
 ORCA – Online Research @ Cardiff

This is a n  Op e n  Acces s  doc u m e n t  dow nloa d e d  fro m  ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/10 2 0 9 4/

This  is t h e  a u t ho r’s ve r sion  of a  wo rk  t h a t  w as  s u b mi t t e d  to  / a c c e p t e d  for

p u blica tion.

Cit a tion  for  final p u blish e d  ve r sion:

Zh a n g,  B., S u n,  X.C., E a ton,  M.  J. , M a rks,  R. , Cla rk e,  A. , Fe a t h e r s to n,  C. A. ,

Kaw as hi t a ,  L. F. a n d  H alle t t ,  S. R. 2 0 1 7.  An in t e g r a t e d  n u m e ric al m o d el  for

inves tig a tin g  g uid e d  w aves  in imp ac t-d a m a g e d  co m posit e  la min a t e s .  Co m posi t e

S t r u c t u r e s  1 7 6  , p p .  9 4 5-9 6 0.  1 0.10 1 6/j.co m ps t r uc t .2 01 7.06.03 4  

P u blish e r s  p a g e:  h t t p://dx.doi.o rg/10.10 1 6/j.co m ps t r uc t .20 1 7.0 6.0 34  

Ple a s e  no t e:  

Ch a n g e s  m a d e  a s  a  r e s ul t  of p u blishing  p roc e s s e s  s uc h  a s  copy-e di ting,  for m a t ting

a n d  p a g e  n u m b e r s  m ay  no t  b e  r eflec t e d  in t his  ve r sion.  For  t h e  d efini tive  ve r sion  of

t his  p u blica tion,  ple a s e  r efe r  to  t h e  p u blish e d  sou rc e .  You a r e  a dvis e d  to  cons ul t  t h e

p u blish e r’s ve r sion  if you  wis h  to  ci t e  t his  p a p er.

This  ve r sion  is b eing  m a d e  av ailabl e  in a cco r d a nc e  wi th  p u blish e r  policies.  S e e  

h t t p://o rc a .cf.ac.uk/policies.h t ml for  u s a g e  policies.  Copyrigh t  a n d  m o r al  r i gh t s  for

p u blica tions  m a d e  av ailabl e  in  ORCA a r e  r e t ain e d  by t h e  copyrigh t  hold e r s .



*Corresponding author: b.zhang@bristol.ac.uk (B. Zhang); +44(0) 117 33 15311 

 

An integrated numerical model for investigating guided waves in 

impact-damaged composite laminates  

B. Zhanga,*, X.C. Suna, M.J. Eatonb, R. Marksb, 

A. Clarkeb, C.A. Featherstonb, L.F. Kawashitaa, S.R. Halletta 

aAdvanced Composites Centre for Innovation and Science (ACCIS),  

University of Bristol, Queen’s Building, University Walk, Bristol BS8 1TR, UK 

b Cardiff School of Engineering, 

Cardiff University, Queen’s Buildings, The Parade, Cardiff CF24 3AA, Wales, UK 

Abstract    

This paper presents a novel numerical technique that combines predictions of 

impact-induced damage and subsequent ultrasonic guided-wave propagation in 

composite laminates, with emphasis on the development and verification of the modelling 

framework. Delamination and matrix cracking are considered in the modelling technique, 

which is validated by experimental measurements on a carbon-fibre/epoxy plate using a 

drop-weight impact tower and a scanning laser vibrometer. Good agreement has been 

found between simulations and experiments regarding the impact response and global-

local wavefields. Effects of these two damage modes, damage extent and multiple impacts 

on guided waves are studied using the modelling tool. Matrix cracking leads to lower 

wavefield scattering compared with delamination, particularly in un-damaged regions. 

The modelling strategy can provide valuable guidelines for optimising health-monitoring 

arrangements on composite structures that are susceptible to impacts, and the guided-

wave model can also be integrated with other numerical models for predicting internal 

flaws in composite laminates. 
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1. Introduction 

Owing to high specific stiffness and strength, fibre-reinforced plastic (FRP) composite 

laminates are increasingly being used in many industries, including aerospace, 

automotive, civil, electronics and marine. Excellent in-plane properties can be achieved 

by tailoring the fibre/matrix materials and stacking sequence of laminates. One of the 

major concerns when designing laminated structures is their relative weaker 

through-thickness properties. As a result, composite laminates are susceptible to 

interlaminar fracture (delamination) when exposed to an impact threat, e.g. dropped tools 

and hail. Typical damage modes due to low-velocity impact also include intralaminar 

failure, such as matrix cracking, fibre breakage and fibre/matrix debonding [1]. 

Low-velocity impact damage significantly degrades the residual strength and fatigue life 

of a laminated structure [2,3], with the degradation severity increasing with impact energy 

[4]. Therefore, a number of non-destructive testing (NDT) technologies have been 

developed to evaluate the structural integrity of composite laminates, including acoustic 

emission [5], eddy current effect [6], electrical resistance measurement [7], ultrasonic C-

scan and tomographic imaging [8]. 

