thickness tear). Furthermore, for the first 40 
patients the accuracy was 51%, while for the remaining patients the accuracy reached 
69%. Therefore, the accuracy of ultrasound increased with the number of patients 
scanned and it was concluded that ultrasound imaging requires significant operator 
training and practice to provide a clinically useful level of diagnostic accuracy. 
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Both ultrasound and MRI have their advantages and disadvantages for the assessment 
of different types of muscle injury. Appropriate implementation of each can yield a 
more accurate diagnosis than that obtained without imaging, which increases the 
likelihood of timely and correct treatment. The goal is to provide the right test for the 
right patient at the right time (Malik, 2015). 

2.10.1 Gold Standard in Imaging Muscle Injury 
Studies that evaluate a new diagnostic test, procedure or method should do so by 
comparing it with a time honoured alternative that is considered to be the current 
standard in the field. In this context, the meaning of the word standard is an 
authoritative or recognised exemplar of quality or correctness. “Gold standard” is the 
popular term to describe such a test. Gold standard is a historical term borrowed from 
economists. It signifies a monetary standard, under which a country’s basic unit of 
currency was defined by a stated quantity of gold, which made it possible to compare 
these different currencies for international trading. Thus, a medical diagnostic gold 
standard denotes the best tool available at the time to compare different measures 
(Claassen, 2005). 
There are relatively few blinded research studies that directly compare ultrasound with 
MRI for muscle imaging in general. Furthermore, many sonographic studies are 
limited to small subject groups without the use of a gold standard. Additional research 
is needed to determine ultrasound's true effectiveness in evaluating the 
musculoskeletal system relative to magnetic resonance imaging (Manara et al., 2013). 
It is also the case that a definitive study has not been performed to compare MRI scans 
with ultrasound scans for the diagnosis of muscle injury. However, it is generally 
accepted that MRI is superior, in part due to the operator-dependent nature of 
ultrasound examination. Another reason is that when comparing ultrasound and MRI 
in minor muscle strains, the ultrasound operator needs to be able to distinguish 
between the low echogenicity of muscle oedema at the injury site and the low to 
intermediate echogenicity of the surrounding normal muscle architecture. This 
distinction is much more readily made by MRI (Koulouris and Connell, 2005). 
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For these reasons, MRI was used as the reference gold standard method in this study 
of the usefulness of pQCT in the characterization of the gastrocnemius muscle. In 
addition, the study was conducted in a setting in which MRI was routinely used for 
the assessment of muscle injury. 

2.11 Characterisation of Medical Images Using Texture Analysis 
2.11.1 Introduction 
Imaging plays a very important role in modern medicine and the large majority of 
modalities and individual devices produce digital images. A digital image consists of 
an array of picture elements (pixels) as depicted in Figure 2.22. Each pixel corresponds 
to a single number in computer memory and the image is stored as a matrix of these 
numbers. Stored numbers represent the grey level intensities (grey scale) of the pixels. 
The extraction of texture features involves the analysis of significant variations in 
these intensities using computational techniques. 
In medicine, texture analysis is an objective and quantitative method of tissue 
characterisation, which aims to describe the structure of tissues (Morris, 1988(b)). It 
can be applied to digital images from a range of modalities (Doi, 2005) and be 
regarded as a form of machine vision to aid perception of pixel intensity variations 
and to overcome the limitations of the human eye in detecting textured image patterns. 
The outcome of this processing might lead to image classification and segmentation 
as illustrated in Figure 2.22. 
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Figure 2.22: Example of image texture patterns and segmentation: numerical statistics or quantities that describe 
texture can be computed from the grey level intensities. 

 
The application of texture analysis to medical images dates back to the 1970s. For 
example, it was used by Hall et al. (1971) in the identification of pulmonary disease 
to discriminate between normal and abnormal lungs. Since that time, texture analysis 
has become a successful technique to characterise many types of tissue and to 
distinguish normal from pathological, offering an increased level of diagnostic 
information extracted from a wide range of medical images (Mir et al., 1995). Texture 
analysis methods are useful for discriminating and studying both distinct and subtle 
textures in multi-modality medical images, reducing the burden on an operator to 
make subtle distinctions by eye alone. Statistical texture analysis techniques are 
constantly being refined and the range of applications is increasing. 
However, practical implementation requires careful consideration of the power of 
individual features to discriminate between textures. This is essential to reduce the 
influence that heavily correlated features, and features with little discriminatory 
power, have on the overall classification. 
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2.11.2 Advantages and Disadvantages of Texture Analysis Methods 
Texture analysis methods may be broadly classified as structural, statistical, model-
based and transform (Section 2.11). An advantage of the structural method is that it 
provides a good symbolic representation of the image; however, this feature is more 
useful for synthesis than analysis. Despite this, mathematical morphology provides a 
powerful tool for structural texture analysis. For example, it may be used for bone 
image analysis such as the detection of changes in bone microstructure (Serra, 1982; 
Chen and Dougherty,1992). 
In contrast to structural methods, statistical methods do not attempt to achieve an 
explicit understanding of texture hierarchical structure. In an alternative way, they 
represent texture indirectly by non-deterministic features that control the relationships 
and distributions between image grey levels. Statistical methods yield higher 
classification rates than structural methods. 
Model based texture analysis tries to interpret image texture by producing a generative 
or stochastic model. The texture model is the result of a mathematical procedure that 
is capable of generating and describing a textured image. Stochastic model parameters 
are estimated, which results in computational complexity. An example is the 
autoregressive (AR) model texture feature, which may be used for image segmentation 
(Hassner and Sklansky, 1981). 
Of the transform methods of texture analysis, Fourier transforms tend to perform 
poorly in practice due to the lack of spatial localisation. Gabor functions provide better 
spatial precision, but there is no single function to localise a spatial texture structure. 
The wavelet transform has many advantages such as providing a wide range of choices 
for every specific texture application. However, a problem with wavelet transform is 
that it is not translation-invariant (with transformation at least infinite in one direction) 
(Srinivasan and Shobha, 2008). 
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2.11.3 Choice of Texture Parameters 
Structural analysis methods were not suitable for this project and so reliance was 
placed on the statistical, model-based and transform approaches. Problems are 
associated with first order statistical quantities because they are often dependent on 
image acquisition parameters and may be affected by a change in image format and 
scaling during transfer from one software environment to another.  In addition, first 
order statistics have limitations because they do not provide information about pixel 
values relative to each other and their positions within the image i.e. there is no 
information on the spatial relationship between neighboring pixels (Srinivasan and 
Shobha, 2008). Furthermore, it has been claimed that first order statistical parameters 
provide far fewer relevant and distinguishable features than other texture parameters, 
such as wavelet transform (Aggarwal et al., 2012). 
In general, therefore, texture analysis in medical diagnostic imaging is restricted to 
higher-order texture parameters. They are not affected by factors such as scaling and 
they take adjacent pixel values into account e.g. second order statistics consider pixels 
in pairs. In this project, emphasis was placed on texture parameters derived from 
second order statistics, model-based analysis and transform methods; in the thesis, 
they are collectively called ‘second order parameters’. 
However, some higher-order texture parameters, especially those derived from the co-
occurrence matrix, may be correlated with those of first order (Materka, 2004). To 
avoid this unwanted phenomenon, the implementation of an image normalisation 
process before texture extraction is recommended. In its basic form, normalisation 
controls raw image grey level variation that comes from the scanner or image 
acquisition device (Materka, 2004, Collewet et al., 2004). For example, in MRI the 
source of variation could be radiofrequency (RF) field inhomogeneity, while in x-ray 
devices, it could be the statistical variation in the photon count per pixel. Texture 
analysis software packages such as MaZda contain different normalisation options and 
in this project, image normalisation was a standard step before extraction texture 
parameters. 
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2.11.4 Medical Applications of Image Texture Analysis 
Texture analysis (TA) has been used to characterise and classify tissues or organs and 
also to the segment a given anatomical structure, based on the texture characteristics 
of that structure. It has been shown to increase the level of diagnostic information 
extracted from medical images and to differentiate quantitatively between healthy and 
diseased tissue (Svolos and Todd-Pokropek, 1998). It is particularly useful for those 
cases in which change cannot be detected by direct inspection of the image. The 
application of texture analysis has been boosted by a revolution in the use of digital 
imaging technology and advances in computer science. It has contributed to the 
development of computer aided diagnosis (CAD), which provides a computer-
generated second opinion in early detection of abnormalities, the quantification of 
disease progress and the differential diagnosis of lesions (Prasad and Krishna, 2011). 
Texture analysis has been applied to images obtained with photography or 
photomicroscopy using visible light. For example, Ji et al. (2000) used the technique 
for characterising and recognising diagnostically important typical vascular patterns 
relating to cervical lesions from colposcopic images. They introduced a generalised 
method in which conventional statistical and structural textural analysis approaches 
were combined to create a set of texture measures that described the specific 
characteristics of cervical textures as perceived during medical examinations. With 
these measures, they demonstrated the effectiveness of the proposed approach in 
discriminating between texture patterns indicative of different stages of cervical 
lesions. 
However, most applications of TA have involved images obtained with radiological 
imaging modalities such as projection radiography, MRI, ultrasound and x-ray CT. 
2.11.4.1 Texture Analysis in Magnetic Resonance Imaging 
There is a large body of literature about the texture analysis of magnetic resonance 
images. One of the important applications of MRI is in neurology and texture analysis 
has been widely applied to images of the human brain. For example, Kovalev et al. 
(1999) used texture parameters derived from gradient vectors and from generalised 
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co-occurrence matrices for the characterisation T2-weighted brain images. They were 
able to demonstrate that pathological conditions with widespread manifestations 
resulted in a change in the textural appearance of brain tissue and succeeded in 
differentiating the brain images of control subjects and from those of patients suffering 
from white-matter encephalopathy and/or Alzheimer’s disease. They also applied the 
texture features to the segmentation of diffuse brain lesions. 
Saeed and Puri (2002) analysed texture features in order to segment the cerebellum 
from other brain structures, using T1-weighted three-dimensional MRI. A little later, 
Alejo et al. (2003) used neighbourhood analysis of texture-based parameters for the 
semi-automatic segmentation of the hippocampus and corpus callosum. 
Herlidou et al. (2003) succeeded in using texture parameters based on the histogram, 
co-occurrence matrix, gradient and run-length matrix for characterizing and 
distinguishing between healthy and pathological human brain tissues: white matter, 
grey matter, cerebrospinal fluid, tumours and oedema. They also confirmed that 
images obtained during routine procedures in three different MRI units contain tissue-
specific texture features which can be extracted by mathematical methods. 
In a series of studies of T1-weighted cerebral MR images, Bernasconi et al., (2007) 
and Antel et al., (2002) manipulated a combination of texture parameters and 
hyperintense T1 signal to determine cortical thickness, and to model blurring of the 
grey matter/white matter interface. In this way, they were able automatically to detect 
lesions of focal cortical dysplasia, some of which would have been missed by the 
human eye. They asserted that the developed computer-based, automated methods 
may be useful in the pre-surgical evaluation of patients with severe epilepsy related to 
focal cortical dysplasia. 
Mahmoud et al., (2003) used the texture analysis approach based on a three-
dimensional co-occurrence matrix in order to improve brain tumour characterisation. 
They carried out a comparative study to evaluate the performance of this approach 
compared with the two-dimensional approach, using T1-weighted images in 7 patients 
with glioma to distinguish between solid tumour, necrosis, oedema and surrounding 
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white matter. With the three-dimensional approach, they achieved better 
discrimination between necrosis and solid tumour as well as between oedema and solid 
tumour. However, using these methods they did not manage completely to separate 
peritumoral white matter from oedema, nor ipsilateral white matter from contralateral 
white matter. Nevertheless, they suggested that the three-dimensional approach could 
provide a new tool for tumour grading and treatment follow-up, as well as for surgery 
or radiation therapy planning. 
Yu et al. (2001) performed a study with patients with unilateral temporal lobe epilepsy 
characterised by ipsilateral hippocampal sclerosis and an apparently normal 
contralateral hippocampus. First, they ascertained the existence of texture differences 
between normal (control) and sclerotic hippocampi. Next, they showed that the 
apparently normal contralateral hippocampi could be assigned into three categories in 
terms of texture: apparently healthy, similar to sclerosis. or different from either 
healthy or sclerotic. They attributed these findings to a certain degree of hippocampal 
alteration, requiring further investigation to improve characterisation. Bonilha et al. 
(2003) and Coelho et al. (2003) confirmed the findings using texture parameters based 
on run-length and co-occurrence matrices. A similar study was undertaken by Jafari-
Khouzani et al., (2003), this time using wavelet-based texture features in order to 
distinguish healthy from pathological hippocampal tissue, with the aim of aiding 
physicians in the determination of candidates for epilepsy surgery. 
Mathias et al. (1999) applied texture analysis to MRI of the spinal cord in an attempt 
to quantify pathological changes that occur in multiple sclerosis (MS). Texture 
differences were detected between normal controls and relapsing-remitting MS 
patients before spinal cord atrophy was visually detectable. They also found a 
significant correlation between texture changes and disability. 
2.11.4.2 Texture Analysis in Ultrasound Imaging 
Much research has also been done with the texture analysis of medical ultrasound 
images to characterise tissues, identify pathological conditions and to establish 
relationships with the physiological and biochemical properties of tissues. For 
example, Beekman and Visser (2004) reviewed ultrasound texture analysis in the 
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assessment of nervous system disorders. They showed that the method was capable of 
identifying abnormalities of peripheral nerves, distinguishing between nerves and 
muscle and had the potential to monitor the effect of therapy. 
Tissues of the liver (e.g. Garra et al., 1989; Youssef and Sharawi, 1990) and breast 
(e.g. Garra et al., 1993) have also been widely studied by ultrasound texture analysis.  
Other anatomical examples include the kidneys (Rubin et al., 1988) and the eye 
(Romijn et al., 1991). More recently, Aldahlawi et al. (2015) obtained encouraging 
results with ultrasound TA in the diagnosis of ovarian masses. They found that the co-
occurrence matrix and wavelet transform parameters in particular had potential in 
differentiating benign and malignant masses and also for differentiating benign mass 
sub-groups. The results of these studies demonstrate the usefulness of the texture 
approach in quantitative diagnosis. 
2.11.4.3 Texture Analysis in CT Imaging 
There have been relatively fewer studies involving texture analysis of CT images. 
Chabat et al. (2003) used 13 texture parameters, derived from the histogram, co-
occurrence matrix and run length matrix categories, to differentiate varieties of 
obstructive lung diseases in thin-section CT images. A set of images was obtained 
from healthy subjects and from patients with panlobular emphysema, centrilobular 
emphysema and constrictive obliterative bronchiolitis. The authors demonstrated the 
feasibility of textural distinction between the lungs of healthy subjects and those of 
the diseases, which cause decreased attenuation of the lung parenchyma. They 
concluded that the accuracy of the method was high, and suggested that it should be 
included as one of the main CT feature extractors for the automated detection of 
obstructive lung diseases. 
Sometime later, Miles et al. (2009) investigated the texture analysis of portal phase 
hepatic CT images as a potential marker of survival in patients with colorectal cancer. 
They concluded that this approach is potentially a superior predictor of survival than 
CT perfusion imaging. 
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2.11.4.4 Accuracy of Texture Analysis in Medical Imaging 

A measure of the usefulness of a method such as texture analysis is its diagnostic 
accuracy and numerous studies have been conducted to determine the accuracy of TA 
for different tissues and different imaging modalities. 

In a recent study (Nandpuru et al., 2014), an automated classification technique was 
used to characterise MRI brain images. The classifier was based on a support vector 
machine (SVM) developed in 1963 by Vapnik and Lerner as the most efficient 
supervised classifier. For TA, 22 texture features were extracted from each image to 
construct a co-occurrence matrix. After training the SVM classifier, accuracy was 
validated using a test set. This process yielded accuracies of 74%, 84% and 76% for 
SVM linear, quadratic and polynomial functions, respectively. This study stressed the 
importance of acquiring high quality images to avoid the effect of noise and so a 
median filter was implemented to remove noise effects while maintaining signal 
features. 

Abou Zaid et al., (2006) developed an automatic diagnostic system for the early 
detection of liver disease from ultrasound images. They extracted a range of texture 
parameters (grey level, variance, skewness, kurtosis and wavelet transform) and found 
an accuracy of 96%. On this basis, the researchers suggested that this approach could 
be used to provide a second opinion diagnostic tool for diagnosing liver diseases. It 
was emphasised that defining a tissue region of interest was not a simple matter, as it 
should encompass lesions and have enough pixels in order to provide an adequate 
statistical population. 

Mala et al., (2006) applied CT for the characterisation of liver tumours and used 
second-order statistical texture parameters, mainly contrast, homogeneity and entropy. 
They obtained an accuracy of 92% in comparison with image evaluation by 
radiologists. They also noted that CT was offered the optimum resolution and 
capability to examine the entire liver. CT was also the modality employed by Shu et 
al. (2010), who investigated the accuracy of texture analysis classification of tissues 
based wavelet-based contourlet packet (WBCP). The researchers used TA parameters 
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including energy, entropy, mean and standard deviation as the most effective 
descriptors for WBCP. The results revealed an accuracy of 96–97%. 

Peng et al. (2015) investigated the suitability of texture analysis of CT images in order 
to distinguish thyroid nodules from normal thyroid tissue. Subjects were divided into 
two groups: Group A consisted of 152 normal thyroid CT images from 55 control 
subjects while Group B consisted of 134 images with nodules (50 malignant, 84 
benign) from 55 patients who underwent thyroid surgery. The final diagnosis was 
confirmed by histopathology. The extracted texture parameters were grey level, 
gradient, co-occurrence matrix, contrast and coherence and a support vector machine 
was used to classify the images. The overall accuracy was 88.95% (±1.86%). In this 
study, the researchers used an image windowing technique to enhance contrast in the 
CT images. 

It is apparent that texture analysis is capable of good accuracy across a variety of 
diagnostic situations and imaging technologies. 

2.11.5 Texture Analysis of Muscle 
Of particular relevance to this thesis is the fact that texture analysis has also been 
applied to images of muscle acquired by different modalities. 
Herlidou et al. (1999) investigated the use of TA for the automated diagnosis of 
skeletal muscle dystrophy with MRI. They compared the texture approach in 31 
subjects (14 healthy and 17 diseased) with diagnosis by visual inspection of a full set 
of leg transverse slices by 9 senior radiologists. For the texture analysis, the group 
used 4 texture statistical methods and one structural method. The statistical methods 
were the histogram, co-occurrence matrix, gradient matrix and run length matrix, 
whereas the structural method was mathematical morphology. A total of 59 texture 
parameters were extracted and these were subjected to Correspondence Factorial 
Analysis, followed by a non-parametric statistical test to achieve the comparison with 
visual diagnosis. TA yielded a sensitivity of 70% and a specificity of 86% for 
discrimination between healthy and diseased subjects and it was concluded that the 
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texture approach can provide useful information which contributes to the diagnosis of 
skeletal muscle disease. 
Skoch et al. (2004) evaluated a method of texture analysis for the description of T1-
weighted magnetic resonance images of healthy and injured calf muscles, in 
comparison with standard radiological evaluation. A total of 93 subjects underwent 
MRI of calf muscle, followed by the extraction of 7 texture features. Analyses were 
conducted using a t-test and principal component analysis. Images were classified into 
4 diagnostic groups according to the assessment of 3 radiologists and these groups 
were compared with the TA results. There was 80% agreement between TA and 
radiologist classification and, in some cases, TA was able to describe changes that 
were not apparent by visual inspection. The research group concluded that TA of 
magnetic resonance images can be used as an objective description of calf muscle 
tissue changes and help the radiologist to distinguish between healthy and injured 
muscle tissue. 
The fact that texture analysis of magnetic resonance images demonstrates more 
clinical discrimination than visual images analysis has been acknowledged in a recent 
review (De Certaines et al., 2015). However, a scale gap exists between the spatial 
resolution of MRI and histological images derived from microscopy of muscle biopsy 
samples. The histological meaning of MRI textures remains an elusive goal. 
As regards ultrasound imaging, Sipila and Suominen (1991) demonstrated that texture 
analysis could be used to differentiate muscle structure between athletes and untrained 
individuals, while Basset et al. (1994) showed that TA was capable of revealing the 
extent of muscle fatigue. 
In 2000, Nielsen et al. concluded that first order statistical parameters provided a 
sensitive and reproducible means of studying muscle tissue although some time later 
(Nielsen et al., 2006), they discovered that higher order statistics gave a more complete 
description. In this work, they used ultrasound imaging of the supraspinatus and vastus 
lateralis muscle. Alqahtani (2010) investigated the use of TA in ultrasound images of 
the gastrocnemius muscle. He confirmed that higher order statics were less dependent 
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on scanner operating conditions than first order statistics and found that the AR model 
and gradient parameters were the most sensitive for distinguishing between healthy 
and injured muscle. 
König et al. (2015) developed a texture-based computer-aided diagnosis system for 
the identification of myositis. They achieved a sensitivity of 90%, a specificity of 83-
85% and diagnostic accuracy of 85-87%. In a recent paper, Sogawa et al. (2017) 
studied the ability of texture analysis to differentiate neurogenic and myogenic disease 
on ultrasound images of the medial head of the gastrocnemius muscle. They found 
that the co-occurrence matrix, the run-length matrix and the auto-regressive model 
were particularly useful for this purpose and they achieved a correct classification rate 
of over 90% for patients with the two conditions. 
It seems that with MRI, texture analysis can achieve an accuracy of the order of 80% 
for the identification of muscle injury. No direct reference has been found for the 
accuracy of ultrasound texture analysis for the same purpose. However, an accuracy 
of greater than 80% has been demonstrated for the identification of muscle disease 
and this value might be an indicator of what could be achieved for muscle injury. 

2.12 Application of Peripheral Quantitative Computed Tomography 
2.12.1 Introduction 

X-ray computed tomography is a digital imaging technique that produces transverse 
cross-sectional slice images of the human body (Section 2.9.3.1) although after 
reconstruction, the images may be re-formatted in the coronal or sagittal projections. 
In lay language, a CT scanner is often known as a ‘whole body scanner’. The value of 
each image pixel represents the mean linear attenuation coefficient of a small tissue 
voxel with a depth equal to the slice thickness, as illustrated in Figure 2.23 (Strang 
and Dogra, 2007). Conventionally, each pixel value is expressed as a CT number (or 
Hounsfield unit), which expresses the linear attenuation coefficient of tissue in a voxel 
relative to that of water. 
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Figure 2. 23: Transverse CT image of the abdomen and a voxel showing the slice thickness Δz (Bushberg et 
al., 2012). 

 

2.12.2 Quantitative Computed Tomography (QCT) 
Linear attenuation coefficient is highly dependent on density and so the average CT 
number of a region of interest (ROI) within a slice image is a measure of the average 
density of tissue in that ROI. The measurement of tissue density using CT has become 
known as Quantitative Computed Tomography (QCT). QCT has mainly been applied 
to the assessment bone disorders (Braun et al., 1998) through the quantification of 
bone mineral density (BMD) at specific skeletal sites, particular those that are 
susceptible to atraumatic fracture. Because it is a tomographic technique, it can 
separate cortical bone from trabecular bone and measure the BMD of each. 
An external calibration phantom place beneath the patient is used to convert CT 
numbers into BMD values (in units of mg/cm3 for example). The phantom contains 
reference materials with predetermined attenuation properties, as shown in Figure 2.24 
(Adams, 2009). These usually take the form of calcium hydroxyapatite in different 
concentrations together with water and a fat equivalent material. For BMD 
measurement, a ROI is drawn within an anatomical region such as the trabecular bone 
in a spinal vertebra. BMD is calculated from the mean CT number of pixels in the ROI 
using a calibration graph derived from ROIs in the reference materials. For diagnostic 
purposes, patient BMD is compared with an age and sex matched reference range 
derived from a normal population. 
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Figure 2.24: CT slice of the abdomen showing the calibration phantom used for QCT 
(www.metabolicimaging.org). 
 

2.12.3 Peripheral Quantitative Computed Tomography (pQCT) 
Limited access to whole-body CT scanners and the relatively high radiation dose of 
QCT prompted the development of dedicated peripheral QCT (pQCT) scanners that 
were specifically used for the measurement of BMD at peripheral skeletal sites 
(Gordon et al., 1996). Thus pQCT is the application of QCT to the appendicular 
skeleton such as the bones of the arms (humerus, radius and ulna) or legs (femur, tibia 
and fibula) (Engelke et al., 2008). Like QCT, pQCT can make separate measurements 
of cortical and trabecular BMD. In addition, the scanner is capable of measuring total 
bone cross-sectional area, cortical bone area, marrow area and marrow density. 
According to the scanner manufacturer, the in vivo precision of BMD measurement is 
1% (Stratec Medizintechnik, 2007). 
A pQCT scanner has a smaller diameter bore, a more compact gantry and is much 
smaller in size than a whole-body scanner. It is also mobile, relatively inexpensive and 
easy to use and delivers a significantly lower patient radiation dose, even though the 
scan time is considerably longer. For pQCT the effective dose is less than 10 μSv 
compared with a typical value of 300 μSv for body QCT (Damilakis et al., 2010; Huda 
and Morin, 1996). Typical scan times are a few minutes and a few seconds for pQCT 
and QCT respectively; the relatively long pQCT scan acquisition time increases the 
risk of motion artefacts. Typical spatial resolution is in the range 0.2-0.5 mm (Lala et 
al., 2014). A technical description of the XCT 2000 pQCT scanner (Stratec 

Phantom 



64 
 

Medizintechnik GmbH, Pforzheim, Germany) used in this project is given in 
Appendix B. 

2.12.4 Muscle Measurement with pQCT 
Although pQCT has been developed and used mainly as a tool for assessing bone, it 
has also been shown to be valuable for measuring soft tissue components such as 
muscle and fat (Blew et al., 2014). Measured quantities include total soft tissue cross-
sectional area, muscle area and density, fat area and density and the ratio of the areas 
and densities of bone, muscle and fat. Furthermore, pQCT has been used to investigate 
relationships between bone, muscle and fat. For example, Macdonald et al. (2005) 
used the bone/muscle area ratio as an index of the strength of bone relative to that of 
muscle while Farr et al. (2011) used muscle density as an index of muscle quality, 
which is related to skeletal muscle fat content. 
A recent review by Erlandson et al. (2016) compared pQCT with MRI and dual-energy 
X-ray absorptiometry for the analysis of muscle. They argued that CT and MRI were 
the most accurate ‘gold standard’ methods of measuring muscle size (as assessed by 
muscle area) and muscle quality (as assessed by muscle density and the infiltration of 
fat). However, due to their high cost and operational complexity, other techniques such 
as DXA and pQCT were most popular in both clinical and research settings. They 
recognised that pQCT is increasingly used for assessing skeletal muscle in limbs, 
particularly as a research tool. In comparison with MRI, pQCT had the advantages of 
low cost, portability and the lack of need for highly trained operators. However, MRI 
has better reproducibility and reliability. Both techniques suffered from the absence 
of a universally accepted standardised method of image analysis to extract muscle 
parameters. 
Erlandson et al. (2016) made no mention of texture analysis applied to pQCT images 
for the investigation of either muscle or bone and no other references to TA in pQCT 
have been found. 
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     2.13 Discussion 
Muscle injury is a relatively frequent consequence of sports activities and one common 
site of thigh injury is the gastrocnemius muscle. Medical imaging plays an important 
role in the initial diagnosis and in monitoring the progress of healing. In this context, 
CT is not routinely used and the modalities of choice are MRI and ultrasound imaging. 
Ultrasound scanners have several advantages over MRI; these include: low cost, 
availability, portability, small space requirement and the absence of significant 
hazards. Their small size and portability means that they can be brought to the patient. 
However, acquiring high quality ultrasound images requires a highly-trained and 
experienced operator, while magnetic resonance image acquisition is largely protocol 
driven. 
Because of its operator independence and despite its disadvantages, MRI is generally 
accepted as the reference method for the investigation of muscle disease and muscle 
injury. However, with optimal image acquisition and interpretation, ultrasound can 
perform very well compared with MRI with sensitivity, specificity and diagnostic 
accuracy in the range 85-90%. 
Texture analysis is a mathematical technique that has potential for the automatic 
characterisation and classification of digital medical images. Like that of other 
computational approaches, its ultimate goal is to diagnose disease and injury without 
the need for human intervention. It seeks to produce an objective, quantitative and 
accurate analysis and remove the subjectivity and bias that is associated with the visual 
inspection and reporting of images. The method has been applied to images from a 
range of modalities including MRI, ultrasound and CT. A variety of texture parameters 
have been defined, but for medical image applications, emphasis has been placed on 
second order statistics, model based quantities and transform based quantities. 
Texture analysis is still an active research topic and further work needs to be done 
before it has routine clinical application. However, encouraging results have been 
obtained in the assessment of muscle injury with a reported agreement of 80% between 
the automated classification and that of experienced radiologists. 
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The technique that has become known as pQCT was originally developed as an 
alternative to the use of a whole-body CT scanner for the assessment of bone disease 
(such as osteoporosis) and the measurement of mineral density in the bones of the arm 
and the leg. However, it has been adopted for the measurement of muscle size and 
muscle quality. The technology takes the form of a miniature CT scanner, which has 
similar advantages to ultrasound in terms of cost, portability and space requirement. It 
also has the advantage of MRI as regards the absence of need for a highly skilled 
operator. A disadvantage is the fact that it uses ionising radiation and so delivers a 
radiation dose to the subject. However, the dose is much less than one day’s worth of 
natural background radiation and so the risk is very small. 
There are no reports of texture analysis being applied to pQCT images. However, the 
texture approach has been used to analyse muscle images acquired with ordinary CT 
and pQCT has been used to study muscle. On this basis, it is reasonable to hypothesise 
that texture analysis may be useful in the diagnosis of muscle disease and injury with 
pQCT images. Furthermore, the relatively low cost and compactness of the pQCT 
scanner makes it attractive compared with the large-scale installations required for 
whole-body CT and MRI and, for this reason, poorer diagnostic accuracy might be 
acceptable compared with these other modalities. However, ultrasound has the same 
practical advantages and so, to be effective, the performance of pQCT would need to 
match that of ultrasound imaging. 
This project is the first exploration of the usefulness of texture analysis of pQCT 
images in the assessment of muscle injury, with a particular focus on the 
gastrocnemius muscle. 
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Chapter 3 pQCT Scans of Phantom and a Healthy Volunteer 
3.1 Introduction 
The measurement of texture parameters of a homogeneous tissue such as muscle by a 
technique such as pQCT requires attention to the scan acquisition parameters as image 
quality may be affected since the imaging modality is operated at low photon energy 
(22 Kev) and low radiation dose. X-ray photons strike the image detector in a random 
pattern with the result that one area of the detector surface may receive more photons 
than another (Zauner et al. 2006). Therefore, an important variable of interest is the 
number of detected photons because a low number can cause statistical errors. This 
phenomenon is termed Poisson noise leading to the appearance of random bright and 
dark pixels superimposed upon the acquired image as a result of changes in pixel 
values. To ensure reliable measurement of the acquired image texture features, the 
optimisation of pQCT scanner parameters (such as pixel size and scan speed) is a 
potential approach. 
The aims of this chapter are as follows: 
 To investigate the use of pQCT to image a water phantom since water is a 

homogenous fluid that has no texture. 
 To evaluate the suitability of pQCT for the acquisition of calf muscle tomographic 

images in a healthy volunteer and the capability of pQCT to detect calf muscle 
boundaries, specifically in the gastrocnemius muscle. 
  

