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Abstract 

The structures and dynamics of intra-salt layers have received limited study in 

comparison with the external shape of salt structures. Our limited understanding of 

the behaviour of intra-salt layers generally comes from salt mines, outcrops, 

analogue, and numerical modelling where the full three-dimensionality of intra-salt 

layers is barely observed. To understand the internal dynamics of giant salt 

structures and the response of their intra-salt layers during regional tectonics, this 

thesis provides detailed interpretation and analysis of intra-salt layers from the 

Silverpit Basin, in the Southern North Sea Basin, and the Birba Area, in the South 

Oman Salt Basin. 

These two locations provide unique natural laboratories where driver mechanisms 

for salt tectonics are investigated using high-resolution, high-quality three-

dimensional (3D) seismic reflection data. The Silverpit Basin is a buckled basin 

formed during the Mid Eocene to Late Oligocene, while the Birba Basin was affected 

by massive sediment loading, which generated differential loading from the Early 

Cambrian to the Late Permian. Differential loading of the basin caused down-building 

and influenced the growth of diapirs and minibasins, which later led to intense 

deformation and fragmentation of the intra-salt carbonate stringers. 

In the Silverpit Basin, regional salt anticlines encapsulated a 23–63 m-thick intra-salt 

layer known as the Z3 Stringer. Lithologically, the Z3 Stringer is composed of 

anhydrite, and it represents a strong seismic marker across the Southern North Sea 

Basin. Relative to regional anticlines and synclines at the Top Salt level, the Z3 

Stringer deformed in a ductile manner comparable in geometry and attitude to the 

regional salt structure. Non-cylindrical stringer folds, which vary from gentle to 

isoclinal, are related to the intensity of the regional-scale structure, whereby tighter 
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stringer folds are observed under well-developed Top Salt anticlines and synclines. 

Synclines at the Top Salt level include long-wavelength gentle folds. Extreme 

thinning of the Zechstein by the downward displacement of the Top Salt causes the 

stringers to extend and finally break laterally in a mode-1 tensile fracture mechanism. 

This thesis highlights the complexity of intra-salt deformation and forms a good 

large-scale case study for the analysis of the kinematics and rheology of competent 

material enclosed within an incompetent medium. Understanding the complexities 

and attitudes of intra-salt layers and their encasing salt structures has broader 

implications for regional tectonic history, hydrocarbon prospectivity, and industrial 

applications. 
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1.1 Rationale for the study 

Rock salt is considered to be the weakest sedimentary rock. Due to its 

rheology, low strength, low density, and incompressibility, rock salt is an 

inherently unstable and unique rock type (Hudec and Jackson 2007). Most of 

the regional subsurface knowledge of salt deformation, including external and 

internal structures and geometries, is based on three-dimensional (3D) 

seismic data. However, seismic data provide limited information on the subtle 

details of the internal deformation of salt structures compared with salt mine 

and outcrop data (Schléder et al. 2008; Reuning et al. 2009), because of the 

general lack of internal reflectivity within the deformed salt layer. 

Although the top and base salt reflectors of deformed salt layers are 

commonly well-imaged, it is rare to find comparably well-imaged examples of 

continuous marker layers inside the salt. Instead, deformed salt layers are 

always characterised by a seismically opaque, featureless, or incoherent 

seismic facies (Hudec and Jackson 2007). Where there are sufficiently thick, 

interbedded layers of anhydrite, limestone, dolomite, or shale, these layers 

can produce a coherent and well-imaged seismic reflection within the salt, but 

these have only rarely been described to date. 

These internal layers within the salt are known as ―stringers‖, ―rafts‖, and 

―floaters‖ (Peters et al. 2003; Al-Siyabi 2005). Examples of seismically imaged 

intra-salt layers are the Z3 Stringer in the Zechstein salt in the North Sea (van 

Gent et al. 2011), the carbonate Ara stringers in Oman Salt Basins (Al-Siyabi 

2005), the multi-layered Messinian evaporites in the Eastern Mediterranean 

(Cartwright et al. 2012), and the layered evaporite sequences in the Santos 

Basin (Fiduk and Rowan 2012; Jackson et al. 2015). 
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At the seismic scale, these intra-salt reflections give the most reliable 

indication of the intra-salt deformation, and analysing their geometry can 

provide a better understanding of the internal dynamic of deformed salt 

bodies, be they diapirs, salt-cored folds, or salt sheets. In contrast, information 

from surface-piercing salt domes and observations from salt mines generally 

only provide a two-dimensional (2D) view of the internal salt structure. 

However, the 3D internal structure of the salt is well known to be complex, 

and most of the fold structures are non-cylindrical; thus, the 2D sectional 

display will only show very limited information on the true deformational 

history inside the salt (van Gent et al. 2011; Strozyk et al. 2012). 

Nevertheless, the 3D description and the kinematic evolution of the internal 

salt structures during salt tectonics have received only limited attention in the 

literature on salt tectonics (Strozyk et al. 2014). Although some numerical and 

analogue studies have introduced the kinematics and structural styles of the 

competent materials that are embedded within an incompetent matrix, the 

details of the geometrical evolution are still poorly understood. A summary of 

the kinematic evolution and structural styles of internal salt structures based 

on the regional driving mechanisms (e.g., tectonics derived by shortening, 

differential loading, and extension) and the mechanical properties of the 

stringers has not been undertaken. Although some numerical and analogue 

experimental studies have discussed the behaviour of the internal layering of 

competent layers and incompetent materials by changing the mechanical 

properties of those two (e.g., Koyi 2001; Dooley et al. 2008; Li et al. 2012a; 

Abe et al. 2013), the results of these models and their application to real 

seismic examples need to be further addressed. 
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1.2 Research question 

The regional-scale kinematic evolution of the internal salt layers during salt 

tectonics has received only limited attention in the literature, and it has rarely 

been observed and described using seismic data. The main research 

question addressed in this thesis is how the internal salt layers behave and 

deform during salt tectonics under variable regional driver mechanisms (e.g., 

differential loading, gravitational spreading, and compression) underneath 

regional salt structures (i.e., minibasins, diapirs, diapir flanks, and salt 

anticlines and synclines) with variable internal salt stratigraphies (i.e., pure 

salt, layered evaporites, evaporitic stringers, and carbonate stringers). 

This research project aims to summarise the 3D deformation of intra-salt 

layers to understand their kinematic evolution. This aim will be achieved by 

analysing intra-salt layers using seismic data from two different basins and 

with different variables, including stringer mechanical properties, salt 

stratigraphy, regional driver mechanisms, and the degree of tectonics (early, 

intermediate, or late). Understanding the kinematic evolution of the intra-salt 

stringers will help to constrain and explain the flow regime inside the salt. 

Additionally, understanding when and how these rock bodies deform is of 

practical importance for understanding the elements of petroleum systems, 

which include structural traps, source rocks, reservoirs, seals, maturation, and 

migration. 
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1.3  Previous works on internal salt structures 

Internal salt structures have been studied using salt mine and borehole 

observations (e.g., Borchert and Muir 1964; Kupfer 1968; Richter-Bernburg 

1980; Schwerdtner and Van Kranendonk 1984; Talbot and Jackson 1987; 

Jackson et al. 1990; Jackson 1995; Geluk 2000; Behlau and Mingerzahn 

2001; Schléder et al. 2008), observations from salt outcrops and surface-

piercing salt domes (e.g., Kent 1979; Peters et al. 2003; Al-Siyabi 2005; 

Talbot and Aftabi 2004; Reuning et al. 2009), seismic data (Al-Siyabi 2005; 

Kukla et al. 2011; van Gent et al. 2011; Cartwright et al. 2012; Fiduk and 

Rowan 2012; Strozyk et al. 2012; Strozyk et al. 2014), and numerical and 

analogue modelling data (Jackson and Talbot 1989; Koyi 2001; Zulauf and 

Zulauf 2005; Chemia et al. 2008; Zulauf et al. 2009; Li et al. 2012a; Abe et al. 

2013). 

1.3.1 Salt mine and borehole observations (millimetre-to-metre scale) 

Salt mine and borehole observations of intra-salt structures display a variety 

of deformation structures of shear zones, boudinage, and complex fold 

structures over a wide range of scales from millimetres to tens of metres 

(Richter-Bernburg 1980; Geluk et al. 1997). Various fold styles have been 

observed in the internal inclusions within the Zechstein salt in the Morsleben 

radioactive waste repository (Behlau and Mingerzahn 2001). Isoclinal folded 

halite and anhydrite layers (Fig. 1.1a) and isoclinal similar folds of halite and 

clay layers (Fig. 1.1b) have been described within the Zechstein-1 rock salt in 

the Neuhof salt mine (Schléder et al. 2008). Examples of inclined to 

overturned isoclinal folds of continuous anhydrite layers within the salt have 

also been observed (Fig. 1.1c). In addition, thrusts within recumbent folds and 
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fractured isoclinal folds have been identified in clay layers within the Ara 

Group evaporites in Oman salt domes (Fig. 1.1d) (Reuning et al. 2009). Core 

samples from the Zechstein show an intensive folding of anhydrite and halite 

layers with secondary veins sealed by large euhedral to subhedral halite 

grains (Fig. 1.1e) (Schléder et al. 2008). From these observations, it can be 

summarised that the internal salt structures are intensively folded on a 

millimetre-to-metre scale and that continuous intra-salt layers can experience 

a high grade of folding with no significant brittle deformation (Fig. 1.1a,b,c). 

Similarly, the intra-salt inclusions can exhibit both folding and more brittle 

deformation (Fig. 1.1d,e). 

1.3.2 Intra-salt from regional outcrop examples (kilometre scale) 

1.3.2.1 Gorleben salt dome 

The Gorleben salt dome in the Lüchow-Dannenberg district in Germany is 

about 3300 m high and 10 km wide (Bornemann 1991; Bäuerle et al. 2000) 

(Fig. 1.2a). The internal stringers (Z3HA and Z4RT in Fig. 1.2a) in the core of 

the dome are characterised by rotated geometries and steeply inclined to 

vertical fold axes. These have been interpreted as constrictional folds on 3D 

seismic data (van Gent et al. 2011) and curtain folds in salt outcrops (Talbot 

and Jackson 1986). However, such descriptions cannot be applied to the 2D 

cross-section. The folds of the internal layers in the NW side of the dome are 

clearly large-scale folds (1–2 km) verging away from the source layer. Thin 

layers belonging to am1 and Z3OSM are folded with a higher degree of 

shortening than the thicker Z3HA (Fig. 1.2a). The Z3 Stringer below the 

thinned salt area in the SE side of the dome displays very large wavelength 

gentle folds reflecting lesser degrees of shortening (Fig. 1.2a). 
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Fig. 1.1: (a) Tight to isoclinal anhydrite and halite folds with vertical to inclined folds axes. (b) 
Isoclinal tight folds of halite and clay minerals (Schléder et al. 2008). (c) Organic-rich layer 
within halite shows isoclinal tight folding (middle) and thrusted recumbent fold (left); from 
Jabal Majayiz, Oman (Reuning et al. 2009). (d) Inclined isoclinal fold structures within the 
Zechstein salt, with complex deformations at the bottom (Kukla et al. 2011). (e) Top: A 
scanned image of a core sample shows folded halite layers (light) and anhydrite layers (dark). 
Bottom: Trace interpretation of the anhydrite layers (black lines); after Schléder et al. (2008).  
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1.3.2.2 Surface-piercing Zechstein salt 

A sketch of the Z3 Stringer within a salt dome by Seidl (1921) shows complex 

folding with very high amplitude isoclinal, upright, and inclined folds 

associated with thickened hinges and thinned limbs (Fig. 1.2b). The folds 

below the flanks of the salt dome are inclined and verge away from the 

thinned source layer, while upright and less inclined folds are concentrated in 

the middle of the dome. The profile also shows that the tightness of the folds 

decreases downward to open and gentle folds in the lower layers. Such 

complexity and variability of the intra-salt deformations can be used to 

understand the salt behaviour and to predict the expected internal 

deformation at every part of the salt structure. However, such continuity of the 

Z3 Stringer is not found in the carbonate stringers in the South Oman Salt 

Basin (Peters et al. 2003; Al-Siyabi 2005; Reuning et al. 2009).  

1.3.2.3 Salt domes in Oman  

Carbonate rocks of Late Precambrian age are well exposed within six salt 

domes that crop out in the desert of the interior of North Oman, thus allowing 

detailed field observations of intra-salt carbonate stringers (Peters et al. 