Ultrasonic guided waves have been widely used to evaluate the integrity of 

engineering structures, due to their ability to propagate over considerable distances and 

excellent sensitivity to the presence of defects in the propagation path. Given that 

composite laminates are generally thin plate-like structures, the resulting Lamb waves 

feature two simultaneously existing modes, namely the symmetric (S) and anti-symmetric 

(A) modes [9]. Guided waves are usually generated by an excitation source, typically a 

piezoelectric transducer coupled with the laminate. Once these waves have been 

generated, the structural integrity of the laminate can be evaluated by the transducer itself 

or other sensors coupled to the laminate. This procedure can take place during a 
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maintenance inspection or while the structure is in service. Guided-wave propagation in 

composite laminates is a very complex phenomenon due to a number of factors, including 

(i) the anisotropic properties of individual laminae (plies), (ii) the fact that laminates are 

usually made of plies with different fibre orientations, and (iii) the dispersive nature of 

guided waves. Impact-induced damage further enhances the complexity, by scattering 

and reflecting guided waves. As a result, it becomes practically difficult to derive 

analytical solutions for the detailed guided-wave propagation behaviour of impact-

damaged laminates. Hence, most of the research on guided-wave propagation in impacted 

laminates has been based on experiments and numerical modelling. Regarding 

experimental characterisation, low-velocity impact damage is normally introduced into a 

laminate through drop weight [10–12] or quasi-static indentation tests [13–15]. The 

location and size of damage and/or flaws can be ascertained by the phase shift and 

amplitude difference between the sensing signals acquired before and after impact 

[10,11,16]. Both of the sensing indicators increase with the damage size. The detection 

accuracy can be improved by increasing the number of signal acquisition points, as 

illustrated in [12] by a 2-dimensional scanning method. Another experimental approach 

for evaluating the health condition of an impact-damaged laminate is to examine the 

guided wavefield acquired by a scanning laser vibrometer (SLV). It provides more 

intuitive observations of guided-wave propagation, as well as its interaction with damage. 

The combination of time-domain and frequency-domain analyses of the guided wavefield 

aids more accurate prediction of the impact-induced damage [14,17]. 

Experimental characterisation of structural health monitoring (SHM) systems is costly 

and time-consuming, attributed to various configuration parameters, including the 

laminate material, the stacking sequence and the impact energy. It is also difficult to 

visualise wave propagation inside the laminates during experiments. Hence, several finite 
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element (FE) models were proposed in [15,18–24] to investigate the influence of the 

dominant impact damage mechanism, i.e. delamination on guided waves. Delamination 

was assumed to have an idealised geometry and wave scattering due to delamination was 

examined in these models. On the other hand, Leckey et al. developed a 3D elasto-

dynamic finite integration model that incorporated realistic impact-induced delamination 

geometries measured by X-ray computed tomography (CT) scanning [15], indicating that 

the realistic geometry of impact-induced delamination should be taken into account in 

order to improve the prediction quality of numerical models. In addition, the overall 

impact damage was represented by simply degrading material properties in the FE models 

proposed in [24,25].  

Whilst numerical modelling techniques for predicting low-velocity impact damage are 

quite well advanced [26–28], modelling techniques that combine these simulations with 

the analysis of ultrasonic guided-wave propagation have not been so far put forward in 

the literature. Such an integrated modelling capability is imperative in the development 

of NDT and SHM systems for composites, since it completes the virtual characterisation 

process from impact to guided-wave propagation using numerical simulation, thus saving 

considerable time in comparison with experimental studies. Therefore, the objective of 

the present work is to develop an integrated numerical modelling methodology for 

characterising guided waves in composite laminates after undergoing low-velocity impact. 

The numerical strategy consists of a model that predicts impact-induced damage 

including delamination and matrix cracks, a guided-wave model that imports the 

predicted damage data and analyses guided-wave propagation in the damaged laminate, 

and a damage transfer code. Delamination and material cracking are both directly meshed 

in the guided-wave model. Section 2 first provides experimental characterisation of a 

quasi-isotropic carbon FRP plate. Section 3 presents detailed descriptions of the novel 
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impact-ultrasonic modelling tool. Comparisons between experimental measurements and 

numerical results are then detailed in Section 4 to verify and validate the methodology. 

The modelling framework is employed in Section 5 to investigate the effects of these two 

damage modes, damage extent and multiple impacts on guided-waves.  

2. Experimental characterisation 

2.1. Specimen preparation 

A composite plate with the dimensions of 4 × 200 × 300 mm3 (thickness × width × 

length) was manufactured from 32 plies of Hexcel® IM7/8552 pre-preg material, stacked 

following the sequence of [452/02/902/-452]2S. The quasi-isotropic laminate was vacuum 

bagged and cured in an autoclave following the material manufacturer’s recommended 

cycle (2 h at 180 °С with 180 psi pressure). Note that the in-plane dimensions of the plate 

are double that of the more commonly used ASTM D7136 standard [29] in order to give 

a panel size that is more realistic for guided-wave propagation. Fig. 1 shows the analytical 

dispersion curves created for the laminate using the software package DISPERSE® and 

the material properties given in Table 1. 

2.2. Low-velocity impact 

The plate was impacted at its centre using an Instron® Dynatup 9250 HV drop-weight 

impact tower, whose impactor had a 16 mm diameter hemispherical shape and a 6.3 kg 

weight. In order to accommodate the larger than standard plate, a new support fixture was 

designed and manufactured. Based on the scaling between the ASTM standard plate [29] 

and the plate tested in this study, the support frame dimensions were doubled to 

250 × 150 mm2, as compared in Fig. 2. The same four rubber-tipped clamps were used. 