3.2 Phantom Study 
3.2.1 Introduction 
Water is considered a suitable phantom material for x-ray imaging purposes. Water 
possesses similar x-ray attenuation properties to soft tissue (such as muscle) but has 
no texture. Therefore, no variability in texture parameter values is expected during the 
modification of image acquisition and analysis factors. Quantifying extracted texture 
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parameters at each combination of pixel size and scan speed is a potential approach, 
the results of which may identify consistent image acquisition settings for 
implementation as a characterising tool for image texture analysis. 
 

3.2.2 Materials and Methods 
3.2.2.1 Image Acquisition 

A cylindrical phantom of 12 cm external diameter was filled with tap water and 
aligned along the central z-axis of the pQCT system, as illustrated in Figure 3.1. 
Intended to simulate the attenuation of human leg muscle tissue, the water phantom 
was constructed from plastic and was completely uniform in design. It was confirmed 
that the water phantom did not contain any air. The process of scanner optimisation 
involves the use of a range of pixel sizes combined with a range of scan speeds in 
order to determine the optimum combinations for consistent texture parameters and to 
measure repeatability at each combination. In addition, it involves assessing the 
suitability of the texture parameters that don’t change when image acquisition 
parameters are changed (pixel size and scan speed). Scan speeds used were 3, 5, 10, 
15, 20, and 30 mm/sec, with pixel sizes of 0.2, 0.4, 0.6, and 0.8 mm. For image 
reconstruction, 180 projections were used (discussed in Chapter 2).  At each of the six 
scan speeds, the phantom was scanned at each of the four pixel sizes 20 times (Dae-
Cheol et al. 2010); thus, the phantom was scanned 480 times in total. 
A single large circular region of interest (ROI) of 14216 pixels in area was defined to 
encompass the entire acquired image, avoiding the phantom’s edges, as shown in 
Figure 3.1. Texture analysis was performed using the software package MaZda 3.2 
(Institute of Electronics, Technical University of Lodz, Poland). The types of extracted 
texture parameters were first order statistical parameters including grey level, 
variance, skewness, and kurtosis, and second order statistical parameters including the 
co-occurrence matrix, run length and gradient, auto-regressive model and wavelet 
transform. 
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Figure 3.1: Water phantom in isolation (left), positioned in the pQCT scanner (middle), and acquired image with 
ROI placement (right). 
 

3.2.2.2 Image Transfer 
Following completion of the pQCT scans; the images were saved and exported as 
Comma Separated Values text files (.CSV) of 32-bit depth. The saved images were 
subsequently imported into ImageJ software package, an image processing software 
package capable of importing text files as text images. The images were then saved by 
ImageJ in an 8-bit bitmap (BMP) format in order to allow processing by the texture 
analysis software. 

3.2.2.3 ImageJ Software 
In this study, ImageJ software (v1.47q) (National Institute of Health, USA) was used 
to transform the image format from CSV to BMP. Image transformation changed the 
image depth from 32-bit to 8-bit and was used to improve image visualisation 
(‘windowing’). ImageJ is a public domain multi-platform image processing software 
written in Java. Capable of reading different image formats, such as BMP, DICOM 
(Digital Imaging and Communication in Medicine) and CSV, it has the additional 
capability to plot image histograms. Images were then exported from ImageJ into 
MaZda Software. 

ROI 
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3.2.2.4 Image Texture Analysis 
MaZda 4.6 software (Institute of Electronics, Technical University of Łódź, Poland) 
was used to extract texture features from the acquired images. A brief explanation of 
the MaZda software is presented in the next section.  
3.2.2.4.1 MaZda Software 
MaZda is a powerful software package for the quantitative analysis of image texture 
(see Chapter 2 for further details on texture analysis). The programme’s name is an 
abbreviation of the Polish words ‘Macierz Zdarzen’, corresponding to the English 
term ‘co-occurrence matrix’. MaZda was developed in 1998-2002 for quantitative 
textural analysis of magnetic resonance images as part of the European COST B11 
objectives (Szczypinsky et al., 2007). 
The MaZda programming codes are C++ and Delphi, with an open source library. It 
is compiled for use with the Microsoft Windows operating system (Szczypinsky et al., 
2007). Other programme packages, such as Key-Res and LS2W, are non-commercial 
and provide limited functionality compared with MaZda software (www.keyres-
technologies.com,www.maths.bris).  
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A flowchart of the texture analysis pathways in MaZda is given in Figure 3.2 below.

 
Figure 3.2: Flowchart of analysis pathways in the MaZda package, adapted from Szczypinski et al. (2007). 
 
Image analysis in MaZda initiates with data input through the loading of a digital 
image, such as a pQCT scan. MaZda allows the user to select analysis of the image as 
whole or analysis of predefined regions of interest. A region of interest (ROI) is a 
group of pixels in a 2D image selected for analysis specifically to relate to the aim of 
the analysis and therefore minimise computation burden and avoid unnecessary 
processing (Szczypinsky et al., 2009). With MaZda, ROIs of various shapes can be 
used, such as squares, rectangles, circles, and freehand drawings. The software allows 
the definition of up to 16 ROIs within a single loaded image. MaZda can calculate 
texture parameters available from a list of 279 different definitions. 
In summary, MaZda features can be listed as follows: 

 1st commercial software (1998-2002) capable of accomplishing quantitative 
texture analysis. 

 Capable of loading images as windows Bitmap, DICOM with 8 or 16 bits. 
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 Able to define 16 ROIs in different shapes (arbitrary shape, circle, rectangle, 
and polygon) by graphical tool, which can be analysed simultaneously. 

 Manipulation of defined ROI such as filling, moving and duplicating. 
 Capable of computing 279 texture parameters from a single ROI. 
 Capable of analysing colour images (2D and 2D). 
 Capable of implementing image segmentation, data classification and analysis 

automation.  
Prior to the computation of the texture parameters, the image fragments of the ROI 
were normalised. The aim of normalisation is to reduce variation in the image due to 
differences in scanner settings as discussed in previous chapter (Chapter 2) (Collewet 
et al., 2004).  
MaZda software has three options for image normalisation:  

1. The default option, where analysis is conducted with the original image 
range of intensity 2n, where n is the number of bits.  

2. ±σ, where the image mean value µ and the standard deviation σ are 
computed, and analysis is then conducted with a grey-scale range between 
µ-3σ and µ+3σ.  

3. 1-99%, where the grey-scale range is between 1% and 99% of the total 
accumulated image histogram (Szczypinski et al., 2007, Szczypinski et al., 
2009). 

A study conducted by Collewet et al., (2004) compared the influence of various grey 
level normalisation methods on the discriminatory power of texture extraction. The 
group reported that the ±σ method yielded the best result; this method of normalisation 
was therefore implemented in this study. 
The first step following image normalisation (to minimise the influence of image 
contrast variation and brightness) is texture feature computation. The output of this 
stage is used for texture discrimination and classification (Szczypinsky et al., 2007). 
The MaZda package uses three categories of feature computation, namely statistical, 
model-based, and image transforming. The statistical approaches correspond to 
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texture indirectly via non-deterministic properties that control the distribution and 
relationship between the grey-scale levels of an image (Szczypinsky et al., 2007). 
Model-based texture analysis using fractal or stochastic models attempts to interpret 
image texture by the use of generative image or stochastic models. Transforming 
methods of texture analysis, e.g. Fourier, Gabor or wavelet transforms, represent an 
image in a space with a co-ordinate system correlating to the characteristics of the 
texture (Cohen, 1989; Bovik et al., 1990; Daugman, 1998). 
From each ROI, the classes of extracted texture parameters were as follows: 

 First order statistical features including grey level mean, variance, 
skewness, and kurtosis (four texture parameters). 

 Second order statistical parameters including co-occurrence matrix, 
run length matrix and gradient. With reference to the co-occurrence 
matrix, 220 parameters (four directions and five inter-pixel distances) 
were extracted from each ROI. For the run length matrix, 20 parameters 
(five run length matrix-based features at four directions each) were 
extracted from each ROI. For the gradient, five parameters were 
extracted from each ROI. For each of these parameter types, the sum 
was considered for analysis. 

 Model-based parameters: only the auto-regressive (AR) model was 
used. Five parameters were extracted for each ROI and the sum of these 
was considered for analysis. 

 Wavelet transform parameters: 12 parameters were extracted from 
each ROI and their sum was considered for analysis. Only first, second 
and third scale parameter values were considered. MaZda software was 
unable to compute the fourth, fifth and sixth scale parameters values 
from a small ROI. These wavelet parameters were thus excluded from 
feature selection. 
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3.2.2.5 Repeatability 
How closely the results of successive measurements of the same parameter match 
when carried out under the same conditions of measurement is the repeatability of that 
parameter, indicating the consistency of a measurement. The repeatability conditions 
include: the same measurement procedure, the same measuring instrument under the 
same conditions and the same observer (Barry and Chris, 1997). The texture 
parameters of acquired images are subject to random variations as a result of 
fluctuations in the pQCT scanner (number of detected photons) during image 
acquisition. Hence, repeatability refers to repeated measurements on the same subject 
without repositioning. As texture analysis is capable of quantifying information that 
is not visually perceptible, it is critical to note that two images of similar visual 
appearance might not necessarily be texturally similar (Bocchi et al., 1997). For every 
acquired image of the 480 scans, an equal area size ROI was drawn and the same 
texture features were extracted for further analysis. 

 

3.2.2.6 Influence of ROI area size on extracted texture parameters 
In order to investigate influence of ROI area size on the extracted texture parameters, 
a group of ROIs was used.  The first ROI was defined to cover the whole of the water 
phantom acquired image. Further ROIs were defined and adjusted by removing some 
pixels until the desired size was obtained (Figure 3.3). The areas were 10000, 5000, 
2500, 1500, 500, 300, 200 and 100 pixels. Texture parameters were extracted from 
images acquired with a scan speed of 10 mm/s and pixel size of 0.8 mm. Regression 
analysis was used to identify the relationship between extracted texture parameter 
(dependent variable) and ROI area (independent variable). A model of the relationship 
was hypothesised, and estimates of the parameter values were used to develop an 
estimated regression equation. Regression and correlation analysis are related in the 
sense that both deal with relationships among variables. The correlation coefficient is 
a measure of linear association between two variables. Values of the correlation 
coefficient are always between -1 and +1. A correlation coefficient of +1 indicates that 
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two variables are perfectly related in a positive linear sense, a correlation coefficient 
of -1 indicates that two variables are perfectly related in a negative linear sense, and a 
correlation coefficient of 0 indicates that there is no linear relationship between the 
two variables. For linear regression, the sample correlation coefficient is the square 
root of the coefficient of determination (R²). The correlation coefficient measures only 
the degree of linear association between two variables (texture parameter and ROI 
area size). Thus, a significance test is recommended to decide whether there is 
evidence of a real relationship between the variables (Evans 1996). This is 
accomplished by testing a null hypothesis (H0) against an alternative hypothesis (H1): 

 H0: p=0: There is no linear correlation. 
 H1: p≠0: There is a linear correlation. 

P< 0.05 was considered significant (www.socscistatistics.com). 

                         
                            Figure 3.3: Simulation of ROI definition and reduction. 

3.2.2.7 Statistical analysis 
The mean and standard deviation (SD) were calculated for each texture parameter, and 
the coefficient of variation (CV) was determined in order to evaluate the variation in 
texture parameters for every repeated scan in the range of pixel sizes and scan speeds. 
The CV is the ratio of the standard deviation (SD) to the overall mean and is expressed 
as a percentage. SPSS for Windows Version 20 (SPSS Inc., Chicago, Illinois, USA) 
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was used for the statistical analysis. To explore the effect of increasing pixel sizes on 
the overall mean extracted texture parameter values and individually on each of the 
nine texture scores, a one way MANOVA (Multiple Variate Analysis of Variance) 
was conducted. In the same manner, a one-way MANOVA was used to test the main 
effects of various scan speeds on the overall mean values of each of the nine texture 
analysis parameters.  

3.2.3 Results 
The results of the water phantom studies are presented in Figure 3.4. Tables 3.1-3.24 
show the mean values, SD and %CV of 20 times computation of water phantom 
texture parameters at a range of pixel sizes and scan speeds Figures 3.4 – 3.22 show 
plots of effect of increasing pixel size on extracted texture parameters.  
 

   3.2.3.1 Image Acquisition Texture Analysis 
                                                 Pixel size 
              0.2 mm                            0.4mm                              0.6 mm                             0.8mm  

            

            

3 mm/s ROI 

5 mm/s 

Scan speed 
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     Figure 3.4: Water phantom acquired images at different pixel size and scan speed settings. 
 
 
 

10 mm/s 

15 mm/s 

20mm/s 

30 mm/s 
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Table 3.1: SD, mean and %CV of extracted texture parameters of water phantom acquired images (n=20) at pixel size of 0.2 mm and scan speeds of 3 mm/s. 

 
 

Table 3.2: SD, mean and %CV of extracted texture parameters of water phantom acquired images (n=20) at pixel size of 0.2 mm and scan speeds of 5 mm/s. 

 
 

Table 3.3: SD, mean and %CV of extracted texture parameters of water phantom acquired images (n=20) at pixel size of 0.2 mm and scan speeds of 10 mm/s. 

 

GL Variance Skewness Kurtosis Cooccurrence matrix  RL matrix Gradient AR model Wavelet transform
SD 3.7387 20.0479 0.0196 0.0503 1676.8462 90.3945 19.4130 0.0114 308.2183
Mean 169.7591 428.4064 0.0010 0.0193 211230.6083 55238.3877 1728.0890 1.2124 50461.9814
%CV 2.2024 4.6796 1972.4692 260.9196 0.7938 0.1636 1.1234 0.9420 0.6108

Texture parameter @ pixel size=0.2 mm and scan speed =3 mm/s

GL Variance Skewness Kurtosis Cooccurrence matrix  RL matrix Gradient AR model Wavelet transform
SD 3.8133 30.0745 0.0152 0.0368 1058.3736 105.7561 16.9620 0.0121 267.8870

Mean 161.0030 523.5688 0.0026 0.0035 211239.9062 55362.2641 1731.3686 1.2057 50560.4355
%CV 2.3685 5.7441 576.0587 1049.1787 0.5010 0.1910 0.9797 1.0022 0.5298

Texture parameter @ pixel size=0.2mm and scan speed =5 mm/s

GL Variance Skewness Kurtosis Cooccurrence matrix  RL matrix Gradient AR model Wavelet transform
SD 3.7574 35.2112 0.0193 0.0359 1267.0303 62.1079 24.2878 0.0146 281.9191

Mean 149.3949 670.1539 0.0055 -0.0081 211083.4160 55594.2937 1738.0885 1.2051 50617.8540
%CV 2.5151 5.2542 349.5504 -442.4052 0.6003 0.1117 1.3974 1.2105 0.5570

Texture parameter @ pixel size=0.2 mm and scan speed =10 mm/s
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Table 3.4: SD, mean and %CV of extracted texture parameters of water phantom acquired images (n=20) at pixel size of 0.2 mm and scan speeds of 15mm/s. 

 
 

Table 3.5: SD, mean and %CV of extracted texture parameters of water phantom acquired images (n=20) at pixel size of 0.2 mm and scan speeds of 20 mm/s. 

 
 

Table 3.6: SD, mean and %CV of extracted texture parameters of water phantom acquired images (n=20) at pixel size of 0.2 mm and scan speeds of 30 mm/s. 

 

GL Variance Skewness Kurtosis Cooccurrence matrix  RL matrix Gradient AR model Wavelet transform
SD 6.6855 55.1701 0.0210 0.0311 929.3755 112.2013 13.7524 0.0100 223.1785

Mean 141.5668 710.5478 0.0095 -0.0103 211161.1095 55600.7387 1727.0479 1.2099 50639.5188
%CV 4.7225 7.7644 220.2561 -300.7276 0.4401 0.2018 0.7963 0.8226 0.4407

Texture parameter @ pixel size=0.2 mm and scan speed =15 mm/s

GL Variance Skewness Kurtosis Cooccurrence matrix  RL matrix Gradient AR model Wavelet transform
SD 4.5276 45.1808 0.0175 0.0416 924.3490 72.2772 24.5028 0.0088 273.1707

Mean 137.1414 754.0845 0.0101 -0.0139 211113.2303 55635.8448 1737.5840 1.2037 50769.7532
%CV 3.3014 5.9915 174.0365 -299.4027 0.4378 0.1299 1.4102 0.7294 0.5381

Texture parameter @ pixel size=0.2 mm and scan speed =20 mm/s

GL Variance Skewness Kurtosis Cooccurrence matrix  RL matrix Gradient AR model Wavelet transform
SD 5.6341 60.7355 0.0158 0.0494 809.3612 87.2746 22.6447 0.0137 235.7622

Mean 135.7771 841.1316 0.0056 -0.0076 210915.9293 55695.5394 1729.6430 1.2036 50814.0967
%CV 4.1495 7.2207 284.8924 -648.6135 0.3837 0.1567 1.3092 1.1423 0.4640

Texture parameter @ pixel size=0.2 mm and scan speed =30 mm/s
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Table 3.7: SD, mean and %CV of extracted texture parameters of water phantom acquired images (n=20) at pixel size of 0.4 mm and scan speeds of 3 mm/s. 

 
 

Table 3.8: SD, mean and %CV of extracted texture parameters of water phantom acquired images (n=20) at pixel size of 0.4 mm and scan speeds of 5 mm/s. 

 
 

Table 3.9: SD, mean and %CV of extracted texture parameters of water phantom acquired images (n=20) at pixel size of 0.4 mm and scan speeds of 10 mm/s. 

 

GL Variance Skewness Kurtosis Cooccurrence matrix  RL matrix Gradient AR model Wavelet transform
SD 2.5457 4.8703 0.0217 0.0360 2120.8788 116.6221 25.8204 0.0108 490.1024

Mean 208.4562 144.6727 0.0061 -0.0181 211556.5572 53872.6326 1743.6869 1.1975 50029.0441
%CV 1.2212 3.3664 353.4662 -198.9847 1.0025 0.2165 1.4808 0.9028 0.9796

Texture parameter @ pixel size=0.4 mm and scan speed =3 mm/s

GL Variance Skewness Kurtosis Cooccurrence matrix  RL matrix Gradient AR model Wavelet transform
SD 2.5886 4.2070 0.0194 0.0378 1865.4137 98.2385 24.5018 0.0110 543.6009

Mean 201.5134 189.4377 0.0019 0.0171 211674.3240 54197.2889 1750.7149 1.2001 50283.6316
%CV 1.2846 2.2208 1027.9172 221.3071 0.8813 0.1813 1.3995 0.9168 1.0811

Texture parameter @ pixel size=0.4 mm and scan speed =5 mm/s

GL Variance Skewness Kurtosis Cooccurrence matrix  RL matrix Gradient AR model Wavelet transform
SD 3.3464 11.9012 0.0257 0.0427 1752.7886 97.9953 23.7571 0.0164 415.6307

Mean 189.6459 284.3716 0.0041 0.0128 211304.6453 54722.3036 1740.4677 1.2053 50477.4223
%CV 1.7645 4.1851 628.8023 333.8549 0.8295 0.1791 1.3650 1.3592 0.8234

Texture parameter @ pixel size=0.4 mm and scan speed =10 mm/s
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Table 3.10:  SD, mean and %CV of extracted texture parameters of water phantom acquired images (n=20) at pixel size of 0.4 mm and scan speeds of 15 mm/s. 

 
 

Table 3.11: SD, mean and %CV of extracted texture parameters of water phantom acquired images (n=20) at pixel size of 0.4 mm and scan speeds of 20 mm/s. 

 
 

Table 3.12: SD, mean and %CV of extracted texture parameters of water phantom acquired images (n=20) at pixel size of 0.4 mm and scan speeds of 30 mm/s. 

 

GL Variance Skewness Kurtosis Cooccurrence matrix  RL matrix Gradient AR model Wavelet transform
SD 3.5947 19.1831 0.0201 0.0507 1441.9954 73.1544 22.1539 0.0128 248.9748

Mean 181.4217 350.8031 -0.0013 0.0009 211062.8217 54968.4345 1736.1369 1.2021 50574.7854
%CV 1.9814 5.4683 -1490.7116 5593.9146 0.6832 0.1331 1.2760 1.0634 0.4923

Texture parameter @ pixel size=0.4 mm and scan speed =15 mm/s

GL Variance Skewness Kurtosis Cooccurrence matrix  RL matrix Gradient AR model Wavelet transform
SD 5.2914 32.2907 0.0151 0.0461 1491.5968 106.3306 25.7174 0.0159 343.7914

Mean 174.0938 397.2397 0.0036 0.0266 211395.1046 55153.8351 1745.8450 1.2014 50445.1947
%CV 3.0394 8.1288 423.5535 173.1240 0.7056 0.1928 1.4731 1.3251 0.6815

Texture parameter @ pixel size=0.4 mm and scan speed =20 mm/s

GL Variance Skewness Kurtosis Cooccurrence matrix  RL matrix Gradient AR model Wavelet transform
SD 3.0429 26.6914 0.0219 0.0444 1149.8491 74.6707 20.0767 0.0112 319.2128

Mean 167.7913 485.9891 0.0101 0.0170 211085.1898 55310.4553 1738.0550 1.2055 50628.0987
%CV 1.8135 5.4922 216.1186 261.5177 0.5447 0.1350 1.1551 0.9292 0.6305

Texture parameter @ pixel size=0.4 mm and scan speed =30 mm/s
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Table 3.13: SD, mean and %CV of extracted texture parameters of water phantom acquired images (n=20) at pixel size of 0.6 mm and scan speeds of 3 mm/s. 

 
 

Table 314: SD, mean and %CV of extracted texture parameters of water phantom acquired images (n=20) at pixel size of 0.6 mm and scan speeds of 5 mm/s. 

 
 

Table 3.15: SD, mean and %CV of extracted texture parameters of water phantom acquired images (n=20) at pixel size of 0.6 mm and scan speeds of 10 mm/s. 

 

GL Variance Skewness Kurtosis Cooccurrence matrix  RL matrix Gradient AR model Wavelet transform
SD 3.8655 2.7484 0.0227 0.0435 3881.5728 138.3882 42.4795 0.0144 706.2336

Mean 220.1237 74.4922 0.0040 0.0486 211784.6445 52764.7413 1746.4147 1.1988 49559.4468
%CV 1.7561 3.6895 563.3098 89.3936 1.8328 0.2623 2.4324 1.2011 1.4250

Texture parameter @ pixel size=0.6 mm and scan speed =3 mm/s

GL Variance Skewness Kurtosis Cooccurrence matrix  RL matrix Gradient AR model Wavelet transform
SD 2.3509 2.0690 0.0205 0.0553 3062.9433 144.9166 31.2023 0.0073 585.8904

Mean 220.6215 74.3700 0.0073 0.0315 212489.0539 52861.8634 1750.7552 1.2004 49432.6322
%CV 1.0656 2.7821 280.9969 175.5716 1.4415 0.2741 1.7822 0.6106 1.1852

Texture parameter @ pixel size=0.6 mm and scan speed =5 mm/s

GL Variance Skewness Kurtosis Cooccurrence matrix  RL matrix Gradient AR model Wavelet transform
SD 2.8736 4.6333 0.0214 0.0525 2574.3226 143.2745 35.6180 0.0120 673.9581

Mean 211.6455 126.0804 0.0023 0.0373 211547.5527 53604.2215 1751.7639 1.2047 49749.3054
%CV 1.3578 3.6748 922.4711 140.6738 1.2169 0.2673 2.0333 0.9959 1.3547

Texture parameter @ pixel size=0.6 mm and scan speed =10 mm/s
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Table 3.16: SD, mean and %CV of extracted texture parameters of water phantom acquired images (n=20) at pixel size of 0.6 mm and scan speeds of 15 mm/s. 

 
 

Table 3.17: SD, mean and %CV of extracted texture parameters of water phantom acquired images (n=20) at pixel size of 0.6 mm and scan speeds of 20 mm/s. 

 
 

Table 3.18: SD, mean and %CV of extracted texture parameters of water phantom acquired images (n=20) at pixel size of 0.6 mm and scan speeds of 30 mm/s. 

 

GL Variance Skewness Kurtosis Cooccurrence matrix  RL matrix Gradient AR model Wavelet transform
SD 2.9837 6.9534 0.0210 0.0471 1541.2565 130.0954 21.3038 0.0114 545.7293

Mean 205.1760 166.2064 -0.0074 0.0291 212308.7726 54025.6523 1758.8622 1.2009 49927.5589
%CV 1.4542 4.1836 -283.8823 161.8595 0.7260 0.2408 1.2112 0.9529 1.0930

Texture parameter @ pixel size=0.6 mm and scan speed =15 mm/s

GL Variance Skewness Kurtosis Cooccurrence matrix  RL matrix Gradient AR model Wavelet transform
SD 2.7996 9.9525 0.0175 0.0398 2069.6030 150.2684 28.8638 0.0148 537.8878

Mean 198.5707 196.0795 0.0059 0.0483 211729.8678 54214.3211 1749.5583 1.2068 50093.0094
%CV 1.4099 5.0757 295.7065 82.4534 0.9775 0.2772 1.6498 1.2237 1.0738

Texture parameter @ pixel size=0.6 mm and scan speed =20 mm/s

GL Variance Skewness Kurtosis Cooccurrence matrix  RL matrix Gradient AR model Wavelet transform
SD 2.2055 10.3857 0.0175 0.0432 1346.4102 84.4136 22.7448 0.0127 491.3837

Mean 193.3380 260.0367 0.0027 0.0242 212573.0654 54556.4910 1761.8777 1.2020 50306.9433
%CV 1.1408 3.9940 646.4962 178.7945 0.6334 0.1547 1.2909 1.0589 0.9768

Texture parameter @ pixel size=0.6 mm and scan speed =30 mm/s
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Table 3.19: SD, mean and %CV of extracted texture parameters of water phantom acquired images (n=20) at pixel size of 0.8 mm and scan speeds of 3 mm/s. 

 
 

Table 3.20: SD, mean and %CV of extracted texture parameters of water phantom acquired images (n=20) at pixel size of 0.8 mm and scan speeds of 5 mm/s. 

 
 

GL Variance Skewness Kurtosis Cooccurrence matrix  RL matrix Gradient AR model Wavelet transform
SD 2.0242 1.7042 0.0654 0.1601 4786.5350 257.8614 48.9808 0.0121 765.4700
Mean 229.2496 44.4045 -0.0199 0.0333 213861.6681 51891.2549 1790.9002 1.2059 48202.6027
%CV 0.8830 3.8379 -328.2365 480.2054 2.2381 0.4969 2.7350 1.0041 1.5880

Texture parameter @ pixel size=0.8 mm and scan speed =3 mm/s

GL Variance Skewness Kurtosis Cooccurrence matrix  RL matrix Gradient AR model Wavelet transform
SD 1.8789 1.4117 0.0730 0.1443 3502.2359 222.5119 34.1188 0.0138 686.1493

Mean 229.3773 43.5206 -0.0133 0.0531 212589.2692 51869.1332 1787.9501 1.2031 47982.2600
%CV 0.8191 3.2436 -548.7348 271.7769 1.6474 0.4290 1.9083 1.1503 1.4300

Texture parameter @ pixel size=0.8 mm and scan speed =5 mm/s
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Table 3.21: SD, mean and %CV of extracted texture parameters of water phantom acquired images (n=20) at pixel size of 0.8 mm and scan speeds of 10 mm/s. 

 
 

Table 3.22: SD, mean and %CV of extracted texture parameters of water phantom acquired images (n=20) at pixel size of 0.8 mm and scan speeds of 15 mm/s. 

 
 

Table 3.23: SD, mean and %CV of extracted texture parameters of water phantom acquired images (n=20) at pixel size of 0.8 mm and scan speeds of 20 mm/s. 

 

GL Variance Skewness Kurtosis Cooccurrence matrix  RL matrix Gradient AR model Wavelet transform
SD 2.3023 2.1478 0.0214 0.0474 3576.7647 219.3474 30.9214 0.0122 768.3025

Mean 224.3756 60.3219 -0.0023 0.0810 211461.5274 52391.3536 1783.0001 1.2095 48851.6356
%CV 1.0261 3.5606 -941.4719 58.5003 1.6914 0.4187 1.7342 1.0084 1.5727

Texture parameter @ pixel size=0.8 mm and scan speed =10 mm/s

GL Variance Skewness Kurtosis Cooccurrence matrix  RL matrix Gradient AR model Wavelet transform
SD 2.6432 10.0556 0.0124 0.0540 2792.5156 254.8493 32.8590 0.0125 659.8913

Mean 216.4005 94.9660 -0.0114 0.0712 213466.0508 53118.4509 1797.0983 1.2037 48963.8918
%CV 1.2215 10.5887 -108.6568 75.9368 1.3082 0.4798 1.8284 1.0412 1.3477

Texture parameter @ pixel size=0.8 mm and scan speed =15 mm/s

GL Variance Skewness Kurtosis Cooccurrence matrix  RL matrix Gradient AR model Wavelet transform
SD 3.2330 3.7449 0.0233 0.0432 3053.3315 164.2823 22.1188 0.0126 660.9975

Mean 214.6510 102.4934 -0.0066 0.0886 213131.6165 53274.0160 1799.5677 1.2120 49244.4103
%CV 1.5062 3.6538 -355.5499 48.7479 1.4326 0.3084 1.2291 1.0369 1.3423

Texture parameter @ pixel size=0.8 mm and scan speed =20 mm/s
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Table 3.24: SD, mean and %CV of extracted texture parameters of water phantom acquired images (n=20) at pixel size of 0.8 mm and scan speeds of 30 mm/s. 

 

GL Variance Skewness Kurtosis Cooccurrence matrix  RL matrix Gradient AR model Wavelet transform
SD 2.3404 4.7116 0.0262 0.0358 2287.6617 135.7822 31.9803 0.0105 552.7810

Mean 208.9648 137.3788 -0.0040 0.0902 212428.5321 53715.6165 1798.7563 1.2071 49419.0024
%CV 1.1200 3.4296 -661.6040 39.6716 1.0769 0.2528 1.7779 0.8690 1.1186

Texture parameter @ pixel size=0.8 mm and scan speed =30 mm/s
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3.2.3.2. Statistical Analysis  
Table 3.25: Overall effect of various pixel sizes on each of the nine extracted texture parameters. 