2003). Field work in the Qarn Nihayda salt dome in the Ghaba Salt Basin 

revealed intensive deformation and fragmentation of the stringers, as well as 

chaotic architecture, folding, and random strikes of the stringers in the middle 

of the dome, and consistent strikes of steeply dipping stringer parts that are 

parallel to the dome axis distributed near the dome margins (Fig. 1.2c). 
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Fig. 1.2: Examples of regional salt structures from outcrops. (a) Profile of the Gorleben salt 
dome, NW Germany. The dark green layer is the Z3 anhydrite Stringer (after Bornemann 
1991). (b) The Z3 Stringer deformation (thick black) with other intra-salt layers within a 
Zechstein salt dome (Seidle 1921). (c) Two cross-sections through the Qarn Nihayda salt 
dome, North Oman (after Peters et al. 2003). 
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1.3.3 Intra-salt structures from seismic data 

On seismic data, salt-related structures are commonly studied by focusing on 

the external salt layers (base and top salt), with the evaporites shown as 

structureless bodies (e.g., Vendeville and Jackson 1992a; Rowan 1995; 

Hudec et al. 2009). This lack of imaging within the salt contrasts markedly 

with the prominence of internal structure of salt bodies observed in outcrops 

and salt mines. The base salt and top salt layers are generally well-imaged 

and well-studied on seismic data. However, it is rare to find and hard to map 

lateral continuous markers within the salt, because salt, in many cases, is 

featureless and expressed on seismic data as an incoherent seismic facies 

(Cartwright et al. 2012). Some seismic case studies were able to image the 

internal geometry of the salt structure, such as the intra-salt Zechstein-3 

anhydrite layer (known as the Z3 Stringer) in Northern Europe (Kukla et al. 

2011; van Gent et al. 2011; Strozyk et al. 2012; van Gent et al. 2012; Strozyk 

et al. 2014), the multi-layered Messinian evaporites in the Levant Basin 

(Cartwright et al. 2012), the layered evaporites in the Santos Basin (Fiduk and 

Rowan 2012; Jackson et al. 2015), and the carbonate stringers in the South 

and North Oman Salt Basins (Al-Siyabi 2005; Li et al. 2012a). 



Chapter 1:                                          Introduction and literature review 

11 
 

 

Fig. 1.3: Intra-salt seismic studies. (a–d) Intra-salt structures of the Zechstein from the Dutch offshore and onshore (van Gent et al. 2011). (a) Seismic 
section across the Zechstein salt shows boudinage and fold structures of the Z3 Stringer. (b) Areas of layer-parallel extension (boudinage) form 
below subsidence and shortening (folds) in pillows. (c) The formation of folds and boudins during salt flow into the salt dome. (d) Areas of non-imaged 
steep stringer parts marked with question marks. (e–h) Intra-salt structures from the Santos Basin (Fiduk and Rowan 2012). (e) Open upright folds. (f) 
Inclined thrusted fold. (g) Recumbent isoclinal fold. (h) Sheath folds. (i–k) Internal salt structure of the Messinian evaporites in the Levant Basin 
(Cartwright et al. 2012). (i) Evaporite successions composed of competent units (M3 and M5) and incompetent halite-rich units (M1, M2, and M4) 
show an upward increase in fold structures. (j) Imbricate fore-thrusts in the upper part of the evaporite (k) shortening identified on three seismic 
profiles show that shortening increases upward within the evaporites and is sharply reduced in the overburden. (l–p) Intra-salt structures from South 
Oman Salt Basins. (l) Interpreted seismic line shows the creation of salt diapirs and minibasins driven by differential loading (Li et al. 2012a). (m) A 
diapir flank shows significant deformation of faulting of the intra-salt stringers (Al-Siyabi 2005). (n) The petroleum system of the Ara carbonate 
stringers shows the self-charging, migration, and trapping. (p) Structural welding and grounding of the stringer allows hydrocarbon migration from the 
sub-salt section (Al-Siyabi 2005). 
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Seismic studies of the Z3 Stringer from the Dutch onshore and offshore show 

the presence of large-scale brittle and fold structures (Fig. 1.3a) (van Gent et 

al. 2012; Strozyk et al. 2014). The study concluded that the regional salt 

structures are divided into areas of layer-parallel extension, and boudinage 

structures form in areas of top salt subsidence (Fig. 1.3b), while folding 

(sometimes associated with boudinage) forms in salt pillows (Figs. 1.3b,c). 

Analysis of recent seismic studies in the northern Netherlands suggests that 

the Z3 Stringer is frequently broken during the early stages of the deformation 

and shows kilometre-sized, sub-parallel to parallel gaps (Strozyk et al. 2014). 

The structural complexities of the intra-salt Z3 Stringer lead to several seismic 

imaging problems that require further seismic processing and careful seismic 

interpretation. Imaging limitations within the salt are either related to the 

frequency content and noise level of the seismic data or to the presence of 

steeply dipping and thin stringers (Sleep and Fujita 1997; van Gent et al. 

2011). One of the most common limitations of the seismic method is its 

inability to image steeply dipping stringer inclusions (Fig. 1.3d, van Gent et al. 

2011; Strozyk et al. 2012). 

Studies of intra-salt deformation from the Santos Basin revealed large-scale 

upright open folds (Fig. 1.3e), inclined thrusted folds (Fig. 1.3f), isoclinal 

recumbent folds (Fig. 1.3g), and sheath folds (Fig. 1.3h), all interpreted to be 

formed primarily by bulk shortening of the whole salt section (Fiduk and 

Rowan 2012). 

Based on the interpretation of recent seismic studies in the Levant Basin of 

the thick multi-layered Messinian evaporites with competent and incompetent 
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layers (named M1–M6) (Fig. 1.3i), Cartwright and Jackson (2008) and Clark 

and Cartwright (2009) have proposed that the evaporites are at an early stage 

of salt tectonics and are deformed by gravity-spreading, which has been 

driven by the progradation of the Nile Cone and the tilting of the Levant 

margin. The internal structure of the evaporites varies vertically from upright 

detachment buckle folds in the form of narrow anticlines in the lower part of 

the evaporites (M1) (Fig. 1.3i) to high shortening structures of kinked 

asymmetric folds and thrust-ramp folds in the top of the evaporites (Fig. 1.3j) 

(Cartwright et al. 2012). Shortening of the evaporites varies vertically from 1–

2% near the base of the evaporites to 7% in the upper part, with sharp 

reduction in shortening in the overburden indicating asymmetric Poiseuille 

flow within the evaporites, where the downdip salt flow is faster than the 

overburden translation (Fig. 1.3k). 

The Ara Group in Oman is a thick salt succession that contains five to six 

hydrocarbon-bearing carbonate platforms known as A1C-A6C stringers and 

are completely sealed by halite (Al-Siyabi 2005). These stringers underwent 

significant fragmentation, faulting, and folding during halokinesis by differential 

loading (Fig. 1.3l and 1.3m) (Al-Marjeby and Nash 1986; Heward 1990). 

Understanding the kinematic evolution of these carbonate stringers is of 

practical importance for understanding their reservoir distributions, reservoir 

quality, hydrocarbon charge (Fig. 1.3n), migration (Fig. 1.3p), and maturity 

(Terken and Frewin 2000; Al-Siyabi 2005).  

1.3.4 Analogue and numerical modelling 

Analogue and numerical modelling in salt tectonics and intra-salt structures 

are a rapidly developing area of research (see section 1.4). The numerical 



Chapter 1:                                                          Introduction and literature 
review 

14 
 

techniques allow incorporating complex geometries, realistic rheologies, and 

boundary conditions, and are especially useful for sensitivity analyses to 

explore the dependence of the system on various variables and parameters. 

Analogue modelling is also an effective tool in the understanding and testing 

of brittle/ductile deformation systems in 3D with variable geological boundary 

conditions (Vendeville and Jackson 1992b). The results of several analogue 

and numerical models simulating similar conditions of competent inclusions 

embedded within a salt body (viscous Newtonian or non-Newtonian matrix) 

have shown the development of brittle and ductile deformations for the 

competent inclusion with purely ductile deformations of the viscous matrix 

(e.g., Koyi 2001; Goscombe and Passchier 2003; Goscombe et al. 2004; 

Zulauf and Zulauf 2005; Chemia et al. 2008; Dooley et al. 2007; Zulauf et al. 

2009; Li et al. 2012a; Abe et al. 2013). 

Simultaneous formation of folds and boudinage was also observed by 

inclusion of anhydrite within rock salt (Zulauf and Zulauf 2005). Analogue 

modelling simulating gravity-driven salt tectonics of competent layers encased 

within a ductile incompetent matrix shows the formation of two regional 

provinces (Fig. 1.4a): (1) an extensional domain in areas where the evaporites 

are thinned and where the competent layer is laterally fragmented and 

displaced, similar to boudinage structures and (2) a compressional domain in 

areas where the evaporites are thickened and the internal competent layer 

forms open to isoclinal, upright to recumbent folds (Cartwright et al. 2012; 

Fiduk and Rowan 2012). 

Similar brittle extensional zones of boudinage were found in numerical 

experiments by modelling a viscous salt section with a single competent non-
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Newtonian carbonate layer and exposed to progressive downward 

subsidence by top salt (Li et al. 2012a). The experiment shows that relying 

only on top salt subsidence, the stringer breaks below the subsided regions 

into single isolated fragments and boudins (Fig. 1.4b). The study also 

introduced the velocity gradient of the salt flow pattern, which allows the 

prediction of future breaks within the stringer (Fig. 1.4c). A strong horizontally 

diverging flow pattern in the upper ductile section between the stringer and 

top salt is generated during subsidence, whilst low salt flow in the lower 

ductile layer between the stringer and the basement suggested an expected 

Couette flow type (Fig. 1.4c). Layer-parallel extension of the inclusions within 

a subsided and thinned salt section also has been recorded by differential 

loading experiments during diapir build-up (Koyi 2001) (Fig 1.4d). Some of 

these separated inclusions were carried upward with the rising diaper and 

rotated to vertical positions or overturned (Fig. 1.4d). 

However, most of these experiments are based on 2D modelling boundary 

conditions. The 2D models show limited information and do not show the full 

story of the deformational pattern; thus, much is still unknown about the 3D 

geometry of intra-salt structures. 

Three-dimensional mechanical experiments of a single competent layer of 

anhydrite embedded in a ductile incompetent rock salt matrix that has been 

subjected to perpendicular bulk flattening (Fig 1.4f) has resulted in the 

formation of tablet-shaped boudins of the competent anhydrite (Zulauf et al. 

2011) (Fig 1.4e,g). A similar result was found in numerical modelling when 

applying the isotropic strain ratio of the two strain components (εx = εy) which 

resulted in polygonal fracture patterns (Abe et al. 2013) (Fig 1.4h). However, 
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when rocks with the same mechanical properties as those reported by Zulauf 

et al. (2011) were subjected to bulk constriction instead of bulk flattening, the 

competent anhydrite layer revealed intensive fracturing and boudinage with 

less folded structures (Zulauf et al. 2009). This lack of fold development in 

constrictional systems is in contrast to what has been observed in nature, 

where constrictional folds in salt pillows (van Gent et al. 2011), curtain folds in 

salt diapirs (Talbot and Jackson 1987; Zirngast 1996), and open to isoclinal 

folds in salt walls (Cartwright et al. 2012; Fiduk and Rowan 2012) are 

common structures within shortened salt provinces. 

In contrast to the aforementioned experiments involving bulk flattening and 

bulk constriction, analogue experiments of a layer of brittle-cohesive material 

overlaying a viscous layer of honey (Fig 1.4i) subjected to lateral gravitational 

spreading show that the brittle layer deforms by uniaxial, tensile, brittle 

extensional deformations (elongated boudins) (Kettermann 2009) (Fig 1.4j). 

This uniaxial fracturing of the brittle layer has also been generated using 

numerical modelling by applying a uniaxial strain ratio of 1:0 between the εx 

and εy strain components (Abe et al. 2013) (Fig 1.4k). Such a relationship 

between the strain ratio and the orientation, shape, and degree of the 

fractures and boudins can be applied in real seismic examples to constrain 

the deformation history of intra-salt stringers where salt flow is complicated 

and spatially heterogeneous (e.g., van Gent et al. 2011). 
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Fig. 1.4: (a) Analogue modelling of a gravitational spreading system (Cartwright et al. 2012). 
(b) Down-building by top salt subsidence (Li et al. 2012a). (c) Velocity gradient of the salt flow 
pattern within the salt (Li et al. 2012a). (d) Analogue model simulating an anhydrite layer 
embedded within salt and subjected to differential loading (Koyi 2001). (f–g) Anhydrite 
exposed to pure flattening resulted in tablet-shaped boudins (Zulauf et al. 2011). (h) 
Polygonal-shape pattern of a competent layer subjected to an isotropic strain ratio (Abe et al. 
2013). (i–j) Analogue experiments of brittle layer (top) and viscous layer (bottom) exposed to 
lateral gravitational spreading show uniaxial extensional fractures (Kettermann 2009). (k) 
Subparallel fractures alignments in uniaxial extension (εy=0), after Abe et al. (2013). 
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1.4  Structural evolution and conceptual models of intra-salt layers 

Most structural and conceptual models of the intra-salt stringers are 

constructed based on the final configuration of a given structure (e.g., Talbot 

and Jackson 1987; Reuning et al. 2009; van Gent et al. 2011) or based on 

numerical and analogue experiments (e.g., Koyi 2001; Chemia et al. 2008; 

Dooley et al. 2008; Zulauf et al. 2009; Cartwright et al. 2012; Li et al. 2012a). 