The support fixture was made of steel, and the flatness tolerance of the top surface was 

kept within 0.1 mm to ensure that each opening edge provided uniform support to the 

plate during impact. The impact energy for this case was 12 J, so that damage introduced 
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by the low-velocity impact test was dominated by delamination and matrix cracks. The 

projected delamination area in the plate was inspected by ultrasonic C-scan. 

2.3. Scanning laser vibrometry 

The laser vibrometry study was undertaken using a 3D scanning laser vibrometer 

(Polytec® PSV-500-3D-M). The test set-up is presented in Fig. 3. Through the use of three 

laser heads the system can resolve wave velocities in three principal directions, i.e. two 

in-plane and one out-of-plane. Ultrasonic excitation was achieved using a Mistras Group 

Ltd. Nano30 piezoelectric transducer (8 mm diameter), placed at the middle of the left-

hand short side of the plate on the impactor side. The transducer was fixed with silicon 

RTV adhesive (Loctite® 595) which also provided suitable acoustic coupling. The 

transducer was excited by a 140 kHz five-cycle sine wave modulated by a Hanning 

window (300 V pp) generated by a Mistras Group Ltd. Arbitrary Waveform Generator 

(WaveGen 1410). The excitation frequency was chosen to provide a balance between 

sensitivity to damage and computational cost of models as presented in the next section. 

The signal was Hanning window modulated to limit the signal bandwidth so that only 

zero-order modes were excited (Fig. 1). Apart from the first asymmetric (A0) and 

symmetric (S0) modes, the zero-order shear horizontal mode SH0 was also generated 

under the current frequency. However, the asymmetric mode has a shorter wavelength 

than other two modes under the excitation frequency, thus it is more sensitive to damage. 

Furthermore, considering that the plate was excited in the thickness direction, which was 

dominated by the A0 mode, the emphasis of this study is placed on the A0 mode. The 

panel was held in low density foam supports (Fig. 3), to provide some acoustic isolation, 

and mounted to an aluminium frame. The supports were arranged such that the panel 

could be removed and replaced into the same position, following impact testing. A thin 

coating of retroreflective glass spheres was applied to the panel, using a light spray 
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adhesive, to enhance the backscattered laser signal. Vibrometry measurements of the 

propagating waves were made at 2 mm intervals (total of 14,928 data points). Data were 

acquired at a velocity sensitivity of 200 mm/s, with a 2.56 MHz sample rate and 100 

averages were made for each measurement to improve the signal to noise ratio. The data 

acquired was sufficient to verify the proposed modelling strategy. One objective of the 

work was to consider how the guided waves propagated to the sensors at locations remote 

from the impact location.  

3. Impact-ultrasonic modelling tool 

As shown in Fig. 4a, the modelling framework comprises an impact model, a 

guided-wave model and a damage transfer MATLAB® code. The impact model was 

employed to predict low-velocity impact damage in the laminate. The MATLAB® code 

then imported the predicted damage information into the guided-wave model, which then 

simulated ultrasonic wave propagation in the laminate. Both models were created 

according to the experimental set-up described in the last section. For ease of expression, 

the global coordinate system X-Y-Z is established with its origin coincident with the lower 

left corner of the bottom surface of the laminate, as shown in Fig. 4a. The global X-axis 

and Y-axis follow the length and width of the laminate, respectively. The local coordinate 

system x-y-z of a ply has its origin coincident with the centre of the ply and its x-axis 

following the fibre direction of the ply. 

3.1. Impact model 

The impact model shown in Fig. 4a used a novel global-local approach developed by 

the authors in [30,31] to describe the laminate. The impact sensitive region with a 50 mm 

radius was modelled by 3D continuum (i.e. ‘solid’) elements, while shell elements were 

used for the surrounding region where damage was not expected to occur. The 

solid-element part was created using a high-fidelity modelling approach proposed in [28]. 
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Specifically, each ‘ply block’ (i.e. two neighbouring plies with the same orientation) in 

the solid-element part was represented by a ply-level mesh as shown in Fig. 4b. The 

ply-level mesh was oriented along the fibre direction for each ply block. Thus, the solid-

element part comprised 16 layers of ply-level meshes. In order to predict potential matrix 

cracks, the ply-level mesh also possessed three pairs of cohesive element strips 

symmetrically inserted on two sides of the local x-axis, with separations of 3 mm, 7 mm 

and 13 mm, respectively [28]. All the cohesive elements for modelling matrix cracking 

were zero thick and 0.2 mm long. Each interlaminar interface was modelled using a layer 

of 0.01 mm thick cohesive mesh, one quarter of which is shown in Fig. 4c. Each element 

of the cohesive mesh has 0.2 × 0.2 mm2 in-plane dimensions in the region of interest (ROI) 

where delamination is expected to occur. Considering that a ply may have different 

element dimensions from its adjacent interfaces, the degrees of freedom (DOFs) between 

them were linked by a ‘tied contact’, which was defined by the well-known penalty 

algorithm [32]. Cohesive elements for modelling delamination and matrix cracks both 

followed the same failure criteria [33,34], which is briefly described below. Stress and 

displacement prior to failure are related by an elastic stiffness, which is indicated by KI 

for mode I (opening) and KII for mode II (shearing). Interlaminar failure initiation and 

evolution are controlled by a quadratic stress criterion and a power law criterion, 

respectively: 