 
 

 Texture parameter F (3,467) = P ηp² 
GL  807.9 <0.001 0.836 

Variance  761.0 <0.001 0.827 
Skewness 0.2 0.906 0.001 
Kurtosis. 56.4 <0.001 0.262 

Co-occurrence matrix 12.7 <0.001 0.074 
RL matrix 543.1 <0.001 0.774 
Gradient. 108.7 <0.001 0.406 
AR model 5.6 0.001 0.034 

Wavelet Transform. 230.7 <0.001 0.592 
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Table 3.26: Repeated contrast (comparison) results for comparing the effects of various pixel sizes on the means of the nine extracted texture parameters. 

 

Pixel Levels Repeated
Contrast Grey Level Variance Skewness Kurtosis

Co-
occurrence 

Metrix
RL-Matrix Gradient 

Level AR Model Wavelet 
Transform.

-38.047 345.897 -6.33E-05 -0.007 -222.407 817.02 -10.5 0.005 237.6
0 0 0 0 0 0 0 0 0

-38.047 345.897 -6.33E-05 -0.007 -222.407 817.02 -10.5 0.005 237.6
1.557 13.125 0.002 0.006 304.86 74.241 3.6 0.002 77.4

0 0 0.975 0.198 0.466 0 0 0.004 0
Lower 
Bound -41.106 320.106 -0.004 -0.019 -821.446 671.139 -17.6 0.002 85.5
Upper 
Bound -34.987 371.687 0.004 0.004 376.631 962.9 -3.4 0.008 389.6

-21.092 159.208 0.001 -0.019 -725.719 1,032.94 -10.7 0 561.5
0 0 0 0 0 0 0 0 0

-21.092 159.208 0.001 -0.019 -725.719 1,032.94 -10.7 0 561.5
1.557 13.125 0.002 0.006 304.86 74.241 3.6 0.002 77.4

0 0 0.582 0.001 0.018 0 0 0.872 0
Lower 
Bound -24.151 133.417 -0.003 -0.031 -1,324.76 887.063 -17.8 -0.003 409.5
Upper 
Bound -18.033 184.999 0.005 -0.008 -126.68 1,178.82 -3.6 0.003 713.6

-12.257 69.03 -0.001 -0.042 -750.951 961.244 -39.7 -0.005 1067.5
0 0 0 0 0 0 0 0 0

-12.257 69.03 -0.001 -0.042 -750.951 961.244 -39.7 -0.005 1067.5
1.557 13.125 0.002 0.006 304.86 74.241 3.6 0.002 77.4

0 0 0.484 0 0.014 0 0 0.004 0
Lower 
Bound -15.316 43.239 -0.005 -0.053 -1,349.99 815.364 -46.8 -0.008 915.5
Upper 
Bound -9.198 94.821 0.003 -0.03 -151.913 1,107.13 -32.6 -0.001 1219.6

0.6 Level Vs. Level 0.8

Contrast Estimate
Hypothesized Value
Difference (Estimate -
Hypothesized)
Std. Error
Sig.
95% Confidence
Interval for Difference

0.4 Level Vs. Level 0.6

Contrast Estimate
Hypothesized Value
Difference (Estimate -
Hypothesized)
Std. Error
Sig.

95% Confidence
Interval for Difference

Dependent Variables

0.2 Level Vs. Level 0.4

Contrast Estimate
Hypothesized Value
Difference (Estimate -
Hypothesized)
Std. Error
Sig.

95% Confidence
Interval for Difference
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Table 3.27: Overall effects of various scan speed levels on each of the nine texture measures. 

 Texture Parameter F (5, 474) =  P ηp² 
 GL  15.5  0.000 0.14 
 Variance  14.4  0.000 0.132 
 Skewness. 1.6  0.158 0.017 
 Kurtosis. 0.5  0.786 0.005 
 Co-occurrence matrix 1.0  0.422 0.01 
 RL matrix 20.4  0.000 0.177 
 Gradient. 0.3  0.915 0.003 
 AR model 1.0  0.404 0.011 
 Wavelet transform. 8.9  0.000 0.086 

 
 
 
 
 
 
 
 
 
 
 
 
 



90 
 

 
Table 3.28: Repeated Contrast  results  for comparing the effects of  various Scan Speeds on  the means of each of 
the nine extracted texture parameters. 
 

 
 
 
 

Grey Level Variance Skewness Kurtosis
Co-

occurrence 
Metrix

RL-Matrix Gradient 
Level AR Model Wavelet  

Transform.
3.768 -34.73 -0.001 0.003 110.231 -130.883 -2.925 0.001 -1.471

0 0 0 0 0 0 0 0 0
3.768 -34.73 -0.001 0.003 110.231 -130.883 -2.925 0.001 -1.471
4.373 36.143 0.002 0.008 386.879 173.826 5.743 0.002 142.238
0.389 0.337 0.62 0.759 0.776 0.452 0.611 0.508 0.992

Lower 
Bound -4.824 -105.751 -0.006 -0.014 -649.98 -472.448 -14.21 -0.003 -280.967
Upper 
Bound 12.361 36.29 0.004 0.019 870.442 210.681 8.361 0.005 278.025

9.363 -77.508 0.003 0.002 648.853 -505.406 1.867 -0.004 -359.314
0 0 0 0 0 0 0 0 0

9.363 -77.508 0.003 0.002 648.853 -505.406 1.867 -0.004 -359.314
4.373 36.143 0.002 0.008 386.879 173.826 5.743 0.002 142.238
0.033 0.033 0.191 0.811 0.094 0.004 0.745 0.058 0.012

Lower 
Bound 0.771 -148.528 -0.002 -0.014 -111.358 -846.97 -9.418 -0.008 -638.81
Upper 
Bound 17.956 -6.487 0.008 0.018 1,409.06 -163.841 13.152 0 -79.819

7.624 -45.399 0.003 0.005 -650.403 -350.276 -1.456 0.002 -102.384
0 0 0 0 0 0 0 0 0

7.624 -45.399 0.003 0.005 -650.403 -350.276 -1.456 0.002 -102.384
4.373 36.143 0.002 0.008 386.879 173.826 5.743 0.002 142.238
0.082 0.21 0.212 0.538 0.093 0.044 0.8 0.314 0.472

Lower 
Bound -0.968 -116.419 -0.002 -0.011 -1,410.61 -691.84 -12.741 -0.002 -381.88
Upper 
Bound 16.217 25.621 0.008 0.021 109.808 -8.712 9.829 0.006 177.111

5.027 -31.843 -0.002 -0.012 157.234 -141.185 -3.352 -0.002 -111.653
0 0 0 0 0 0 0 0 0

5.027 -31.843 -0.002 -0.012 157.234 -141.185 -3.352 -0.002 -111.653
4.373 36.143 0.002 0.008 386.879 173.826 5.743 0.002 142.238
0.251 0.379 0.361 0.151 0.685 0.417 0.56 0.365 0.433

Lower 
Bound -3.565 -102.864 -0.007 -0.028 -602.977 -482.749 -14.638 -0.006 -391.149
Upper 
Bound 13.62 39.177 0.003 0.004 917.445 200.379 7.933 0.002 167.842

4.646 -68.66 -0.001 0.005 91.776 -250.021 1.056 0.001 -153.943
0 0 0 0 0 0 0 0 0

4.646 -68.66 -0.001 0.005 91.776 -250.021 1.056 0.001 -153.943
4.373 36.143 0.002 0.008 386.879 173.826 5.743 0.002 142.238
0.289 0.058 0.731 0.517 0.813 0.151 0.854 0.478 0.28

Lower 
Bound -3.946 -139.68 -0.006 -0.011 -668.435 -591.586 -10.229 -0.003 -433.439
Upper 
Bound 13.239 2.361 0.004 0.022 851.987 91.543 12.341 0.005 125.552

20 mm/Sec Versus 30
mm/Sec

Contrast Estimate
Hypothesized Value
Difference (Estimate - Hypothesized)
Std. Error
Sig.
95% Confidence Inte rval
for Difference

15 mm/Sec Versus 20
mm/Sec

Contrast Estimate
Hypothesized Value
Difference (Estimate - Hypothesized)
Std. Error
Sig.

95% Confidence Interval 
for Difference

10 mm/Sec Versus 15
mm/Sec

Contrast Estimate
Hypothesized Value
Difference (Estimate - Hypothesized)
Std. Error
Sig.

95% Confidence Inte rval
for Difference

5 mm/Sec Versus 10
mm/Sec

Contrast Estimate
Hypothesized Value
Difference (Estimate - Hypothesized)
Std. Error
Sig.

95% Confidence Inte rval
for Difference

Scan Speed Repeate d Contrast
Dependent Variable

3mm/Sec Versus 5
mm/Sec

Contrast Estimate
Hypothesized Value
Difference (Estimate - Hypothesized)
Std. Error
Sig.

95% Confidence Inte rval
for Difference



91 
 

 

 
         Figure 3.5: Effect of increasing pixel size on GL parameter. 
 

 
            Figure 3.6: Effect of increasing pixel size on variance. parameter. 
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                  Figure 3.7: Effect of increasing pixel size on skewness parameter. 
 

 
                   Figure 3.8: Effect of increasing pixel size on kurtosis parameter 
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                    Figure 3.9: Effect of increasing pixel size on co-occurrence matrix parameter. 
 

 
                 Figure 3.10: Effect of increasing pixel size on RL matrix parameter. 
 
 



94 
 

 
Figure 3.11: Effect of increasing pixel size on gradient parameter. 

 
 
 

 
Figure 3.12: Effect of increasing pixel size on AR model. parameter. 
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Figure 3.13: Effect of increasing pixel size on wavelet transform parameter. 
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Figure 3.14: Effect of increasing scan speed on GL parameter. 

 

 
Figure 3.15: Effect of increasing scan speed on variance parameter. 
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Figure 3.16: Effect of increasing scan speed on skewness parameter. 

 
 
 

 
Figure 3.17: Effect of increasing scan speed on kurtosis parameter. 
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Figure 3.18: Effect of increasing scan speed on co-occurrence matrix parameter. 

 
 
 

 
Figure 3.19: Effect of increasing scan speed on RL matrix parameter. 
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            Figure 3.20: Effect of increasing scan speed on gradient parameter. 
 
 

 
Figure 3.21: Effect of increasing scan speed on AR model parameter. 
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Figure 3.22: Effect of increasing scan speed on wavelet transform parameter. 

 
 

3.2.3.3 Repeatability 
Table 3.29 shows the mean, SD and % CV of water phantom texture parameters 
calculated over all scan speeds (3, 5, 10, 15, 20 and 30 mm/s) and pixel sizes (0.2, 0.4, 
0.6 and 0.8 mm).  
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Table 3.29: Mean of texture parameters at range of pixel sizes and range of scan speeds. Mean, SD and %CV were 
calculated. 
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3.2.2.4 Influence of ROI Area on Extracted Texture Parameter 
The influence of ROI area size on extracted texture parameters of water phantom 
image acquired with scan speed of 10 mm/s and pixel size of 0.8 mm is shown in Table 
3.30. 
Table 3.30: Influence of ROI area size on extracted texture parameters of water phantom image acquired with scan 
speed of 10 mm/s and pixel size of 0.8 mm. 
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Figures 3.23 – 3.31 represent the influence of ROI area on extracted texture parameters 
with fitted regression lines. 
 

 
Figure 3.23: The fitted regression line between the GL values of the 9 ROI sizes. 

 

 
Figure 3.24: The fitted regression line between the variance values of the 9 ROI sizes. 
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Figure 3.25: The fitted regression line between the skewness values of the 9 ROI sizes. 

 
 

 
Figure 3.26: The fitted regression line between the kurtosis values of the 9 ROI sizes. 
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Figure 3.27: The fitted regression line between the co-occurrence matrix values of the 9 ROI sizes. 

 
 
 

 
Figure 3.28: The fitted regression line between the RL matrix values of the 9 ROI sizes. 
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Figure 3.29: The fitted regression line between the gradient values of the 9 ROI sizes. 

 
 

 
Figure 3.30: The fitted regression line between the AR model values of the 9 ROI sizes. 
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Figure 3.31: The fitted regression line between the wavelet transform values of the 9 ROI sizes. 

 
 
 
Table 3.31: Summarises p values of influence of ROI area reduction on extracted texture parameters (significant 
at p<0.05). 

 
 
 
 
 
 

y = 0.0061x + 49708R² = 0.0006P= 0.9503

48000.0000
48500.0000
49000.0000
49500.0000
50000.0000
50500.0000
51000.0000
51500.0000
52000.0000
52500.0000

0 2000 4000 6000 8000 10000 12000 14000 16000

Val
ue

ROI area size

Wavelet transform

Texture Parameter R² r P-value Significance
GL 0.0786 0.2803 0.4651 No (>0.05)

Variance 0.6736 0.8207 0.0067 Yes (<0.05)
Skewness 0.2055 0.4533 0.2204 No 
Kurtosis 0.1024 0.32 0.4011 No 

Cooccurrence matrix 0.3083 0.5552 0.1207 No 
 RL matrix 1 1 <0.00001 Yes
Gradient 0.1127 0.3357 0.3771 No 
AR model 0.2327 0.4823 0.1885 No 

Wavelet transform 0.0006 0.0244 0.9503 No 
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3.2.4 Discussion  
The scanning of the water phantom was designed to mimic the human leg, whose soft 
tissue structures have an effective atomic number (7.64) and tissue density (1040 
kg/m3) similar to those of water (7.51, 1000 kg/m3) (Carlton and Adler, 2013). Despite 
the superimposition on the water phantom images of visual (Poisson) noise, the 
identification of extracted texture parameters that were less sensitive to noise was 
possible. Some texture parameters change greatly with acquisition parameters, others 
change too, but not as much. Pixel values (grey level) are related to the linear 
attenuation coefficient (LAC) of the matter in the corresponding voxels. Linear 
attenuation coefficient is proportional to density. Statistical noise in the acquired 
images causes apparent variations in the density from pixel to pixel within the defined 
image. The range of these variations was evaluated by calculating the standard 
deviation (SD). Therefore, the SD of the grey level was considered a measure of image 
noise, also known as the noise index (Goldman, 2007; Bushberg et al., 2012). Standard 
deviation is the square root of variance (extracted texture parameter).  
In CT, each slice is formed and divided into a matrix of volume elements (voxels). In 
general, the voxels in the slice of tissue are represented by pixels. The size of an 
individual voxel plays a critical role in image quality and patient dose. The pixel size 
is determined by the field of view (FOV) divided by the matrix size (number of pixels 
in each direction). During the subject scan, x-rays penetrate the subject and are 
attenuated in proportion to the product of LAC and thickness of tissue in the x-ray 
beam as described in Chapter 2. Furthermore, during the image reconstruction (back 
projection) process, the linear attenuation coefficient of each individual voxel is 
calculated and is represented by the value of the corresponding pixel in the acquired 
image. 
The variation in CT image pixel value depends on the number of attenuated photons. 
In other words, the precision of measurement increases as the number of detected 
photons increases due to decreased noise. The standard deviation (SD) is proportional 
to the square root of average number of photons in each measurement, i.e., the number 
of detected photons (Bushberg et al. 2012). To achieve greater photon detection at a 
specific radiation dose (note that the pQCT dose is fixed for a given value of scan 
speed), pixel size must be increased. 
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The effect of increasing pixel size on the overall mean extracted texture parameters 
was shown in Table 3.25. The MANOVA test showed that increasing pixel size had a 
significant effect (p<0.05) on grey level, variance, kurtosis, co-occurrence matrix, RL 
matrix, gradient, AR model and wavelet transform, but not on skewness. In other 
words, there was a statistically significant effect of the pixel size on grey level — F 
(3,467) =807.9, p<0.001, ηp²=0.84 — (ηp²= partial eta squared is an effect size 
statistic which shows the magnitude of the effect of the varying the pixel size on GL, 
partial eta squared has ranges that helps us to classify the effect as small, medium or 
large ), ( F ratio test is the test of significance in use for MANOVA and it shows the 
ratio between accurately predicted GL values to the errors , i.e., noise in predicting the 
GL score value ).This means that varying the pixel size has a very strong effect on 
grey level as illustrated in the pairwise comparison Tables (Tables 3.26). Moreover, 
there was a statistically significant effect of varying pixels on variance levels — F 
(3,467) =761, p<0.001 — with a very strong effect size as well, which means the 
overall effect for increasing pixel size on the variance level was large — ηp²=0.83. 
Likewise, the varying pixel levels had a significant impact on kurtosis — F (3,467) 
=56.4, p<0.001 — with a strong effect of pixels on kurtosis — ηp²=0.262. In the same 
way, for the relationship between pixel levels and the co-occurrence matrix, F (3,467) 
=12.7, p<0.001 and ηp²=0.074, denoting a moderately small effect. In addition, the 
pixel levels had a significant effect on the RL matrix and gradient levels — F (3,467) 
=543.1, p<0.001, ηp²=0.262, and F (3,467) =5.6, p<0.001, ηp²=0.003, respectively — 
denoting an overall strong effect of varying levels of pixels on the RL matrix, and a 
similar but small effect of varying pixel size on the gradient level. The varying sizes 
of pixels were found to affect the wavelet transform score significantly — F (3,467) 
=230, p<0.001, ηp²=0.6 — which is a very strong effect. Lastly, there was no 
significant effect of pixel levels on skewness of the image — F (3,467) =0.2, p=0.906, 
ηp²=0.001. The MANOVA test was followed by post-hoc test comparing means of the 
nine texture parameters values between each successive pairs of pixel size to identify 
points of statistically significant differences as illustrated in Table 3.26.  
The series of repeated t-tests (pairwise comparisons ) showed that there was a 
significant difference of the mean grey levels between the 0.2 mm pixels and 0.4 mm 
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pixels (p<0.001, 95% CI for mean difference = -41 to -35), between 0.4 mm pixels 
and 0.6 pixels (p<0.001, 95% CI for mean difference = -18 to -12.3) and also between 
0.6 pixels and 0.8 pixels (p<0.001, 95% CI for mean difference = -15.3 to -9.2), 
denoting an overall significant increase in grey level with an increased pixel size as 
shown in Figure 3.5. Likewise, when we compared the means of variance levels, there 
was a statistically significant difference between the four ranges of pixel sizes (0.2 
pixels versus 0.4 pixels: p<0.001, 95% CI for mean difference = 320.1 to 371.7; 0.4 
pixels versus 0.6 pixels: p<0.001, 95% CI for mean difference = 133.4 to 185; and 0.6 
pixels versus 0.8 pixels: p<0.001, 95% CI for mean difference = 43.2 to 95). The mean 
variance value levels differed significantly across the increasing pixel sizes, where the 
increasing pixel size was associated with significantly decreasing variance, as can be 
seen in the Figure 3.6. Worth noting is that the kurtosis value was contrasted across 
the various levels of pixels, and pairwise comparisons  indicated that there were no 
statistically significant differences on  mean  kurtosis value between 0.2 pixels and 0.4 
pixels, p=0.198, but there was a significant difference in mean kurtosis between 0.4 
pixels and 0.6 pixels (p=0.001, 95% CI mean difference = -0.03 to -0.008) and between 
0.6 pixels and 0.8 pixels (p<0.001, 95% CI for mean difference = -0.053 to -0.03), 
denoting an overall increasing trend in mean kurtosis values  with increasing pixel 
sizes, as shown in Figure 3.8. Similarly, when we compared the co-occurrence matrix 
values across the various pixel sizes, there were no significant differences between the 
0.2 pixel and 0.4 pixel sizes, p=0.466, but there was a statistically significant 
difference between each of the pairs of 0.4 versus 0.6 pixel sizes, and 0.6 versus 0.8 
pixel sizes (p=0.018 and p=0.014, respectively). Please note the 95% CIs for the mean 
difference for these comparisons in the Table 3.26. Figure 3.9 displays the relationship 
between co-occurrence matrix and the increasing pixel size; it is clear that an overall 
increase in the co-occurrence matrix occurs as pixel sizes increase. The repeated 
contrasts also showed that each of the RL matrices tended to vary significantly with 
increasing pixel sizes. For example, there was statistically significant difference in the 
mean RL matrix level between the 0.2 and 0.4 pixel sizes when compared, p<0.001, 
and between 0.4 pixels and 0.6 pixels, p<0.001 and between 0.6 pixels and the 0.8 
pixels, denoting an overall decrease in the RL matrix as the pixel values went from 0.2 
to 0.8 as depicted in Figure 3.10. Please note the 95% CI for mean differences for these 
comparisons (0.2 pixels versus 0.4 pixels 95% CI = 671.1 to 963; for 0.4 pixels versus 
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0.6 pixels 95% CI = 887.1 to 1179; and for 0.6 pixels versus 0.8 pixels 95% CI = 961.2 
to 74.2). The gradient values also differed significantly across the various sizes of 
pixels, as can be noted from the p values and their respective 95% CIs. The overall 
trend, as can be seen in Figure 3.11, shows an overall significant increase in gradient 
values with increased pixel sizes (note the 95% CI for mean differences for these 
contrasts in Table 3.26). The AR model mean value showed a pattern of decrease, then 
increase across various values of pixels, where 0.4 pixels and 0.6 pixels demonstrated 
overall lower levels in mean AR model values than 0.2 pixels and 0.8 pixels as shown 
in Figure 3.12. However, when we contrasted them using repeated comparisons, all 
the contrasts showed a statistically significant difference. Last, but not least, the 
wavelet transform value also differed significantly across the various pixel sizes when 
comparisons were conducted on mean AR model across successive pixel sizes. 
Moreover, the pairwise comparisons between successive pixel sizes showed a 
statistically significant difference in mean wavelet transform value between the 0.2-
pixel size and the 0.4-pixel size (p=0.002. 95% CI mean difference = 85.5 to 389.6), 
between 0.4 pixels and 0.6 pixels (p<0.001, 95% CI for mean difference = 409.5 to 
713.6) and also between 0.6 pixels and 0.8 pixels (p<0.001, 95% CI for mean 
difference = 915 to 1219.6), denoting an overall increase in the mean wavelet 
transform score as the pixel levels went from 0.2 to 0.8 (Figure 3.13). 
However, the results from one-way MANOVA showed that the main effects of various 
scan speed levels on the overall mean of each of the nine extracted texture parameters 
was statistically significant. The one-way MANOVA's equality of variance 
assumption was violated for seven out of the nine texture parameters, and was met for 
the remaining two tests namely (AR model and the Gradient value). As a result of the 
violations in the assumption of equality of variance, the Pillai’s trace test of 
significance was used, and it showed statistically significant effect for scan speed on 
mean texture analysis (F (45.2350) =4.4, p<0.001, Pillai's trace=0.390, partial eta 
squared=0.078). This denotes that there was a statistically significant but moderately 
small effect (partial eta squared, ηp²=0.078) on the "change" in the mean of the nine 
texture parameters with increasing scan speeds from 3 mm/sec to 30mm/sec. 
However, the main MANOVA test was followed by tests for linear trends (i.e., change 
in in the individual nine texture parameters for increase, decrease or fluctuations) , 
these tests are depicted in the Figures 3.14 -3.22.The statistical  effect and significant 
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tests ( f-tests) for increasing scan speeds on each of the nine texture parameters are 
displayed in Table 3.27 to illustrate the effect of varying scan speed, the one-way 
MANOVA showed that there were significant differences in mean grey levels across 
various scan speed levels — F (5,474)=15.5, p<0.001, ηp²=0.14 — denoting that the 
increasing scan speeds had a moderately high effect on the mean grey levels. Figure 
3.14 shows that there was a substantial drop in the mean grey level as the scan speed 
went from 3mm/sec to 30mm/sec. Also, the increasing scan speeds had a moderately 
high effect on the mean variance texture value — F (5,474) =14.4, p<0.001, ηp²=0.132 
— which is depicted in Figure 3.15; the overall variance texture estimate tended to 
increase with an increase in scan speed. In the same manner, the mean RL matrix 
tended to increase as the scan speed went from 3mm/sec to 30 mm/sec (Figure 3.19), 
with an overall significant and moderately high effect — F (5,474) =20.4, p<0.001, 
ηp²=18 (rounded) — which shows that the overall effect of increasing scan speed had 
the biggest impact on the RL matrix level thus far. Nonetheless, the wavelet transform 
appeared to have been significantly impacted by the increasing scan speed, but in a 
moderately small way — F (5,474) =8.9, p<0.001, ηp²=0.09 (rounded). Figure 3.22 
shows that as the scan speeds increased, the overall mean wavelet transform texture 
tended to increase as well. The increasing scan speed did not have a statistically 
significant effect on the means of the remaining texture parameters (i.e. skewness, 
kurtosis, co-occurrence matrix gradient and AR model), as depicted in Table 3.28 
previously. 
The data in Tables 3.1 - 3.24 shows that as pixel size increases (0.2 to 0.8 mm), the 
variance decreases due to greater photon detection at larger pixel sizes, as discussed 
previously. Therefore, a pixel size of 0.8 mm was selected as one optimised parameter 
of the pQCT scanner. The other parameter to be optimised was the scan speed. As 
artefacts caused by subject movement have a significant impact on image quality (due 
to image degradation), the scan time should be as short as possible. At a pixel size of 
0.8 mm, a scan speed of 10 mm/s yielded a good variance value (60.3219) in 
comparison with other scan speeds tested (3, 5, 15, 20, and 30 mm/s). In general, a 
balance between image quality and subject movement was the objective. 
The texture parameters that demonstrate consistency (i.e. comparatively little variation 
of < 5 %) across the combinations of scan speeds and pixel sizes (Table 3.29) were 
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the co-occurrence matrix (0.3893 %), RL (2.2568 %), gradient (1.3755 %) auto-
regressive (AR) model (0.3223 %) and wavelet transform (1.6143 %). Based on these 
observations, these parameters were deemed suitable for characterisation of the 
gastrocnemius muscle. The first order statistical parameters (grey level, variance, 
skewness and kurtosis), showed higher %CV. Variations may have been related to 
scan settings and noise. For GL, there is an association with scan speed and pixel size. 
As scan speed increases, GL decreases for a fixed pixel size.  Skewness and kurtosis 
were excluded from any further analysis as they displayed large coefficients of 
variation (% CV) in comparison to the other parameters (Table 3.29). These findings 
suggested that grey level was dependent on image noise level. As grey level increases, 
variance decreases. CV was shown to remain quite consistent (approximately <5%) at 
a pixel size of 0.8 mm and various scan speeds for all remaining texture parameters 
(Table 3.29). 
The analysis of influence of ROI area reduction showed no significance difference 
found in GL, skewness, kurtosis, co-occurrence matrix, gradient, AR model and 
wavelet transform, but for variance and RL matrix were affected significantly. As the 
first order parameters are affected by normalisation process of each ROI. In addition, 
their computation based on single pixel values only. The variance is an index for image 
noise and due x-ray nature, noise is a random phenomenon within acquired images. 
The RL texture parameter are on the ROI area dependent. The linear behavior (Figure 
3.28) is due to its definition. It squares the number of the run length for each calculated 
intensity level. Therefore, for a larger ROI there will be more runs and vice versa. It 
is concluded that ROI area size must be kept constant when considering extracting the 
texture parameters specifically the RL. This finding matched previous study 
conducted by Alqahtani (2010). 

3.2.5 Conclusion  
Important conclusions drawn from this work include: 
 Noise in the acquired images can be quantified from the extracted variance values. 
 Four texture parameters of the water phantom (co-occurrence matrix, RL, gradient, 

AR model and wavelet transform) produced consistent values (the smallest %CV) 
over the range of scan speeds and pixel sizes. 
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 The larger the size of the pixel, the less is the noise (variance). 
 A pixel size of 0.8 mm (the largest pixel size studied) yielded a smooth image with 

lowest noise values compared to other pixel sizes. 
 The optimal water phantom image was acquired at a pixel size of 0.8 mm and scan 

speed of 10 mm/sec. This represented a balance between the scan time and 
acceptable image noise level compared with other combinations.  

 The pQCT scanner showed reliable repeatability over all scans at a range of pixel 
sizes (0.2, 0.4, 0.6 and 0.8 mm) and scan speeds (3, 5, 10, 15, 20 and 30 mm/s) for 
all extracted parameters except skewness and kurtosis as they showed the highest 
% CV. 

 The texture parameters of skewness and kurtosis were excluded as potential 
parameters for the characterisation of acquired images as they showed high data 
dispersion (the largest %CV among all data). 

 There was an overall significant increase in GL, kurtosis, co-occurrence matrix, 
gradient matrix and wavelet transform texture parameters with an increase of pixel 
size. 

 There was an overall significant decrease in variance and RL with an increase of 
pixel size. 

 The AR model texture parameter showed a decreasing followed by an increasing 
pattern across various pixel sizes. 

 Scan speed had a moderately high effect on mean GL and variance texture 
parameters. 

 Scan speed had the biggest effect on the RL matrix texture parameter. 
 Scan speed had a moderately small effect on mean wavelet transform texture 

parameter. 
 Scan speed had no effect on skewness, kurtosis, co-occurrence matrix, gradient 

matrix and AR model. 
 ROI size has a significant influence on the variance and the RL matrix extracted 

values. 
 ROI size must be kept constant when considering extraction of RL matrix texture 

parameter. 
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3.3 Healthy Volunteer Study 
3.3.1 Introduction 
From the previous section, it was determined that scan speed and pixel size were the 
main factors in the acquisition of pQCT images of the water phantom. This section 
describes how these findings were verified with a healthy human volunteer. 
Furthermore, the same texture parameters that were extracted for the water phantom 
were also extracted for the volunteer.  
The aim of this study was to assess the suitability of pQCT for the acquisition of human 
calf muscle tomographic images and to assess the ability of pQCT to detect calf muscle 
boundaries, specifically in the gastrocnemius muscle. In addition to assessment of ROI 
position effect on extracted texture parameters which might reflect muscle tissue 
homogeneity and to decide which of the remaining 7 texture parameters are suitable 
for use with pQCT in human volunteers. 

3.3.2 Materials and Methods 
 3.3.2.1 Subject 
For this study, a healthy volunteer of age 63 years was recruited. Informed consent 
was obtained from the subject following an explanation of the aims, protocols and 
procedures in the study (see Appendix C). The subject declared that he was of normal 
health with no history of musculoskeletal disorders. The study was approved by the 
ethics committee of the Cardiff University School of Engineering. 
 3.3.2.2 Image Acquisition 
Cross-sectional right leg scans were acquired by a pQCT scanner (Stratec XCT 2000, 
Stratec Medizintechnik GmbH, Pforzheim, Germany) at 66% of the distance from the 
medial malleolus to the medial condyle of the tibia. This distance represents the 
maximum calf diameter, as shown in Figure 3.32 (Rittweger et al. 2000). 
The procedure for scanning the subject’s right leg was as follows: 
1. The subject was asked to read a scan information sheet. 
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2. The subject was asked to sign a consent form confirming that he was not suffering 
from any calf muscle injury. 