Talbot and Jackson (1987) suggested that the internal structural styles of a 

salt layer flowing laterally within a thinned source layer into a diapir are 

characterised by the formation of recumbent and sheath folds in the source 

layer which refold as the bed flows towards the centre of the stock of the 

diapir (Fig.1.5a). The internal layers in the upper part of the source layer are 

characterised by anti-clockwise rotations of highly inclined and recumbent 

folds with boudinage, while those in the lower part form clockwise recumbent 

folds (Fig. 1.5b). The stem of the diapir is characterised by folds with vertical 

fold axes, known as curtain folds (Fig.1.5a).  

In interpreting an anhydrite stringer within the Zechstein salt, van Gent et al. 

(2011) suggested the combination of boudinage and folding within the salt 

dome. The flow inside the dome creates vertical extension of the steeply 

inclined stringer and leads to tensile failure, while coeval horizontal 

compression creates constrictional folds with steeply inclined axes (Fig.1.5e). 

The structural evolution of the intra-carbonate stringers within a salt diapir that 

derived from down-building of differential loading has been interpreted from 

field observations of six outcropping salt domes in Oman (Reuning et al. 

2009). The structural evolution model suggested the presence of flat 

undeformed stringers during and after deposition, followed by rotation, uplift, 
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and fragmentation of the stringers during down-building (Fig.1.5d). However, 

the details of each stage of diapirism are still poorly understood. Integration of 

seismic examples from salt basins in Oman with these field observations will 

enable the building of a more accurate and complete model of the geometrical 

evolution of the stringers from the early salt flow to the late diapirism stage. 

For a salt layer that has been subjected to downward subsidence, numerical 

modelling of a single carbonate stringer exposed to the progressive downward 

displacements of top salt, similar to the down-building process, shows lateral 

extensional deformations of the stringer repeated and propagated laterally 

with more subsidence by top salt (Fig. 1.5c). 

Recently, the structural evolution of the Z3 Stringer has been interpreted 

using seismic data from the northern Netherlands (Strozyk et al. 2014). These 

authors suggest (1) early rupturing and extensional deformations of the 

stringer during syn-depositional salt flow with the development of small-

amplitude folds; followed by (2) rotation of the stringers parallel to top salt 

during the subsidence of the basin, with the formation of bigger-amplitude 

folds within pillow structures; and finally (3) significant fragmentation in the 

subsided region and the development of large-amplitude folds below the thick 

salt sections (Fig. 1.5f). 

Such variations in the structural evolution of the intra-salt structures need to 

be further classified based on key variables such as the stratigraphy of the 

salt section (e.g., pure halite, multi-layered evaporites), the stringer rock type 

(e.g., anhydrite, carbonate, clastic), the driver mechanism of salt tectonics 

(e.g., lateral gravity spreading, differential loading, compressional tectonics), 
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the stage or the degree of tectonics and halokinesis, and the provinces or 

locations of each of the structures based on the regional salt structure (e.g., 

below subsided regions, within salt diapirs, in salt pillows, below diapir flanks).  
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Fig. 1.5: Conceptual models of intra-salt structures. (a) Single layer within a source layer and 
a diapir (after Talbot and Jackson 1987). (b) Salt flowing from the source layer into the diapir 
(Talbot and Jackson 1987). (c) Numerical evolution of a single competent stringer within salt 
exposed to progressive top salt subsidence (Li et al. 2012a). (d) Intra-salt evolution during 
diapir build-up (Reuning et al. 2009). (e) Z3 Stringer structural style within a salt dome (van 
Gent et al. 2011). (f) Z3 Stringer structural style and evolution from northern Netherlands 
(Strozyk et al. 2014). 
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1.5 Regional salt tectonics: Driver mechanisms 

The onset of salt tectonics can be triggered by variable mechanisms such as 

density inversion or buoyancy (Talbot 1992), stratigraphy by differential 

depositional loading (Trusheim 1960; Hodgson et al. 1992; Jackson and 

Vendeville 1994; Koyi 1996; Ge et al. 1997; Gaullier and Vendeville 2005; 

Vendeville 2005; Warsitzka et al. 2013), tectonics by either contraction (e.g., 

Humphris 1979; Rowan 2002; Rowan and Vendeville 2006; Ings and 

Beaumont 2010) or extension (e.g., Vendeville and Jackson 1992a,b; 

Vendeville 2005), and thermal loading (Talbot and Jackson 1987; Talbot 

1998). 

1.5.1 Density-driven salt tectonics 

This mechanism suggests that salt will start sinking if the average density of 

post-salt sediments is greater than that of the salt (e.g., Talbot 1992; 

Podladchikov et al. 1993; Van Keken 1993; Kaus and Podladchikov 2001) 

(Fig. 1.6a). However, the model suggests that salt cannot sink until the 

sediment accumulation is denser than salt. The average density of non-pure 

salt is about 2200 kg/m3 (Hudec et al. 2009). Most siliciclastic rocks can only 

reach the required density and generate the density inversion between the 

salt and the overburden only after the accumulation of 2.3 km of sediments 

(Hudec et al. 2009). An average sediment density of 2700 kg/m3 is able to 

drive instability of the salt layer after the deposition of 1600 m of sediments, 

while a minimum of 2300 m of sediment accumulation is required to initiate 

sinking over the salt if the average density of the overburden is 2600 kg/m3. 

However, observations of salt tectonics triggered by differential loading 

suggest that salt starts sinking when only a few hundred metres of sediment 
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had accumulated (Hudec et al. 2009). This suggests that there are other 

mechanisms that trigger salt tectonics and that buoyancy is not the only 

process that leads to salt movements. However, the model is still considered 

to be valid in situations that experience sediment loading where no significant 

extension or contraction exists and there is no significant surface or basal 

slope (Fig. 1.6b), as for example in some intracontinental basins such as the 

Ara Group in the South Oman Salt Basin (Al-Marjeby and Nash 1986; Li et al. 

2012a) and the Zechstein of the Central North Sea (Hodgson et al. 1992) and 

North Germany (Trusheim 1960).  

1.5.2 Salt tectonics driven by sedimentary topographic loading 

Variable overburden thickness that overlies a weak salt layer induces 

pressure gradients and causes the salt to flow and subside (Kehle 1988; 

Warsitzka et al. 2013). This process does not require density inversion and is 

considered to be much more powerful than buoyancy (Hudec et al. 2009). The 

most common example is when a prograding sediment wedge in updip areas 

accumulates over a salt layer and causes the salt to subside and evacuate 

(Gemmer et al. 2004; Ings et al. 2004) (Fig. 1.6c). Differential loading in 

intracratonic basins can also induce instability in the salt layer, which will lead 

to the formation of minibasins and diapirs (Fig. 1.6b). 

Since the salt behaves almost like a fluid, gravitational loading effects have 

been simplified by using the concept of hydraulic head, which states that the 

fluid will flow from zones of high head to zones of lower head (Kehle 1988; 

Hudec and Jackson 2007) (Figs. 1.6d,e,f). In this case, salt can flow either by 

variable overburden thickness with no elevation head gradient (Fig. 1.6d), by 
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conformable overburden thickness but with a dipping salt layer (Fig. 1.6e), or 

by the combination of these two. 

1.5.3 Salt tectonics driven by shortening (compression) 

Many compressional or transpressional salt basins in passive margins are the 

results of downslope salt flow from an updip extension (Wu et al. 1990; 

Demercian et al. 1993; Cartwright et al. 2012) (Fig. 1.6c). Alternatively, 

compressional related salt structures are derived from regional buckling of the 

basin (Figs. 1.6g,h). During shortening, salt is squeezed laterally by the 

inward movement of one or both sidewalls, forcing the salt to rise upward 

(Hudec and Jackson 2007). Salt may flow and penetrate the surface and grow 

as a passive diapir by pressurization of the salt body due to contractional 

tectonics forces even if the salt layer is not buoyant with the overburden 

sediments (Hudec and Jackson 2007) (Fig.16g). The upward movement of 

the salt may sometimes result in the roof of the overburden being pierced by 

crestal normal faulting (Fig. 1.6h). 
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Fig. 1.6: Regional salt tectonics driver mechanisms. (a) Buoyancy or density inversion 
between salt and overburden. (b) Sediment differential loading with the absence of regional 
extension and regional compression. (c) Complex passive margin settings. Extension in the 
updip areas leads into salt flow and translation of the overburden and the formation of a 
contraction province in the downdip. (d–f) Examples of hydraulic head-gradient analysis in 
salt tectonics (after Hudec and Jackson 2007). (d) A pressure head gradient is generated by 
overburden thickness variation. (e) An elevation head gradient produced by an inclined salt 
layer with uniform overburden thickness. (f) An equilibrium state reached by a flat salt layer 
above conformable overburden thickness. (g–h) Diapirism during shortening (Hudec and 
Jackson 2007). (i–j) Reactive diapirism in an extension system (Vendeville and Jackson 
1992b). 
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1.5.4 Salt tectonics driven by extension 

Extensional-related salt diapirism is the opposite of compression. In this case, 

the overburden is stretched and displaced by extensional faults, which allows 

the salt to rise either by buoyancy or by the pressure created by the 

differential loading between the flanks of the rifted area and the weak faulted 

zone in the middle. If the overburden is broken by extensional faults, an initial 

small reactive diapir can develop in the weakest faulted crust (grabens or 

footwalls) (Fig.1.6i), which later propagates upward when the pressure of the 

salt is enough to penetrate the graben roof and to form a passive diapir 

(Vendeville and Jackson 1992b) (Fig.1.6j). 

1.5.5 Thermal loading 

The influence of temperature on salt behaviour is not widely documented in 

the literature. If salt is considered a fluid, then the temperature has an 

important effect on salt (just as it has on any other type of fluid) by changing 

its dynamics and viscosity. Thermal loading is defined as the change in the 

volume of salt due to the change in its temperature (Hudec and Jackson 

2007). Because salt is a good thermal conductor, if its volume increases, salt 

layers become more buoyant and intra-salt thermal convection results (Talbot 

and Jackson 1987; Talbot 1998). 

1.6 Patterns of salt flow  

The terms ―salt withdrawal‖ and ―salt expulsion‖ refer to the flow of the salt 

from where it has been deposited into the salt structure (Hudec and Jackson 

2007). On a geological timescale, salt flows similarly to an incompressible 

fluid under applied stress (Davison et al. 1996). The salt body can deform by 

Poiseuille flow, Couette flow, or a combination of these two (Jaeger and Cook 
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1979; Weijermars et al. 1993; Rowan et al. 2004). Very few studies have 

demonstrated the flow regime within the salt on a regional seismic scale 

(Cartwright et al. 2012). The main salt flow profiles are summarised in Fig. 

1.7a–e (Davison et al. 1996). 

1.6.1 Poiseuille flow 

In a confined salt layer, a viscous salt layer flows as a Poiseuille profile, where 

the highest velocity is concentrated in the middle, similar to the flow of a 

viscous liquid through a pipe (Fig. 1.7a) (Vendeville et al. 1993; Weijermars et 

al. 1993; Davison et al. 1996). The displacement is almost zero along the 

upper and lower boundaries, where the salt layer experiences friction and flow 

resistance; thus, no lateral translation of the overburden is required for this 

type of flow (Davison et al. 1996; Cartwright et al. 2012). A Poiseuille flow 

commonly forms when the salt flows into a salt structure during the building of 

a salt diapir (Davison et al. 1996). 

Numerical modelling shows that differential sediment loading on a viscous salt 

layer leads to a pressure-driven Poiseuille flow (Fig. 1.7f, g) (Gemmer et al. 

2005). Analogue modelling of multi-layered evaporites exposed to 

gravitational spreading shows the formation of an asymmetrical Poiseuille flow 

in the incompetent layers (Dooley et al. 2008; Cartwright et al. 2012) (Fig. 

1.7h). Shortening analysis of the competent seismic markers in the Messinian 

evaporites (M1, M3, and M5 in Fig. 1.3i) has been used to generate salt flow 

profiles (Fig. 1.3k) (Cartwright et al. 2012). The results indicate asymmetrical 

Poiseuille flow profiles where the upper part of the evaporites is shortened 

more than the middle and the lower part, indicating that the flow velocity is 

higher at the top of the evaporites during the gravity spreading of the basin 



Chapter 1:                                                       Introduction and literature review 

28 
 

(Fig. 1.3k). This also means that the greatest shear-strain gradient is in the 

uppermost Messinian, indicating that it is the main detachment of the salt flow 

(Cartwright et al. 2012). Since the overburden has larger shortening than the 

sub-salt section (Fig. 1.3k), the base of the overburden is interpreted to have 

been dragged with the upper evaporites but at a slower velocity. 

1.6.2 Couette flow 

When the overburden is influenced by extension or compression where the 

upper salt layer is dragged with the overburden movement, the salt flow 

profile is a Couette flow (Fig. 1.7b). In a non-inverted Couette flow, the 

maximum drag and flow of the salt is in the upper part (Fig. 1.7i), while in an 

inverted Couette flow, the maximum drag and flow of the salt is in the lower 

part (Fig.1.7j). A Couette flow involves simple shearing within the salt layer as 

the overburden is laterally translating (Vendeville et al. 1993). Unlike in a 

Poiseuille flow, the salt layer in a Couette flow neither thins nor thickens. The 

overburden displacement rate is directly proportional with the thickness of the 

salt and the shear stress applied (Davison et al. 1996). The combination of a 

Couette flow and a Poiseuille flow results in an asymmetric Poiseuille flow 

(Fig. 1.7c). 