(max(0,𝜎𝐼)𝑆𝐼 )2 + ( 𝜎𝐼𝐼𝑆𝐼𝐼,𝐸)2 = 1                                           (1) 

( 𝐺𝐼𝐺𝐼𝐶)𝛼 + ( 𝐺𝐼𝐼𝐺𝐼𝐼𝐶,𝐸)𝛼 = 1                                              (2) 

where SI and SII,E are mode I and mode II strengths, respectively. GIC and GIIC,E are 

critical strain energy release rates (ERRs). The power  2,1  is an empirical factor 

derived from mixed-mode tests for interlaminar fracture. SII,E and GIIC,E are ‘enhanced’ 
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values due to through-thickness compression [33,34]  and are derived by:  𝑆𝐼𝐼,𝐸 = 𝑆𝐼𝐼 − 𝜂 ∙ 𝑚𝑖𝑛(0, 𝜎𝐼)                                            (3) 

𝐺𝐼𝐼𝐶,𝐸 = (𝑆𝐼𝐼,𝐸𝑆𝐼𝐼 )2 𝐺𝐼𝐼𝐶                                                  (4) 

where SII and GIIC are the baseline (un-enhanced) mode II strength and critical ERR. 

 represents the empirical enhancement factor which can be obtained from biaxial tests 

[35].  

One layer of shell elements, each of which had 16 integration points in the thickness 

direction, i.e. the global Z-axis, was employed to describe the shell-element part of the 

impact model (Fig. 4a). It means that one layer of integration points represents one ply 

block. A ring-shaped transition part was introduced to transfer DOFs between the solid-

element part and the shell-element part, as shown in Fig. 4a. The transition part consisted 

of three layers of 1 mm long 8-node solid elements along its radius direction, and 8 layers 

of solid elements in its thickness direction. A penalty-based tied contact was also 

introduced between the inner surface of the transition zone and the outer surface of the 

solid-element part. Nodes located at the mid-plane and outer edge of the transition zone 

were merged with the inner edge of the shell-element part. Each Z-direction line of nodes 

on the outer edge of the transition zone were constrained as a rigid body to have the same 

DOFs in all three directions. All rigid lines remained straight when subjected to small Z-

deflection. This implies that each rigid line complies with the classical thin plate theory 

and allows transfer of all the DOFs between the local (solid-element part) and global 

domains (shell-element part). The support frame and the impactor were both modelled as 

rigid bodies, since their deformation is negligible in such tests. The impactor was 

positioned close to the plate and assigned an initial velocity, which was calculated from 

the pre-defined impact energy. The impact force was computed from the contact forces 

generated between the impactor and the plate.  
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Material properties listed in Table 1 were assigned to each ply-level mesh in the impact 

model. Cohesive elements for modelling delamination and matrix cracks both had the 

same material properties, as detailed in Table 2. The transition zone between solid and 

shell-element parts had homogenised orthotropic material properties that were equivalent 

to the solid-element part. The measured density of the plate given in Table 1 was used in 

the impact model. The impact simulation was performed in the FE software LS-DYNA®, 

as it was shown in [26] and [27] to provide a robust and accurate methodology for 

predicting delamination and matrix cracking in composites. 

3.2. Guided-wave model 

The impact model described above employed a global-local mesh to reproduce 

significant characteristics affecting the impact response of laminates with improved 

computational efficiency. The guided-wave model in contrast used a uniform mesh of 3D 

continuum solid elements throughout, in order to avoid spurious wave reflections caused 

by differences in element size and formulation [36]. As shown in Fig. 4a, each ply block 

was modelled by a single layer of 0.2 × 0.2 × 0.25 mm3 (length × width × thickness) 

eight-node solid elements. The ply material properties listed in Table 1 were also assigned 

to the guided-wave model. The analytically calculated wavelengths are around 10 mm, 

27 mm and 46 mm, respectively for A0, SH0 and S0 modes (Fig. 1). Thus, the selection of 

element length in the guide-wave model can be considered reasonable, since the shorter 

wave length of A0 wave spans more than ten elements [24,37]. In addition, a stiffness-

proportional material damping coefficient equalling to 4 × 10-8 was assigned to the 

guided-wave model. The damping factor was found by iterative calibration to match the 

experimentally measured attenuation coefficient within 5% error. A comparable value 

was used in [24,38]. The excitation signal was applied as a Z-displacement curve to the 

surface nodes corresponding to the position of the actuator in experiments. The excitation 
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signal in the simulation was also a 140 kHz five-cycle sinusoidal tone burst pulse 

modulated by a Hanning window, while the excitation amplitude was set to the maximum 

experimental vibration amplitude adjacent to the actuator. 

Damage modelling and transfer 

Failed interlaminar cohesive elements in the impact model represent predicted 

delamination patterns, while failed intralaminar cohesive elements represent predicted 

matrix cracks. The predicted 3D damage information can be transferred to the guided-

wave model via the global X-Y-Z coordinate system (Fig. 4a). The volumetric void 

method used in [21,23,39] was employed to describe delamination, that is to say, a node 

of the guided-wave model was split into two if it was located in the predicted 

delamination region, as illustrated in Fig. 5a. In this case, the de-merged nodes were 0.01 

mm apart in the Z-axis direction. The separation is quite small compared with the wave 

lengths that its effect on modelling results can be assumed negligible.  