3. The subject’s weight and height were taken. 
4. The distance from the malleolus to the medial condyle was measured with a tape 

measure.  
5. A skin marker was used to draw a line indicating the 66% (maximum calf 

diameter) distance on the subject’s right leg.  
6. The following subject data were recorded: name, date of birth, gender, 

measurement mask, the side of the object (left or right leg), the object’s length, 
measurement diameter, pixel size, subject’s height and weight, number of blocks 
and the scan speed. The pQCT software (v6.0) is capable of performing various 
bone and muscle cross sectional area measurements, and each type of 
measurement is given a mask (or name). Muscle mask was selected as the 
integrated algorithm automatically discriminates muscle tissue from subcutaneous 
fat tissue and total bone. The number of blocks specifies the projection range: one 
block specifies a range of 180 projections within 180° by angular distance of 1°, 
and two blocks specifies 360 projections within 360° by angular distance of 0.5°, 
as described in Chapter 2. According to the findings of the water phantom scans, 
a balance should exist between scan time and image noise. Therefore, one block 
was selected. It was mandatory to enter the object length and measurement 
diameters although they are related to bone rather than muscle studies. A fixed 
distance was entered for each scan as follows: 400 mm for the object length and 
100 mm for the measurement diameter. 

7. The subject was seated comfortably on a chair facing the pQCT gantry with the 
right leg positioned in the scanner and resting on a leg holder, as shown in Figure 
3.32. 

8. The height of the leg holder was adjusted to ensure that the weight of the leg was 
not resting entirely on the pQCT gantry and that the leg clamp was closed. 

9. The subject’s foot was secured in a plantar flexed position by the Velcro strap of 
the attachment. 

10. The subject was requested to remain as still as possible and to refrain from talking 
during the scan (whilst the amber x-ray light was on). 
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11. At the position of the skin mark, 2.4 mm slice images were acquired five times 
(without repositioning). To do this, for each combination of scan speed (3, 10 and 
30 mm/s) and pixel size (0.2 and 0.8 mm), the gantry laser indicator was positioned 
on the skin mark. At a scan speed of 3 mm/s and pixel size of 0.2 mm, the scan 
was performed only in triplicate as the subject suffered discomfort from the 
prolonged scan time.   

12. The acquired images were saved and exported into CSV format files for the 
purpose of analysis. 

     

 
Figure 3.32: Calf muscle and subject position in the pQCT scanner. 

       

 3.3.2.3 Image Windowing  
With medical images in digital form, it is possible to perform a variety of image 
processing procedures. One of the most useful processing procedures is image 
windowing. Image windowing is a technique for improving image appearance to give 
maximum visibility of image details.  
An image histogram is a graph representing the intensity incidence in an image. The 
horizontal axis represents intensity values, starting at 0 and extending to the maximum 
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intensity value (255 in an 8-bit image). The vertical axis represents the number of 
times the corresponding intensity occurred in the image (Phillips and Dwayne, 2000). 
For the visualisation of subtle image details, the image should be windowed. 
Windowing is a common method of image contrast enhancement that is achieved by 
displaying a portion of the total range of an image histogram. In other words, it is a 
‘stretch and shift’ of the original image histogram to cover all 256 available levels. 
For example, for an image of minimum pixel value (intensity) 0 and maximum 230, 
where contrast enhancement of the brighter portion must be applied, a window from 
100 to 230 could be selected. Pixels with values of 0 to 100 are therefore displayed at 
the darkest intensity and will not be visible. Pixels with values of 230 will be displayed 
at the maximum intensities, as shown in Figure 3.33. Pixels within the range 100-230 
will be assigned intensities according to monitor specifications (as determined by a 
digital look up table). In conclusion, windowing is a visualisation method to identify 
information not previously perceptible. Thus, image windowing was only 
implemented to identify calf muscle boundaries only as it enhances image contrast 
which results in changing image grey level (intensity) value. In other words, it is to be 
used as guidance tool to define ROI within medial head of gastrocnemius muscle in 
unwindowed images (raw images). The MaZda software package was used to extract 
9 texture parameters as described previously (Section 3.3.2.2.1).  
 

 
Figure 3.33: Image windowing effect. 

 3.3.2.4 Repeatability 
As described in water phantom study (Section 3.2.2.2) repeatability is how closely the 
results of successive measurements of the same parameter match when carried out 
under the same conditions of measurement. The repeatability indicates the consistency 

Image Windowing 
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of a measurement. For all acquired images mentioned in image acquisition protocol 
(Section 3.3.2.2, step 11), a single circular region of interest (ROI) of 228 pixels in 
area was defined in the same position within medial head of gastrocnemius muscle 
and the same texture features were extracted for further analysis. Mean, SD and %CV 
were calculated to assess pQCT repeatability. 
 

 3.3.2.5 Determination of Cut-off ROI Area   
Cut-off ROI area is the minimum area that yields numerical values of texture 
parameters. In order to assess the influence of ROI area on extracted texture 
parameters, a range of circular ROIs were defined following the image transfer 
procedure. Images were acquired with a scan speed of 10 mm/s and pixel size of 0.8 
mm. The ROI areas were 15, 30, 60, 90, 100, 110, 130, 150, 160, 200, and 228 pixels 
as shown in Figure 3.34. At each ROI size, texture parameters were extracted. Analysis 
was performed and the ROI cut-off area was subsequently defined. The cut-off area is 
the ROI area where it is not possible to extract texture parameters with the MaZda 
software. In other words, it is the minimum ROI area at which numerical values for 
texture parameters can be obtained.     
 

          
Figure 3.34: Examples of ROIs of different areas drawn within the medial head of the gastrocnemius muscle. 
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3.3.2.6 Influence of ROI Area on Extracted Texture Parameters  
In order to investigate factors other than the scan parameters, which could potentially 
influence the texture parameters, a group of ROIs was defined for five acquired images 
to investigate the effect of differences in ROI area on the reliability of texture 
parameters. In other words, in MaZda if computation results are an unpresentable or 
an undefined, output displayed as NaN (not a number). The initial ROI was defined to 
include the entire medial head of the gastrocnemius muscle. Reduction of ROI area 
was performed using a built-in feature of the MaZda software package (erosion) which 
yielded a consistent area reduction, as shown in Figure 3.35. Erosion is a method of 
shape shrinking ( Costa and Cesar 2009). The ROI areas were 1700, 1424, 1159, 906, 
665, 439, and 233 pixels. The mean values of texture parameters at every individual 
ROI area were calculated for the five images acquired with a scan speed of 10 mm/s 
and a pixel size of 0.8 mm. 

 
    Figure 3.35: Eroded ROI areas to determine the effect of ROI size on extracted texture parameters. 
 

3.3.2.7 Influence of ROI Position on Extracted Texture Parameters 
As the volunteer was healthy with no calf muscle injury, muscle tissue should be 
homogeneous. To assess homogeneity, equally-sized circular ROIs of 228 pixels in 
area were drawn at different positions within the gastrocnemius medial head boundary 
of 5 acquired images (at a pixel size of 0.8 mm and a scan speed of 10 mm/s); the ROI 
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area was greater than the cut-off of 200 pixels as shown in Figure 3.36. The same 
texture parameters were extracted using MaZda. Image windowing was implemented 
to identify the muscle boundaries. This was accomplished to investigate the influence 
of ROI position within the gastrocnemius muscle boundary on texture parameter 
values. This influence was tested by using repeated measures ANOVA test.   

                                   
Figure 3.36: Five circular ROIs of area 228 pixels drawn in 5 different positions within the medial head of the 
gastrocnemius muscle. 
 

3.3.3 Results 
3.3.3.1 Image Windowing 
The results of the healthy subject studies are shown in Figures 3.37 - 3.42. Each figure 
consists of two images: on the left side is the image without windowing and on the 
right side is the image after windowing. After image windowing, it is possible to define 
a circular ROI avoiding the muscle boundary.  Figure 3.37 shows a typical image 
acquired at a low scan speed (3 mm/s) and small pixel size (0.2 mm) resulting in a 
superior signal to noise ratio (SNR) than that in Figures 3.38 and 3.39 which were 
acquired at an equal pixel size but a higher scan speed (10 and 30 mm/s). Spatial 
resolution is determined by pixel size (as the parameters of the construction algorithm 
are unchanged) while SNR decreases as scan speed increases. 
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Figure 3.37: pQCT acquired image at pixel size 0.2 mm and scan speed 3 mm/s before and after windowing 
 showing the gastrocnemius muscle (GM) border and a circular ROI.        

  
Figure 3.38: pQCT acquired image at pixel size 0.2 mm and scan speed 10 mm/s before and after windowing. 
 
         

  
Figure 3.39: pQCT acquired image at pixel size 0.2 mm and scan speed 30 mm/ before and after windowing. 

ROI 
GM border 
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Figure 3.40 shows a typical image acquired at a low scan speed (3 mm/s) and large 
pixel size (0.8 mm), again resulting in a superior SNR than that in Figures 3.41 and 
3.42 which were acquired at an equal pixel size but a higher scan speed (10 and 30 
mm/s). 

 
Figure 3.40: pQCT acquired image of pixel size 0.8 mm and scan speed 3 mm/s before and after windowing. 

. 
      

 
Figure 3.41: pQCT acquired image of pixel size 0.8 mm and scan speed 10 mm/s before and after windowing. 
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Figure 3.42: pQCT acquired image at voxel size 0.8mm and scan speed 30 mm/s before and after windowing. 

. 

3.3.3.2 Repeatability 
Table 3.32 shows the mean values for 5 scans (only 3 scans at a scan speed of 3 mm/s 
with pixel size of 0.2 mm) of first order statistical parameters (grey level and variance, 
skewness and kurtosis) extracted from a ROI of area 228 pixels defined within the 
medial head of gastrocnemius muscle. Additionally, the second order statistical 
parameters are shown: co-occurrence matrix, run length matrix and gradient, 
autoregressive model and wavelet transform at different scan speeds and pixel sizes. 
The %CV of skewness and kurtosis are more than 10 %. Therefore, they will be 
excluded from further analysis. This match the finding of water phantom study.  
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Table 3.32: Mean, SD and %CV of texture parameters of acquired subject images at different pixel sizes and scan 
speeds.  
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Figures 3.43 to 3.45 illustrate %CV of the extracted texture parameters at different 
scanning conditions. 

 
 

Figure 3.43: %CV of extracted texture parameters of the healthy subject with scan speed of 3 mm/s. 
 
 

 
Figure 3.44: %CV of extracted texture parameters of the healthy subject with scan speed of 10 mm/s. 
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Figure 3.45: %CV of extracted texture parameters of the healthy subject with scan speed of 30 mm/s. 
                
 
 
3.3.3.3 Cut-off ROI Area 
Table 3.33 illustrates the influence of ROI area on the ability to extract numerical 
values of texture parameters; a range of ROI areas were defined within an image 
acquired at a pixel size of 0.8 mm and a scan speed of 10 mm/s. At ROI areas of 15 to 
228 pixels, texture parameters that have a numerical value could be extracted for grey 
level, variance, run length, gradient and AR. In contrast, the co-occurrence parameter 
was partially affected at ROI areas of 15 and 30 pixels. The co-occurrence consists of 
11 parameters calculated in 5 pixels distance and 4 angles which yield 220 parameters 
as described previously (Section 3.2.2.3.1). Part of these parameters at ROI sizes of 
15 and 30 pixels gave 0 values.  The ability to extract numerical values of the wavelet 
parameter was achieved with ROI areas of 228 pixels and higher. In summary, wavelet 
transform texture parameter was the most sensitive to ROI area. Therefore, ROI area 
should be ≥ 228 pixels to extract numerical values for all texture parameters. 
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Table 3.33: Influence of ROI size on texture parameter features values. ROI size of 228 pixels and higher had no 
effect on the ability of MaZda software to extract complete numerical texture parameter values. Therefore, 228 
pixels was specified as the cut-off ROI size for extracting reliable texture parameters. Grey background represents 
the affected texture parameters by ROI Area.  

 
   

3.3.3.4 Influence of ROI Position on Texture Parameters 
Tables 3.34 – 3.39 present values of extracted texture parameters for circular ROIs of 
equal area (228 pixels) at five different positions within the boundary of the medial 
head of the gastrocnemius muscle. At each ROI position, five images were acquired 
at the same scan speed and pixel size were analysed; mean was calculated for all the 
texture parameters.  
 
Table 3.34: Extracted texture parameter values for ROI position 1 within the boundary of the medial head of the 
gastrocnemius muscle on five repeated image acquisitions. 

 
 
 
 

Texture parameter 15 30 60 90 100 110 130 150 180 200 228
GL 71.07 71.33 71.57 71.42 71.34 71.25 71.31 71.21 71.17 71.29 71.45

Variance 7.26 10.56 12.88 11.27 10.64 10.68 10.43 11.15 10.81 10.52 10.75
Co-occurrence 98562.70 156197.37 213830.53 228066.95 216251.17 213182.04 230141.49 212197.97 205346.47 199540.34 203152.54

RL 72.23 133.76 233.92 321.93 356.24 384.35 461.33 525.88 631.14 692.69 781.02
Gradient 2095.40 1807.62 2823.31 2675.07 2566.84 2605.77 2701.80 2283.10 2156.10 2117.22 2080.86

AR 0.26 1.57 1.13 1.20 1.24 1.23 1.14 1.28 1.17 1.17 1.19
Wavelet 49610.28 44282.91 45467.79 45579.11 45414.89 44556.16 49748.62 45015.79 45256.16 45524.52 45614.30

ROI area (Pixels)

Image# 1 2 3 4 5
ROI Position Mean
GL 71.2864 67.8273 70.7409 69.3136 70.1182 69.8573
Variance 12.0407 10.0883 12.5556 13.1153 14.8133 12.5226
Co-occurrence 206968.9397 205412.8738 200273.3364 195775.7027 199334.9637 201553.1632
RL 775.9474 756.7336 779.0161 787.2574 775.8264 774.9562
Gragdient 1436.9627 1456.1689 1319.0063 1321.5365 1510.1074 1408.7564
AR 1.3114 1.4183 1.4954 1.5370 1.5141 1.4552
Wavelet 44441.5412 43333.3024 45230.7397 45700.9774 47957.4353 45332.7992

Texture Parameter

Red(1)
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Table 3.35: Extracted texture parameter values for ROI position 2 within the boundary of the medial head of the 
gastrocnemius muscle on five repeated image acquisitions. 

 
 
 
 
Table 3.36: Extracted texture parameter values for ROI position 3 within the boundary of the medial head of the 
gastrocnemius muscle on five repeated image acquisitions. 

 
 
 
 
Table 3.37: Extracted texture parameter values for ROI position 4 within the boundary of the medial head of the 
gastrocnemius muscle on five repeated image acquisitions. 

 
 

Image# 1 2 3 4 5
ROI position Mean
GL 70.1182 67.4636 70.8227 69.0955 70.2455 69.5491
Variance 13.5224 11.3669 11.0004 12.4591 12.5307 12.1759
Co-occurrence 204696.1831 211949.4571 216658.5899 223572.6201 219374.7825 215250.3265
RL 740.3402 757.2918 753.7756 740.7990 726.4914 743.7396
Gragdient 2105.7357 1603.8456 1749.1900 2008.7884 1542.0122 1801.9144
AR 1.5989 1.4513 1.4619 1.5088 1.4636 1.4969
Wavelet 45803.5847 46823.7815 48694.7018 48286.1329 48615.5765 47644.7555

Texture parameter

Green(2)

Image# 1 2 3 4 5
ROI position Mean

GL 71.5545 68.4182 71.7545 70.0455 70.8591 70.5264
Variance 11.0743 8.7888 6.6943 10.4343 9.0120 9.2007
Co-occurrence 211893.7084 207820.4846 188934.1264 227008.1973 220702.5646 211271.8162
RL 752.0832 731.1238 754.1585 744.9013 738.3293 744.1192
Gragdient 2089.8818 1599.2691 1774.6474 2135.8687 2322.4758 1984.4286
AR 1.0507 1.4326 1.1635 1.2594 1.1494 1.2111
Wavelet 45061.5311 44005.9401 47337.5390 45501.7751 48918.1324 46164.9835

Texture parameter

Blue (3)

Image# 1 2 3 4 5
ROI position Mean

GL 71.5500 68.4955 71.6273 70.6773 71.0136 70.6727
Variance 9.5202 6.6773 7.4429 9.3277 9.3953 8.4727
Co-occurrence 214111.8801 198381.6245 226765.1612 211993.4287 208845.8153 212019.5820
RL 752.7440 783.7042 746.5481 756.4806 748.9573 757.6868
Gragdient 1714.5019 1725.5470 2037.3698 1958.3463 1921.0780 1871.3686
AR 1.1264 0.9074 1.2148 1.0865 1.0896 1.0849
Wavelet 43975.7981 42265.7296 43821.8891 42078.0033 43430.1536 43114.3147

Texture parameter

Violet (4)
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Table 3.38: Extracted texture parameter values for ROI position 5 within the boundary of the medial head of the 
gastrocnemius muscle on five repeated image acquisitions. 

 
 
 
Table 3.39: Summary of the mean of the extracted texture parameters at the five positions within medial head of 
the gastrocnemius muscle on five repeated image acquisitions. 

 
Data was structured into repeated measures format as displayed into the above-
mentioned table (Table 3.39), with the numbers 1, 2,3,4 and 5 denoting the ROI 
positions, and the 9 texture parameters denoting the cases (i.e., the individual measures 
of texture analysis). Data was imported to the SPSS program specifying the repeats as 
the images. An overall test Repeated Measures ANOVA showed that there were no 
statistically significant differences between images on the overall mean of the texture 
measures combined, F (4,5) =1.213, wilks lambda= 0.508) denoting that the five 
images did not differ statistically when comparting their overall texture analysis (mean 
of the 9 measures within each image). Moreover , the test within  each of these (9) 
measures (i.e., within  each of the 9 texture parameters across the images) was also  
not  significantly different  between images, but the Mauchly's test of sphericity 
(assumption of equal error measurements across images ) was violated as such  the 
GreenHouse-Geisser  f-test is reported to adjust the degrees of freedom accordingly 
F(1.2, 9.8 )= 1.46, p= 0.263 ,  denoting that the nine texture parameters did not change 
significantly as we move from position 1 to 5  . To clarify this difference for example 
as we change the position of ROI from 1 to 5 the GL did not change significantly, and 

Image# 1 2 3 4 5
ROI position Mean

GL 69.8000 67.1818 70.4955 69.0182 69.9773 69.2945
Variance 15.6509 12.2397 17.5227 16.0088 16.5586 15.5961
Co-occurrence 223705.1864 223527.6776 206172.4639 224894.9966 205584.1439 216776.8937
RL 728.3339 721.6074 760.8853 761.0444 759.1642 746.2071
Gragdient 2141.2984 1659.2152 1465.1496 1922.1868 1606.7812 1758.9263
AR 1.5024 1.5532 1.4691 1.5056 1.4041 1.4869
Wavelet 53621.9698 50906.2198 49081.3341 44809.8709 47804.1811 49244.7152

Cayan(5)

Texture parameter

1 2 3 4 5
GL 69.8573 69.5491 70.5264 70.6727 69.2945
Variance 12.5226 12.1759 9.2007 8.4727 15.5961
Co-occurrence 201553.1632 215250.3265 211271.8162 212019.5820 216776.8937
RL 774.9562 743.7396 744.1192 757.6868 746.2071
Gradient 1408.7564 1801.9144 1984.4286 1871.3686 1758.9263
AR 1.4552 1.4969 1.2111 1.0849 1.4869
Wavelet 45332.7992 47644.7555 46164.9835 43114.3147 49244.7152

Texture parameter

ROI Position #
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the same applies to the rest of the eight texture parameters. To sum up, the five regions 
of interest did not differ significantly on their overall texture value. Also, they did not 
differ significantly on their specific nine texture values. 
 

3.3.3.5 Influence of ROI Area on Extracted Texture Parameters  
Tables 3.40 - 3.46 represent values of the extracted texture parameters of the 
gastrocnemius muscle with reduction of ROI size. The analysis was performed on five 
acquired images with scan speed of 10 mm/s and pixel size of 0.8 mm. 
Table 3.40: Extracted texture parameters from an irregular ROI of area 1700 pixels within the gastrocnemius 
muscle for five repeated image acquisitions with the same scan speed and pixel size. The mean value was calculated 
in each case. 

 
 
 
Table 3.41: Extracted texture parameters from an irregular ROI of area 1424 pixels within the gastrocnemius 
muscle for five repeated image acquisitions with the same scan speed and pixel size. The mean value was calculated 
in each case.  

 

Image # 1 2 3 4 5
ROI size (Pixel) 1700 1700 1700 1700 1700 Mean
GL 71.0471 68.1118 71.3071 69.7494 70.6206 70.1672
Variance 11.4966 9.3663 10.4704 11.3737 11.6155 10.8645
Co-occurrence 200611.9206 198737.2893 195477.0304 217257.9938 219508.4401 206318.5348
RL 5619.2428 5525.2421 5670.5436 5673.1375 5622.8282 5622.1988
Gradient 1717.0473 1519.1571 1541.8661 1861.6090 1868.2248 1701.5809
AR 1.4340 1.4602 1.4127 1.4469 1.3907 1.4289
Wavelet 43520.3334 43755.8028 41831.8835 46141.9551 44844.6589 44018.9267

Texture Parameter

Image # 1 2 3 4 5
ROI size (Pixel) 1424 1424 1424 1424 1424 Mean
GL 70.9867 68.0140 71.2374 69.6784 70.5765 70.0986
Variance 12.0160 9.5223 10.7793 11.6423 11.9323 11.1785
Co-occurrence 206861.6600 203585.4829 199117.6145 223119.8335 224709.1500 211478.7482
RL 4720.9928 4634.0196 4780.7525 4752.8629 4722.9252 4722.3106
Gradient 1753.5419 1582.5897 1518.9400 1950.9673 1886.2113 1738.4500
AR 1.4435 1.5002 1.4587 1.4734 1.3955 1.4543
Wavelet 44358.4486 44556.3075 42662.2404 46793.6283 45673.9140 44808.9078

Texture Parameter
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Table 3.42: Extracted texture parameters from an irregular ROI of area 1159 pixels within the gastrocnemius 
muscle for five repeated image acquisitions with the same scan speed and pixel size. The mean value was calculated 
in each case. 

 
 
Table 3.43: Extracted texture parameters from an irregular ROI of area 906 pixels within the gastrocnemius 
muscle for five repeated image acquisitions with the same scan speed and pixel size. The mean value was calculated 
in each case. 

 
 
Table 3.44: Extracted texture parameters from an irregular ROI of area 665 pixels within the gastrocnemius 
muscle for five repeated image acquisitions with the same scan speed and pixel size. The mean value was calculated 
in each case.  

 
 
 

Image # 1 2 3 4 5
ROI size (Pixel) 1159 1159 1159 1159 1159 Mean
GL 70.8939 67.9154 71.1079 69.6143 70.4443 69.9952
Variance 12.1691 10.0515 11.0988 12.1869 12.2866 11.5586
Co-occurrence 209990.7014 212468.6769 202932.9128 211236.0928 213365.6488 209998.8065
RL 3823.0789 3777.6594 3863.3592 3882.5466 3825.9483 3834.5185
Gradient 1779.8029 1656.2826 1521.7663 1808.9979 1792.1832 1711.8066
AR 1.4314 1.4874 1.4669 1.4662 1.4155 1.4535
Wavelet 45128.5385 45193.5628 42850.9137 42861.1504 50653.9816 45337.6294

Texture Parameter

Image # 1 2 3 4 5
ROI size (Pixel) 906 906 906 906 906 Mean
GL 70.7219 67.8642 71.0475 69.4923 70.3830 69.9018
Variance 12.2825 10.2564 11.1821 12.6451 12.7507 11.8233
Co-occurrence 211353.9845 216179.3343 203405.4175 203068.4493 200383.8834 206878.2138
RL 3029.3309 3058.0189 3018.0722 3055.6652 2981.7810 3028.5736
Gradient 1814.9861 1676.7991 1571.6254 1783.3399 1700.6388 1709.4779
AR 1.4481 1.5257 1.4793 1.4545 1.4386 1.4693
Wavelet 45280.3626 45454.8474 43130.3928 47540.1652 46412.8891 45563.7314

Texture Parameter

Image # 1 2 3 4 5
ROI size (Pixel) 665 665 665 665 665 Mean
GL 70.5308 67.7098 70.9293 69.3850 70.2436 69.7597
Variance 12.9107 10.7714 11.7559 13.0819 13.4925 12.4025
Co-occurrence 201307.4651 207398.9472 197913.4356 210999.9350 207333.6918 204990.6950
RL 2252.3198 2257.1977 2213.3436 2243.9062 2191.1375 2231.5810
Gradient 1803.5379 1534.6229 1466.2409 1850.2946 1716.3413 1674.2075
AR 1.4374 1.5642 1.4948 1.5109 1.4680 1.4950
Wavelet 49030.0284 49878.8334 47265.2246 47380.1953 46491.7310 48009.2025

Texture Parameter
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Table 3.45: Extracted texture parameters from an irregular ROI of area 439 pixels within the gastrocnemius 
muscle for five repeated image acquisitions with the same scan speed and pixel size. The mean value was calculated 
in each case. 

 
 
 
 
Table 3.46: Extracted texture parameters from an irregular ROI of area 233 pixels within the gastrocnemius 
muscle for five repeated image acquisitions with the same scan speed and pixel size. The mean value was calculated 
in each case. 

 

Image # 1 2 3 4 5
ROI size (Pixel) 439 439 439 439 439 Mean
GL 70.3531 67.5581 70.7745 69.1595 70.0911 69.5872
Variance 13.0803 11.0758 12.2931 14.3254 14.1375 12.9824
Co-occurrence 203210.4344 212233.9137 203230.7851 205801.6437 196852.3205 204265.8195
RL 1491.5281 1504.8016 1478.2594 1474.6098 1459.2378 1481.6874
Gradient 2057.1447 1523.2805 1539.8764 1814.6325 1596.0671 1706.2003
AR 1.4516 1.6012 1.4873 1.4308 1.4383 1.4818
Wavelet 48885.1844 49694.0476 46864.8685 50650.4230 49915.9197 49202.0887

Texture Parameter

Image # 1 2 3 4 5
ROI Size (Pixel) 233 233 233 233 233 Mean
GL 70.1717 67.4421 70.5408 68.8927 69.7597 69.3614
Variance 14.1165 12.0836 12.4543 14.4906 13.5903 13.3471
Co-occurrence 182918.3753 208921.8803 179067.9313 195370.3362 194105.3743 192076.7795
RL 848.6518 827.8921 821.1446 834.3687 780.5985 822.5311
Gradient 2224.7679 1695.4330 1586.8914 1588.8831 1456.8677 1710.5686
AR 1.5511 1.6470 1.6313 1.3445 1.4768 1.5301
Wavelet 51366.7309 49018.1268 50544.9697 49760.5458 53290.8809 50796.2508

Texture Parameter
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Figures 3.46-3.52 show the effect of the erosion of ROI area on the mean value of 
extracted texture parameters. Data have been analysed using linear regression and 
correlation. Mostly affected were the GL, variance, RL and wavelet texture 
parameters. Figure 3.49 depicts the strong linear relationship between ROI area 
reduction and the extracted value of the RL matrix. 

 
Figure 3.46: The fitted regression line between the GL values of the 7 ROI eroded area. 

. 

 
Figure 3.47: The fitted regression line between the variance values of the 7 ROI eroded areas. 
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Figure 3.48: The fitted regression line between the co-occurrence matrix values of the 7 eroded ROI areas. 
 

 
Figure 3.49: The fitted regression line between the RL matrix values of the 7 eroded ROI areas. 
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Figure 3.50: The fitted regression line between the gradient values of the 7 eroded ROI areas. 

 

 
Figure 3.51: The fitted regression line between the AR model values of the 7 eroded ROI areas. 
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Figure 3.52: The fitted regression line between the wavelet transform values of the 7 eroded ROI areas. 

  
Table 3.47 summarises the level of influence of the ROI area erosion on extracted 
texture parameters.                
  Table 3.47: Correlation coefficient and P values of influence of ROI area reduction on extracted texture   

parameters (significant at p<0.05). 
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Texture Parameter R² r P value Significance
GL 0.9420 0.9706 0.0003 Yes (<0.05)
Variance 0.9756 0.9877 0.00003 Yes 
Co-occurrence 0.5333 0.7303 0.0623 No (>0.05)
RL 1.0000 1.0000 <0.00001 Yes
Gradient 0.1002 0.3165 0.4892 No
AR 0.8662 0.9307 0.0023 Yes
Wavelet 0.9150 0.9566 0.0007 Yes
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3.3.4 Discussion 
The capability of the pQCT scanner to acquire calf muscle images was demonstrated 
in this study. Findings were consistent with those shown in the previous section, which 
concluded that noise decreased as pixel size increased. Data from Table 3.48 have 
shown that at a pixel size of 0.8 mm, noise (as expressed by variance) was reduced 
compared to a pixel size of 0.2 mm. Table 3.48 below summarises the variance results 
for comparison.            

Table 3.48: Comparison between variance values at different scan speed and pixel sizes. 