1.6.3 Multi-layer flow  

Salt stratigraphy is sometimes complex, and multiple Poiseuille and Couette 

flows result when sedimentary layers are present within the salt (Fig. 1.7d). 

Such flow is relatively slower than the pure Poiseuille flow because of the 

drag effect between the salt and the rigid layers (Davison et al. 1996). The 

layers behave individually during lateral flow, but act together during vertical 

flow (Fig. 1.7e). 
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Fig. 1.7: (a–e) Salt flow profiles (modified after Davison et al. 1996). (f) Differential loading of 
the overburden induces a pressure-driven Poiseuille flow. (g) Differential loading and 
extension of the overburden generates Poiseuille and Couette flows in the viscous layer 
(Gemmer et al. 2005). (h) Analogue model of multi-layered evaporites shows the formation of 
an asymmetric Poiseuille flow within the ductile mobile units (Cartwright et al. 2012) (i) Sketch 
shows shortening analysis of buckled folded competent layers (black) within the evaporites 
(green) used to create four salt flow profiles (Cartwright et al. 2012). 



Chapter 1:                                                       Introduction and literature review 

30 
 

1.7 The properties of evaporite facies  

Evaporites are generally the weakest lithology in sedimentary basins (Hudec 

and Jackson 2007; Urai et al. 2008; Davison 2009). Salt layers sometimes 

contain other evaporitic rocks (e.g., anhydrite or gypsum) or any non-

evaporitic rocks such as clastic or volcanic intrusions (Jackson 1995; Urai et 

al. 2008). Halite rock (NaCl) is generally the most common chloride facies in 

evaporites. Due to its low density, low creep strength, low porosity, and low 

permeability, halite rock exerts a significant influence on basin structure and 

evolution through salt tectonics movements and fluid trapping (Urai et al. 

2008). The physical properties of salt in general are low density, very low 

permeability, low effective viscosity, high solubility, very low water content, 

and very low compressibility (Carter et al. 1993; Davison et al. 1996) (Table 

1.1). The density of halite is about 2000 kg/m3 (Koyi 2001; Urai et al 2008). 

Halite has a lower density and viscosity than most of the intra-salt layers, such 

as sandstone (2600 kg/m3), limestone (2700 kg/m3), dolomite (2870 kg/m3), 

and anhydrite (2900–3000 kg/m3). When they are encased within the salt, 

most of these rocks behave as competent materials compared with the 

ductile, incompetent salt. Examples include the carbonate stringers of the 

Infra-Cambrian Ara Group evaporites in the Oman Salt Basins (Al-Siyabi 

2005; Reuning et al. 2009; Schoenherr et al. 2009; Li et al. 2012a) and the Z3 

anhydrite/carbonate stringer in Northern Europe (van Gent et al. 2011). 

However, there are other common evaporite minerals known as the 

potassium–magnesium salts (K-Mg salts), that are much weaker than halite 

and have much lower effective viscosities, such as bischofite (1560 kg/m3) 

carnallite (1570 kg/m3), epsomite (1700 kg/m3), and sylvite (1860 kg/m3) (Urai 
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et al. 2008), (Table 1.2). These rocks act as incompetent materials within the 

halite salt and thus may have an impact on the internal deformation (Geluk et 

al. 1997; Raith et al. 2015). 

Table 1.1: Key mechanical properties of some evaporites (after Davison et al. 1996) 

 

Table 1.2: The main evaporite minerals and their wireline log properties (after Urai et al. 
2008). 

Name  Formula 
Density 
(kg/m3) 

GR 
(API) 

Neutron 
"Porosity" 

Sonic 
"ms/ft" 

Bischofite MgCl2·6H2O 1560 0 >60 100 

Carnallite KMgCl3·6H2O 1570 220 65 78 

Epsomite MgSO4·7H2O 1710 0 >60 
 Sylvite KCl 1860 500 -3 74 

Halite NaCl 2040 0 -3 67 

Kainite KMg(SO4)Cl·3H2O 2120 245 45 
 Gypsum CaSO4·2H2O 2350 0 >60 52 

Kieserite MgSO4·H2O 2590 0 38 
 Calcite CaCO3 2710 0 -1 49 

Polyhalite 

K2·Ca2 

Mg(SO4)4·2H2O 2790 180 15 57 

Langbeinite K2Mg2 (SO4)3 2820 275 0 52 

Dolomite  CaMg(CO3)2 2870 0 1 44 

Anhydrite CaSO4 2980 0 -2 50 
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1.7.1 The rheology of salt 

The rheology of salt has been summarised by Vendeville and Jackson (1992a) and 

Urai et al. (2008). The occurrence of wide-scale intra-salt deformation (millimetre to 

kilometre scale) of folding and shear zones in both highly deformed regional salt 

structures (salt domes, salt diapirs, salt walls) and within flat-lying salt bodies reflects 

the heterogeneous rheology of rock salt (Urai et al. 2008). In a simple way, dry salt 

deforms as a power-law fluid (dislocation creep), whereas wet salt behaves as a 

Newtonian fluid (diffusion creep). Temperature is crucial in controlling the viscosity of 

wet salt, while stress and strain rate are less important. Wet salt, thus, has no yield 

strength. Therefore, faults rarely occur within salt, and if a thin salt layer has been 

displaced, the displacement was achieved by a ductile shear zone or by widely 

distributed strains (Vendeville and Jackson 1992b). This explains why most 

overburden faults terminate and disappear at the upper salt and the overburden 

displacement at the upper salt layer is high. However, fractures and faults are 

observed very locally in some salt domes and salt glaciers, and these have been 

interpreted to be controlled significantly by fluid overpressure (Davison 2009). 

1.8 Importance and implications of intra-salt studies  

Understanding the deformation behaviour of salt rocks is important for several 

purposes.  

Intra-salt layers as hydrocarbon reservoirs: Hydrocarbon reservoirs have been found 

in the carbonate stringers in Oman Salt Basins, as well as in some stringers in 

Europe (Geluk et al. 1997; Peters et al. 2003; Al-Siyabi 2005; Schröder et al. 2005; 

Schoenherr et al. 2009; Reuning et al. 2009). In Oman, the intra-salt carbonate 

stringers reservoirs, which include inter-crystalline dolomite, grainstones, 

packstones, and stromatolitic and thrombolytic reef facies, are hydrocarbon 
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producers (Al-Siyabi 2005). The limited knowledge of the geometrical complexities, 

diagenetic history, and depositional environments of these carbonate stringers 

makes the prediction of reservoir quality challenging (Al-Siyabi 2005).  

Sealing potential: Salt is considered to be a very good seal layer because of its low 

permeability and very fine grain size. However, drilled stringers in the South Oman 

Salt Basins indicate that the salt layer that is close to the stringer reservoir is oil-

stained, suggesting that the oil flowed into the salt (Mattes and Morris 1990). Recent 

studies of the sealing capacity of the Ara salt conclude that the sealing capacity of 

rock salt is reduced and the permeability is increased by many orders of magnitude 

when the stringer oil pressure is more than the salt lithostatic pressure, resulting in 

leaking of hydrocarbons from the reservoir into the salt (Schoenherr et al. 2007). 

Therefore, the depth, salt lithostatic pressure, fluid overpressure of the stringers, and 

position of the stringers relative to the overburden are important parameters to be 

considered when measuring the sealing capacity of the stringer reservoirs. 

Hydrocarbon migration: Proper interpretation of the discontinuities and internal 

fracturing of the intra-salt stringers is important for understanding hydrocarbon 

migration. Understanding the structural evolution and the movement history of the 

stringers will help clarify the migration history, for example, the hydrocarbon charge 

from sub-salt into the stringers, the hydrocarbon migration from one stringer into 

another, as well as the hydrocarbon leakage from the stringers into the overburden 

(Al-Siyabi 2005) (Fig.1.3n,p). 

Drilling hazards: The Ara carbonate stringers in Oman, as well as the intra-Zechstein 

stringers in Europe, pose serious drilling hazards to the drilling campaigns and 

therefore need to be avoided as much as possible (Williamson et al. 1997; Koyi 
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2001; Al-Siyabi 2005; Schoenherr et al. 2007; Kukla et al. 2011). Therefore, proper 

interpretation of their discontinuities and complex geometries is crucial. 

Radioactive waste disposal: Due to its unique physical and chemical properties 

(Hunsche and Hampel 1999), rock salt is also considered a good material for long-

term repositories for nuclear and radioactive waste disposal. This is a very serious 

issue for the environment that requires careful and proper decision making. Salt is 

also used for different kinds of geological storage and solution mining (Coelewij et al. 

1978; Bornemann 1991; Fokker et al. 1995; Evans and Chadwick 2009), and 

prediction of internal salt structure is of major relevance in these fields (see 

Bornemann 1991; Koyi 2001; Chemia et al. 2008). 
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1.9 Aims and objectives 

This thesis is aimed at building a full understanding of the kinematic evolution of 

internal salt layers from the early to the late stages of salt tectonics by considering 

different driver mechanisms. Hence, the objectives of this thesis are (a) to 

investigate the role of regional tectonic processes such as lateral gravity spreading, 

differential loading, and compression in the kinematics of intra-salt layers and (b) to 

evaluate the influence of the lithology and compositional variation of intra-salt layers 

on their rheological behaviours during the different stages of tectonism and 

halokinesis. 

1.10 Research case studies 

To achieve the aforementioned objectives, two natural laboratories where used to 

study intra-salt deformation, as they have been widely documented and can be 

seismically imaged: the Southern North Sea (SNS) and the South Oman Salt Basins: 

1.  The first 3D seismic data set is from offshore Southern North Sea (Silverpit 

area), a classic study area for the analysis of salt tectonics. Importantly, the 

Zechstein Group has four to five evaporitic cycles (Z1–Z5). The 

anhydrite/carbonate stringer of the Z3 cycle is a seismically visible layer and 

well known to form complex structures within the halite media (Underhill 2009; 

van Gent et al. 2012). 

2. The second 3D seismic data set is from the South Oman Salt Basin, where 

the Ediacaran to Early Cambrian Ara Group forms six carbonate to evaporite 

sequences (Al-Siyabi 2005; Schoenherr et al. 2007). 
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1.11 Thesis structure 

Chapter 1 introduces and defines the main subject of the research, which is the 

kinematics of flow of salt multi-layers during salt tectonics. Previous work done in this 

field is summarised, and all the limitations that have not been addressed are listed. 

Finally, the aims and objectives of the study are introduced. 

Chapter 2 discusses the characteristics of the seismic surveys and well data used to 

complete this research. The methodological steps and the workflow of some 

quantitative and qualitative analyses are explained. 

Chapter 3 introduces the stratigraphic facies of the Upper Permian evaporitic 

Zechstein Group in the Silverpit Basin with an aim to understand the influence of salt 

layering, properties, and rheological heterogeneities on the salt deformational style. 

The second aim of this chapter is to understand the main regional tectonic phases 

and the driver mechanisms of the salt tectonics in the area. 

Chapter 4 focuses on the dynamic and kinematic evolution of the intra-salt structures 

specifically in areas below top salt subsidence (regional synclines) by detail analysis 

of the intra-salt Z3 Stringer in the Silverpit area in the Southern North Sea. The main 

aim is to understand the kinematic evolution of the internal salt structure from the 

early stage of subsidence to the welding stage. The regional driver mechanism and 

the mechanical properties of the stringer used (Z3 Stringer) are compared with those 

of other salt basins that experience subsidence with different driver mechanisms and 

stringer properties (e.g., Ara salt in the South Oman Salt Basin). The chapter also 

classifies the discontinuities of the internal Z3 Stringer and provides the 

interpretation of seismically non-imaged stringer parts. 
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Chapter 5 is focused on the kinematic evolution of the intra-salt Z3 Stringer within 

regions of salt accumulations (anticlines) using 3D seismic surveys from the Silverpit 

Basin in the Southern North Sea. Classification of the internal salt structural styles 

within these regions is summarised. Shortening analysis of the intra-salt stringer and 

top salt is introduced in order to understand the internal salt flow patterns and the 

influence of the regional tectonics of the basin on the internal shortening within the 

salt. 

Chapter 6 introduces the stratigraphic facies of the intra-salt Ara stringers in the 

South Oman Salt Basins with an aim to understand the influence of salt layering, 

properties, and rheological heterogeneities on the salt deformational style. The 

second aim is to construct tectonostratigraphic evolutional models of the basin using 

2D and 3D seismic data in order to link the regional evolution of the basin with the 

distribution, deformation, trend, and structural styles of the intra-salt stringers. More 

detail is presented in chapter 7. 

Chapter 7 is based on the structural interpretation of the Ara salt carbonate stringers 

in the South Oman Salt Basins. The aims of this chapter are (1) to develop a detailed 

kinematic structural evolution of the intra-salt stringers below regional salt structures 

(e.g., minibasins, salt domes, diapir flanks) and (2) to use the internal salt inclusions 

(fragments) as a tool to understand the internal salt flow patterns. 