As shown in Fig. 5b, if one edge of an element in the guided-wave model was 

intersected by a matrix crack predicted by the impact model, the element was removed. 

This allows importing the predicted matrix cracks into the guided-wave model. The 

element-deletion method used to describe cracks was used in [40] for isotropic materials, 

but it is here extended for laminates. A zig-zag profile of matrix cracks may be present in 

±45° plies, thus a fine mesh was used in this study for better accuracy.  

The damage transfer procedure described above was implemented as a MATLAB® 

code, in order to automate the generation of guided-wave models. It should be noted that 

this code can also be employed to create guided-wave models by reading damage 

information from images (i.e. obtained by CT scan), since each pixel/voxel can be 

interpreted as a ‘finite element’ for the damage transfer procedure. 
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The FE software Abaqus/Explicit was employed for computing the guided-wave 

model, as it has a robust combination of solvers and post-processing capabilities. For 

guided-wave simulations, node-based history outputs were requested instead of element-

based field outputs to reduce the amount of data being written to disk. A bespoke Python 

script was then used to access the output data and re-build the wavefields. This procedure 

reduced file sizes and improved post-processing speed dramatically. The guided-wave 

model had 5,997,608 solid elements, while the impact model comprised 7,809 shell 

elements, 764,696 cohesive elements and 346,966 solid elements. Time step sizes were 

2.45 × 10-9 and 6.12 × 10-9, respectively for the guided-wave model and the impact model. 

These two models were both run on 32 parallel CPUs in a HPC cluster. With these settings 

a typical impact model required a wall time of 41 hours, the damage transfer required 

another 1.5 hours, and the guided-wave model (processing and post-processing) took 7 

hours to compute 286 s of wave propagation. 

4. Model calibration and verification 

4.1. Impact modelling results 

The modelling framework was first validated regarding the predicted impact response. 

As shown in Fig. 6a, the overall force response in the FE simulation agrees well with 

experimental measurements. The first significant load drop that corresponds to 

delamination initiation and the peak load were well captured by the impact model, as are 

the force oscillations attributed to the damage development. A slight delay was found in 

the numerical peak force in comparison with experiments, which may be attributed to: (i) 

the coupling effect between solid elements and shell elements, since a solid-element node 

has only three translational DOFs while a shell-element node also has three rotational 

DOFs; and (ii) the slight extra constraint exerted by the four clamps (not modelled) on 

the dynamic response of the plate. However, the delay in the peak load is expected to 
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have only minor effects on the damage prediction, because major damage was induced 

before this peak was reached. The projected delamination area was also well predicted by 

the FE simulation in general, as shown in Fig. 6b. The impact damage shows an overall 

symmetry relative to the fibre direction of 0° plies [4,15]. FE results also show that 

delamination occurred in all the interfaces except the one at the mid-plane, while matrix 

cracking happened in all the plies except the surface one on the impact side. There existed 

interconnections of matrix cracks, and interactions between matrix cracking and 

delamination, as investigated in [28]. A more detailed verification of the impact model 

can be found in [30,31] and is not repeated here. The considerations above support the 

validation of the predicted damage data. 

The predicted damage was mapped into the guided-wave model using the transfer 

procedure detailed in Section 3.2. For illustration, the delamination region and matrix 

cracks respectively associated with the first 90° ply block and corresponding 0°/90° 

interface on the impact-support side of the plate are presented in Fig. 7, whereby a cross 

labels the impact centre. Fig. 4a also gives an enlarged view of the guided-wave mesh 

sectioned along the fibre direction of 0° plies around the impact location, whereby 

delamination relating nodes are red coded. Considering that the guided-wave model had 

the same in-plane element size as the interlaminar cohesive mesh in the ROI of the impact 

model, the predicted delamination could be fully transferred into the guided-wave model 

without discrepancy. The transfer accuracy for matrix cracks is acceptable since the 

element in-plane size in the guided-wave model is at least one order smaller than the A0 

wave length and the lengths of all major matrix cracks. 

4.2. Ultrasonic modelling results 

Global observation 

The modelling framework was further validated regarding guided-wave analysis. All 
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the wavefields presented in this study were acquired from the impactor-side surface of 

the plate and normalised by the excitation amplitude used in the FE simulation. Figs. 8a-

c present the predicted and measured global Z-wavefields (formed purely by Z-direction 

vibration) at three points of time after excitation. As demonstrated in Fig. 8a, Z-

wavefields were dominated by the A0 mode which propagated along the length of the 

plate and spread in a circular pattern away from the excitation source. The S0 mode can 

also be observed, but the SH0 mode seems to demonstrate negligible amplitudes from the 

FE results. The wave amplitude along the fibre directions of ±45° plies is larger than in 

other directions, because higher bending stiffness is present in these directions [41]. Once 

the A0 wave arrived at the damage site it interacted with the damage (Fig. 8b). With 

further wave propagation the incident wave was reflected by the plate edges (Fig. 8c). 