 
 
This study demonstrated that the position of ROI within a normal gastrocnemius 
medial head had no significant effect reflecting homogeneity of muscle tissue as 
concluded by Repeated Measures ANOVA test.  
The values of %CV for the computed texture parameters reflected the consistency 
which were less than 10 %. Nevertheless, %CV for grey level at a pixel size of 0.8 
mm was lower than at a 0.2 mm pixel size. For improved image, spatial resolution, a 
smaller pixel size should be selected. However, the achievement of a higher resolution 
image necessitates a slower scan speed to maintain SNR. The criterion for choosing 
scan speed was comfort of the subject (and hence the acceptability of the scan 
procedure by the subject). At a scan speed of 3 mm/s, the acquisition time was 14.2 
minutes, whereas at 10 mm/s it was only 4.6 minutes. Therefore, the scan speed should 
be relatively fast to avoid artefacts due to subject movement. A need exists for a 
balance between the scan speed and the resolution of images. Therefore, the selection 
of the scan parameters of 0.8 mm and 10 mm/s for pixel size and scan speed 
respectively was validated. A windowing approach yielded clear calf muscle borders 
as illustrated in Figures 3.30 -3.32. This study provided evidence that MaZda software 

Pixel Size= 0.2 mm Pixel Size= 0.8 mm
3 65.7864 9.7176

10 134.7613 8.6525
30 224.8515 20.3114

Variance

Scan Speed (mm/s)
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was capable to compute texture parameters at small ROI area (15 and 30 pixels) for 
all texture parameters except co-occurrence matrix and wavelet transform. This study 
(Table 3.33) revealed that ROI area of 200 pixels was the cut-off size for the wavelet 
transform parameter and, to a lesser extent, for the co-occurrence matrix parameter. 
Therefore, the number of pixels in the ROI must be at least 200 to obtain numerical 
statistical values for the majority of the texture parameters.  
This study demonstrated the extent of effect that area of ROI can have for computed 
texture parameters. addition, the ROI must be kept constant in area during texture 
parameters extraction as GL, variance, RL and wavelet transform were significantly 
affected. In other words, the ROI area must be kept constant when extracting these 
parameters. In a study conducted by Herlidou et al, (1999) and Harrison et al (2008) 
implemented texture parameters for clinical diagnosis application failed to 
acknowledge the effect of variation of ROI area on the RL matrix. In contrast, a study 
conducted by Sikio et al, (2015) found that RL matrix parameter was linearly 
dependent on ROI area. Furthermore, according to a study by Lerski et al, ( 2015), for 
homogeneous texture RL has long pixel runs (i.e. a large value), while for rough 
texture, RL has short runs (i.e. a small value).Therefore, RL could be a good texture 
parameter to assess tissue homogeneity. In this study, it was found the values of RL at 
the five circular ROI positions were all of the order of 750 pixels (746, 757, 744, 743 
and 774), which indicates gastrocnemius muscle tissue homogeneity. ROI position has 
no significant effect (p=0.263) on extracted texture parameters as shown in section 
3.3.3.4  

3.3.5 Conclusion 
The main findings of this study can be summarised as follows: 

1. A pQCT scanner was capable of acquiring calf muscle images. 
2. The pQCT image was capable of distinguishing calf muscle 

boundaries. 
3. Image windowing was deemed a useful approach for identifying 

muscle boundaries. 
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4. The optimal healthy subject image was acquired at a pixel size of 0.8 
mm and scan speed of 10 mm/sec. This represented a balance between 
the scan time and acceptable image noise.   

5. Texture parameters, including GL (grey level mean), co-occurrence 
matrix, RL (run length) matrix, AR model, and wavelet transform 
showed a CV of less than 10% during repeated measurement. 

6. ROI area was shown to exert an influence on texture parameters. 
7. It was determined that the number of pixels in the ROI must be greater 

than 200 pixels for all texture parameters in order to obtain numerical 
statistical values. 

8. It was determined that ROI area must be kept constant as GL, variance, 
run length and wavelet were significantly affected by variations in ROI 
area. 

9. ROI position within the boundary of the medial head of the 
gastrocnemius muscle has no significant effect on extracted texture 
parameters. 

10. RL parameter might be used as muscle tissue homogeneity index. 
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3.4 Image Scaling  
3.4.1 Introduction 

Part of the image acquisition protocol was to save pQCT acquired images in CSV 
format (32-bit) and then to transform them to yield 8-bit BMP images in order to 
extract texture features with the MaZda package software. As mentioned previously 
(section 3.1), water possesses similar x-ray attenuation properties to soft tissue (such 
as muscle) but has no texture. Nevertheless, Table 3.49 below depicts a noticeable 
difference between the GL (grey level) value of water in the phantom (Table 3.30 with 
ROI area = 200 pixels) and muscle in a healthy subject (Table 3.46 with ROI area = 
228 pixels). This prompted an investigation into the reasons for this difference. 
Furthermore, to confirm that first order statistics were performed adequately for the 
two studies (water phantom and single healthy subject). 
Table 3.49: Similarities and differences between water phantom and single healthy subject in terms of extracted 
texture parameters. 

Texture 
Parameter 

Heathy Subject Water Phantom Status 

GL 70.8868 224.9300 Difference 

Co-occurrence 215217.7147 202665.6491 Similarity 

RL 764.8182 764.9448 Similarity 

Gradient 1582.9411 1815.0150 Similarity 

AR 1.1605 1.1407 Similarity 

Wavelet 44110.8169 52210.7765 Similarity 
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3.4.2 Materials and Methods 
It was hypothesised that during image format transfer from 32-bit to 8-bit, transferred 
images were scaled to the densest material within the images (bone for the human 
subject and water for the phantom). Two additional software packages were used to 
confirm that the first order (GL) texture parameter produced by MaZda was adequately 
performed; These two additional software packages were ImageJ and Medical Image 
Processing, Analysis and Visualisation (MIPAV). Validation was performed on 
acquired images of the human subject and water phantom in 8-bit BMP format. The 
pQCT scan acquisition parameters were a pixel size of 0.8 mm and a scan speed of 10 
mm/s. ROIs were drawn in exactly the same position within the image using the three 
software packages. The water phantom image ROI areas were 1080 and 98 pixels. The 
human subject image ROI areas were 336, 200 and 98 pixels. GL texture values 
produced by MaZda and MIPAV software were extracted from both images for 
comparison.  
To simulate the effect of bone as a high-density material within the image, an 
aluminum (Al) rod was inserted into the water phantom. Two water GL values were 
measured in identical images of different format (CSV and BMP) after immersing the 
Al rod into the water phantom and re-scanning at a pixel size of 0.8 mm and scan 
speed of 10 mm/s, as shown in Figure 3.53. The Al rod simulates bone as a high-
density material embedded in muscle. Images were imported into ImageJ software in 
CSV format, and ROIs were defined on which grey level was measured. Images were 
saved in 8-bit BMP format, ROIs were defined and then texture parameters extracted. 

 
Figure 3.53: Water filled phantom loaded with an aluminium (Al) rod to simulate high dense material (bone). 

Al rod  
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As the ImageJ software package is limited to specific image texture parameters (GL, 
variance, skewness and kurtosis) the MaZda software package was used with DICOM 
image format to investigate the image scaling effect on the remaining texture 
parameters (co-occurrence matrix, RL matrix, gradient, AR model and wavelet 
transform). To accomplish this task, the CSV image format was transformed to 
DICOM using the MATLAB software package. MATLAB stands for Matrix 
Laboratory. It was written to allow easy manipulation of matrices. MATLAB is an 
advanced performance language for technical computing. It includes computation, 
visualisation  and programming (Caltech 2005). 
Images were loaded to MATLAB and saved into 8-bit DICOM (. dcm) format. MaZda 
software was used to perform texture analysis. ROI areas were 546, 200 and 98 pixels 
and be ROIs were located within the gastrocnemius medial head muscle boundary.  
The human subject muscle grey level was measured using two image formats, CSV 
and 8-bit BMP as shown in Figure 3.54. In order to quantify the scaling factor, 
maximum pixel values in the entire right leg subject images were measured in both 
formats. The scaling factor was subsequently calculated as the ratio of the maximum 
pixel values in the CSV and 8-bit BMP formats.  
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Figure 3.54: Flow chart of acquired image processing using ImageJ, MATLAB, and MaZda software packages. 
3.4.3 Results 
  3.4.3.1 Texture Analysis Software Validation 

Confirmation that first order statistics (GL) was extracted adequately are shown in 
Table 3.50 which depicts GL values of the heathy subject images measured by three 
different software packages (MIPAV, ImageJ, and MaZda). In addition, Table 3.51 
depicts GL values of a water phantom image that were measured by the same three 
software packages. 
Table 3.50: Grey level (GL) values for 3 ROIs drawn within the gastrocnemius muscle image (BMP), measured by 
three different software packages. 

 GL 
ROI area (pixels) MIPAV ImageJ MaZda 

546 68.2020 68.2527 69.7880 
200 70.7150 70.5556 71.7150 
98 70.8469 70.8469 71.8470 
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Table 3.51: Grey level (GL) values for 2 ROIs drawn within the water phantom image (BMP), measured by three 
different software packages. 

 GL 
ROI area (pixels) MIPAV ImageJ MaZda 

1080 222.9639 222.9639 222.9600 
378 222.8122 222.8122 222.8100 

 

  3.4.3.2 Scaling Factor Magnitude 
Table 3.52 depicts grey level values measured by ImageJ software for the water 
phantom image with immersed aluminum rod in CSV and BMP image format. The 
magnitude of the calculated scaling factor that results from image transfer into 
different format for the water phantom images was 3.89.  
 
 
 
Table 3.52: Grey level (GL) values of ROI drawn within water phantom images (CSV and BMP) with immersed 
aluminum (Al) rod measured by ImageJ software. 

 GL 
ROI area size (pixels) CSV BMP 

378 218.03439 56.00529 
 

Table 3.53 depicts scaling magnitude for the single healthy subject with pixel sizes of 
0.2 and 0.8 mm and scan speeds of 3, 10 and 30 mm/s. 
Table 3.53: Scaling factor magnitudes of maximum pixel values of subject images at various scan speeds and pixel 
sizes. 

Scan Speed 
(mm/s) 

Pixel Size (mm) Max Pixel value 
(CSV) 

Max Pixel 
value (BMP) 

Scaling factor 
magnitude 

 
3 

0.2 1211 255 4.75 
0.8 967 255 3.80 

 
10 

0.2 1442 255 5.66 
0.8 957 255 3.75 

 
30 

0.2 1786 255 7.00 
0.8 997 255 3.91 
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Table 3.54 shows a comparison between the same extracted texture parameters from 
images of the same subject in different image formats (BMP and DICOM). There were 
no consequences of image scaling on co-occurrence matrix, RL matrix, gradient, AR 
model and wavelet transform. 
Table 3.54: High-order statistics texture parameters for pQCT acquired image of one subject computed in two 
different image formats.                       Co-occurrence RL Gradient AR Wavelet 

BMP Image Format (8 Bits) 171608.34 733.18 1352.83 1.27 47800.74 
DICOM Image Format (8 Bits) 171645.21 734.94 1351.71 1.25 47795.51 

       3.4.4 Discussion 
The validation of the software used for texture analysis (MaZda) demonstrated its 
power for texture parameter computation. The results of the re-scan of the water 
phantom with an aluminium rod, and computation of the acquired image grey level 
parameter in two image formats (CSV and BMP) illustrated the problem of rescaling 
after saving images in an 8-bit BMP format. During the process of saving the calf 
muscle-acquired images, grey level values were scaled to the highest density material 
(bone) within the image, as shown in Table 3.52 and Table 3.53. Despite the effect of 
image scaling on GL, investigation of co-occurrence matrix, RL matrix, gradient, AR 
model and wavelet transform values in DICOM format showed no effect as illustrated 
in Table 3.56. In general, for medical diagnostic imaging, information is restricted to 
higher-order texture parameters which are not affected by scaling as a result of 
implementation of normalisation process (see section 3.2.2.3.1). This finding validated 
the recommendation of Materka (2004), who claimed that some higher-order texture 
parameters, especially those derived from the co-occurrence matrix, are correlated 
with first-order texture parameters. To avoid this unwanted phenomenon, he 
recommended implementation of a normalisation process before texture extraction.  
Thus, in this project the normalisation process was a standard step before extraction 
texture parameters. Aggarwal et, al. (2012) claimed that first order statistical 
parameters provide far less number of relevant and distinguishable feature in 
comparison to wavelet transform was implemented as one of higher order texture 
feature in this project. BMP image format was implemented rather than the DICOM 
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format, which is used in a networked environment and applied to the integration of 
medical devices distributed geographically (Rosslyn, 2011). 

       3.4.5 Conclusion 
Key conclusions drawn from this work include: 
 The MaZda texture analysis software was shown to be an accurate and reliable tool 

when transforming acquired images from CSV to 8-bit BMP format. 
 The texture parameter most affected by image format transformation was grey 

level (GL). 
 First order texture parameters should be excluded for characterisation of acquired 

images and so BMP image format maybe used. 
 The texture parameters not affected by image transformation were the second order 

ones: co-occurrence matrix, RL matrix, gradient, AR model and wavelet 
transform. 

 

3.4.6 Summary 
The effect of pQCT scanner settings on extracted texture parameters was investigated 
with the aim of defining a specific scan setting (pixel size and scan speed) for 
acquisition of calf muscle images. It was determined that a pixel size of 0.8 mm and 
scan speed of 10 mm/s were the optimal settings. Furthermore, the ability of the pQCT 
scanner to identify the calf muscle border was evaluated, and an image windowing 
technique was applied to highlight the muscle borders.  Small ROI sizes were shown 
to have a limited effect on the extracted texture parameters. RL matrix was linearly 
related to ROI size. The texture analysis software (MaZda) was validated against other 
two software packages and found to be accurate for assessment of grey level. The 
effect of image format transformation from the CSV to BMP format was examined, 
and it was concluded that the only affected texture parameter was GL parameter.   
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Chapter 4 MR and pQCT Imaging of the Gastrocnemius 
Muscle in Healthy Volunteers 

4.1 Introduction 
At present, the gold-standard imaging technique for the assessment of muscle injury 
in athletes is Magnetic Resonance Imaging (MRI). However, this technique requires 
specialised and expensive equipment and facilities.  Peripheral Quantitative Computed 
Tomography (pQCT) utilises a small-bore, low-dose x-ray scanner. Portable and less 
costly than MRI, pQCT has become an established technique for three-dimensional 
measurement of bone parameters (Engelke et al., 2008) and a valuable tool for 
evaluating soft tissue components such as muscle and fat (Blew et al., 2014). 
Furthermore, previous research has applied pQCT in the quantification of the 
relationship between muscle quality and bone density (Farr et al., 2011; Macdonald et 
al., 2005). 
The purpose of the investigation was to assess pQCT as a method for muscle 
characterisation in relation to MRI and to investigate the variability of muscle texture 
parameters. During this work, it became apparent that subject movement was a 
problem to be taken into account. 

4.2 Materials and Methods 
4.2.1 Subjects 
Five healthy volunteers (group A) (mean age ± SD, 28.4 ± 5.6 years, range 19 to 32 
years), and seven additional healthy volunteers (group B) (mean age ±SD, 29.3 ± 5.6 
years, range 19 to 37 years) were recruited to this study. The initial group of five was 
imaged by both MRI and pQCT. The seven additional volunteers were subjected to 
pQCT scanning only. 
Data were used for a variety of purposes including the definition of reference ranges 
for extracted texture parameters. To test the pQCT reference ranges, all 12 subjects 
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were combined and divided into two groups: a training group (Group C with 8 
subjects) and a test group (Group D with 4 subjects) as illustrated in Figure 4.1. 
Informed consent was obtained from all participants followed by an explanation of the 
aims, protocols, and procedures of the study (see Appendix C). All volunteers declared 
that they were of normal health with no prior history of musculoskeletal disorders. For 
MRI scanning, the completion of a safety questionnaire was required of group A (the 
initial five volunteers). The study was approved by the ethics committee of the Cardiff 
University School of Engineering. 
 

 
Figure 4.1: Methodology of defining reference ranges for both modalities (left) and defining and testing pQCT 
reference ranges (right). 
 

4.2.2 Magnetic Resonance Image Acquisition Protocol 
MRI is a sensitive modality for imaging soft tissue. Cross-sectional right and left leg 
scans were acquired by MRI (GE Medical Systems, Signa,1.5 T) in group A (five 
healthy young volunteers), at 66% of the distance from the medial malleolus to the 
medial condyle of the tibia. This distance represents the maximum calf diameter 
(Masani K et al., 2014). An oil capsule was attached to each participant’s leg to 
identify the position of the cross-sectional slice during analysis, as shown in Figure 
4.2. 
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The MRI protocol was as follows: 
1. Each subject was asked to complete an MRI procedure safety questionnaire (see 

Appendix C). 
2. The distance of the medial malleolus to the medial condyle of the tibia was 

measured and labelled by a skin marker as shown in Figure 4.2. 
3. An oil capsule was placed at the skin mark to identify the slice location during 

MRI. 
4. An MRI proton density weighted image protocol with a slice thickness of 5 mm 

was used to acquire images (TE = 34 ms, TR = 3600 ms, FOV = 20 cm, and matrix 
= 512 x 512 pixels). 

5. Images were saved and exported for further analysis. 
 

 
                        

Figure 4.2: Marking of subject’s leg to identify the maximum diameter of calf muscle and the specific slice location. 

4.2.3 Peripheral Quantitative Computed Tomography Image Acquisition 
Protocol 

Cross-sectional right and left leg scans were acquired using pQCT (Stratec XL 2000, 
Stratec Medizintechnik GmbH, Pforzheim, Germany) from five healthy volunteers, 
soon after MRI. The images were acquired at 66% of the distance from the medial 
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malleolus to the medial condyle of the tibia, as described above. pQCT images were 
acquired specifically with a pixel size of 0.8 mm and scan speed of 10 mm/s. 

4.2.4 Image Transfer  
MR images were retrieved using generic GE Medical Systems software. Specific 
slices as marked by oil capsules were exported as 8-bit Microsoft Windows Bitmap 
(BMP) images. pQCT images were saved and exported in CSV image format, and 
analysed as described in Chapter 3. 

4.2.5 Image Texture Analysis 
Image windowing was implemented to identify muscle boundaries as described in 
Chapter 3. This also revealed motion artefacts with greater clarity and these were 
assessed visually by three independent observers. 
Equal sized circular regions of interest (ROIs) of area 228 pixels were defined within 
the gastrocnemius muscle medial head boundary in the images obtained from all 
subjects. ROI size was chosen as a result of the analysis in Chapter 3 (Figure 4.10). 
Additional free hand-drawn ROIs covering the whole GM medial head were defined 
for all acquired images as shown in Figure 4.3. The same texture parameters as applied 
to the previous study of the water phantom and healthy volunteer images (Chapter 3) 
were extracted using the MaZda software package. First order texture parameters were 
excluded from analysis as they are affected by scaling.  These data were used for a 
variety of purposes including: determining the variation of texture parameters within 
the group of healthy subjects, establishing reference ranges for the texture parameters, 
comparing mean values between right and left legs and comparing mean values 
between MRI and pQCT. 
The influence of ROI position on extracted texture features for the MRI scans was 
investigated by placing circular ROIs of equal size (area 350 pixels) at 5 different 
locations within the medial head of the gastrocnemius muscle (Figure 4.35). 



152 
 

   
Figure 4.3: Example of ROI area covering the whole gastrocnemius muscle (GM) medial head for pQCT (left and 
centre) and MRI (right) images. For pQCT image windowing was used to display the GM boundary. 
 

4.2.6 Data Analysis 
Mean and standard deviations were calculated for each texture parameter. The 
coefficient of variation (CV) was calculated to evaluate the variation in texture 
parameters of the gastrocnemius muscle among the healthy subjects. The CV is 
defined as the ratio of the standard deviation and the overall mean, expressed as a 
percentage (as described in Chapter 3). 
For each texture feature, a 95% reference range was calculated. This is the interval 
between (mean + 1.96SD) and (mean - 1.96SD), into which 95% of the normal subject 
data was expected to fall 
Several statistical tests were performed to evaluate the findings of this study. Due to 
the small sample size of the study, a Shapiro-Wilk test was used to test the normality 
of the data (p > 0.05 was considered a normal distribution). A paired t-test and one-
way ANOVA test were used for normally distributed data. The Kruskal-Wallis test 
was used for non-normally distributed data (p values of less than 0.05 were considered 
statistically significant). Both tests were used to determine whether a significant 
difference existed between texture parameters for the right and left legs and for pQCT 
and MRI acquired images. A One-way Repeated Measures ANOVA (RM-ANOVA) 
was used to analyse whether ROI position exerts an influence on extracted texture 
parameters values. 
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For the assessment of motion artefacts on image quality, an inter-class correlation 
coefficient test (ICC) was used to assess consistency between the scores of the three 
observers. The ICC value ranges from 0 to 1, with values closer to 1 representing 
stronger consistency. A high ICC with  a value greater than 0.75 was considered as 
excellent consistency; an ICC value of 0.74-0.60 indicates good consistency; between 
0.59-0.40 shows fair consistency and below 0.4 indicates poor consistency (Faul et al., 
1999; Rosner, 2010). SPSS v20 (SPSS Inc., Chicago, Illinois, USA) was used for the 
statistical analysis. 
 

4.3 Results of Image and Texture Analysis 
4.3.1 MRI Images 
Figure 4.4 shows transverse MRI images at the maximum diameter of the calf muscle 
for the five subjects in Group A. Image labelling indicates the subject number (1-5) 
and the laterality of the leg (left L or right R). Muscle boundaries can be readily 
distinguished. 
 

              

1R 

Oil capsule 

1L 
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                  Figure 4.4: MRI images of the right (R) and left (L) lower legs in a group of five subjects (Group A). 
 

4.3.2 pQCT Images  
4.3.2.1 Group A Healthy Subjects 
Figure 4.5 shows images acquired by pQCT for the five healthy subjects in Group A. 
Again, image labelling indicates the subject number (1-5) and the laterality of the leg 
(left L or right R). In selected images, such as 1L, 3R, and 3L, subject movement can 
be observed as streak lines. Figure 4.6 shows the histogram for one image; this is a 
graph that indicates the number of pixels which have particular intensities (pixel 
values or grey levels). The distribution includes all tissues and materials (muscle, fat, 
bone and air) over an intensity range of 0 to 255. 
 

5R 5L 



156 
 

       

       
 
 
 

1R 1L 

2R 2L 



157 
 

       
 

      
 
 
 

4R 4L 

3R 3L 



158 
 

          
 
Figure 4.5: pQCT images of the right (R) and left (L) lower legs in a group of five subjects (Group A). 
 

                            
Figure 4.6: Histogram of the right leg pQCT image for one subject in Group A, showing the distribution of 
individual intensities (pixel values in the range 0-255). 
 
4.3.2.1.1 pQCT Image Windowing 
Figure 4.7 displays images acquired by the pQCT scanner of all five subjects in Group 
A following implementation of an image windowing procedure. The applicable image 

5R 5L 
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histogram is represented in Figure 4.8. The purpose of image windowing is to identify 
muscle boundaries, which facilitates ROI definition (as described in Chapter 3). 
Muscle boundaries appear in images the images for subjects 1, 3, and 4. However, the 
procedure also highlights the motions artefacts (streaks). 

       

      

1R 1L 
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          Figure 4.7: Windowed pQCT images for the five healthy subjects in Group A. 

 
                       Figure 4.8: Histogram of the right leg pQCT image for one subject in Group A after windowing. 
 

4.3.2.2 Group B Healthy Subjects 
Figure 4.9 shows pQCT images acquired from the additional seven healthly volunteers 
with windowing applied. In each case, the window was adjusted until the 
gastrocnemious muscle border was as clear and distinguishable as possible. 

5L 5R 
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                  Figure 4.9: Windowed pQCT images for the seven healthy subjects in Group B. 
 
4.3.3 Texture Analysis of pQCT and MRI Images with a Circular ROI in 

the Gastrocnemius Muscle Medial Head 
Circular ROI placement within the medial head of the gastrocnemius muscle boundary 
in pQCT and MRI images is shown in Figure 4.10. Tables 4.1-4.6 display values of 
the second order statistical parameters (co-occurrence matrix, run length matrix, 
gradient, autoregressive model and wavelet transform) for both legs of the subjects in 
Group A (five subjects) and Group C (training group with eight subjects). As 
previously described, the total of twelve healthy subjects were divided into two 
groups: a training group of eight subjects (Group C) and test group of four subjects 
(Group D). 
These data were extracted from identical circular ROIs of 228 pixels in area for all 
texture parameters for both imaging modalities and both legs. The mean, standard 
deviation and %CV of all texture parameters were calculated and also reference 
ranges. Values of %CV for pQCT and MRI texture parameters are presented in Figures 
4.11-4.16. In general, the data are inconsistent although %CV values for the co-
occurrence matrix and wavelet transform are consistently less than 10%, suggesting 
that these parameters vary less than the others within a normal population. 

12L 12R 
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Figure 4.10: pQCT (left) and MRI (right) images with a circular ROI drawn within the gastrocnemius muscle 
boundary. 
 

Table 4.1: Mean, standard deviation (SD), coefficient of variation (%CV) and reference range (95% CI) for pQCT 
images of the right leg (Group A) with a circular ROI of area 228 pixels in the medial head of the 
gastrocnemius muscle. 

Texture parameter Mean SD %CV Reference Range 
Co-occurrence 196963.7300 11279.0600 5.7300 174856.7724 219070.6876 

Run length 742.1000 23.3800 3.1500 696.2752 787.9248 
Gradient 1437.2900 92.9000 6.4600 1255.2060 1619.3740 
AR model 1.2100 0.0400 2.9900 1.1316 1.2884 
Wavelet 46324.3100 1619.4900 3.5000 43150.1096 49498.5104 

 

 
Figure 4.11: The coefficient of variation (%CV) for group A (five subjects) right leg images (pQCT). 
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Table 4.2: Mean, standard deviation (SD), coefficient of variation (%CV) and reference range (95% CI) for pQCT 
images of the left leg (Group A) with a circular ROI of area 228 pixels in the medial head of the gastrocnemius 
muscle. 
Texture parameter Mean SD %CV Reference Range 

Co-occurrence 216838.1900 17318.5700 7.9869 182893.7928 250782.5872 
Run length 725.9600 29.3700 4.0457 668.3948 783.5252 
Gradient 1451.7800 125.2900 8.6301 1206.2116 1697.3484 
AR model 1.3600 0.1700 12.5000 1.0268 1.6932 
Wavelet 44929.3900 2973.6700 6.6185 39100.9968 50757.7832 

 
 
 
 

                
Figure 4.12: The coefficient of variation (%CV) for group A (five subjects) left leg images (pQCT). 
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Table 4.3: Mean, standard deviation (SD), coefficient of variation (%CV) and reference range (95% CI) for MRI 
images of the right leg (Group A) with a circular ROI of area 228 pixels in the medial head of the gastrocnemius 
muscle. 
Texture parameter Mean SD %CV Reference Range 
Co-occurrence matrix 226362.3400 8126.7100 3.5900 210433.9884 242290.6916 

Run length 372.8800 67.8700 18.2000 239.8548 505.9052 
Gradient 1774.7600 50.8600 2.8700 1675.0744 1874.4456 
AR model 1.1200 0.1400 12.9300 0.8456 1.3944 
Wavelet 45355.9700 640.4000 1.4100 44100.7860 46611.1540 

 
 
 

             
Figure 4.13: The coefficient of variation (%CV) for group A (five subjects) right leg (MRI) images. 
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Table 4.4: Mean, standard deviation (SD), coefficient of variation (%CV) and reference range (95% CI) for MRI 
images of the left leg (Group A) with a circular ROI of area 228 pixels in the medial head of the gastrocnemius 
muscle. 

Texture parameter Mean SD %CV Reference Range 
Co-occurrence matrix 226097.7790 9103.9614 4.0266 208254.0148 243941.5433 

Run length 382.8073 59.7379 15.6052 265.7211 499.8935 
Gradient  1735.8640 25.6558 1.4780 1685.5785 1786.1495 
AR model 1.1383 0.4825 42.3888 0.1926 2.0841 

Wavelet transform 45848.8720 481.1888 1.0495 44905.7419 46792.0021 
 
 
 

 
Figure 4.14: The coefficient of variation (%CV) for group A (five subjects) left leg (group A) (MRI) images. 

 
Table 4.5: Mean, standard deviation (SD), coefficient of variation (%CV) and reference range (95% CI) for pQCT 
images of the right leg (Group C) with a circular ROI of area 228 pixels in the medial head of the gastrocnemius 
muscle. 
Texture parameter Mean SD %CV Reference Range 
Co-occurrence matrix 212515.9123 20253.6044 9.5304 172818.8477 252212.9768 

RL matrix 736.1938 17.1806 2.3337 702.5197 769.8678 
Gradient  1748.2420 451.1100 25.8036 864.0664 2632.4177 
AR model 1.2952 0.0655 5.0537 1.1669 1.4235 

Wavelet transform 45646.2343 2492.5020 5.4605 40760.9304 50531.5381 
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Figure 4.15: The coefficient of variation (%CV) for Group C (training group - eight subjects) right leg images 
(pQCT). 
 
 
 
Table 4.6: Mean, standard deviation (SD), coefficient of variation (%CV) and reference range (95% CI) for pQCT 
images of the left leg (Group C) with a circular ROI of area 228 pixels in the medial head of the gastrocnemius 
muscle. 
Texture parameter Mean SD %CV Reference Range 
Co-occurrence matrix 208295.2124 17942.0194 8.6137 173128.8544 243461.5704 

RL matrix 736.0037 28.1001 3.8179 680.9276 791.0799 
Gradient  1786.5818 356.0717 19.9303 1088.6814 2484.4823 
AR model 1.3592 0.1559 11.4730 1.0535 1.6648 

Wavelet transform 45018.4939 2633.0791 5.8489 39857.6588 50179.3289 
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Figure 4.16: The coefficient of variation (%CV) for Group C (training group - eight subjects) left leg images 
(pQCT). 
 
 
 
The pQCT texture parameter reference ranges obtained with a circular ROI (area 228 
pixels) for the right and left legs of the training group (Group C) are collated in Table 
4.7. 
Table 4.7: Texture feature reference ranges (95% CI) for Group C (training group - 8 subjects) for pQCT images 
of right leg (RL) and left (LL) leg with a circular ROI of area 228 pixels in the medial head of the gastrocnemius 
muscle. 

 Reference Range 
 (pQCT RL) (pQCT LL) 
Texture parameter Lower Upper Lower Upper 
Co-occurrence matrix 172818.8477 252212.9768 173128.8544 243461.5704 
RL matrix 702.5197 769.8678 680.9276 791.0799 
Gradient 864.0664 2632.4177 1088.6814 2484.4823 
AR model 1.1669 1.4235 1.0535 1.6648 
Wavelet 40760.9304 50531.5381 39857.6588 50179.3289 

 
Tables 4.8 and 4.9 depict the results of right and left leg texture analysis 
respectively for pQCT images of the test group of four subjects (Group D). 
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Table 4.8: Extracted texture parameters for right leg pQCT images of the 4 individual subjects in Group D (test 
group) obtained with a circular ROI of area 228 pixels. 

 Subject 
Texture parameter 1 2 3 4 

Co-occurrence matrix 220664.8761 225876.9573 192754.4182 205257.5653 
RL matrix 723.3666 738.7687 739.0697 704.7604 
Gradient 1860.2494 1859.9365 1516.7123 1723.4202 
AR model 1.2275 1.1818 1.2254 1.1779 

Wavelet transform 41912.7624 41628.6811 42793.8804 46761.6444 
 
Table 4.9: Extracted texture parameters for left leg pQCT images of the 4 individual subjects in Group D (test 
group) obtained with a circular ROI of area 228 pixels. 