Chapter 8 discusses and summarises the key contributions of this research and 

highlights the major findings from chapters 3 to 7. 
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2.1 Introduction 

This chapter introduces the data and methods used in this thesis: First, the Southern 

North Sea case study is used to interpret the Z3 Stringer, which has been discussed 

in the works of Strozyk et al. (2012), Underhill (2009), and van Gent et al. (2011). 

Second, the South Oman Salt Basin case study is used to interpret at least four 

intra-salt stringers (Al-Siyabi 2005). These intra-salt markers are well known in the 

literature to be challenging to interpret (Reuning et al. 2009). Therefore, a few 

methods are suggested in this thesis to overcome these challenges and to come up 

with more realistic and confident interpretations. The data include 3D seismic 

surveys and well logs. The workflow and the methods that are used for the 

interpretation and for the analysis of the intra-salt stringers are discussed in the 

following sections. 

2.2 Case study 1: The Silverpit Basin in the Southern North Sea 

The Silverpit Basin is located in the Southern North Sea Basin (SNS), some 125 km 

off the east coast of Britain (Underhill 2009). Three seismic surveys were used in this 

case study for qualitative and quantitative structural analyses. The Z3 Stringer within 

the Zechstein salt was used for the analysis of the internal salt structure (van Gent et 

al. 2011). In addition, wellbore data were used to calibrate the tops of the formations, 

examine the stratigraphy of the salt section, and understand the mechanical 

properties of the stringer layer. 

2.2.1 Seismic data 

For the structural interpretation described in this case study, three 3D seismic data 

sets were used: Cavendish, Trent96, and Snsj07 (Table 2.1). All sets have zero-

phased, normal polarity. The Cavendish 3D survey is the largest seismic survey of 

the three and is located in Block 43/19a, north of the Silverpit Crater zone (Fig. 2.1a). 
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The water depth in the field is approximately 18.5 m. The Cavendish survey is pre-

stack time migrated and covers an area of 1293 km2. The Trent96 survey is located 

in the Trent Gas Field, south of the Cavendish Field (Fig. 2.1a). Both the Cavendish 

and Trent96 surveys are oriented in a NNW direction and were used for the 3D 

seismic interpretation (Fig. 2.1b). The Snsj07 survey is oriented in a NNE direction, 

and it merges with the southern part of the Trent96 survey (Fig. 2.1b). Due to the 

poor quality of the Snsj07 survey, it was only used for well calibration and 2D cross-

sectional analysis. The Z3 Stringer is rarely well-imaged on the Snsj07 survey; 

hence, it was not used for the 3D interpretation of the intra-salt layer.  

Table 2.1: The three seismic surveys used in case study 1, in chapters 3, 4, and 5.  

Seismic survey Cavendish Trent96  Snsj07 

Area (km2) 1293 km2 450 km2 2400 km2 

Location Block 43 Block 43 Block 43, 44, 48 

Data available 80% of the total area 
55% of the total 
area 

25% of the total 
area 

Z3 Stringer Well-imaged Well-imaged Poorly imaged 

Interpretation 
3D and 2D seismic 
analysis 

3D and 2D seismic 
analysis 

2D analysis 
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Fig. 2.1: (a) Location of the study area in the Southern North Sea Basin (after Coward and Stewart 1995). (b) The three seismic surveys in the Southern North 
Sea. The interpreted Top Salt surface is used to show the extent of the available data within the surveys. Non-interpreted areas inside the boxes (grey) 
represent the area with no data. 
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2.2.2. Seismic limitations 

The Z3 intra-Zechstein reflector, also known as Z3 Stringer, is reasonably well-

imaged because of the high density and velocity that cause a high acoustic 

impedance contrast between the halite and anhydrite (van Gent et al. 2011; Strozyk 

et al. 2012). However, where the Z3 Stringer is steep or below seismic resolution, 

the layer is not imaged on seismic data. The polarity of the Z3 Stringer is similar to 

that of the Top Salt, and both are positive reflections, indicating that the Z3 Stringer 

is within seismic resolution; otherwise, an inverse polarity is expected in areas where 

the Z3 Stringer is below the seismic resolution (Sheriff 1975; Davies et al. 2004). 

Most of the seismic limitations and imaging problems of the Z3 Stringer were 

observed in areas of complex fold structures (Fig. 2.2). The seismic quality is 

strongly related to the intensity of folding. In areas where the dip of the Z3 Stringer is 

gentle and the layer is less deformed, it is very well-imaged. However, in areas of 

high-amplitude, tighter fold structures, the seismic reflector of the Z3 Stringer is 

always associated with seismic artefacts. The limitations of seismic data within the 

Zechstein salt include frequency content, noise, and migration problems (Fig. 2.2). 

The most common seismic artefacts can be summarised as 

1. migration smiles that are vertically crossing the stratigraphy (Fig. 2.2a); these 

are different from faults, as they show no displacement and are easily 

differentiated on seismic data;  

2. x-shape geometries associated with tight folds (Fig. 2.2b);  

3. non-imaged steep fold limbs (Fig. 2.2c) (see also van Gent et al. 2011); and 

4. high-amplitude zones at fold hinges (Fig. 2.2d). 
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Fig. 2.2: Examples of seismic artefacts associated with the Z3 Stringer (see Fig. 2.1b for the location). 
(a) Migration smiles. (b) X-shape noise due to steepness or overturned styles. (c) Discontinuity of fold 
limb related to the steepness of the layer. (d) High-amplitude artefact form at the hinge zone of the 
folds. 
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2.2.3 Well data 

Four well reports were used to examine the stratigraphy of the Zechstein salt in the 

Silverpit Basin: 

1. well 43/19-1, located in the Cavendish survey (Fig. 2.1b); 

2. well 43/19-2, located in the Cavendish survey about 3 km west of well 43/19-1 

(Fig. 2.1b); 

3. well 43/24-1, located in the Trent 3D survey (Fig. 2.1b); and 

4. well 43/25-1, located in the Silverpit Crater syncline (Fig. 2.1b). 

The well data were used for lithostratigraphic correlation across the study area. The 

wells in the Silverpit Basin have no wireline logs or checkshot data; therefore, 

manual data collection and calibration were done to define the formation tops, 

thicknesses, and scale. 
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2.3 Methods and workflow used in case study 1  

2.3.1 Seismic interpretation workflow 

The software that has been used for the interpretation of the seismic data from the 

Cavendish 3D and Trent 96 surveys includes Geoframe 2004 and Petrel 2011. Five 

key horizons were interpreted in this work, similarly to the interpretation of Strozyk et 

al. (2012), Underhill (2009), and van Gent et al. (2011). The seismically mapped 

horizons are the following:  

1. Base Salt  

2. Intra-Zechstein (Z3 Stringer) 

3. Top Salt 

4. Base Cretaceous Unconformity (Base Chalk)  

5. Top Chalk Unconformity 

The Z3 Stringer is a single continuous, hard, and positive reflector located in the 

middle of the Zechstein salt. The Top and Base Salt were interpreted with high 

confidence using a seismic grid spacing of 100, and were mapped in order to 

understand the sub- and post-salt regional structure and its influence on the internal 

salt deformation. A thickness map between the Top and Base Salt reflectors was 

made to examine the relationship between the internal deformation patterns and the 

thickness of the Zechstein. The Base and Top Chalk Unconformities were mapped to 

examine the timing and the mechanism driving salt tectonics, as well as to check for 

any salt tectonics activities that happened in the overburden. 

Two-way travel time (TWTT) structural maps, amplitude, time dip, thickness maps, 

and curvature attributes were constructed for all of the interpreted horizons. 
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2.3.1.1 Z3 Stringer seismic interpretation workflow 

2.3.1.1.1 Geoframe interpretation 

The interpretation of the Z3 Stringer was done in Geoframe. Since this program does 

not allow direct 3D autotracking of the horizon, the interpretation was initiated in 2D 

using an inline and crossline spacing of 10 × 10 in areas of less deformation, and a 

seed of 5 to 1 was used in areas of complex deformation. The seeds were then 

autotracked in order to fill the gaps between inlines and crosslines. 

2.3.1.1.2 Petrel 2011 interpretation 

The seismic interpretation of the Z3 Stringer in Petrel is very useful and powerful in 

terms of quality and speed. Two interpretation methods were applied: (1) the classic 

2D mapping of the Z3 Stringer followed by 3D autotracking (Fig. 2.3a); and (2) 3D 

autotracking of the Z3 Stringer. The latter technique allows snapping the horizon in 

all directions once clicking on the event (reflector), and the interpretation follows the 

targeted reflector in areas where the amplitude is continuous. 

After the completion of autotracking, two techniques were applied to generate the 

final surfaces of the Z3 Stringer: (1) the Structural Operation technique (known as 

Quick Look Surface Operation) was used where the interpreted horizon is 

autotracked without filling the discontinuities (Fig. 2.3a,c); and (2) the Surface 

Generation Technique (using Petrel‘s Utilities tool for surface generation) was used 

where the discontinuities are completely filled (Fig. 2.3b,d). 

The use of these two interpretation methods to differentiate between continuous non-

imaged parts of the Z3 Stringer and structurally fragmented limbs is explained in 

detail in chapter 4. 



Chapter 2:                                                                        Data and methodology 

 

47 
 

 

Fig. 2.3: The Z3 Stringer seismic interpretation techniques to overcome seismic limitations regarding 
steep stringer parts. (a) Autotracking of the Z3 Stringer surface; gaps are unfilled. (b) Interpolated 
surface of the Z3 Stringer where all the discontinuities are filled. (c) Interpretation of the 3D 
autotracked surface. (d) Petrel interpretation of interpolated surface. 
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2.3.2 Qualitative and quantitative methods and workflow 

In addition to seismic interpretation, different techniques were applied to enhance 

and simplify the interpretation of the data and to analyse the Z3 Stringer. The 

methods applied include smoothing, datum and reference, construction of rose 

diagrams, and 3D seismic attribute analysis (e.g., curvature attributes, RMS 

attributes). 

2.3.2.1 Smoothing of the Z3 Stringer surface 

Smoothing of the Z3 Stringer was done in Petrel 2011 to remove smaller-scale 

mispicks on the intra-Z3 Stringer reflector. The concept was based on a low-pass 

filter where random noise and spikes were removed (Fig. 2.4 and Fig. 2.5). The 

smoothing filter can be controlled by determining the scale of the noise that needs to 

be smoothed. 

Smoothing in this study was used for two purposes: 

1. Removing small-scale curvatures (noise) in the Z3 Stringer reflector. This 

greatly enhances the results when applying curvature attributes, which are 

very useful for structural analysis. Examples of curvature attributes include 

mean curvature, Gaussian curvature, maximum curvature, and minimum 

curvature. These attributes were used to interpolate smaller discontinuities in 

the Z3 Stringer reflector, as well as to interpret the trend and pattern of the 

seismically undefined Z3 Stringer reflector (Fig. 2.4).  

2. Analysing the Z3 Stringer folds by superimposing the unsmoothed Z3 surface 

with a high-grade smoothed Z3 Stringer surface. The smoothed surface is 

used as datum or reference to understand the variation in fold amplitudes, 

and to describe how harmonic the regional trend of the Z3 Stringer is with 

respect to Top Salt (Fig. 2.5e). 
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Fig. 2.4: The effect of smoothing on the Z3 Stringer surface. (a) Two-way travel time (TWT) of the non-smoothed Z3 Stringer surface. (b) Minimum curvature 
attributes through unsmoothed surface. Note the noise (dots) in the surface. (c) TWT smoothed Z3 Stringer surface. (d) Minimum curvature attribute through 
the smoothed surface. Note the clarity of synclines on the smoothed surfaces. Minimum curvature is a very useful tool to detect synclines, while maximum 
curvature is useful to detect anticlines. 
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Fig. 2.5: (a, b, and c) The smoothing percentage of the Z3 Stringer surface as compared to the Top 
Salt time map. (d). Note that with increasing smoothing, the small features were filtered out. (e) The 
smoothing grades of (a, b, and c) on a seismic cross-section. The yellow and black lines are over-
smoothed surfaces, which are not useful for the interpretation, while the red line is a reasonable 
smoothed surface, and it follows the Z3 Stringer seismic reflector. Note the close relationship of the 
highly smoothed Z3 Stringer surface (black line) with the Top Salt surface (blue line).  
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2.3.2.2 Curvature attributes 

Curvature attributes were applied to classify the shapes, style, orientations, and 

cylindricity of the Z3 Stringer fold structures. Curvature is simply a measure of how 

tightly folded a surface is at a particular point (Lisle 1994). The more tightly folded a 

surface is, the larger its curvature. Folds appear to be well defined by the curvature 

attributes (Fig. 2.4c,d). In 3D, folds are not always domal in shape, and instead they 

contain at least two curvatures: (1) minimum curvature defines the wider radius and 

(2) maximum curvature is the smallest radius of the fold (Lisle and Toimil 2007). 