The reflected waves interacted with one another as well as the incident wave. This 

complex behaviour illustrates the difficulty of signal processing for the SHM of laminated 

structures. The in-plane X- and Y- wavefields showed very similar global features as the 

Z-wavefield, since these three wavefields formed the overall wavefield through coupling 

with one another [9]. It is necessary to mention that the in-plane wavefields both had a 

lower amplitude than the Z-wavefield as the plate was excited in the out-of-plane 

direction.    

Fig. 9 quantitatively compares FE predicted and SLV given A0 phase velocities 

measured from the excitation centre and along a direction that is within ±60° angle 

relative to the fibre direction of 0° plies. Wave propagation along a direction beyond ±60° 

angle is influenced by the short edge of the plate (Fig. 8a), and thus not plotted here. The 

velocity variance between modelling and experimental measurements was within ±5% 

for a direction selected in Fig. 9. It can also be observed from Fig. 9 that the wave velocity 

shows a slightly overall decrease with the maximum value present at around +45° angle, 
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due to the orientation of the outer plies being at +45° [41]. The small directional 

dependence of A0 wave velocity still confirms the quasi-isotropic property of the plate. 

Additionally, the damping coefficient chosen in the FE model is reasonable since the FE 

attenuation coefficient given by the FE modelling corresponded to 0.021 m-1, which was 

4.5% less than the measured value. The observations given above indicate that the FE 

simulation is in good agreement with SLV measurements regarding the global wavefield. 

Local observation 

Local observation of wavefields around the damage area is essential for further 

verification of the methodology presented in this study. Thus, the wavefields were 

extracted along four 100 mm long lines, whose middle points are all coincident with the 

plate centre, as illustrated by blue arrow lines in the guided-wave model plot of Fig. 4a. 

The monitoring lines follow the fibre directions of 0°, -45°, 45° and 90° plies, and their 

positive directions are clearly indicated by arrows in Fig. 4a. The local wavefields are 

then presented in 2-dimensional plots, whereby the horizontal axis represents the time 

elapsed after excitation, and the vertical axis indicates the distance measured from the 

negative end of the lines. Figs. 10-12 compare the predicted and measured post-impact 

X-, Y- and Z-wavefields along the four lines. In-plane wavefields were quantitively 

underestimated, especially at damage location, however, their overall trends were well 

predicted. The predicted out-of-plane wavefields show excellent quantitative agreement 

with experimental measurements, albeit significant reverberations at damage location 

were observed in experimental plots of Fig. 12. The aforementioned discrepancies 

between FE and experiments could be attributed to: (i) experimental wavefields were 

apparently disturbed by noise, which also led to a lower signal to noise ratio in in-plane 

wavefields than in out-of-plane wavefields; (ii) the impact model was capable of 

predicting the longest in-plane matrix crack via limiting the crack number to 6 for a ply 
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block [28], however, shorter cracks may also interact with the ultrasonic wave and affect 

the wavefield in the damage area; (iii) the wave energy transmission between 

neighbouring plies through contacts in the delamination region was not simulated in the 

ultrasonic model, but these contacts may occur and contribute to the local wavefields, 

since higher wave amplitude was present in the damage region; (iv) each ply block was 

through-thickness described by one element in the guided-wave model, which allows to 

accurately predict guided-wave propagation in the undamaged area (see Fig. 9). The 

prediction accuracy could be improved if multiple elements were used in the damage area, 

since where most of the plies were disbonded from neighbours, however, the model size 

would then increase to a non-feasible level regarding the computational capability.  

Figs. 10-12 indicate that the A0 and S0 modes interacted with discontinuities in the 

damage area, and this resulted in larger amplitude variation there. The interaction was 

accompanied by wave transmission, reflection and mode conversion [14,18,42]. A0 mode 

was much more sensitive to damage than S0 mode in all the wavefields, and the former 

also demonstrated the highest sensitivity when out-of-plane wavefields were considered. 

From another point of view, the damaged part of the plate can be regarded as a separate 

pseudo wave source, which continuously dissipated vibration energy. Fig. 13 shows that 

the FE modelling matches experimental measurements quite well regarding the Z-

wavefield amplitudes, which were measured over 160 μs after excitation at points located 

25 mm and 50 mm away from the damage centre. The Z-wavefield amplitude shows an 

overall symmetry relative to the fibre direction of 0° plies due to the quasi-symmetric 

damage profile (Fig. 6b). Experimental data is only plotted at every 45° intervals in Fig. 

13 for satisfactory accuracy, considering that the SLV grid resolution was 2 mm. Fig. 13 

indicates that the modelling framework is capable of providing valid sensing amplitude 

data and this is valuable for optimising sensor arrangements in acousto-ultrasonics based 
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SHM techniques. Overall, all the analysis and discussion given above support the 

validation of the modelling framework proposed here. 

5. Effects of impact damage on guided waves 

The proposed modelling strategy was further employed to investigate the overall and 

individual effects of these two impact damage modes on guided waves, as well as the 

dependence of guided waves on impact damage extent and multiple impacts. This piece 

of study was carried out via Z-wavefields.   