 Subject 
Texture parameter 1 2 3 4 

Co-occurrence matrix 227127.6080 194684.0637 211149.9928 224270.2726 
RL matrix 744.4180 736.8252 775.2872 697.9693 
Gradient 1912.4925 1580.3136 1805.6740 2447.1970 
AR model 1.4694 1.2877 1.3640 1.0700 

Wavelet transform 42553.2838 46957.3226 43366.7547 40437.3186 
 
The results from the test group of 4 normal subjects (Group D) were used to validate 
the reference ranges derivded from the training group of 8 normal subjects (Group C). 
Figures 4.17-4.26 show individual values of texture parameters for the 4 subjects in 
the test group plotted against a background of reference ranges (95% CIs) derived 
from the 8 subjects in the training group. Texture features were extracted with a 
circular ROI placed in the medial head of the gastrocnemius muscle. All test results 
fell within the reference ranges. 
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Figure 4.18: Right leg gastrocnemius muscle pQCT RL matrix values of 4 individuals in the test group 
(Group D) against a reference range derived from the training group of eight subjects (Group C) with a 
circular ROI of area 228 pixels. 

Figure 4.17: Right leg gastrocnemius muscle pQCT co-occurrence matrix values of 4 individuals in the test 
group (Group D) against a reference range derived from the training group of eight subjects (Group C) with 
a circular ROI of area 228 pixels. 



173 
 

 
 
 

 
 
 
  

Figure 4.19: Right leg gastrocnemius muscle pQCT gradient values of 4 individuals in the test group (Group D) 
against a reference range derived from the training group of eight subjects (Group C) with a circular ROI of area 
228 pixels. 

Figure 4.20: Right leg gastrocnemius muscle pQCT AR model values of 4 individuals in the test group (Group D) 
against a reference range derived from the training group of eight subjects (Group C) with a circular ROI of area 
228 pixels. 
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Figure 4.21: Right leg gastrocnemius muscle pQCT wavelet transform values of 4 individuals in the test group 
(Group D) against a reference range derived from the training group of eight subjects (Group C) with a circular 
ROI of area 228 pixels. 
 

 
Figure 4.22: Left leg gastrocnemius muscle pQCT co-occurrence matrix values of 4 individuals in the test group 
(Group D) against a reference range derived from the training group of eight subjects (Group C) with a circular 
ROI of area 228 pixels. 
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Figure 4.23: Left leg gastrocnemius muscle pQCT RL matrix values of 4 individuals in the test group (Group D) 
against a reference range derived from the training group of eight subjects (Group C) with a circular ROI of area 
228 pixels. 
 

 
Figure 4.24: Left leg gastrocnemius muscle pQCT gradient values of 4 individuals in the test group (Group D) 
against a reference range derived from the training group of eight subjects (Group C) with a circular ROI of area 
228 pixels). 
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Figure 4.26: Left leg gastrocnemius muscle pQCT wavelet transform values of 4 individuals in the test group 
(Group D) against a reference range derived from the training group of eight subjects (Group C) with a circular 
ROI of area 228 pixels. 
  

Figure 4.25: Left leg gastrocnemius muscle pQCT AR model values of 4 individuals in the test group (Group 
D) against a reference range derived from the training group of eight subjects (Group C) with a circular 
ROI of area 228 pixels. 
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4.3.4 Texture Analysis of MRI and pQCT Images of the Whole 
Gastrocnemius Muscle Medial Head 

The MRI and pQCT images were also analysed using a ROI that covered the whole of 
the medial head of the gastrocnemius muscle, but avoiding the muscle boundary, as 
shown in Figure 4.3. The reference ranges (95% CIs) calculated for the initial group 
of 5 healthy subjects (Group A) are shown in Tables 4.10 and 4.11. The RL matrix 
ranges for both modalities were very large because this texture feature is dependent 
on ROI area (Chapter 3). 
 
Table 4.10: Texture parameter reference ranges (95% CIs) for MRI images of the right leg (RL) and left leg 

(LL) in Group A (5 subjects) for ROI covering the whole of the gastrocnemius muscle medial head. 
 Reference Range 

 (MRI RL) (MRI LL) 
Texture parameter Lower Upper Lower Upper 
Co-occurrence matrix 136783.53 238761.00 166800.45 207498.69 
RL matrix 1212.99 16028.89 2673.64 16091.57 
Gradient 1472.13 2721.97 463.05 3354.89 
AR model 1.42 1.66 1.24 1.80 
Wavelet transform 46851.35 50251.37 43014.86 49774.03 

 
 
Table 4.11: Texture parameter reference ranges (95% CIs) for pQCT images of the right leg (RL) and left leg 

(LL) in Group A (5 subjects) for ROI covering the whole of the gastrocnemius muscle medial head. 
 Reference Range 

 (pQCT RL) (pQCT LL) 
Texture parameter Lower Upper Lower Upper 
Co-occurrence matrix 156340.41 192884.92 152688.57 221574.40 
RL matrix 9162.93 19599.62 8189.10 23165.63 
Gradient 841.97 1345.86 671.71 1660.70 
AR model 1.26 1.33 1.25 1.44 
Wavelet transform 43299.19 46546.55 40266.71 52195.50 

 
As for the analysis with the circular ROI, pQCT reference ranges were also calculated 
for the training group of 8 subjects (Group C); these are presented in Table 4.12. 
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Table 4.12: Texture parameter reference ranges (95% CIs) for pQCT images of the right leg (RL) and left leg (LL) 
for the training group of 8 subjects (Group C) with a ROI covering the whole of the gastrocnemius muscle medial 
head. 

 Reference Range 
 (pQCT RL) (pQCT LL) 

Texture parameter Lower Upper Lower Upper 
Co-occurrence matrix 158753.8442 190275.6748 155360.4633 211758.5826 
RL matrix 9003.2953 18173.1211 7777.7862 21128.3846 
Gradient 875.0054 1308.9046 720.3963 1557.3276 
AR model 1.2031 1.3402 1.1671 1.4373 
Wavelet transform 43193.7518 46522.7376 40212.5438 50612.9296 
 
Table 4.13 depicts the results of texture analysis in the test group of four 
subjects (Group D) for right leg pQCT images with a ROI covering the whole of 
the medial head of the gastrocnemius muscle. In Figures 4.27-4.30, the texture 
parameters are plotted against a background of the corresponding reference range 
(95% CI) derived from the training group of eight (Group C). There were large 
variations in muscle area and therefore in ROI area. Thus RL matrix values were 
excluded because of their dependence on ROI size. All the remaining test texture 
feature values fell within the reference ranges. 
 
Table 4.13: Extracted texture parameters for pQCT images of the right leg (RL) for the test group of 4 subjects 
(Group D) with a ROI covering the whole of the gastrocnemius muscle medial head. 

 Subject RL 
Texture parameter 1 2 3 4 

Co-occurrence matrix 164277.9813 184612.1735 181624.8234 178136.4129 
RL matrix 9371.1839 12843.7439 14258.8439 13578.8103 
Gradient 1072.7342 1178.9727 1273.531 1092.6732 
AR model 1.261 1.2381 1.2328 1.2078 

Wavelet transform     
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Figure 4.27: Right leg gastrocnemius muscle pQCT co-occurrence matrix values of four individuals in the test 
group (Group D) against a reference range derived from the training group of eight subjects (Group C) with a 
ROI over the whole of the medial head. 

 
Figure 4.28: Right leg gastrocnemius muscle pQCT gradient values of four individuals in the test group (Group 
D) against a reference range derived from the training group of eight subjects (Group C) with a ROI over the 
whole of the medial head. 
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.  
Figure 4.29: Right leg gastrocnemius muscle pQCT AR model values of four individuals in the test group (Group 
D) against a reference range derived from the training group of eight subjects (Group C) with a ROI over the 
whole of the medial head. 

 
Figure 4.30: Right leg gastrocnemius muscle pQCT wavelet transform values of four individuals in the test group 
(Group D) against a reference range derived from the training group of eight subjects (Group C) with a ROI over 
the whole of the medial head. 
 
Table 4.14 and Figures 4.31-4.34 show the corresponding data for texture 
parameter values extracted from left leg pQCT images with a ROI covering the 
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whole muscle. Again, RL marix was not plotted and all the remaining test texture 
feature values fell within the reference ranges. 
 
Table 4.14: Extracted texture parameters for pQCT images of the left leg (LL) for the test group of 4 subjects 
(Group D) with a ROI covering the whole of the gastrocnemius muscle medial head. 

 Subject LL 
Texture parameter 1 2 3 4 

Co-occurrence matrix 171267.1784 184612.1735 184478.1426 171842.5633 
RL matrix 9783.2987 11765.4581 13926.1274 12837.8115 
Gradient 1146.9586 1265.9182 1169.924 1178.3091 
AR model 1.2580 1.2172 1.2781 1.2258 

Wavelet transform 44654.8148 45012.7581 43691.9654 44192.7139 
 
 

 
Figure 4.31: Left leg gastrocnemius muscle pQCT co-occurrence matrix values of four individuals in the test group 
(Group D) against a reference range derived from the training group of eight subjects (Group C) with a ROI over 
the whole of the medial head. 
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Figure 4.32: Left leg gastrocnemius muscle pQCT gradient values of four individuals in the test group (Group D) 
against a reference range derived from the training group of eight subjects (Group C) with a ROI over the whole 
of the medial head. 
 

 
Figure 4.33: Left leg gastrocnemius muscle pQCT AR model values of four individuals in the test group (Group 
D) against a reference range derived from the training group of eight subjects (Group C) with a ROI over the 
whole of the medial head. 
 



183 
 

 
Figure 4.34: Left leg gastrocnemius muscle pQCT wavelet transform values of four individuals in the test group 
(Group D) against a reference range derived from the training group of eight subjects (Group C) with a ROI over 
the whole of the medial head. 
 
As part of the process of validating the reference ranges, the data for the entire group 
of 12 subjects were analysed to look for (1) dependence of texture values on leg 
laterality (left or right) and (2) variation in overall texture and in values of individual 
texture parameters across the subjects, bearing in mind the small sample size. It was 
found that leg laterality had no significant effect on overall texture when tested across 
subjects (p = 0.456) by regarding the leg as a within-person variable. 
For variation across subjects, a Repeated Measures ANOVA showed that the 
sphericity assumption was violated; Mauchly's test was significant (p<0.001). 
Therefore the Greenhouse-Geisser adjusted F statistic was calculated. This showed 
that the overall mean texture parameters did not differ significantly between the 
subjects, (F(1.2,5.9) = 2.93, p = 0.138) and that the interaction between subjects and 
individual texture parameters was not significant as well (F(4.7,5.9) = 1.2 , p = 0.240). 
Furthermore, values of the overall mean of the five texture parameters did not show 
any significant linear (incremental incrase) or cubic (rise and fall) variation between 
subjects regarded as repeated units of analysis (F(1,5) = 0.999, p = 0.366 and F(1,5) = 
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0.211, p = 0.922 respectively). Thus these 12 subjects did not differ in their overall 
texture features and none of their individual texture parameters values differed 
significantly from the mean value. 
As previously described, an initial group of five healthy subjects (group A) were 
recruited for pQCT scanning, followed by seven additional healthy subjects (Group 
B). Subsequently, eight of the total of 12 subjects were assigned to a training group 
(Group C) and the remaining four to a test group (Group D) as shown in Figure 4.1. 
As a result of the validation of reference ranges derived for the training group with 
texture values from the test group, data from all 12 subjects were combined to give a 
more reliable set of reference ranges as shown in Table 4.15. 
 
 
Table 4.15: Texture parameter reference ranges (95% CIs) for pQCT images of the right leg (RL) and left leg (LL) 
for the combined group of 12 subjects (Group A and Group B) with a ROI covering the whole of the gastrocnemius 
muscle medial head. 

 Reference Range 
 (pQCT RL) (pQCT LL) 
Texture parameter Lower Upper Lower Upper 
Co-occurrence 
matrix 176811.16 230041.17 177885.41 226839.22 
RL matrix 691.49 752.52 682.14 766.77 
Gradient 1020.86 2117.21 1149.19 2189.17 
AR model 1.04 3.31 1.07 3.45 
Wavelet transform 39722.50 47476.44 39226.75 47124.76 

 

4.3.5 Comparison of Texture Parameters extracted from Left and Right 
Leg Images acquired by MRI and pQCT 

Tables 4.16 and 4.17 show paired t-test p-values for differences in texture features 
between images of the left and right legs acquired by both modalities for the five 
subjects in Group A. A circular ROI of area 228 pixels was used for texture analysis 
Section 4.3.3). No significant difference in texture parameter values between the left 
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and right medial gastrocnemius muscle were found in either modality, indicating that 
the muscle of the right leg has similar texture to that of the left leg. 
 
Table 4.16: Paired t-test p-values for second order texture parameters extracted from MRI images of the left and 
right legs in a group of 5 healthy subjects (Group A) (p < 0.05 was considered significant). 

 
 
 
 
Table 4.17: Paired t-test p-values for second order texture parameters extracted from pQCT images of the left and 
right legs in a group of 5 healthy subjects (Group A) (p < 0.05 was considered significant) 

 
 
 
 
Table 4.18 depicts p-values for differences between left and right texture features in 
the combined group of 12 subjects (Group A and Group B) for pQCT images only. 
None of the differences is significant. 
 
Table 4.18: p-values for second order texture parameters extracted from pQCT images of the left and right legs in 
a group of 12 healthy subjects (Group A and Group B combined) (p < 0.05 was considered significant). 

 
 
 
 

Texture Feature MRI (L & R) p value Statistical Test 
Co-occurrence matrix 0.971 

Paired t-test 
Run length 0.785 
Gradient 0.977 
AR model 0.925 
Wavelet  0.926 

Texture Feature pQCT (L & R) p value Statistical Test 
Co-occurrence matrix 0.137 

Paired t-test 
Run length 0.355 
Gradient 0.215 
AR model 0.164 
Wavelet  0.271 

Texture Feature pQCT (L & R) Statistical Test 
Co-occurrence matrix 0.754 Paired t-test 
RL matrix 0.324 Paired t-test 
Gradient 0.544 Paired t-test 
AR model 0.054 Wilcoxon test 
Wavelet  0.689 Paired t-test 
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4.4 Influence of ROI Position on Texture Parameters Extracted from MRI 
Images 

It has already been shown in Chapter 3 that the position of a circular ROI within the 
gastrocnemius muscle has no significant effect on extracted texture parameters for 
pQCT images. This indicated the homogeneity of muscle tissue. The investigation was 
repeated for right and left leg MRI images using circular ROIs of equal area (350 
pixels) placed at five different positions within the boundary of the gastrocnemius 
muscle medial head as shown in Figure 4.35. Data for the five healthy volunteers in 
Group A were used and the ROIs were placed in corresponding anatomical locations. 
Mean values of the second order texture parameters for the right and left leg are shown 
in Table 4.19 and Table 4.20 respectively. 

 
Figure 4.35: MRI image with five circular ROIs at different positions within the gastrocnemius 
muscle. 
 
Table 4.19: Mean texture parameter values for 5 circular ROI positions within the gastrocnemius 
muscle on right leg MRI images of 5 healthy subjects (Group A). 

Texture Parameter Position 1 Position 2 Position 3 Position 4 Position 5 
Co-occurrence matrix 226072.7800 225024.6100 212500.8400 219723.4156 223519.2461 

RL matrix 422.4900 420.4500 390.0700 421.5234 415.7352 
Gradient 1821.7300 1739.7300 1749.1900 1762.244 1743.9014 
AR model 1.2300 1.2000 1.1000 1.1814 1.1246 
Wavelet 43532.1600 46182.5200 44374.2600 45215.2634 44743.1843 
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Table 4.20: Mean texture parameter values for 5 circular ROI positions within the gastrocnemius 
muscle on left leg MRI images of 5 healthy subjects (Group A). 
Texture Parameter Position 1 Position 2 Position 3 Position 4 Position 5 
Co-occurrence matrix 214392.9700 221010.6300 240120.1300 225279.1643 239602.7185 
RL matrix 292.5200 309.7900 317.5100 314.7159 301.915 
Gradient 1767.2400 1733.7300 1693.7100 1762.0914 1723.6173 
AR model 1.2500 1.2400 1.2400 1.2095 1.2342 
Wavelet transform 44935.7200 45792.3600 46238.2700 46023.9163 45928.2753 
 
One-way repeated measures ANOVA (RM-ANOVA) was used to analyse the data for 
each leg separately in order to test whether any individual texture parameter (co-
occurrence matrix, RL matrix, gradient, AR model and wavelet transform) or the 
overall mean of the five texture parameters varied significantly across the five ROI 
positions. 
For both the right and left legs, RM-ANOVA showed that the overall mean texture 
value of the five parameters did not differ significantly across the five regions of 
interest (F (1,4) = 1, Wilks’ Lambda = 0.2, p = 0.626). 
When evaluating within-texture parameters (i.e. individual texture values), Mauchly's 
test of sphericity showed that the assumption of equality of error across the regions 
was violated for both legs (p <0.05). Therefore, the Greenhouse-Geisser F test was 
used to adjust the degrees of freedom due to this violation. This test showed that ROI 
position had no significant effect on individual texture parameters values; for the right 
leg F (1.06,4.245) = 1.051, p=0.366, and for the left leg F(1.001,4.006) = 1.083, 
p=0.357. This suggests that for both legs, the tissue in the medial head of the 
gastrocnemius muscle is homogenous on MRI images. 
 
4.5 Assessment of Subject Movement in pQCT Imaging 
The combination of a scan acquisition time of several minutes and a somewhat 
uncomfortable leg clamp means that pQCT images are prone to image degradation as 



188 
 

a result of motion artefacts. Indeed, subject movement represents a practical challenge 
for satisfactory tomographic imaging with pQCT. This movement could be as subtle 
as twitches or as obvious as a result of a sneeze or cough. 
To investigate this further, a qualitative assessement of subject movement on image 
quality was performed. Each pQCT image for subjects in Group A and Group B was 
visually inspected and independently rated by three observers. The assessement was 
based on the presence of motion artefacts, and the degree to which they affect image 
quality. The presence of the degree of motion artefact was scored on a scale of 1 to 5, 
with a score of 1 representing a scan with no movement, 2 very minimal, 3 minimal, 
4 moderate and 5 extreme movement. An inter-class correlation coefficient test (ICC) 
was used to assess consistency between the scores made by the three observers. 
 

4.5.1 Reducing Subject Movement 
For a single subject, a knee brace was used in conjunction with the leg clamp to reduce 
subject movement, as shown in Figure 4.37. The image acquisition protocol was 
identical to the original protocol previously described. A circular ROI area of 228 
pixels was defined in the same position with the gastrocnemius muscle boundary using 
the MaZda software ROI auto-load feature to assess the effect of the knee brace on 
computed texture parameters. Texture parameters for the defined ROI were computed 
as described in Chapter 3. Images acquired with the knee brace were also subjectively 
assessed by the same three observers. 
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A     B  

C  D   
Figure 4.36: A: Fitting the knee brace to the subject’s leg. B: Positioning the subject’s leg in the scanner gantry 
for the pQCT scan. C and D: Different views of subject leg positioning. 
 
4.5.2 Results of Assessment of pQCT Images 
4.5.2.1 Observers Qualitative Evaluation 
Tables 4.21-4.24 present the results of the subjective assessment of movement made 
by the three observers. These demonstrate the high visual impact of motion artefacts. 
For the right and left leg images of the five subjects in Group A, the ICC values were 
0.882 and 0.920 respectively. For the seven subjects in Group B, the ICC values were 
0.901 and 0.909. These data reflect a strong agreement between the scores of all of the 
observers. 
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Table 4.21: Subject movement scores and inter-correlation coefficient (ICC) for right leg pQCT images of Group 
A subjects. 

Right Leg 
Image No. Observer 1 Observer 2 Observer 3 Mean ICC 

1 2 4 4 3.3  
 

0.882* 
 

2 2 4 3 3.0 
3 3 4 3 3.3 
4 2 3 2 2.3 
5 2 3 3 2.6 

      *This reflects strong agreement between all the scores. 

 
 
Table 4.22: Subject movement scores and inter-correlation coefficient (ICC) for left leg pQCT images of Group 
A subjects. 

Left Leg 
Image No. Observer 1 Observer 2 Observer 3 Mean ICC 

1 3 3 3 3.0  
 

0.920* 
 

2 4 2 2 2.6 
3 3 2 2 2.3 
4 2 2 2 2.0 
5 3 2 3 2.6 

         *Indicates strong agreement between all the scores. 

 
 
Table 4.23: Subject movement scores and inter-correlation coefficient (ICC) for right leg pQCT images of Group 
B subjects. 

Right Leg 
Image No. Observer 1 Observer 2 Observer 3 Mean ICC 

6 4 4 4 4.0  
 
 

0.901* 
7 4 5 5 4.6 
8 3 3 3 3.0 
9 5 5 5 5.0 
10 2 2 2 2.0 
11 4 5 5 4.6 
12 2 3 3 2.6 

        *Indicates strong agreement between all the scores. 
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Table 4.24: Subject movement scores and inter-correlation coefficient (ICC) for left leg pQCT images of Group 
B subjects. 

Left Leg 
Image No. Observer 1 Observer 2 Observer 3 Mean ICC 

6 3 2 2 2.3  
 
 

0.901* 
7 5 5 5 5.0 
8 2 3 3 2.6 
9 5 5 5 5.0 
10 3 3 3 3.0 
11 4 3 3 3.3 
12 2 2 2 2.0 

            *Indicates strong agreement between all the scores. 

 
4.5.2.2 Effect of Knee Brace on Single Subject pQCT Images and Texture 
The images shown in Figure 4.37 represent re-scans of a single subject (subject 
number 1 from Group A) with the same scan speed and pixel size but using the knee 
brace to reduce the influence of subject movement on image quality. These may be 
compared with images 1R and 1L in Figures 4.5 and 4.7. The reduction in artefact is 
apparent. 
The images in Figure 4.37 were also scored by the three observers through visual 
inspction as before. The results shown in Table 4.25 indicate that the knee brace was 
very efficient in reducing subject movement. The previous mean scores were 3.3 and 
3.0 for the right and left leg respectively (image number 1 in Tables 4.21 and 4.22). 
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Figure 4.37: pQCT images of the right and left leg of subject number 1 in Group A with the use of a leg brace and 
the application of image windowing. 
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Table 4.25: Subject movement scores and inter-correlation coefficient (ICC) for pQCT images of one individual 
with the use of a knee brace. 

Limb Site Observer 1 Observer 2 Observer 3 Mean ICC 
Right leg 1 1 1 1.0  

1 Left leg 1 1 1 1.0 
The pQCT images of the single subject with the knee brace were analysed for texture 
using a ROI of the same size and position as was used for the original images acquired 
without the knee brace. 
Tables 4.26 and 4.27 show the values of the second order texture parameters with and 
without the knee brace for the right and left leg respectively. The tables also show the 
mean values and percentage differences; the latter are illustrated in Figures 4.38 and 
4.39. 
 
Table 4.26: Comparison of pQCT texture parameters the right leg of a single subject with and without 
a knee brace (KB), with mean values and % difference. 

Texture 
Parameter Right Leg with KB Right Leg without KB Mean % Difference 
Co-occurrence 
Matrix 211291.08 200634.75 205962.91 -5.17 
RL Matrix 782.69 727.42 755.05 -7.32 
Gradient 1451.00 1388.07 1419.54 -4.43 
AR Model 1.11 1.23 1.17 9.92 
Wavelet 45047.91 46138.53 45593.22 2.39 
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Figure 4.38: The % difference between pQCT texture parameter values of the right leg of a single 
subject without and with a knee brace. 
 
 
 
Table 4.27: Comparison of pQCT texture parameters of the left leg of a single subject with 
and without a knee brace (KB), with mean values and % difference. 
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Texture Parameter Left Leg with KB Left Leg without KB Mean % Difference 
Co-occurrence Matrix 196670.40 232007.17 214338.78 16.49 
RL matrix 770.79 741.42 756.11 -3.88 
Gradient 1383.76 1423.69 1403.72 2.84 
AR model 1.10 1.09 1.10 -0.59 
Wavelet 46243.48 42553.28 44398.38 -8.31 
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Figure 4.39: The % difference between pQCT texture parameter values of the left leg of a single subject 
without and with a knee brace. 
 
 
Tables 4.28 and 4.29 show the values of the second order texture parameters for the 
right and left leg without and with the knee brace. Again, the tables also show the 
mean values and percentage differences with the latter being illustrated in Figures 4.40 
and 4.41. 
 
Table 4.28: Comparison of pQCT texture parameters of the right and left legs of a single subject without 
a knee brace (KB), with mean values and % difference. 

Texture Parameter Right Leg without KB Left Leg without KB Mean 
% 

Difference 
Co-occurrence 

Matrix 200634.75 232007.17 216320.96 14.50 
RL Matrix 727.42 741.42 734.42 1.91 
Gradient 1388.07 1423.69 1405.88 2.53 

AR Model 1.23 1.09 1.16 -11.57 
Wavelet 46138.53 42553.28 44345.91 -8.08 

 
 

16.49

-3.88

2.84

-0.59
-8.31-10.00

-5.00
0.00
5.00

10.00
15.00
20.00

co-occurrence RL Matrix Gradient AR Model Wavelet

% D
iffe

ren
ce

Texture parameters

% Difference



196 
 

 
Figure 4.40: The % difference between pQCT texture parameter values right and left legs of a single 
subject without knee brace. 
 
Table 4.29: Comparison of pQCT texture parameters of the right and left legs of a single subject with 
a knee brace (KB), with mean values and % difference. 

Texture Parameter Right Leg with KB Left Leg with KB Mean % Difference 
Co-occurrence Matrix 211291.08 196670.40 203980.74 -7.17 
RL Matrix 782.69 770.79 776.74 -1.53 
Gradient 1451.00 1383.76 1417.38 -4.74 
AR Model 1.11 1.10 1.11 -1.07 
Wavelet 45047.91 46243.48 45645.70 2.62 

     
Figure 4.41: The % difference between mean texture parameter values of the right and left 
legs of a single subject with a knee brace. 
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Tables 4.26-4.27 and Figures 4.38-4.39 show that the use of the knee brace can result 
in differences of up to 17% in the values of extracted second order texture indices for 
the right and left gastrocnemius muscle. Furthermore, Tables 4.28-29 and Figures 
4.40-4.41 indicate that, in general, the percent difference in these values between the 
right and left leg are smaller with the use of the knee brace. Since significant inter-leg 
differences would not be expected in a healthy normal subject, this suggests that the 
use of the leg brace has a beneficial effect in improving the consistency of texture 
indices extracted from pQCT images of the gastrocnemius muscle. This is likely to be 
due to the reduction in image streaking caused by subject motion as shown in Figure 
4.37 (compared with Figures 4.5 and 4.7) and the data in Table 4.25. 
 

4.6 Comparison of Extracted Texture Parameters for the pQCT and MRI 
modalities 

The mean values of the second order texture parameters for the initial five healthy 
subjects (Group A) were compared to assess whether pQCT could be used as a direct 
substitute for MRI as regards characterisation of the medial head of the gastrocnemius 
muscle. Images were acquired as described in Sections 4.2.2 and 4.2.3 and texture 
parameters were extracted with a circular ROI of area 228 pixels in corresponding 
positions on the right and left legs (section 4.3.3 and Figure 4.10). Since it was found 
that there were no significant differences between texture parameters of the right and 
left legs for both modalities (Section 4.3.5), the data for the two legs were combined. 
The mean value, standard deviation and 95% confidence interval (of the mean) for the 
two groups of ten images are shown in Table 4.30. 
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Table 4.30: Mean value, standard deviation (SD) and 95% confidence interval for the five second order texture 
parameters extracted from ten combined images of the right and left legs for both pQCT and MRI using a circular 
ROI. 

Texture Parameter Mean SD 
95% Confidence Interval 

Lower  Upper  
Co-occurrence matrix pQCT 206900.900 5473.206 194519.647 219282.153 

MRI 226230.100 2573.117 220409.304 232050.896 
RL matrix pQCT 734.000 8.369 715.067 752.933 

MRI 377.900 19.146 334.588 421.212 
Gradient pQCT 1444.500 32.926 1370.016 1518.984 

MRI 1755.300 13.695 1724.319 1786.281 
AR model pQCT 1.200 0.133 0.898 1.502 

MRI 1.000 0.149 0.663 1.337 
Wavelet transform pQCT 45626.800 750.805 43928.360 47325.240 

MRI 45602.300 187.807 45177.450 46027.150 
 
A one-way repeated measures ANOVA was used after transposing the data to suit the 
analysis. This showed that the overall mean of the five texture parameters differed 
significantly between the pQCT and MRI: F (5,5) = 86.34, Wilks’ Lambda = 0.011, 
p<0.001. To determine which specific individual texture parameters differed between 
the modalities, a post-hoc pairwise comparison test was conducted with Bonferroni 
adjustment to the p-values, with p < 0.05 being regarded as significant (Table 4.31). 
The post-hoc pairwise comparisons showed that the following parameters differed 
significantly: co-occurrence matrix (mean difference = -19329.2, p = 0.012 indicating 
that the pQCT value was less than that for MRI); RL matrix parameter (mean 
difference = 356.1, p<0.001 indicating that the pQCT value was greater) and gradient 
(mean difference = - 0.310), p<0.001 indications that the pQCT value was less). On 
the other hand, there were no significant differences in the mean values of the AR 
model texture parameter (p = 0.343) and the wavelet transform (p = 0.976), denoting 
the two last texture parameters (AR model and wavelet transform). Table 4.31 shows 
the mean difference, the standard deviation of the mean difference, the p value and the 
95% confidence interval for the mean difference. 
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Table 4.31: Pairwise comparisons of the mean values of second order texture parameters extracted for combined 
pQCT and MRI of the right and left legs using a circular ROI. 

Measure Mean Difference (pQCT- MRI) SD p† 
95% C.I mean difference. 
Lower Upper 

Co-occurrence 
matrix 

-19329.2* 6136.606 0.012 -33211.168 -5447.232 

RL matrix 356.100* 21.323 0.000 307.864 404.336 
Gradient -310.8* 34.379 0.000 -388.571 -233.029 
AR model 0.2 0.200 0.343 -0.252 0.652 
Wavelet transform 24.5 803.184 0.976 -1792.429 1841.429 
Based on estimated marginal means of texture parameters across the two modalities (pQCT vs. MRI). 
* The mean difference is significant with p < 0.05. 
† Bonferroni adjustment for multiple comparisons. 