Curvature attributes were applied to the fold structures of the Z3 Stringer in order to 

trace their hinge lines accurately for structural analysis by generating rose diagrams. 

Maximum and minimum curvatures were used to detect anticline and syncline 

hinges, respectively. Curvature attributes have also been used to understand the 

cylindricity of the fold structures. These were applied by superimposing mean 

curvature with Gaussian curvature (Lisle and Toimil 2007). The types of curvature 

attributes that were used in this thesis (i.e., minimum curvature, maximum curvature, 

mean curvature, and Gaussian curvature) and their applications are discussed in 

detail in chapter 5. 

2.3.2.3 Fold orders and domains 

In the Southern North Sea case study, the folds of the Top Salt are called regional 

folds or first-order folds, while the intra-Zechstein folds are called second-order folds 

or simply Z3 Stringer folds. The third-order folds refer to the smaller folds that formed 

within the second-order Z3 Stringer folds. To analyse the structures of the intra-salt 

stringer, the study area has been divided into five regional domains based on the 

large-scale Top Salt fold (first-order folds) and the thickness changes of the 

Zechstein (see chapters 4 and 5). 
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The borders of these domains are simply the inflection points of the first-order folds 

constructed from the mean curvature attributes of the Top Salt. The domains are 

named based on the large-scale synclines and anticlines (see methods in chapters 4 

and 5). 

2.3.2.4 Rose diagrams  

Rose diagrams were constructed by exporting into ArcGIS the traced fold hinges that 

been interpreted from maximum curvature attribute (anticlines) and minimum 

curvature attribute (synclines) (Raharimahefa and Kusky 2009; Mogaji et al. 2011; 

DeVasto et al. 2012). The collection of the data was grouped based on the regional 

domains. The orientations of the Z3 Stringer were used to understand the effect of 

the regional structure trend on the intra-salt deformations and the stress applied to 

the Z3 Stringer in each domain. 

2.3.2.5 Geobody extraction 

The Geobody Horizon Probe process was used for 3D extraction of the amplitude of 

the Z3 Stringer from the seismic volume in Petrel 2011 (Borgos et al. 2007; Chaves 

et al. 2011; Paton et al. 2012). An extraction of a surface probe from an autotracked 

Z3 Stringer surface helps to define the discontinuities in the actual amplitude in 3D. 

2.3.2.6 Fold wavelength measurements 

The wavelength of the Z3 Stringer folds has been measured in each of the regional 

domains. The different methods for describing fold wavelengths are summarised in 

Adamuszek et al. (2011). The wavelength is the distance perpendicular to the fold 

hinge along the centre of the fold layer between two successive hinges (Marshak 

2004). The Z3 Stringer folds were measured individually perpendicular to their 

strikes in each of the regional domains. The wavelength of the Z3 Stringer folds is 
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compared to the magnitude of shortening of the regional folds to test the influence of 

regional tectonics on internal deformation. 

2.3.2.7 Fold interlimb angle measurements 

The tightness of the Z3 Stringer folds is described by measuring the interlimb angles 

and classifying them using the Fleuty (1964) scheme. The interlimb angles of the Z3 

Stringer folds were measured in all of the regional domains. Because the folds are 

non-cylindrical and multidirectional, the measurements were taken using profiles 

perpendicular to the structure of each individual fold. Using a 1:1 scale, all the 

interlimb angles were measured on profiles perpendicular to their fold axis.  

All the workflow is summarized in Fig. 2.6. 
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Fig. 2.6: Summary flowchart showing the workflow used for the structural analysis of the intra-salt stringer in case study 1.  
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2.4 Case study 2: Grater Birba in the South Oman Salt Basin 

The seismic data used for the second case study is from the South Oman Salt Basin, 

in the Grater Birba Field (Fig. 2.7). 

2.4.1 Seismic data 

A 3D wide-azimuth and time-migrated survey was used to analyse the internal salt 

stringers in the Birba Field, South Oman Salt Basin. The survey was acquired in 

2008–2009 in order to improve the imaging of the Top Ara salt, the internal Ara 

stringers, and Base Ara in the Birba Field (Li et al. 2012a) (Fig. 2.8 and Fig. 2.11). 

The seismic acquisition and processing parameters for seismic data are shown in 

Table 2.2. 

In terms of seismic polarity, a downward increase in acoustic impedance is defined 

as a trough (red reflector – negative), whereas a decrease in acoustic impedance is 

defined as a peak (blue reflector – positive). This convention is the opposite of the 

SEG normal convention for a zero-phase wavelet, in which an increase in acoustic 

impedance is represented by a peak. Three regional 2D seismic lines crossing the 

greater Birba area were also used to understand the regional geology of the basin. 

Table 2.2: Acquisition and seismic processing parameters of the Birba 3D WAS cube.  

Receivers 25 × 200 m 

Sources 50 × 50 m 

Frequencies 6 to 86 Hz 

Acquisition CMP 12.5 × 25 m 

Processing CMP 25 × 25 m 

Processing Fold 2000 

In-line Offsets ±4.9875 km 

X-line Offsets ±3.975 km 
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Fig. 2.7: Location and geologic map of the South Oman Salt Basin including the Birba area (after Al-Siyabi 2005). 
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Fig. 2.8: The difference in data quality between the regional 2D and 3D seismic data (see Fig. 2.9c for the location). On the 2D seismic data, small geological 
features are not properly imaged as compared to the 3D seismic data (bottom). The Top Salt and intra-salt features are delineated on the 3D seismic data. 
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2.4.2 Seismic interpretation workflow 

Petrel 2011 was used to map eight key horizons over the Birba area: Base 

Salt (A0C), A1C Stringer, A2C Stringer, A3C Stringer, A4C Stringer, Top Salt, 

Base Natih, and the Top Natih. The interpreted horizons were gridded to 

create time surfaces and amplitude extractions (e.g., RMS amplitude). 

Volume attributes were generated mostly for seismic slices, contributing to the 

interpretation of complex structures. Variance volume cubes and ant-tracking 

were generated for structural and stratigraphic detections. 

2.4.2.1 Mapping of Top Salt 

The Top Salt reflector was mapped initially using 50 × 50 grids (Fig. 2.9). 

However, in large areas, the Top Salt is not imaged on seismic data, and it is 

completely absent within the chaotic overburden zone. The seismic ghost 

curves, or facies, which allows a correlation panel or seismic overlay to be 

used to jump-correlate different seismic units, was used to determine the 

position of the Top Salt in such areas with no Top Salt reflection. In addition, 

the horizon autotracking tool was found applicable in these areas. 

2.4.2.2 Mapping of A1C, A2C, A3C, and A4C stringers 

The stringers were mostly mapped using the Petrel seeded 3D technique. 

Each seed grid was then autotracked over the study area in order to generate 

surfaces and amplitude maps. For each interpreted horizon, a two-way travel 

time surface was generated. An amplitude map was then extracted to 

highlight the variation in amplitude of the mapped seismic event across the 

study area. These amplitude maps help to identify the continuity of the main 

seismic events in the area and thus define our confidence in the mapped 

seismic event across the study area. The grids and surfaces generated for 
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each mapped lithology are illustrated in Fig. 2.9. Table 2.3 summarises the 

seismic character of the interpreted horizons. 
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Fig. 2.9: Interpretation of the Top Salt in the Birba seismic survey. (a) Manual interpretation 
shows regional extent of the Top Salt. (b) Autotracked section of the seeded grid. (c) 
Interpolated surface. (d) RMS amplitude attribute map over the generated surface. (e) Areas 
of well-imaged and poorly imaged Top Salt reflector.  
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Table 2.3: Seismic character of the interpreted horizons in the Birba area. 

 

 

2.5 Well calibration workflow 

Well logs are used to calibrate the age of the different geological events. In 

the study area, only the following eight wells have checkshot data: (a) BB-2, 

(b) BB-3, (c) BB-4, (d) BUD-1, (e) BUD-2, (f) BUDNE-2, (g) BUDNE-4, and 

(h) AWN-1. The other wells have wireline logs, which were used for 

investigating the Ara stratigraphic section both vertically and laterally by doing 

well-to-well correlation. The checkshot data were loaded into Petrel, and a 

good well-to-seismic calibration was obtained to identify the stringers and to 

accurately map the Top Salt structure (see chapter 6). 
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Abstract 

The main driver mechanisms for salt tectonics in the Silverpit Basin was 

investigated using high-resolution, three-dimensional seismic reflection data 

and four exploration wells. The study demonstrates that shortening of the 

basin by regional compression is the main driver mechanism for salt tectonics. 

Bulk shortening of the Silverpit Basin resulted in the formation of detached 

regional anticlines and synclines, which are simultaneously associated with 

intra-salt folding and extensional deformations, respectively. The study also 

describes the stratigraphy of the Zechstein and the Z3 Stringer. It was found 

that the thickness of the Z3 Stringer is laterally variable and cannot be reliably 

imaged in all cases on seismic data. The Z3 Stringer can be much thicker 

than expected due to seismic imaging problems, thus increasing the 

uncertainties and risk in stratigraphic prognosis and pore pressure prediction 

during well operations. Lithological calibration of the Z3 Stringer shows that 

the Z3 Stringer is represented by the Platten Dolomite Formation, which is 

approximately 4 m thick and is overlain by thicker anhydrite (19 m to 63 m 

thick). Detailed analysis of seismic stratigraphic markers in the overburden 

suggests that the syn-kinematic units in the Silverpit Basin were deposited 

during Early-Mid Eocene to Late Oligocene, a period that is coeval with salt 

activity and intra-salt deformation in the Silverpit Basin. 
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3.1  Introduction 

Investigating the role of stratigraphic impurities and layering within rock salt is 

an important subject when discussing the internal structural styles of 

evaporites (Raith et al. 2015). For instance, the Messinian Evaporites in the 

contractional domain of the Levant Basin are composed of salt and multi-

layered clastic units which were compressed into detachment folds and thrust-

ramp folds at the early stage of salt tectonics (Cartwright et al. 2012). In 

addition, the layered evaporite sequences from the Santos Basin, offshore 

Brazil, mainly contain incompetent sequences of halite and competent layers, 

and display upright folds, thrust-related inclined folds, and recumbent, 

isoclinal, sheath, and superposed fold structures, which were all formed 

during a single regional shortening event of the basin (Fiduk and Rowan 

2012). Several studies have described the internal stratigraphy and 

mechanical properties of the Zechstein salt (Taylor 1990; Geluk 2007; van 

Gent et al. 2011; Strozyk et al. 2012). Most of these studies are from the 

Dutch side of the Southern North Sea. In this study, the stratigraphy of the 

Zechstein is described at both well and seismic scales. 

Understanding the mechanism that derives salt tectonics at a regional scale 

will help to interpret the internal deformation patterns in the Zechstein salt. 

Whilst both differential sediment loading and buckling mechanisms can 

generate salt structural low regions of synclines and minibasins and salt 

structural high regions of anticlines, domes, and diapirs, the influence of such 

structures on the internal salt deformation has not been widely discussed. 
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3.1.1  Aim of the chapter 

The aim of this chapter is twofold: (1) understand the regional salt tectonics in 

the Silverpit Basin and the driver mechanism for the final basin configuration, 

and (2) understand the influence of evaporite stratigraphy on the internal 

deformation. Therefore, after discussing the stratigraphy of the Zechstein 

(both the ductile salt and the competent layers), a general description of the 

internal deformation is provided. 

3.1.2  Methods 

This chapter is based on structural interpretation of 3D post-stack time-

migrated seismic surveys in the Silverpit Basin, Southern North Sea. Overall, 

three seismic surveys were used, namely Cavendish, Trent96, and Snsj07 

(Fig. 3.1), with a lateral and vertical resolution of 25 m and 20 m, respectively. 

The Cavendish seismic survey is located in Block 43/19a around the 

Cavendish gas field, and has an area of 1293 km2 (Fig. 3.1). Only the 

Cavendish survey was used in this study for 3D interpretation. 

Four wells were used to study the stratigraphy of the Zechstein. Two of these 

wells (43/19-1 and 43/19-2) are located in the Cavendish survey (see Fig. 3.1 

for location), while the other two (43/24-1 and 43/24-2) are located in the 

Trent96 survey (Fig. 3.1). The seismic interpretation of the overburden 

seismic markers, Top Salt, Z3 Stringer, and Base Salt is similar to that of 

Underhill (2009) and van Gent et al. (2011), where the Top Salt is a positive 

reflector and the Base Salt is a negative reflector. The seismic reflector in the 

middle of the salt belongs to the Z3 Stringer, and it has positive amplitude, 

zero phase, and normal polarity. 
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Fig. 3.1: The 3D seismic surveys: Cavendish survey, in the north, and the Trent96 merged 
with snsj07, in the south. The mapped horizon is the Top Salt two-way-travel-time surface. 
The dashed circle east of the Trent96 survey is the location of the Silverpit Crater. Well 43/25-
1 passes through the syncline of the Silverpit Crater structure. The map insert shows the 
structural framework of the Southern North Sea. Note the location of the study area within the 
Cenozoic salt-cored anticlines and synclines (modified after Coward and Stewart 1995).  
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3.2  Regional setting 

The Southern North Sea is a classic area where salt tectonics is predominant 

(Taylor 1990; Geluk 2000; Mohr et al. 2005; Underhill 2009; van Gent et al. 