5.1. Effects of overall impact damage 

The overall influence of impact damage on guided-wave propagation can be evaluated 

by the damage-scattered wavefield, which was achieved by subtracting the wavefield 

acquired with the pristine plate from the one achieved after impact loading. Fig. 14 shows 

the scattered wavefields along the four monitoring lines (Fig. 4a). The S0 mode shows a 

much lower scattered wavefield amplitude than the A0 mode. The impact-induced 

damage area is clearly revealed by the A0 scattered wavefield, since it shows a 

considerably higher amplitude in the damaged area than in the non-damaged area. The 

A0 scattered wavefield is also direction dependent. From an engineering perspective, the 

damage detection sensitivity should, at least in principle, decrease from the positive 0° 

direction clockwise and anti-clockwise towards the 90° line. Sensors arranged on the 

right-hand side of the impact site should give a greater sensitivity than on the left-hand 

side, with the maximum on the positive side of the 0° line.  

5.2. Effects of damage modes 

In order to quantify contributions of two damage types (delamination and matrix 

cracks) to the disturbance of guided wavefields, the modelling procedure was repeated 

but with the transfer of delamination information only, i.e. suppressing the introduction 

of matrix cracks. Delamination scattered wavefield can be achieved by subtracting the 
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pristine-plate wavefield from the delamination-only wavefield. Likewise, the 

matrix-crack scattered wavefield can be obtained by subtracting the delamination 

scattered wavefield from the full damage scattered wavefield. These two scattered 

wavefields along the monitoring lines are quantitatively compared in Figs. 15-16. It can 

be observed that matrix cracks mainly contribute to the wavefield in the damage region, 

while delamination reshapes the wavefield in both the damaged and un-damaged regions, 

especially for the right-hand side of the plate. This can also be confirmed by the similarity 

observed between the full-damage scattered wavefields in Fig. 14 and the delamination 

scattered wavefields in Fig. 15. In the damaged region, the delamination scattered 

wavefield shows a higher amplitude than the matrix-crack scattered wavefield by around 

50% on average.  

5.3. Effects of damage extent 

Guided wavefields following other two energies of impact (10 J and 16 J) were 

computed using the modelling tool. Fig. 17a compares the predicted damage data for 

these three impacts in their relative scale. They show similar through-thickness damage 

profiles, but the overall extents of delamination and matrix cracks both increase with the 

impact energy. The overall damage area increases by around four times with the impact 

energy increasing from 10 J to 16 J. Fig. 17b quantitatively compares these three cases 

regarding full-damage scattered Z-wavefield amplitudes, measured over 160 μs after 

excitation on a 50 mm radius circle centred at the plate centre. These three cases shows 

comparable scattering amplitudes, which could be due to their similar damage profiles 

and the modest increase in overall damage area [24,37]. However, the scattered wave 

amplitude shows an increase with impact energy in most directions. For a given impact 

energy, the scattered Z-wavefield possesses a larger amplitude on the transmission side 

than the reflection side [24,37].   
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5.4. Effects of multiple impacts 

The same plate was analysed with two offset 12 J impacts, located 50 mm away from 

the plate centre along the middle longitudinal line. These two impacts were assumed to 

have negligible effects on each other regarding the impact response, since the distance 

between these two sites was much larger than the damage size. Hence, the extents of 

impact damage were predicted separately using the modelling tool (see Fig. 4a). Firstly, 

the same excitation signal was introduced into this ‘double-damage’ plate from the middle 

of the lower edge. Fig. 18 presents the predicted Z-wavefield and corresponding damage-

scattered Z-wavefields acquired at three time points. Two damage-powered wave sources 

existed in the double-damage case, and they interacted with the incident wave (Figs. 18a-

b) and also with each other (Fig. 18c). This makes NDT in a multiple-damage laminate 

more complicated than in a single-damage one. It seems very difficult to detect these two 

damage sites from one sensor installed at the excitation location. The optimum sensing 

strategy for this case is to install two sensors on these two direct transmission paths. The 

double-damage model was also run with excitation introduced from the middle of the left 

short edge. Results show that the incident waves were degraded significantly by the first 

damage zone (i.e. the left one in Fig. 18), which would cause more difficulties in detecting 

the second damage, even sensors are installed on the transmission path. This case may 

require multiple excitation sources. Therefore, establishment of a actuator/sensor network 

and the relative position of actuators/sensors to potential damage sites are two key factors 

for the development of ultrasonic guided-wave based NDT and SHM techniques [11,43].  

6. Conclusions 

This paper has presented a novel numerical modelling framework which integrates 

high-fidelity predictions of low-velocity impact damage in a composite laminate with the 

simulation of damage detection via ultrasonic guided waves. The approach incorporates 
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a meso-scale (ply-level) model of the laminate used to predict low-velocity impact 

damage, a transient dynamic model that simulates guided-wave propagation in the 

damaged laminate, and an algorithm that automates the transfer of damage information 

from the impact model to the guided-wave model. The framework was validated through 

testing of a carbon FRP plate under low-velocity impact and ultrasonic excitation. The 

modelling framework showed positive results, in terms of both the global and local 

wavefields around the damage area. The two most commonly impact-induced damage 

mechanisms in composite laminates, namely delamination and transverse matrix cracks, 

were investigated in terms of their influence on the ultrasonic guided wavefield, taking 

into account extent of damage and the presence of multiple damage sites. 

The simulation methodology presented here can be used to estimate the merits and 

limitations of NDT and SHM techniques for composites based on ultrasonic guided 

waves, both in terms of impact damage detection as well as damage characterisation. 