 
 

4.7 Discussion  
The capability of the pQCT scanner to acquire calf muscle images as a compact, low 
radiation dose instrument was demonstrated in a total group of 12 healthy volunteers. 
Image windowing was shown to be very useful in identifying muscle borders, 
including those of the gastrocnemius muscle, before extracting texture parameters. 
However, subject movement during image acquisition resulted in motion artefacts in 
the form of streaks on the reconstructed images. Some minor movements such as 
muscle twitches could be unseen by the scanner operator while movement as a result 
of a sneeze or a cough was more obvious. The effects of these artefacts can severely 
compromise the quality of the acquired images and may necessitate a re-scan in order 
to obtain an image of acceptable quality. 
Five independent observers made a qualitative assessment of the effect of movement 
by visual inspection to determine image viability. This assesment confirmed that 
severe artefacts may be produced (Section 4.5.2.1) and the results agreed with those 
of a study conducted by Blew et al (2014). The use of a knee brace was proven 
effective in reducing subject movement and images acquired with the brace were rated 
as satisfactorly by the observers. In a single healthy volunteer, the use a knee brace 
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was shown to reduce the difference in values of extracted texture parameters between 
the right and left legs, suggesting greater consistency in texture analysis (Section 
4.5.2.2.). Fortunately, however, the image regions occupied by the medial head of the 
gastrocnemius muscle were relatively unaffected by the streak artefacts (Figures 4.7 
and 4.9) and so it was possible to undertake texture analysis of this muscle in images 
that were acquired without the use of a knee brace. 
With a circular ROI of fixed area, it was shown that ROI position within the medial 
head of the gastrocnemius muscle of a healthy volunteer does not have a significant 
effect on the five second order texture parameters extracted from MRI images (Section 
4.4). The same effect was found previously for pQCT images (Chapter 3). 
Furthermore, there was no significant difference in the mean values of texture features 
between the right and left legs of a group of healthy subjects for either MRI or pQCT 
(Section 4.3.5). The coefficient of variation (%CV) of the texture parameters within a 
healthy group was in the approximate range of 1-40% for MRI and 2-25% for pQCT 
(Figures 4.11-4.16), suggesting that texture values obtained from pQCT might show 
less normal variation that those for MRI. In addition, %CV values for the co-
occurrence matrix and wavelet transform were consistently less than 10%, suggesting 
that these parameters vary less than the others within a normal population. 
Texture indices were also extracted with free hand-drawn ROIs covering whole medial 
head of the gastrocnemius muscle, with care being taken to avoid the muscle boundary 
and stay within it. A larger hand-drawn ROI has an advantage over a relatively small 
circular ROI because it is more likely to include a site of muscle abnormality (such as 
an injury) when the latter’s exact location is not visually apparent. Unlike the circular 
ROIs, the areas of the hand-drawn ROIs varied from subject to subject according to 
the size of the muscle. 
Data from the original group of five healthy subjects (Group A) were used to produce 
MRI and pQCT reference ranges for the second order texture parameters in the right 
and left legs using both a small circular and a larger hand-drawn ROI. However, 
because of the small number of subjects, for pQCT the exercise was repeated for a 
larger training goup of eight subjects (Group C) and tested with the remaining four 
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healthy subjects (Group D). For the hand-drawn ROI, the RL matrix was exluded 
because its dependence on ROI area has already been demsonstrated (Chapter 3). In 
all cases, test values fell within the corresponding reference range (Figures 4.17-4.34). 
This suggests that defining reference ranges for texture parameters based on pQCT 
imaging of healthy subjects may be a useful approach to the characterisation of injury 
in the gastrocnemius muscle with this modality. This was reinforced by the finding 
that in the entire group of 12 healthy subjects, texture parameter values did not depend 
on leg laterality and that there was no significant difference between subjects in either 
the overall value of the texture parameters or in the values of individual parameters. 
However, to be effective, more reliable reference ranges derived from a much larger 
group of healthy subjects would be needed. 
For the five subjects in Group A, a comparison of MRI and pQCT image texture 
parameters demonstrated that there were no significant differences between the 
modalities for AR model and wavelet transform (Table 4.31). This suggests that pQCT 
could be used as a direct substitute for MRI as regards characterisation of the medial 
head of the gastrocnemius muscle with the application of these two texture indices. 
Again, this would need to be validated with a sample size that is much greater than 
that recruited in this project. 
 

4.8 Conclusion 
The main findings of this chapter may be summarised as follows: 

 The ability of the pQCT scanner to acquire calf muscle images and to 
identify muscle boundaries through image windowing was confirmed 
in a group of healthy volunteers. 

 Degradation of the quality of reconstructed pQCT images due to 
subject movement was commonly observed but the medial head of the 
gastrocnemius muscle was not severely affected by the resulting streak 
artefacts. 
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 Reconstructed pQCT images should be visually assessed for motion 
artefacts and the scan repeated if necessary. 

 Subject movement artefacts were reduced with the use of a knee brace 
but they remain a challenge that needs to be addressed. 

 No statistically significant differences were observed in the values of 
second order texture parameters between the right and left legs for both 
MRI and pQCT. 

 As for pQCT, the position of a circular ROI within the medial head of 
the gastrocnemius muscle had no significant effect on the values of 
texture parameters extracted from MRI images. 

 The co-occurrence matrix and wavelet transform seemed to show less 
relative variation (%CV) in a group of healthy subjects compared with 
the other three texture parameters. 

 It was possible to define reference ranges for second order texture 
parameters for normal gastrocnemius muscle and these may be useful 
for tissue characterisation such as identifying injured muscle and 
monitoring the healing process. 

 Comparison of texture parameter values obtained by the two imaging 
modalities showed that there was no significant difference between 
them as regards AR model and wavelet transform and so these two 
parameters might allow pQCT to be substituted for MRI to characterise 
the gastrocnemius muscle. 
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Chapter 5 Imaging in an Injured Subject 
5.1 Introduction 
The reason for using medical image texture analysis is the potential of this promising 
technique to achieve a correct diagnosis from unseen image information. The extracted 
image texture parameters might lead to an early detection of tissue abnormality. 
Texture analysis has been used to characterise normal and abnormal tissues 
(Castellano et al. 2004). Its usefulness has been proved in the characterisation of many 
diseases as described earlier in Chapter 2. Texture analysis has been implemented in 
most imaging modalities to quantify differences in appearances. This study is the first 
one to implement texture analysis in pQCT images to characterise the medial head of 
the gastrocnemius muscle. 
The objective of this chapter is to investigate and demonstrate the performance of 
specific texture parameters identified in a previous chapter (Chapter 4) in the 
differentiation of injured gastrocnemius muscle from normal muscle using MRI and 
pQCT, and to monitor muscle injury healing over a recovery period of 6 weeks. 
 

5.2 Materials and Methods 
5.2.1 Subject 
One female subject (45 years of age) was recruited by distribution of posters in sports 
injury physiotherapy clinics locally in Cardiff. The potential subject had received a 
tennis injury in the right leg and she underwent a 15-minute initial injury history and 
physical examination session by a professional sports injury physician to determine 
whether or not she met the inclusion criterion of at least a Grade 2 gastrocnemius 
muscle injury. The subject’s description of the injury matched that of a typical tennis 
leg injury given in Chapter 2. She stated that she had experienced a sudden and sharp 
sensation at the back of her right calf associated with an audible ‘pop’ sound.  She 
stated ‘I thought someone kicked the back of my leg’. This initial assessment revealed 
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a Grade 2 injury in the medial part of the gastrocnemius muscle. Approval of the 
Cardiff University School of Engineering Ethics Committee was obtained to 
investigate the subject and the participant was fully informed about the study protocol 
and procedure before obtaining her consent. 
 

5.2.2 MRI and pQCT Imaging 
The injured right leg of the tennis player was subjected to MRI and pQCT scanning 
three times over a period of six weeks. The first scans were done two weeks post 
injury, the second scans four weeks post injury and the third scans six weeks post 
injury. At two weeks, the uninjured left leg was also scanned by pQCT only. MRI and 
pQCT scans were performed according to the standard protocols as described in 
Chapters 3 and 4 except that the slice position was at the distal medial head of the 
muscle. Radiological interpretation of the initial MRI scans confirmed the injury as a 
Grade 2 tear of the distal medial head of the gastrocnemius muscle involving the 
myotendinous junction, with some blood tracking proximally. There was a small area 
of fibre disruption distally but this was of no significance. 
 

5.3 Texture Analysis 
The injury appeared as high intensity region with MRI but it was difficult to visualise 
the injury on the pQCT images. Therefore, ROIs were defined to cover the whole of 
the medial head of gastrocnemius muscle (Figure 5.1 and 5.4). They covered as much 
as possible of the muscle to ensure that the ruptured area was included, but avoided 
the muscle boundary. The ROIs were drawn by hand and they were approximately 
equal in size. The second order texture parameters AR model and wavelet transform 
were extracted and analysed using the MaZda software. These two texture features are 
ROI area independent as demonstrated in Chapters 3 and 4. 
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5.4 Characterisation of the Injured Leg 
Texture analysis was applied at the diagnostic stage (two weeks post injury) after 
acquiring MRI and pQCT images. Characterisation was accomplished by comparing 
the AR model and wavelet transform values of the medial gastrocnemius muscle in 
the injured subject with predefined right leg normal reference ranges derived from a 
group of healthy subjects (five subjects for MRI and eight subjects for pQCT). The 
result of this comparison was classification as normal and abnormal. 
The remaining scans over the six week period were done to investigate the suitability 
of pQCT in monitoring the healing process of muscle injury with time, because this 
was one of the specific objectives of this project. 
 

5.5 Results 
5.5.1 Characterisation of MRI Images 
Three MRI images over a period of six weeks are shown in Figure 5.1 while 
corresponding values of the two extracted texture parameters are shown in Table 5.1. 
For characterisation purposes, in Figures 5.2 and 5.3 they are plotted alongside 
reference ranges (95% confidence intervals) derived from a group of five healthy 
subjects (Table 4.10). 
In his study of the gastrocnemius muscle with ultrasound, Alqahtani (2010) derived 
reference ranges from a mixed group of healthy male and female subjects. This 
indicates that there is no difference in muscle texture parameters between males and 
females. No evidence has been found to suggest that this does not apply equally well 
to MRI, and so reference ranges derived in healthy male subjects may be used for an 
injured female subject. 
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Figure 5.1: MRI images of the injured subject’s right leg at 2, 4 and 6 weeks post injury with free hand drawn 
ROIs that include the whole of the medial head of the gastrocnemius muscle. 
 
     Table 5.1 Extracted texture parameters from right leg MRI images of an injured subject. 

Texture Parameter MRI 1st scan MRI 2nd scan MRI 3rd scan 
AR model 1.19 1.26 1.35 
Wavelet transform 56940.41 51281.69 47233.24 
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Figure 5.2: Muscle characterisation using the AR model texture parameter extracted from 3 MRI scans at 2, 4 and 
6 weeks post injury with reference range. All values fall outside the reference range and are characterised as 
abnormal. 
 

 
Figure 5.3: Muscle characterisation using the wavelet transform texture parameter extracted from 3 MRI scans at 
2, 4 and 6 weeks post injury with reference range. The value for the first scan falls outside the reference range and 
is characterised as abnormal, while those for the second and third scans fall within the reference range and are 
characterised as normal. 
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5.5.2 Characterisation of pQCT Images 
Three pQCT images over a period of six weeks are shown in Figure 5.4 while 
corresponding values of the two extracted texture parameters are shown in Table 5.2. 
For characterisation purposes, in Figures 5.5 and 5.6 they are plotted alongside 
reference ranges (95% confidence intervals) derived from the training group of 8 
healthy subjects (Table 4.12). 
Again, no evidence has been found to suggest that the pQCT reference ranges derived 
in healthy male subjects may not be applied to an injured female subject. This is 
supported by the fact that the AR model and wavelet transform values for the female 
subject’s uninjured left leg fell within their respective reference ranges. 
 

   
Figure 5.4: pQCT images of the injured subject’s right leg at 2, 4 and 6 weeks post injury with free hand drawn 
ROIs that include the whole of the medial head of the gastrocnemius muscle. 
 
 
Table 5.2: Extracted texture parameters from right leg pQCT images of an injured subject. 

  
 

 

Texture Parameter  pQCT 1st Scan pQCT 2nd Scan pQCT 3rd Scan 
AR model 1.4424 1.3786 1.4237 

Wavelet transform 43602.8058 43103.5087 44046.6469 
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Figure 5.5: Muscle characterisation using the AR model texture parameter extracted from 3 pQCT scans at 2, 4 
and 6 weeks post injury with reference range. All values fall outside the reference range and are characterised as 
abnormal. 

 
Figure 5.6: Muscle characterisation using the wavelet transform texture parameter extracted from 3 pQCT scans 
at 2, 4 and 6 weeks post injury with reference range. The values for the first and third scans fall within the reference 
range and are characterised as normal, while that for the second scan falls outside the reference range and is 
characterised as abnormal. 
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5.5.3 Comparision of MRI and pQCT Muscle Characterisation Results 
The results of the characterisation of the injured subject’s right gastrocnemius muscle 
with MRI and pQCT are shown together in Table 5.3. 
 
Table 5.3: Comparison of the results of injured muscle characterisation with the two texture parameters extracted 
from 3 MRI and pQCT scans at 2, 4 and 6 weeks post injury. 

 First Scan Second Scan Third Scan 

Texture 
Parameter 

MRI pQCT MRI pQCT MRI pQCT 

AR model Abnormal Abnormal Abnormal Abnormal Abnormal Abnormal 

Wavelet 
transform 

Abnormal Normal Normal Abnormal Normal Normal 

 

5.6 Discussion 
The tear of the gastrocnemius muscle of the type seen in this injured subject is termed 
tennis leg; it is a frequent occurrence in elite athletes. The pathogenesis of this injury 
is associated with tearing of the medial head of the gastrocnemius muscle at the 
musculotendinous junction. As stated in Chapter 2, the susceptibility of this muscle to 
tearing is due the presence of high density type II (fast twitch) muscle fibres, its 
extension across two joints and eccentric action. 
Earlier work in this thesis has shown that pQCT might be an alternative modality to 
MRI for characterising muscle using the AR model and wavelet transform texture 
parameters because there were no significant differences between their mean values 
for the two modalities in a group of heathy subjects. This has been partially confirmed 
by the results of the investigation of a single injured subject. Table 5.3 shows complete 
agreement of pQCT with MRI with the use of the AR model with regard to 
classification as normal or abnormal. However, the three values of this parameter were 
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all below the reference range for MRI and all above the reference range for pQCT and 
this is an anomaly. With wavelet transform, there is discrepancy between MRI and 
pQCT at two weeks post injury with the former indicating abnormality and the latter 
normality. Both modalities show normality at six weeks post injury. At four weeks 
post injury, MRI shows normality and the pQCT result is only just below the reference 
range. 
The medical radiology reports of the three MRI scans revealed that there was 
incomplete injury healing over six weeks and so it was not possible to fulfill the 
objective of monitoring injury healing by texture analysis. The values of the AR 
texture parameter for both MRI and pQCT remained abnormal during the period of 
the investigation and in this sense, they agreed with the radiological reports. However, 
AR values did not approach their respective reference ranges consistently for either 
modality, contrary to what might be expected if healing was occurring to some extent. 
It was also the case that the wavelet transform values did not change in a consistent 
fashion for either MRI or pQCT. 
Incomplete healing could be due to the fact that the patient did not limit her activities. 
Furthermore, there was no confirmation that patient underwent an appropriate course 
of therapy. Therefore, it is possible that the injury might have been aggravated, 
although this was not noted on the radiological reports. It would have been better if 
the patient had been treated under medical supervision and carefully monitored until 
fully recovered from the injury. Full recovery takes approximately 4 to 8 weeks with 
good rehabilitation (http://physioworks.com.au/injuries-conditions-1/calf-muscle-
tears). 
The results of this study were broadly in agreement with those of Alqahtani (2010) 
who used ultrasound imaging. He found that the AR model was the most sensitive 
parameter for differentiating normal muscle from injured muscle and that it might be 
used to monitor the healing process and study the response of injured muscle to 
different treatment protocols. In Alqahtani’s study, the number of healthy subjects 
recruited was 25 (21 males and 4 females) and this had a beneficial impact on the 
accuracy of the derived reference range (1.11-1.15) compared with this study (1.20-
1.34 for pQCT (Table 4.12) and 1.42-1.66 for MRI (Table 4.10)). The greater the 
number of subjects, the narrower is the reference range. 
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Authors such as Lerski et al (2015) have proposed that texture analysis using one or 
two texture parameters should be more widely applied in hospitals and clinics as a 
simple diagnostic method. Indeed, the literature review (Chapter 2) indicated more 
generally that texture analysis for the differentiation of normal tissue from abnormal 
tissue has achieved very good classification results. 
In this study, MRI images were acquired according to a hospital’s usual protocol for 
lower limb injuries, thus providing a sound clinical basis to the subsequent texture 
analysis. Texture analysis of MRI images in a small group of healthy subjects and one 
injured subject demonstrated good classification capability of the AR model parameter 
compared with radiological and clinical findings. The fact that wavelet transform 
failed to detect abnormality in injured muscle with the exception of the first MRI scan 
and the second pQCT scan might be due to lack of an accurate reference range. An 
increased healthy subject sample size might improve muscle characterisation 
accuracy. The usefulness of either of these texture parameters to assess muscle healing 
post injury would also require imaging in a larger group of injured subjects and 
possibly more frequent imaging. 
 

     5.7 Conclusions 
The main findings can be summarised as follows: 

 It appears that the AR model may be a sensitive texture parameter for the 
identification of muscle injury with both MRI and pQCT in comparison 
with clinical findings and radiological reports. 

 An anomaly was noted in that the injured muscle AR values were below 
the reference range for MRI and above the reference range for pQCT, and 
so pQCT may not be suitable as a direct replacement for MRI using this 
parameter. 

 Wavelet transform values did not consistently identify injured muscle. 
 Neither AR model nor wavelet transform values changed consistently 

during a six week period of partial muscle healing. 
 A larger group of heathy subjects is required to establish more reliable 

reference ranges for the initial diagnosis of muscle injury. 
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 A larger group of injured subjects and more frequent imaging is required 
to assess the usefulness of the texture parameters in monitoring muscle 
healing after injury. 
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Chapter 6 Summary and Conclusion 
6.1 Introduction 
Texture analysis is a promising technique that can be used as a tool to assist clinicians 
in the diagnosis of disease. It is an objective, quantitative method that is based on 
computer image analysis. It may have advantages compared with a subjective method 
such as the conventional visual inspection and reporting of images. In muscle imaging, 
for example, the subjective approach may not be sensitive enough to detect minor 
muscle fibre changes. 
In principle, texture analysis is a technique that evaluates the spatial position of pixels 
in a digital image in relation to grey level (intensity) variation. This evaluation is 
accomplished by computing statistical parameters of pixel distribution within the 
image. The process usually consists of the definition of a region of interest (ROI), 
within muscle for example, followed by texture feature extraction. The latter is 
accomplished using a dedicated, accurate and reliable software package such as 
MaZda. The manipulation of the extracted texture parameters is the basis of the 
application of texture analysis as a diagnostic aid. 
Texture analysis has been applied to a range of medical imaging modalities. However, 
there is no study in which this technique has been applied to muscle images acquired 
by peripheral quantitative computed tomography (pQCT), a technology that was 
originally developed for the investigation of bone disease in the limbs. The hypothesis 
of this thesis was that a pQCT scanner is capable of acquiring soft tissue images, and 
that the application of texture analysis techniques provides information which can aid 
the detection of subtle changes in muscle during the early post-injury stage. To the 
best of the researcher’s knowledge, the novelty of this present study lies in the fact it 
is the first one which has explored the use of pQCT in characterising muscle using 
texture analysis. 
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6.2 Summary 
Muscle injuries are the most common type of sports injuries and medical imaging 
plays a very important role in diagnosis. Of the various types of imaging modalities, 
ultrasound is considered the modality of choice to confirm or exclude a tear in a muscle 
(such as the gastrocnemius muscle in the thigh) due to its availability, low cost and 
relative ease of examination. However, magnetic resonance imaging (MRI) is also 
considered to be a very good modality for imaging muscle injury. 
Although pQCT is a promising technique that might be considered an alternative 
modality due to its relatively low cost and portability (compared to MRI), it cannot 
visualise a lesion site and so the ROI must cover the whole of the relevant muscle. 
Furthermore, image artefacts due to subject motion are a limiting factor for the use of 
pQCT. 
The objective of this study was to investigate whether pQCT offers an alternative to 
MRI for tissue characterisation of the gastrocnemius muscle (GM) using texture 
analysis. Since it was the intention of the study to compare healthy and pathological 
images acquired by MRI and pQCT, it was necessary to standardise pQCT image 
acquisition parameters (scan speed and pixel size) and to identify texture parameters 
that might be useful to implement for the comparison. 
Given that any instrument has random measurement errors, a water phantom was used 
to simulate human soft tissue in order to determine useful pQCT texture parameters. 
The water phantom study highlighted the most consistent texture parameters that 
showed a low variation (as assessed by the coefficient of variation %CV): co-
occurrence matrix, gradient, run-length (RL) matrix, auto-regressive (AR) model and 
wavelet transform. These higher order statistical parameters were deemed potentially 
useful for further application. Furthermore, image noise was quantified from variance 
values with each combination of acquisition parameters. This work also demonstrated 
that the MaZda software package was a reliable research tool for texture analysis. 
Normal healthy volunteers were then studied. Initially, a single subject was scanned 
with pQCT using a range of scan speeds and pixel sizes. Subsequently, a group of 12 
healthy volunteers were scanned with standard values of scan speed and pixel size. Of 
these, 5 (Group A) were also scanned by MRI; Group B comprised the remaining 7 
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healthy subjects. One of the major strengths of this thesis is that the study of the 
healthy single subject allowed the development of a well-defined pQCT scan standard 
protocol, one of the objectives of the project. It also demonstrated the capability of 
pQCT to acquire calf muscle images and to distinguish the boundary of the medial 
head of the GM using image windowing. 
Subject movement was a challenging factor for pQCT image acquisition, as any 
movement during the scan could result in image degradation. Motion artefact was 
apparent on the pQCT images of subjects from both Group A and Group B. It has been 
reported that 22.7% of high resolution pQCT scans need a re-scan (Braun et al. 1998). 
In this study, care was taken to ensure that the subject remained as still as possible 
during image acquisition. In addition, a knee brace was used with one subject from 
Group A and this decreased the artefacts. This study showed that for the optimisation 
of pQCT acquisition, a balance was needed between good image quality (small pixel 
size and slow scan speed) and the control of motion artefacts (fast scan speed). The 
combination of a pixel size of 0.8 mm and a scan speed of 10 mm/s was chosen as it 
yielded a smooth image (good signal to noise ratio) and a reasonably short scan time. 
The repeatability of pQCT texture parameters was tested in the healthy volunteers with 
these acquisition settings and, in general, found to be reliable. However, the first order 
statistics texture parameters skewness and kurtosis were excluded as they showed high 
variation (% CV) compared with other parameters. This result is in line with that from 
an earlier study using muscle texture analysis on ultrasound images (Alqahtani et al., 
2010). 
Another significant observation that emerged from this study was that the fact that the 
run-length matrix parameter was linearly dependent on ROI area. Therefore, it was 
excluded because a free hand-drawn ROI was used to cover the entire medial head of 
the GM; to some extent this varied in size from one subject to another since muscle 
size varied among the recruited subjects. This observation is in agreement with that of 
Sikio et al. (2015) who also found that ROI affected the value the RL matrix. 
A further important finding from this study was that image scaling had limited 
consequences; it affected only the remaining first order texture parameters 
(particularly grey level). The higher order parameters were not affected because of the 
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image normalisation process, which isolates first order statistics from higher order 
ones; the latter were therefore retained for further analysis. This is supported by 
Materka (2004) and Lerski et al. (2015) who stated that normalisation of acquired 
images was essential to remove unwanted variations caused by the scanner. 
Experiments with a circular ROI provided evidence that a minimum ROI area of 200 
pixels is needed to extract numerical texture parameters. This finding is consistent 
with the findings of Lerski et al. (2015), who recommended that the ROI area should 
greater than 100 pixels. It was also shown that, ideally, the ROI area should be kept 
constant as this limits variations in the values of texture parameters. In addition, it was 
shown that the position of a circular ROI within the medial head of the GM had no 
significant influence on extracted texture parameters, reflecting muscle homogeneity. 
When comparing pQCT with MRI in healthy volunteers, it was found that there was 
no significant difference between the modalities for the AR model and wavelet 
transform texture parameters. Furthermore, the results from the healthy subjects 
showed that there was no significant difference between right and left leg extracted 
texture parameters for both modalities. Group A results were used to define texture 
parameter reference ranges (95% confidence intervals) for the GM using MRI. For 
pQCT, the total of 12 healthy subjects were split into a training group of 8 (Group C) 
and a test group of 4 (Group D). Reference ranges were derived from the Group C 
results and tested with the Group D results. All test values fell within the reference 
ranges, thus validating the ranges. 
However, caution should be exercised before generalising these findings because of 
the small sample size of the reference population, especially for MRI. The small 
sample size was due to cost and limited accessibility of MRI scans and caution about 
the exposure of healthy young volunteers to ionising radiation. A larger sample size 
would be required for more accurate and reliable reference ranges. 
One injured subject was studied over a period of 6 weeks following a Grade 2 tear of 
the medial part of the GM. This work subject suggested that the AR model texture 
parameter was a sensitive index with which to characterise muscle injury because its 
values fell outside the corresponding reference ranges for both MRI and pQCT. It 
performed better than the wavelet transform, whose application was also investigated. 
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This was supported by the fact that the AR value obtained by pQCT for the uninjured 
leg fell within the reference range. A weakness of the study is that it did not monitor 
the entire healing process with both modalities, as there was incomplete injury 
recovery over the period of investigation. This might be due to the patient’s non-
adherence to activity limitation or lack of proper treatment in later stages (two weeks 
after injury). Despite the fact that there is a range of treatment options for every stage 
and grade of muscle injury, there is no robust clinical trial using objective outcome 
measures to quantify the efficacy of different treatment options and monitor the 
healing process with treatment. 

6.3 Conclusions 
This study aimed to determine the capability a pQCT scanner to acquire GM muscle 
images and to characterise the medial of the GM.  The important conclusions drawn 
from this work include the following: 

 The pQCT scanner is capable of acquiring GM images. 
 A quantitative non-invasive method to characterise muscle tissue has been 

developed for pQCT. 
 The MaZda image analysis software package was found to be an accurate 

and reliable texture analysis tool. 
 Normalisation of acquired images is essential to avoid unwanted variations 

due to the scanner and image scaling effects. 
 The first order texture parameter grey level was found to be affected by 

image format transformation. 
 Two other first order texture parameters (skewness and kurtosis) were 

excluded as they showed large coefficient of variation. 
 The pQCT scanner showed reliable repeatability for higher order texture 

parameters. 
 Five higher order texture parameters (co-occurrence matrix, run length 

matrix, gradient, AR model and wavelet transform) were used to obtain 
reference ranges of normal muscle using MRI and pQCT. 

 Sample size had an adverse impact on the accuracy of normal reference 
ranges. 
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 ROI area had a significant effect on RL matrix values and a smaller effect 
on other texture parameters. 

 If the RL matrix parameter is used, the ROI area must be kept constant. 
 ROI position within the boundary of the medial head of the GM had no 

significant effect on extracted texture parameters. 
 No significant differences in texture parameters were found between the 

medial GM in the right and left leg in both modalities (MRI and pQCT). 
 The AR model texture parameter was found to be the most sensitive 

parameter in distinguishing normal muscle from injured muscle. 
 Quantitative MRI and pQCT image analysis of the GM using the AR model 

texture parameter can be used as a tool to characterise the medial head of 
the GM. 

6.4 Contribution to knowledge 
This study has demonstrated that a pQCT scanner is capable of acquiring images of 
the gastrocnemius muscle and that texture analysis of these images may be used to 
characterise the muscle. Texture parameter reference ranges have been developed for 
the identification of GM injury. 

6.5 Future work 
This study serves as a pilot and highlights the possibilities of using a pQCT scanner to 
acquire muscle images which may be characterised with texture analysis. Reference 
ranges based on the AR model texture parameter for both MRI and pQCT need to be 
validated with a larger group of normal healthy subjects. 
Another future goal would be to validate the use MRI and pQCT image texture to 
monitor the healing process of muscle injury with a large group of patients and a well 
monitored treatment programme. A clinical trial with more than three scans during the 
healing period is recommended. 
In addition, it would be beneficial to conduct an in-depth analysis of each extracted 
texture parameter, rather than summing second order parameters (co-occurrence 
matrix, run length matrix and gradient) and wavelet transform. It would also be 
beneficial to conduct a study with a large sample size using a special programme 
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available in the MaZda software (the b11 programme) for the auto-classification of 
data. 
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Appendix A: Physics and Technology of Magnetic Resonance Imaging 
A.1 Introduction 

This section aims to briefly describe the basic principles of Magnetic Resonance 
Imaging (MRI) to understand the quantitative analysis of the acquired images. 
Magnetic resonance imaging (MRI) is based on a physics phenomenon that is called 
nuclear magnetic resonance (NMR). It was first theorised in 1946 by Felix Bloch of 
Stanford University. NMR is the study of the magnetic properties of the atomic 
nucleus. Nuclei with an odd number of protons or neutrons have an electric charge and 
nuclear spin and therefore they produce an electromagnetic field. If such nuclei are 
placed in a strong magnetic field, they may interact by absorbing energy and 
subsequently releasing energy into the surrounding environment. Interacting between 
nuclei and applied magnetic field is called NMR. This interacting occurs at Larmor 
precessional frequency. In other words, NMR is a method that depends on the 
distribution and behaviour of the magnetic moments of nuclei. Hydrogen nuclei 
(protons) are more sensitive than any other nuclei (Hajek et al. 2006). About two third 
of the human body is composed of water, and this justifies why MRI has become 
widely implemented in medicine. Water content differs among tissues and organs (Joe 
& Derrickson 2007). Abnormalities (diseases) yield changes in tissue or organ water 
content.  
In MRI the patient is placed in a strong static magnetic field (B0). The body is then 
stimulated by a radio frequency (RF) field (B1) and this results in a change in hydrogen 
proton orientation (excitation), as illustrated in Figure A.1. Relaxation causes RF 
energy to be released and thus detected in MRI scanner. Finally, the detected signal is 
used to construct in internal image of the exposed part of the body.  
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Figure A.1: Simplified distribution of free protons without and with an external magnetic field(B0).Without an 
external magnetic field, protons in random orientation of magnetic moment (magnetic moment=0). With external 
magnetic field (B0), protons oriented in two possible ways: parallel and antiparallel to the external magnetic field. 
 
The first scanner was installed during the 1980s. Since then, MRI has become the 
major medical diagnostic technique for imaging anatomical structure and 
physiological functions of the human body (Carlton and. Adler 2013). It utilises the 
properties of hydrogen atoms to create an image of body organs and tissue.  

A.2 MRI Instrumentation 
A.2.1 Introduction 

MRI equipment consists of a magnet, a radiofrequency (RF) subsystem, gradient coils 
and a computer, as shown in Figure A.2. 
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                     Figure A.2: MRI scanner main components (http://fas.org/irp/imint/docs/rst/Intro/Part2_26c.html). 
 