2011; Strozyk et al. 2012; van Gent et al. 2012). The study area is located in 

the Silverpit Basin, Southern North Sea, about 180 km to the north of Bacton 

on the Norfolk coast and approximately 140 km northeast of Easington on the 

Lincolnshire coast (Underhill 2009; Wall et al. 2010) (Fig. 3.1 and Fig. 3.2). 

Three distinctive regional structures were recognised in the area: (1) faulted 

sub-salt rock, (2) folded overburden by salt-cored anticlines and synclines, 

and (3) structureless conformable post-kinematic megasequences (Taylor 

1990) (Fig. 3.3). These regional structures are the result of two main tectonic 

events in the Southern North Sea Basin: an extensional event during the 

Mesozoic and compressional tectonics during the Cenozoic (Coward and 

Stewart 1995; Stewart and Allen 2005).  

The sub-salt sediments (Carboniferous and the Rotliegend) were deposited in 

a series of NNW trending grabens, which were reactivated during the Late 

Carboniferous (Stewart 2007). Consequently, the overlying Permian 

Zechstein salt forms an effective decoupling unit between the sub-salt and the 

supra-salt strata, and it is highly variable in thickness due to halokinesis 

(Taylor 1990; Underhill 2009). A few studies have shown that there is no 

connection between the sub-salt basement faults and the overlying post-salt 

structure (Hughes and Davison 1993). On the contrary, studies such as those 

of Walker and Cooper (1987) and Coward and Stewart (1995) have 

emphasised the decoupling character of the Zechstein salt and provided 

examples of decoupled pre- and post-salt structures. Furthermore, a good 
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connection has been found between the pre-Zechstein basement fault trends 

and the overlying Upper Permian Zechstein folds (Oudmayer and De Jager 

1993). 

On a regional scale, the Southern North Sea Basin is surrounded by 

Mesozoic extensional faults to the west of the basin margin, which were partly 

reactivated during the Cenozoic (Coward and Stewart 1995). Updip extension 

and regional basin tilt caused a thin-skinned gravity-driven system of 

detachment buckle folds in the downdip of the basin (Allen et al. 1994; 

Coward and Stewart 1995; Stewart and Allen 2005) (Fig. 3.1–3.3). An 

alternative model for the formation of the salt-cored anticlines in the Southern 

North Sea is the withdrawal of salt at depth due to differential loading 

(Underhill 2004; Thomson et al. 2005; Underhill 2009). 
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Fig. 3.2: Classification of the UK North Sea Basin structural domains based on salt structural 
styles. The study area is located in the Southern North Sea in Block 43, where the Zechstein 
salt is formed by thin-skinned shortening of detached buckle folds (modified after Stewart 
2007). 
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Fig. 3.3: Interpreted regional seismic line (SNST-83-10; see Fig. 3.1 for location) across the Sole Pit High, the Silverpit Basin, and the Cleaver Bank High 
showing important structural elements. The chalk and the Jurassic-Triassic strata are highly eroded in the Sole Pit High. However, the Cretaceous sediments 
are overlain by a second wedge of Early Cenozoic sediments, which thickens in the opposite direction indicating the reversal of the Jurassic basin tilt 
(modified after Stewart and Coward 1995). 
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3.3  Tectonostratigraphy of the Silverpit Basin 

The stratigraphy of the Silverpit area is represented by the Carboniferous and 

Rotliegend sediments in the sub-salt section, the Permian Zechstein 

evaporite, and the Triassic to the Cenozoic in the post-salt succession (Fig. 

3.4). 

The tectonostratigraphy of the study area has been subdivided using seismic 

data into six main megasequences (Fig. 3.4). Seismic stratigraphy has been 

used to understand the extent and timing of the structural events that 

occurred in the Silverpit Basin. Several stratigraphic indicators were used: 

 truncations, which indicate unconformities, or time gaps; 

 onlapping reflections, which indicate progressive deposition;  

 thickening of reflectors, which indicates syn-kinematic deposits;  

 constant thickness with sag and bending, which indicates post-rifting or 

post-contraction; and  

 continuous conformable reflectors, indicating a period of tectonic 

quiescence. 

3.3.1  Carboniferous syn-rift megasequence  

The base of this megasequence is hard to interpret due to the quality of the 

seismic data. The top of the megasequence is a clear unconformity at the 

base Rotliegend level (Fig. 3.5). Several half grabens with tilted and 

thickening packages indicate syn-extensional deposits (Fig. 3.5). The 

presence of folding within some of the grabens suggests post-compressional 

deformation and inversion (Fig. 3.5). 
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Fig. 3.4: Stratigraphy of the Silverpit Basin showing the key stratigraphic markers (after 
Underhill 2009). 
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Fig. 3.5: Seismic sections showing sub-salt structural patterns. (a) Base Salt two-way-travel-
time structural map showing the major and minor NW-SE trending faults. (b) Seismic section 
from the eastern part of the Cavendish survey passing through sub-salt normal faults. Note 
the decoupling character of overlying Zechstein salt. (c) Seismic line showing some 
reactivated normal faults (middle) due to the buckling of the basin in Late Cretaceous. The 
dashed green line represents the base Rotliegend unconformity. The vertical exaggeration of 
the seismic sections is 3. 
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3.3.2  Mid-Permian post-rift megasequence I 

The Rotliegend above the Carboniferous is characterised by less thickening 

compared to the lower megasequence (Fig. 3.5). Some of the faults 

propagate upwards to the base of the Zechstein Group (Fig. 3.5 and Fig. 3.6). 

These were active after the deposition of the Permian and the Mesozoic or 

during the inversion of the basin during the Cenozoic (Underhill 2009). 

3.3.3  Late Permian to Early Jurassic post-kinematic megasequence II 

This megasequence includes the Upper Permian Zechstein, the Triassic 

Bacton Group, the Haisborough Group, and the Early Jurassic Lias Group 

(Underhill 2009). All these strata are folded and conformable, signifying that 

there was no thickness variation due to a period of tectonic quiescence (Fig. 

3.6). The unconformity at the top of the Lias Group defines the top of this 

megasequence (Fig. 3.6). This unconformity is related to the uplift of the 

Silverpit Basin during the Late Jurassic (Stewart and Coward 1995; Stewart 

and Allen 2005).  

3.3.4  Late Cretaceous post-kinematic megasequence III (Chalk Group) 

The top of the Late Cretaceous megasequence is defined by the regional 

Base Cretaceous Unconformity and the overlaying Cenozoic deposits (Fig. 

3.6). The megasequence displays bulk thinning towards the core of the 

syncline on the time profile (Fig. 3.6). This thinning has nothing to do with 

tectonics and is probably due to the increase in seismic velocity (Underhill 

2009). 
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Fig. 3.6: Interpreted seismic profile from the Cavendish study area (see Fig. 3.1 for location). The main megasequences are classified based on major 
tectonic events and unconformities. Note the folding and displacement of the Z3 Stringer within the Zechstein salt. The vertical scale of the section is in two-
way travel time (s). 
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3.3.5  Early Cenozoic syn-kinematic megasequence  

The megasequence, which includes the Montrose, Moray, Westray, and 

Stronsay Groups, conformably overlies the Lower Chalk megasequence and 

is significantly truncated by the Oligocene-Miocene unconformity at the top 

(Fig. 3.6). The unconformity represents the base of the overlying Late 

Cenozoic megasequence (Fig. 3.6 and Fig. 3.7). The Montrose and Moray 

Groups belong to the Palaeocene to Early Eocene Upper Chalk Group, while 

the Westray and Stronsay Groups are Late Eocene to Oligocene (Underhill 

2009) (Fig. 3.4). The Westray and Stronsay Groups are clearly affected by the 

Zechstein-cored folding, which resulted in draping, onlapping geometries, and 

variable thickness change from the flanks to the core of the synclines, 

indicating the timing of salt movement in the Early Cenozoic (Fig. 3.6 and Fig. 

3.7). The upper part of the megasequence is truncated by the Oligo-Miocene 

angular unconformity, which marks the Base Nordland Group, indicating the 

end of the compressional tectonics. 

3.3.6  Late Cenozoic post-kinematic megasequence IV 

The Late Cenozoic megasequence is part of the Miocene to Quaternary age 

Nordland Group (Underhill 2009) (Fig. 3.4). This megasequence contains flat 

to conformable strata, which are deposited unconformably above the Early 

Cenozoic sediments. The seismic stratigraphic character of this 

megasequence indicates a period of tectonic quiescence (Fig. 3.6 and Fig. 

3.7). 
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Fig. 3.7: Uninterpreted and interpreted seismic section over the syncline of the Silverpit 
structure (Trent 3D Survey; see Fig. 3.1 for location). The onlapping strata above the high-
amplitude Balder Formation belongs to the Eocene to Oligocene Westray and Stronsay 
Groups. The vertical scale of the section is in two-way travel time (ms).  
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3.4 Regional stratigraphy of the Zechstein 

Several studies on the stratigraphy of the North Sea have suggested that the 

Zechstein was deposited in a transgressive evaporitic marine basin with four 

to five evaporitic cycles (Geluk 2000). In the Norwegian-Danish sector, the 

Zechstein is divided into Ca-1 to Ca-2, An-1 to An-3, and Na-2 to Na-4 

comprising of carbonate, anhydrite, and halite, respectively. In the Southern 

Permian Basin, the Zechstein is divided into Z1 to Z6 evaporitic cycles, but 

only the first four cycles are well-developed (Taylor 1990) (Fig. 3.8a). 

However, in the UK Southern North Sea and offshore Netherlands, the 

Zechstein is divided into five main formations: the Werra (Z1), Stassfurt (Z2), 

Leine (Z3), Aller (Z4), and Ohre (Z5) Formations (Fig. 3.8b). The lower part of 

the Zechstein (Z1–Z3) is characterised by marine successions precipitated in 

the classic carbonate-evaporite cycle of limestone and dolomite at the base 

and evaporite successions of gypsum, halite, and potassium salt in the upper 

part of the cycle (Geluk 2000). 

In most of the Southern Permian Basin, the Z1 cycle is absent, and the lower 

part of the Z2 Group contains dolomite and basal anhydrite units (Wong et al. 

2007). The Z2 is directly deposited on top of the Z1, forming the base brittle 

rock of the overlying thick ductile Z2 Stassfurt Group, which contains mostly 

halite with a primary thickness of 500–600 m that has strongly been modified 

by salt tectonics (Taylor 1990; Geluk 2000; van Gent et al. 2011; Strozyk et al. 

2012). In the Northern Netherlands, significant deposits of potassium-

magnesium salt characterise the top of Z2 (Geluk 2000). The base of the third 

Z3 Group is characterised by high gamma ray log readings caused by a thin 

shale layer and is overlain by a dolomite layer known as the Platten Dolomite, 
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with a typical thickness range of 30 m to 90 m on the shelf (Taylor 1990; 

Smith 1996). Progressive evaporation of the seawater resulted in the 

deposition of a 3 m to 45 m-thick anhydrite layer above the Platten Dolomite 

called Haupt Anhydrite. The Leine Halite overlies the Haupt Anhydrite, which 

is part of the Z3 cycle (Taylor 1990; Geluk 2000; Geluk 2007) (Fig. 3.8b). In 

the Groningen area, the Z3 halite interval, or the Leine Halite Formation, has 

a primary thickness of 200 to 300 m (van Gent et al. 2011). 

In the Southern Permian Basin, the basal part of the Z3 Group that is 

composed of a 1 m-thick shale layer, the Platten Dolomite, and the Haupt 

Anhydrite unit are known as the Z3 Stringer. On seismic data, the Z3 Stringer 

is clearly visible in the middle of the Zechstein salt section between the Z2 

Stassfurt Halite and the Leine Halite (van Gent et al. 2011). In some parts of 

the Southern Permian Basin, the Z3 Stringer is composed mainly of an 

anhydrite layer (van Gent et al. 2011). This anhydrite stringer has variable 

thickness either due to stratigraphic processes such as sedimentary swells 

and gypsum diapirism or due to tectonics during folding (Fulda 1928; 

Williams-Stroud and Paul 1997; van Gent et al. 2011). Some authors 

suggested that the transformation of gypsum to anhydrite occurred after burial 

and even after salt tectonics activities (Williams-Stroud and Paul 1997). The 

thickness range observed was between 40 m and 150 m, the latter being 

observed in areas where the anhydrite layer forms synclines. 

The last cycles (i.e., the Aller (Z4) and Ohre (Z5) Formations) consist of 

sabkha deposits and are thinner than the lower Zechstein cycles (Geluk 

2000). In the Southern Permian Basin, the Z6 and Z7 are not found (van Gent 

et al. 2011). 
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Fig. 3.8: Regional correlation of the Upper Permian Zechstein Group in the Central North Sea 
and the Danish-Norwegian Basin. (b) The stratigraphy of the Zechstein Group in the 
Netherlands. The Zechstein is divided into five cycles (Z1–Z5). Note the thick halite units in 
Z2 (Stassfurt Halite) and Z3 (Leine Halite) on the basin margin and the brittle rock between 
them (e.g., Haupt Anhydrite member, Platten Dolomite member) (modified after van Adrichem 
Boogaert and Kouwe 1993). 
  

a
) 

b
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3.5 Stratigraphy of the Zechstein in the study area 

3.5.1 Stratigraphic description of the Zechstein from Well reports 

The stratigraphy of the Zechstein was described using well data followed by 

stratigraphic correlation tied to seismic facies on seismic sections. For this 

purpose, four wellbores were used (Fig 3.1). Two were from the Cavendish 

survey: well 43/19-1, a vertical well located on the flank of an anticline in the 

Cavendish gas field, and well 43/19-2, located 3.1 km west of well 43/19-1. 

The other two wells, well 43/24-2 and well 43/24-1, are from theTrent96 

survey, the latter being located in the middle of the Trent 96 survey in 

quadrant 43, block 24 (Fig 3.1). The thickness of the Zechstein in the four 

wells is about 973 m, 1033 m, 570 m, and 305 m, respectively. 

3.5.1.1 Zechstein 1 

In well 43/19-1, the thickness of the Zechstein 1 is approximately 28 m, and it 

is composed of a dolomite unit at the base and an anhydrite unit at the top; 

the two units have thicknesses of 13 m and 15 m, respectively, ascribed to the 

Werra Formation (Fig. 3.9). The Zechstein 1 has similar lithology and 

thickness in well 43/19-2 (Fig. 3.10). However, well 43/24-2 in the south 

shows that the dolomite and anhydrite units are about 50 m thick (Fig. 3.11). 

3.5.1.2 Zechstein-2 

The Zechstein-2 cycle in well 43/19-1 is composed of anhydrite and Z2 

polyhalite units with thicknesses of 13.5 m and 43 m, respectively (Fig. 3.9). A 

thick layer of pure halite with a thickness of 373 m overlies the Z2 Polyhalite, 

which belongs to the Stassfurt Halite. Above the Stassfurt Halite is a 30 m-

thick unit composed of intercalations of thin potash layers. This unit belongs to 
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the Stassfurt Potash member. The term ―potash‖ is a general term applied to 

a variety of potassium-bearing minerals. In rock salt, the mineral sylvite is the 

most common potassium salt (K-salt) and has a density of 1860 kg/m3 (Urai et 

al. 2008) (Table 3.1). The stratigraphy of the Zechstein-2 is similar in well 

43/19-2: A 10 m-thick limestone unit characterises the lower part of the cycle 

with 6 m of anhydrite above it, followed by 67 m of polyhalite that is 

interbedded with anhydrite and halite (the Z2 Polyhalite Formation). Here, the 

Stassfurt Halite Formation with a total thickness of 542 m overlies the Z2 

Polyhalite Formation and is composed mainly of pure transparent halite 

capped by a 31 m-thick K-salt of the Stassfurt Potash potash member, which 

is the top of the carbonate-evaporite cycle of the Zechstein-2. 

In well 43/24-2, the Z2 includes halite interbedded with a K-salt interval that is 

about 40 m thick (Fig. 3.11). The rest of the section (460 m) is halite with only 

12 m of mudstone interbedded with halite and anhydrite in the middle of the 

interval, which is probably a fragment of the Z3 Stringer. The upper 116 m of 

this thick halite interval is characterised by interbedded thin K-salt, mudstone, 

and anhydrite. 

3.5.1.3 Zechstein-3  

A 10 m-thick dolomite layer ascribed to the Platten Dolomite forms the base of 

the Z3 evaporite cycle and is overlain by a 63 m-thick anhydrite layer that 

belongs to the Haupt Anhydrite (Fig. 3.9). van Gent et al. (2011) suggested 

that these two brittle members together form the Z3 Stringer within the ductile 

salt. In well 43/19-2, the Platten Dolomite member at the base of the 

Zechstein-3 cycle is only about 5.5 m thick, while the overlying Haupt 

Anhydrite is about 18 m thick. 
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The upper part of the Z3 cycle is characterised by a massive halite unit of 200 

m above the anhydrite interval and belonging to the Leine Halite. Above this 

unit is a 70 m-thick unit of halite and polyhalite belonging to the Leine Potash 

Formation. 

3.5.1.4 Zechstein-4 

The thickness of the Z4 cycle is about 127 m. The lower 20 m-thick unit is 

composed of intercalated claystone and halite (The Roter Salzton) followed by 

1.5 m of pegmatite anhydrite. Above this layer is the Aller Formation that 

represents the end of the Zechstein Group. The Aller Formation consists of a 

108 m-thick massive halite unit with 6 m-thick dolomitic claystone and 

anhydrite layers in the middle part of the formation. In well 43/19-2, the lower 

unit comprises 28 m of mudstone interbedded with carnalite, forming the 

Roter Salzton Formation, followed by 10 m of anhydrite and 22 m of halite, 

which belong to the pegmatite anhydrite and the Aller Formation, respectively 

(Table 3.1). The rest of the upper part of Z4 is halite with thin units of 

mudstone. 
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Table 3.1: Petrophysical properties of evaporite minerals (Urai et al. 2008). 
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Fig. 3.9: Well 43/19-1 in the Cavendish 3D seismic survey. (a) Stratigraphic column of the Zechstein. (b) Location of the well is posted on the Top Salt 
dip map. (c) Position of well 43/19-1 on the seismic section passing through the Zechstein section. The top Zechstein, top Z3 Stringer, and base 
Zechstein are annotated. The Z3 Stringer in the well is much thicker than expected from seismic data interpretation.  

63 
m 
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Fig. 3.10: Well 43/19-2 penetrated a considerable thickness of the Zechstein salt (1.1 km thick). The encountered Z3 Stringer has a thickness of 23.5 
m (5.5 m Platten Dolomite plus 18 m Haupt Anhydrite) and is underlain by 33 m-thick layered potash salt. The overlying Z3 Leine Halite is only 100 m 
thick compared to the thick Z2 Stassfurt Halite (542 m). 
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Fig. 3.11: (a) Stratigraphy of the Zechstein from well 43/24-2. Note the thin beds of mudstone 
and halite at the middle of the column, interpreted to be stringer remnants. (b) The position of 
well 43/24-2 through the Zechstein on the seismic section. Note the discontinuous stringer 
fragments. 
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Fig. 3.12: Detailed stratigraphy of the Zechstein in the Silverpit area. (a) Well correlation panel. Well 43/19-2 and 43/19-1 in the Cavendish Field are about 3 km away from each other. Well 43/24-2 and 43/24-1 are from the Trent Gas 
Field about 20 km south of the Cavendish field. (b) The location of the wells on seismic profiles. Note the variation in thickness of the Zechstein from well 43/19-2 to well 43/24-1. (c) Well 43/19-2 to seismic tie. 

 



Chapter 3:                                                                        Salt tectonics in the Silverpit Basin 

 

89 
 

 

Fig. 3.13: Z3 Stringer correlation across the boreholes and on a seismic section. The thickness of the Z3 Stringer decreases from well 43/19-2 to well 43/19-1. Note the thin seismic reflector of the Z3 Stringer in well 43/19-1. 
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3.5.2 Seismic stratigraphy of the Zechstein Group 

The Top Salt is a positive-amplitude reflector that represents the positive 

acoustic impedance contrast of the interface from the Bacton shale to the 

Z4/Z5 evaporite (downward increase in P-wave velocity). The Z4/Z5 layers 

are continuous, parallel reflectors with similar character as the overburden. 

These are multilayers of halite, mudstone, and anhydrite of the Z4-Z5 

members. The base of these layers forms the upper roof of the ductile Z3 

halite, which is characterised by chaotic seismic character (Fig. 3.12b,c). 

The second reflection is the Z3 Stringer at the base of the Z3 cycle, which is 

also a positive, high-amplitude reflector generated by the transition of seismic 

waves from halite (4500 m/s) to denser dolomite and anhydrite (5500–6500 

m/s) (van Gent et al. 2011). The high acoustic impedance contrast between 

the halite and the anhydrite makes the Z3 Stringer well-imaged on seismic 

data. 

Below the Z3 Stringer, the seismic data is characterised by a chaotic thick 

layer belonging to the Z2 Stassfurt Halite member. The lower part of the 

Zechstein is a thick, positive reflection with constant thickness over the study 

area because of the carbonate and anhydrite layers at the base belonging to 

the Z2 basal anhydrite and Z1 Werra Formation, and has an average 

thickness of about 50 m (Fig. 3.11). Stratigraphically, the base Zechstein is 

the base of Z1 Werra Formation, which is a negative reflector. However, 

mechanically the top Z2 basal anhydrite is the brittle boundary for the ductile 

Z2 Stassfurt and Z3 Leine Halite members. 
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3.6 General description of the external and internal salt structures 

The Top Salt surface displays elongated anticlines and synclines that strike 

dominantly in a NW–SE direction (Fig. 3.14b). The axes of the synclines and 

anticlines were annotated and classified using the contours of the Top Salt 

time elevation surface (Fig. 3.14a). The Zechstein salt has a similar 

topography as the Top Salt, indicating that Top Salt is the major controlling 

element of salt thickness (Fig. 3.14b). The thickness of the Zechstein salt is 

laterally variable due to salt movement (Fig. 3.14b). In addition to the Top Salt 

displacement, the sub-salt faulting creates a secondary thickness change at 

uplifted and subsided sub-salt blocks (Fig. 3.14b). 

Four synclines (S1–S4) and five anticlines (A1–A5) were annotated (Fig. 

3.14c). For detailed analysis of the intra-salt structures, the area was divided 

into domains of anticlines and synclines based on the regional Top Salt 

structure (Fig. 3.14c). Base Salt is characterised by ENE trending faults (Fig. 

3.14d), playing a secondary role in reducing the thickness of the Zechstein 

(Fig. 3.14b). The Z3 Stringer surface shows intensive deformation of 

discontinuities and folding (Fig. 3.14e). The Z3 Stringer is characterised by 

large discontinuous areas below S1, while well-developed folds formed under 

Top Salt anticlinal regions. 
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Fig. 3.14: (a) Two-way-travel-time (TWT) map of the Top Salt surface, classified into anticlines (A1-A5) and synclines (S1-S). (b) Time thickness map of the Zechstein salt. (c) The Zechstein structure divided into domains based on the 
regional Top Salt structures. These domains will help to analyse the intra-salt structures. (d) TWT structural map of the Base Salt with NW fault trends. (e) TWT map of the Z3 Stringer shows discontinuous zones and folding. (f) Z3 
Stringer acoustic amplitude. Note the distribution of areas of low to zero seismic amplitude (blue, discontinuities) and high seismic amplitude (red).  
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3.7 Discussion 

3.7.1 Stratigraphy of the Z3 Stringer 

3.7.1.1 Well data 

The detailed stratigraphic description of the Z3 Stringer from well data shows 

that the Z3 Stringer is characterised by a thin shale layer, 1–2 m thick, 

overlain by the Platten Dolomite Formation, which is approximately 4 m thick. 

The upper Haupt Anhydrite Formation is about 19 m thick in well 43/19-2 and 

reaches up to 63 m in thickness 3 km away in well 43/19-1 (Fig. 3.9 and 3.10). 

The other two wells, well 43/24-1 and well 43/24-2 in the Trent survey, 

penetrated the syncline of the Silverpit Crater and did not encounter the Z3 

Stringer. Offshore Netherlands, the thickness of the Z3 Stringer generally 

ranges from 1 m to 40 m, but it is up to 150 m thick in areas where the Z3 

Stringer forms synclines (van Gent et al. 2011). Where well 43/19-1 passes 

through the steeply plunging limb of the Z3 Stringer, it is unusually thick (Fig. 

3.9). Flatter Z3 Stringer areas, which are less deformed, are assumed to 

represent the original stratigraphic thickness. Hence, the average thickness of 

the Z3 Stringer from well 43/19-2 is 25 m (19 m anhydrite plus 4 m dolomite 

plus 2 m shale). 

3.7.1.2 Seismic data 

The densities of the dolomite and anhydrite at greater depth are 2780 and 

2980 kg/m3, respectively; hence, the thick positive amplitude reflector of the 

stacked dolomite and anhydrite units is interpreted to be the competent Z3 

Stringer within the ductile salt. On seismic profiles, the Z3 Stringer in well 

43/19-2 is characterised by a high-amplitude reflection, whilst in well 43/19-1, 
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it is characterised by a weak seismic reflector (Fig. 3.12b and Fig. 3.13). 

However, in well 43/19-1, the Z3 Stringer is much thicker than in well 43/19-2. 

This has been interpreted to be related to the steep geometry of the Z3 

Stringer in well 43/19-1, which impairs seismic imaging (see Strozyk et al. 

2012; van Gent et al. 2012). Therefore, the weak contrast of the seismic 

reflector of the Z3 Stringer at highly dipping limbs might not be only related to 

thinning of the Z3 Stringer. 

The Z3 Stringer has not been encountered in the southern wells below the 

syncline of the Silverpit