Moreover, this numerical framework can be used in the optimisation of sensor 

arrangement so that the damage detection sensitivity and reliability can be maximised. 

This can be done by large numbers of virtual tests using the proposed framework. Future 

work will focus on applying the methodology to more complex structures and to extend 

it to higher velocity impact, which will require the incorporation of a fibre failure criterion. 
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Fig. 1. Analytical dispersion curves of the quasi-isotropic IM7/8552 carbon FRP plate 

used in this study. 

 

 

   

                                  (a)                                                               (b) 

Fig. 2. (a) The standard support fixture with a 125 mm × 75 mm opening and (b) the 

larger support fixture with a 250 mm × 150 mm opening used for drop-weight impact 

tests.  

0

1

2

3

4

5

6

7

8

9

0 0.5 1 1.5

P
h
as

e 
v
el

o
ci

ty
 (

k
m

/s
)

Frequency (MHz)

A
0
 

S
0
 

SH
1
 

SH
0
 

S
1
 

A
1
 



26 

 

 

 

 

 

 

 

 

 

Fig. 3. Experimental set-up for scanning laser vibrometry tests. 
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(a)  

 

 

 

 

 

 

 
 

(b)                                                                                          (c) 

Fig. 4. (a) An overview of the impact-ultrasonic modelling tool, (b) the ply-level mesh and (c) 

one quarter of the interlaminar mesh used in the solid-element part of the impact model.  
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            (a)                                                                (b)  

Fig. 5. Illustration of transfer of impact-model predicted (a) delamination and (b) matrix 

cracking (both red coded) into the guided-wave mesh (black coded); small circles in (a) 

indicate released nodes to model delamination; yellow elements in (b) are deleted to 

model matrix cracks.  

 

   

 

                                                (a)                                                                (b) 

Fig. 6. Comparison between the impact model and experimental measurements in terms 

of (a) impact force and (b) volumetric delamination. 
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Fig. 7. Numerical descriptions of a 90° ply and associated 0°/90° interface in the 

guided-wave model; black dots indicate nodes released for delamination; white slots 

indicate elements deleted for matrix cracks; a cross labels the impact centre.  
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(c) 

 

Fig. 8. Comparison between FE simulated (left) and SLV measured (right) global Z-

wavefields at (a) 75 μs, (b) 90 μs and (c) 180 μs after excitation. 

 

 

Fig. 9. Comparison of A0 phase velocities given by FE simulation and SLV measurements 

under 140 kHz excitation, measured along a direction that is within ±60° angle relative 

to the fibre direction of 0° plies. 
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(a) 

         

(b) 

         

(c) 

         

(d) 

Fig. 10. Local X-wavefields acquired after impact by FE simulation (left) and SLV 

measurements (right) along central (a) -45°, (b) 0°, (c) 45° and (d) 90° lines of the plate.  
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(a) 

         

(b) 

         

(c) 

         

(d) 

Fig. 11. Local Y-wavefields acquired after impact by FE simulation (left) and SLV 

measurements (right) along central (a) -45°, (b) 0°, (c) 45° and (d) 90° lines of the plate.  
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(b) 

         

(c) 

         

(d) 

Fig. 12. Local Z-wavefields acquired after impact by FE simulation (left) and SLV 

measurements (right) along central (a) -45°, (b) 0°, (c) 45° and (d) 90° lines of the plate.  
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(a)                                                                       (b) 

Fig. 13. Z-wavefield amplitudes at the points located (a) 25 mm and (b) 50 mm away 

from the plate centre, measured over 160 μs after excitation.  

         

(a)                                                        (b) 

         

(c)                                                        (d) 

Fig. 14. Local damage-scattered Z-wavefields predicted along central (a) -45°, (b) 0°, (c) 

45° and (d) 90° lines of the plate. 
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(a)                                                            (b) 

               

      (c)                                                             (d) 

Fig. 15. Local delamination scattered Z-wavefields predicted along central (a) -45°, (b) 0°, (c) 

45° and (d) 90° lines of the plate. 

              

(a)                                                            (b) 

               

      (c)                                                             (d) 

Fig. 16. Local matrix-crack scattered Z-wavefields predicted along central (a) -45°, (b) 

0°, (c) 45° and (d) 90° lines of the plate.  
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(b) 

Fig. 17. (a) Predicted damage profiles and (b) damage-scattered Z-wavefield amplitudes 

for three energies of impacts on a 50 mm radius circle centred at the plate centre.  
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(b) 

 

      

(c)         

Fig. 18. Predicted global Z-wavefields (left) and corresponding damage-scattered Z-

wavefields (right) at (a) 48 μs, (b) 83 μs and (c) 114 μs after 140 kHz excitation in a 

double-damage plate; red circles indicate impact locations.  

 

Table 1. IM7/8552 individual ply properties (1 indicates fibre direction) [28, 30]. 

11E  3322 EE   1312 GG   23G  1312    23    

161 GPa 11.4 GPa 5.17 GPa 3.98 GPa 0.32 0.436 1626.7 kg/m3 

 

Table 2. Cohesive properties for modelling delamination and matrix cracks [28, 30]. 

III KK   
IS  

IIS  
ICG  IICG  α η 

100 kN/mm3 60 MPa 90 MPa 0.2 N/mm 0.8 N/mm 1 0.3 

 