A.2.1.1 MRI Magnet 
The magnet is the heart of the MRI scanner. The performance criteria are the field 
strength and field homogeneity, which depends on the magnet’s design. The magnet 
produces an extremely strong magnetic field to magnetize tissue. The strength of the 
magnet is rated using a unit of measurement called a tesla (T) and another older unit 
that is known as a gauss (1 tesla=10,000 gauss). Nowadays, MRI magnets creates a 
magnetic field strength of between 0.5 tesla and 3.0 tesla (Carlton and Adler 2013). 
The Earth’s magnetic field is 0.5 gauss and this indicates how strong the MRI magnetic 
field is. 
 
MRI magnets can be classified, in terms of their field strength, into 5 categories: 

1. Ultrahigh field (4.0 to 7.0 T) 
2. High field (1.5 to 3.0 T) 
3. Midfield (0.5 to 1.4 T) 
4. Low field (0.2 to 0.4 T) 
5. Ultralow field (< 0.2 T) 
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In addition to the previous classification, MRI magnets can be classified into three 
main types according to their design:  

1. Permanent magnet. 
2. Resistive magnets.  
3. Superconductive magnets. 

In a permanent magnet, the magnetic field is always there. In other words, the 
magnetic field is on all of the time and cannot be switched off. This type has low cost 
and low maintenance but does not offer a sufficiently strong field (Westbrook and 
Kaut 1998). 
The resistive magnet is based on a flowing current in a coil, which has electrical 
resistance and produces a magnetic field. The produced magnetic field can be switched 
on and off (Westbrook and Kaut 1998). 
Most MRI scanners use a superconductor magnet to create high field strength (1.5T). 
Maintaining the produced magnetic field steady needs a good control of coil 
resistance. The magnetic field that is generated is produced by passing a current into 
magnet winding, and this generates heat. Superconductivity is temperature dependent; 
reducing the temperature will reduce the winding resistance (giving less heat) for the 
current. To produce a system with zero resistance, the magnet must therefore be cooled 
down by submerging it in a cryogenic liquid. The commonly used cryogenic liquid in 
superconducting MRI systems is liquid helium (He). The temperature of liquid helium 
is 269.1° below zero degrees Celsius. The resistance-free system is thus called a 
superconducting system, and this yields the highest-quality imaging (Carlton and 
Adler 2013). 

A.2.1.2 Radiofrequency (RF) Subsystem 
The radio frequency (RF) subsystem is the antenna (coil) of the MRI, which is 
composed of a transmitter and one or more receivers. The RF transmitter is used to 
generate the RF signal (pulse) which excites the hydrogen protons. It utilizes 
alternating current and hence generates a very weak oscillating magnetic field called 
the secondary magnetic field (B1). The specific frequency required to excite protons 
is known as Larmor precessional frequency: 
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ω1 = γ B0                
where B0 is the main magnetic field strength, and γ is a constant that is called the 
gyromagnetic ratio. The hydrogen gyromagnetic ratio is 42.6 megahertz/tesla 
(MHz/T) (Carlton and Adler 2013). The hydrogen proton Larmor frequency at 1.5 T 
magnetic field, can be calculated using above equation as follows: 
 

ω1 = 42.6(MHz/T) * 1.5(T) =63.9 MHz 
 
There are two methods of positioning the transmitter coil. Firstly, the transmitter coil 
is positioned within the scanner itself. In the second method, the transmitter coil is 
positioned on the patient during the scan. 
The receiver coil is used for MR signals that are emitted by the patient’s body. For all 
body parts there are specific coil designs which fit and which yield the best MR signal 
detection. MR coils have different shapes and sizes, as shown in Figure A.3. 

 
Figure A.3: MRI different patient coils (Carlton and Adler 2013). 
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A.2.1.3 Gradient Coils 
A gradient indicates a rate of increase or decrease (a slope). In general, gradient coils 
function to produce deliberate variations in the total static magnetic field according to 
the location of MR slices (spatial information encoding). This is achieved by 
superimposing the gradient magnetic field that is produced by the gradient coils over 
the main magnetic field in 3 orthogonal directions that correspond to the axes x, y, and 
z. The labelling of these coils is based on the direction in which the gradient field is 
created, as illustrated in Figure A.4. The coil that creates a gradient field along the 
right-left direction of the magnet/patient is labelled as the x-gradient coil. The coil that 
creates a gradient field along the anterior-posterior direction of the magnet/patient is 
labelled as the y-gradient coil. The coil that creates a gradient field along the head-
foot direction of the magnet/patient is labelled as the z-gradient coil. All 3 sets of 
gradient coil windings are situated within the bore of the magnet.  

                              
Figure A.4: Gradient coil configurations. (https://nationalmaglab.org/education/magnet-academy/learn-the-
basics/stories/mri-a-guided-tour) 
 

The total magnetic field is equal to B0 at the isocentre, even when a gradient is utilised. 
The passage of current through one of the gradient coils induces a gradient magnetic 
field around it. The magnetic field that is generated either subtracts from, or adds to, 
the static magnetic field (B0). This mechanism is performed in a linear fashion so that 
the precessional frequency that is experienced by the protons situated along the 
gradient coil axis can be predicted. In protons that are located at an increased magnetic 
field strength, the precessional frequency increases, whereas protons that are located 



246 
 

at a decreased magnetic field strength decrease their frequency. As a result of this, the 
positions of protons along the gradient can be identified according to their precessional 
frequency, and this process is therefore known as spatial encoding. Spatial encoding 
helps to locate a slice within the selected scan plane (axial, sagittal or coronal) 
(Westbrook and Kaut 1998). 
 

A.3 MRI Physics 
Nuclei which have an odd atomic mass number (the sum of the nuclear particles) are 
magnetically active, and property. They have nuclear spin and exhibit a magnetic 
property called a magnetic moment. In MRI this property of the hydrogen nucleus is 
utilised. Hydrogen has a single proton in its nucleus and it is almost 100 % abundant 
in the human body. Such hydrogen spin (proton) behaves as a tiny bar magnet with 
two poles, and this is referred to as a dipole (Carlton and Adler 2013). 
The magnetic moments of hydrogen protons are randomly aligned, but when placed 
in a strong externally applied magnetic field (B0 ) their magnetic moments align either 
with (parallel/low energy state) or against (anti-parallel/high energy state) the 
direction of the applied magnetic field. As a result of a slightly higher number of 
protons being in parallel alignment, the tissue will exhibit a bulk or a net magnetisation 
vector (M0) that is aligned with the direction of the externally applied magnetic field 
(B0). This condition is known as thermal equilibrium. The net magnetisation vector is 
defined by 3 components (a three-dimensional Cartesian co-ordinate system). 
Longitudinal magnetisation (Mz) is along the z direction, which is parallel to the 
applied magnetic field (B0). The remaining two components are called transverse 
(horizontal) magnetisation (Mx and My). The longitudinal magnetisation cannot be 
measured and therefore it must be tipped into the x-y transverse plane. To accomplish 
this, a secondary magnetic field is needed. This field is called the RF field and it is 
applied as a pulsed magnetic field (B1), as described earlier (Carlton and Adler 2013). 
 
The hydrogen protons precess about the direction of the applied magnetic field (B0) in 
the same way as a top wobbles as it spins, as shown in Figure A.5. The rate of hydrogen 
precession (the Larmor frequency) is B0 strength dependent. At thermal equilibrium, 
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the individual protons do not precess at exactly the same frequency (they are not in 
phase) and this is due to the magnetic field not being homogeneous (uniform), 
particularly after the patient is placed in the magnetic field. The other reason is that 
the hydrogen in water molecules precesses at a higher frequency than those in fat 
molecules. The difference in frequency is known as a chemical shift. The chemical 
shift is field strength (B0) dependent. Increasing B0 yields an increase in chemical shift 
(Carlton and Adler 2013). 

 

 
Figure A.5: Proton of Hydrogen precessing around the direction of the applied magnetic field in the way as a top 
wobbles when it spins (courtesy of www.medscape.com) 

 
Longitudinal magnetisation recovery is caused by release of energy by the protons to 
the surrounding, or the lattice, and it is often called spin lattice relaxation. The rate of 
recovery is an exponential process with a recovery time constant known as T1. At T1, 
63% of the longitudinal magnetisation (Mz) has recovered in the tissue as shown in 
Figure A.6(A). (Westbrook & Kaut 1998). T1 relaxation times vary with tissue type. 
For example, fat protons has a short T1 relaxation time of approximately 150 
milliseconds at 1.5 T, and water-based protons have a relatively long T1 relaxation 
time of approximately 2000 milliseconds at 1.5 T (Carlton and Adler 2013). 
Transverse magnetisation decay is caused by protons exchanging energy with 
neighbouring protons. The energy exchange is caused by the interaction of each of the 
protons with its neighbour, and it is often called spin spin relaxation. The rate of decay 
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is also an exponential process. At T2 63% of the transverse magnetisation (Mxy) has 
decayed (lost) in tissues, as shown in Figure A.6(B) (Westbrook and Kaut 1998). T2 
relaxation times for all tissues are relatively short. For example, the fat proton T2 
relaxation time is approximately 200 milliseconds at 1.5 T. In addition to spin spin 
relaxation, the chemical shift and inhomogeneities in the magnetic field immediately 
begin to affect the spin and cause faster decay of transverse magnetisation. This overall 
effect is characterised by T2* (pronounced T2 star) (Carlton and Adler 2013). 

 
Figure A.6: T1 recovery (A) and T2 decay (B) signals. 
To tip the tissue’s net magnetisation (M) from the longitudinal (Mz) to the transverse 
plane (Mxy), the frequency of the RF pulse (B1) must be centred at about the Larmor 
or resonant frequency for the protons (efficient energy transfer). If this condition is not 
achieved, the net magnetisation will not be affected. The protons (spins) begin to 
precess in phase, and some of the spins that are in parallel alignment (low energy state) 
absorb energy from the RF field and move to a high energy state (anti-parallel 
alignment). This process results in rotation and the tipping of the net magnetisation 
vector towards the transverse plane. The greater the amount of RF power, the further 
the net magnetisation vector tips away from the longitudinal alignment (Mz) into the 
transverse plane (Mxy). Flip angles are the result of the angular displacement of the 
longitudinal magnetisation moment vector (Mz) from the equilibrium position towards 
the transverse plane. The flip angle is dependent on the duration and amplitude of the 
RF pulse signal (B1 field) in a linear fashion. For a fixed B1 field amplitude, a 90° 
displacement takes half the time of 180° displacements and yields the largest possible 
transverse magnetisation moment vector (Mxy). Moreover, with angles less than 90°, 
less time is needed to displace the longitudinal magnetisation moment vector (Mz), 
and a larger transverse magnetisation per unit of excitation time is achieved. 
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Furthermore, if 90° RF pulses are used and followed before recording (sampling) the 
MR signal by an 180° RF Pulse, this is known as a spin echo (SE). The purpose of 
using the 180° is to correct the local in homogeneities and the slight resonance 
frequency difference between the water based protons and the fat based protons 
(chemical shift). There is a type of RF pulse sequence other than SE, and this is known 
as gradient recalled echo (GRE). It is used for very rapid acquisition techniques when 
patient holds his or her breath during examination of liver, kidney or cardiac studies. 
The flowing blood appears hyper intense (bright) relative to the surrounding tissue 
(Carlton and Adler 2013). 
When the B1 field is switched off, the net magnetisation now precesses in the 
transverse (xy) plane. The receiver coils are designed to make the net magnetisation 
vector precess through the loop of the coil material (copper). This will induce a current 
in the coil conductor which is known as the MR signal. The electronic equipment 
associated with the receiver coil (including analogue to digital convertor) will measure 
and sample the MR signal.  
On switching off the RF pulse, the spins start to relax back to the start point and try to 
align with B0 into longitudinal direction. During relaxation, the spins give up the 
absorbed RF energy and the induced current in the receiver coil decreases. The 
relaxation process is called free induction decay (FID). The amount of magnetisation 
in the longitudinal plane (Mz) gradually increases (Figure A.7) and this is called 
recovery and is caused by T1 recovery, whereas the amount of magnetisation in the 
transverse plane (Mxy) gradually decreases is called decay and (Westbrook & Kaut 
1998). 
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Figure A.7: Longitudinal magnetisation (Mz) is the vector component of the magnetic moment in the z-direction. 
Transverse magnetisation (Mxy) is the vector component of the magnetic moment in the xy-plane (Bushberg et al. 
2012). 
The RF pulse sequence consists of several parameters, and these are as follows: 

1. The time of repetition (TR), which is the time from the application of 
one RF pulse to the application of the next. It is measured in 
milliseconds. The TR controls the amount of the protons’ relaxation in 
between two successive RF pulses, as shown in Figure 3.30. 

2. The time of echo (TE), which is the time from the application of the RF 
pulse signal to the peak of the signal being induced into the coil. It is 
measured in milliseconds. TE determines how much decay of the 
transverse magnetisation (Mxy) is allowed to occur before the signal 
record as shown in Figure A.8. 

 

 
Figure A.8: Time of repetition (TR) and time of echo (TE) (Bushberg et al. 2012). 

A.3.1 Image Weighting and Contrast 
The main advantage of MRI, when compared with other imaging technology is the 
excellent soft tissue discrimination in the images. It is therefore important to discuss 
the factors that affect the image contrast. 
 

A.3.1.1 MRI Image Contrast 
Image contrast indicates signal variations within the image areas with a high signal 
appear white on the image and areas with a low signal appear dark on the image with 
areas of intermediate signal having different shades of grey. The magnetisation vector 
can be discriminated into individual vectors for each tissue that is present in the 
patient, for instance, muscle, fat, and cerebrospinal fluid (CSF). 



251 
 

If the transverse magnetisation (Mxy) component is high, then the tissue has a high 
signal. This results from the coil recording high signal amplitude, which yields bright 
areas in the image and vice versa.  
Water (H2O) is hydrogen linked to oxygen. The oxygen molecule tends to steal the 
electrons away from the hydrogen nucleus. This results in an effect on the main 
magnetic field. Fat is hydrogen linked to carbon and is composed of large molecules 
named lipids. The carbon does not take the electron from around the hydrogen nucleus, 
but it remains in an electron cloud that protects the nucleus from the effect of the main 
magnetic field. The Larmor frequency of hydrogen in water is thus higher than that of 
hydrogen in fat. Hydrogen in fat recovers faster along the longitudinal axis (Mz) than 
that in water and transverse magnetisation (Mxy) decays faster than in water. Water 
and fat thus appear differently in MR images (Westbrook and Kaut 1998; Carlton and 
Adler 2013). 
In summary, fat regains longitudinal magnetisation (Mxy) rapidly (shorter T1 recovery 
time) and water regains longitudinal magnetisation (Mxy) slowly (longer T1 recovery 
time), as shown in Figure A.9 (Westbrook and Kaut 1998). 

 

 
Figure A.9: T1 recovery in fat is faster than in water (www.revisemri.com). 
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Moreover, T2 decay in fat is more efficient than that in water, it is therefore short (200 
ms), whereas in water it is less efficient and it is therefore long (2000 ms), as depicted 
in Figure A.10 (Westbrook and Kaut 1998). 

 
Figure A.10: The difference between fat and water decay(www.revisemri.com). 
Proton density contrast reflects the variation in the proton densities between the tissues 
being imaged. The variations are related to transverse magnetisation. Tissues with a 
high proton density have a large transverse magnetisation component and so have a 
high signal, which appears as bright areas. Tissues with a low proton density have a 
small transverse magnetisation component and so appear as dark areas. Proton density 
depends on the tissue undergoing examination (Westbrook and Kaut 1998) . 

A.3.1.2 MR Weighting Images 
In spin echo imaging the specific values of TR and TE have an impact on T1, proton 
density or T2 contrast, and this weights an image such that one contrast mechanism 
predominates over the other two: 

 Water has long T1 and relaxationT2 time. 
 Fat has short T1 and relaxationT2 time. 
 To produce a high signal (bright), there must be a large transverse 

magnetisation component (Mxy) to induce a large signal in the receiver 
coil. 

 To produce a small signal (dark), there must be a small transverse 
magnetisation component (Mxy) to induce a small signal in the receiver 
coil. 



253 
 

 T1 weighted images are characterised by dark water and bright fat. 
 T2 weighted images are characterised by bright water and dark fat. 
 Proton density weighted images are characterised by areas with high 

proton density that are bright, and areas with low proton density that 
are dark. 

In T1 weighted images, TR controls the amount of T1 weighting and it must be short. 
In T2 weighted images, the TE controls the amount of T2 weighting and it must be 
long. In proton density images: 

 To diminish T2, TE must be short. 
 To diminish T1, TR must be long. 
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Appendix B: The Stratec XCT2000 pQCT scanner 
B.1 Description of the Scanner 
The Stratec XCT 2000 pQCT device is a fully automated measuring system for the 
determination of bone density and soft tissue distribution and density. It consists of 
two main parts: a scanner (Figure B.1) and a control/analysis computer system. The 
scanner consists of an X-ray source and a translation-rotation multi-detector system. 
The X-ray tube has been specially developed with a very small focal spot. It operates 
at 56.7 kV and an anode current of less than 0.3 mA. The mean X-ray energy is 37 
keV, after being filtered by 15mm metal (6 mm aluminum and 9 mm copper). The 
energy spectrum of the X-ray beam has a full width at half maximum (FWHM) of 22 
keV. The number of projections is either 180 or 360. The size of the pixels is operator 
defined within a range of 0.2 to 2.0 mm with step increments of 0. 1 mm. The speed 
of the translational scan movement is adjustable from 3 to 40 mm/s in steps of 0.1 
mm/s. 
The detector system consists of 12 semi-conductor detectors, a highly charge-sensitive 
preamplifier, a shaping amplifier and a comparator; these rotate in a gantry which has 
an opening diameter of 140 mm. 
During the CT-scan, the x-ray beam passes perpendicular to the axis of the scanned 
object. After each scan, the transverse scan gantry rotates 12°. The angular distance of 
the 12 detectors relative to the x-ray source is 1.0°. The gantry does 15 rotations, which 
results in 180 projections (15 times 12). Hence, it covers the necessary angular range 
of 180° (Stratec Medizintechnic 2007). 
The control system consists of a DOS-compatible computer with a high resolution 
colour display monitor and a colour ink jet printer. The computer controls the complete 
scanning procedure and integrates all of the information obtained into the slice that is 
reconstructed. During acquisition, the operator makes a choice 1 or 2 blocks, where 
each block represents a combination of number of projections and angular step to 
cover an angular range of 180°. With 1 block, there are 180 projections with an angular 
step of 1° while for 2 blocks, there are 360 projections with an angular step of 0.5°. 
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One block yields 15 slices while two blocks yield 30 slices. Although the manufacturer 
does not explicitly state the type of reconstruction algorithm, it is most likely to be 
filtered back-projection. The tomographic slice is divided into pixels. As the slice has 
a predetermined constant thickness, the pixels represent volume units in tissue 
(voxels). 

 
                            Figure B.1: pQCT scanner. 

 

B.2 Measurement Principle 
The pQCT scanner measures the attenuation of the X-ray beam passing through the 
tomographic slice. The attenuation along a particular X-ray path depends on the linear 
attenuation coefficient and the thickness of the tissues in that path. The linear 
attenuation coefficient depends on tissue density, average atomic number and electron 
density (number of electrons per unit mass). Mass attenuation coefficient is the linear 
coefficient divided by density. The estimation of bone mineral density (calcium 
hydroxyapatite) is the most usual procedure for which attenuation measurements can 
be used. 
The linear attenuation coefficient (µ) is the fractional reduction in intensity of the X-
ray beam per unit increase in thickness. This is usually expressed in units of inverse 
centimeters (cm-1) (Bushberg et al. 2012). Monoenergetic X-rays are attenuated 
exponentially, i.e. their intensity is reduced by a fixed percentage for each fixed 
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increase in thickness of a given material. A polyenergetic X-ray beam with a narrow 
spectrum (small FWHM) behaves in a similar way to a monoenergetic beam. 

           
                         Figure B.2: Linear attenuation principle. 
The X-ray beam transmitted intensity can be calculated according to the following 
equation: 

                          I=I0 e-µ.dx 

where I0 is the incident intensity, I is the transmitted intensity, µ is the linear 
attenuation coefficient, and dx is the absorber thickness (Figure B.2). 
The reconstruction algorithm calculates the linear attenuation coefficient value that 
corresponds to each pixel. This is the average linear attenuation coefficient of the 
tissues in the corresponding voxel and this is proportional to tissue density. However, 
the scanner is unable to assess the density associated with each pixel directly. For bone 
mineral, a special hydroxyapatite phantom is used for the conversion of linear 
attenuation coefficient to density. In fact, each pixel value is transformed into an 
equivalent volumetric mineral density (mg/cm3) irrespective of the actual type of 
tissue in the voxel. In this way, the scanner expresses cortical bone, water/soft tissue 
and fat pixel values as hydroxyapatite equivalent volumetric densities of 1200 mg/cm3, 
60 mg/cm3 and 0 mg/cm3, respectively (Frank-Wilson et al., 2015). 
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If the linear attenuation coefficient were equal for all tissues, there would be no image. 
The difference in x-ray penetration between different tissues represents the contrast in 
the image, and this relates to the ease with which different tissues can be distinguished. 

As mentioned previously, the mean energy of the X-ray beam in the pQCT scanner is 
37 keV. At this energy value, it is possible to distinguish muscle tissue from 
surrounding tissues (particularly adipose tissue) as depicted in Figure B.3. Adipose 
tissue consists mainly of fat. 

                
Figure B.3: Variation of attenuation coefficient with photon energy: the attenuation coefficient difference between 
adipose tissue and skeletal muscle at 37 keV highlights the ability of the pQCT scanner to distinguish muscle 
border. 
 

B.3 Subject Radiation Dose 
The radiation dose of the Stratec 2000 was measured by the scanner manufacturer 
using thermo-luminescent dosimetry (TLD). TLD chips were positioned at the centre 
of a 5 cm diameter acrylic cylinder in order to simulate the x-ray attenuation and the 
scatter of a human limb. The total skin dose is about 125 µSv and the resulting whole 
body effective dose is about 0.22 µSv (Stratec Medizintechnic 2007). 

pQCT mean energy 37 keV 
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B.4 Operator Radiation Dose 
The radiation dose to the scanner operator is negligible. During a scan procedure, at 
the scanner aperture, the total leakage plus scatter radiation dose rate is less than 10 
µSv/hr. The leakage radiation dose at 5 cm from the gantry surface is equal to 0.9 µSv 
for a pQCT scan. The operator dose, measured at a distance of 40 cm, is 0.02 µSv, 
whereas, at a distance of 100 cm, it is less than 0.01 µSv (Stratec Medizintechnic 
2007). 

B.5 Safety Features 
The XCT 2000 scanner has been designed to be safe for both operator and patient. The 
X-ray beam is highly filtered and highly collimated in order to yield a minimum 
subject dose. The X-ray beam is on only during patient or quality assurance scans. 
Furthermore, if the system is not gathering data, the X-ray tube voltage and current 
are automatically switched off. An amber warning light on top of the gantry body 
informs the operator that the X-ray tube is switched on and a highlighted text message 
is displayed on the monitor screen. (Stratec Medizintechnic 2007). 

B.6 Quality Assurance of the pQCT Scanner 
A quality assurance (QA) procedure is used to test that all the system components are 
working correctly. However, it is not a system calibration procedure, which fits the 
output to the expected QA result. The QA procedure must be performed every working 
day so as to detect any possible malfunctions. It is not possible to scan a patient without 
a new valid QA measurement taken within the last 24 hours. The QA is performed 
using two phantoms: a standard phantom and a cone phantom (Figure B.4). Both 
phantoms are built into one phantom body, which is called the European Forearm 
Phantom. It is made of 3 different plastic materials: polytetrafluorethylene (PTFE), 
polyoxymethylene (POM) and polyvinylfluoride (PVDF). Cortical bone is represented 
by a shell of polyvinylchloride (PVC), which has a thickness of 1 mm. The QA 
measurement is based on the difference between the measured density values of the 3 
materials, so as to detect any changes in the energy spectrum or the photon flux (Braun 
et al., 1998; Stratec Medizintechnic 2007). 
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Figure B.4: pQCT phantom for quality control. 
 
The QA procedure starts by placing the QA phantom in a clamp at the gantry opening, 
as shown in Figure B.5. The position of the standard phantom is detected automatically 
and the CT measurements begin. The software compares the measured values with the 
rated values. If the difference between the measured and the rated values is less than 
1%, the software gives the message ‘QA successful’, otherwise it gives an error 
message. 
Every 30 days, the cone phantom must be measured to confirm the linearity of the 
three different density ranges and the precision of repositioning the device, as 
indicated by the measured cross-sectional area of the cone. This procedure takes about 
15 minutes. 
 

                                    
              Figure B.5: Scan of phantom for quality control. 
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Appendix C: Participant Information Sheet and Consent Form 
 
Comparison of peripheral quantitative computed tomography and 
magnetic resonance imaging for tissue characterisation in the 
gastrocnemius muscle 
 
Participant information sheet 
You are being invited to take part in a research study carried out by the Institute of 
Medical Engineering, Cardiff University as a part of a PhD Thesis. The purpose of this 
form is for you to decide whether or not you wish to participate. Information regarding 
why you have been asked to participate, what the study will involve and how the 
results to be used are included in this document. 
It is important that you take time to read the following information and consider your 
decisions carefully as whether to participate - perhaps discuss it with friends or family 
if you think a second opinion would be useful. 
Also, it is important that you do not feel pressured or obligated to take part in these 
procedures. If there is any part that you do not understand and would like more 
information regarding the procedure, please ask any member of the research team and 
we will be gladly give assistance and answer any question you have. 
Finally, thank you for taking the time to read this information sheet and in taking an 
interest in our work. 
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 What is the purpose of this study? 
This study aims to investigate whether peripheral quantitative computed tomography 
(pQCT) offers any advantages over magnetic resonance imaging (MRI) for tissue 
characterisation in the gastrocnemius muscle, and to reveal any association between 
them in order to improve the treatment of muscle injuries. 

 Why have I been chosen? 
As you are a healthy volunteer you are ideal for this study. Volunteers of between 18-
40 years of age are being asked to volunteer and participate, as muscle injuries are 
common in this population. 

 Do I have to take part? 
No, you are not obligated to take part. It is important for you to take time to understand 
the information you have been given and to decide whether you wish to participate. If 
you do not wish to take part, for whatever reason, you can refuse or withdraw. You 
can do this anytime without giving any reason. 
It is also important to understand that your current or future medical care will not be 
affected by your decisions. 
Upon reading this form, you will be asked to keep it and consider your decision. If you 
choose to participate, you will then be asked to sign a consent form. Once this form 
has been signed you are still completely free to withdraw without giving reason. 

 What will happen to if I take part? 
Firstly, you will be asked to attend to the MRI centre for approximately of 1 hour. At 
this session, we will scan the gastrocnemius muscle within your body using a magnetic 
resonance imaging scanner. MRI is capable of producing highly detailed images of the 
interior of the body. Before scanning starts, the MRI operator will brief you about the 
whole procedure. You will be asked to remove any metal objects and all jewelry and 
put on a medical gown. During the procedure, the MRI machine generates a significant 
amount of noise, but you will still able to communicate with MRI operator. 
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Secondly, you will be asked to attend a different location for pQCT scanning. During 
this session, we will scan the same muscle using pQCT scanner, which is a 
transmission x-ray imaging modality with a negligible radiation dose. 

 Are there any side-effects? 
MRI does not use ionising radiation and so there are no radiation risks associated with 
the procedure. However, there might be other types of risk to those who have 
implanted metal objects in their bodies. For your safety, you will be given a pre-
procedure questionnaire, on which you will need to answer all questions. 
The effective radiation dose from pQCT is very small, equivalent to much less than 
one day’s worth of natural background radiation. 

 What will happen to the results of the research study? 
The results that we obtain form your visits will be in the form of MRI images and 
pQCT images. These images will be analysed and should we find valuable new 
information, they will be presented at a scientific conference and/or published in a 
scientific journal. This will allow the wider academic community to access these 
findings. Should you wish to know the results of our findings, contact Professor Len 
Nokes and Professor Wil Evans using the contact details at the end of this form. 

 Will my participation in this study be kept confidential? 
Members of the research team are drawn from Medical Physics and Clinical 
Engineering at the University Hospital of Wales (Professor Wil Evans, Dr. Declan 
Colman), and the Cardiff University School of Engineering (Professor Len Nokes, Mr. 
Fahad AlGohani). Funding for this project is not required, as all staff involved are able 
to spend research time as part of their contract of employment. 

 Who has reviewed the study? 
To safeguard the welfare of volunteers, any study that requires voluntary participation 
has to be approved by a Research Ethics Committee. This study has been reviewed 
and its conduct approved by the Cardiff University School of Engineering Ethics 
Committee. 
For further information please contact: 
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 Professor Len Nokes, Academic Supervisor, Cardiff University 
 Professor Wil Evans, Academic Co-Supervisor, University Hospital of Wales 

 
Date:  ………………………… 
  



264 
 

Participant Questionnaire 
 
Sex: Male 

Female 
Age:       ………………………… 
 
Q1: Do you have any pain in the lower leg? 
                                                             Yes 
                                                              No 
Q2: Do you or have had any injury to your calf muscle? If yes when? 
                                                             Yes 
…………………………………………………………………………………………
…….. 
                                                              No 
Q3: Do you have any muscular weakness, spasticity, rigidity or loss of muscular 
control? 
                                                             Yes 
                                                             No 
Q4: Do you do any sport activities? 
                                                            Yes 
                                                            No 
If yes, which type of sport? And how frequently? 
…………………………………………………………………………………………
…….. 
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Q5: Do you do any exercise to increase the calf muscle strength? 
                                                           Yes 
                                                           No 
Q6: Have had any operation or surgery to the lower leg? If yes, when? 
                                                          Yes 
                                                          No 
…………………………………………………………………………………………
…….. 
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Comparison of peripheral quantitative computed tomography and 
magnetic resonance imaging for tissue characterisation in the 
gastrocnemius muscle 
 

CONSENT FORM 
 
Participants Name: ………………………………………………….…………….. 
Please read the statements below and, if you agree to them, please tick the appropriate 
box. On completion, please sign the form to state your consent. 
If there are any statements that you do not understand or require clarification on, then 
please ask one of the research team who will be more than happy to assist. 
If you disagree with any of these statements, then feel free not to complete this form 
and opt out of the study. 

1. I confirm that I have read and understood the information sheet entitled 
‘Comparison of peripheral quantitative computed tomography and magnetic 
resonance imaging for tissue characterisation in the gastrocnemius muscle’, 
that I have had the opportunity to ask questions and I accept the answers 
received. 
 

2. I understand that my participation is entirely voluntary and that I am free to 
withdraw at any time without giving any reason, and that neither my right to 
present or future medical care will not be affected, nor my legal rights. 
 

3. I agree to take part in the above study. 
 
Name of Subject                                Date                                                        Signature 
 

Name of Researcher                                 Date                                                        Signature 

 
 


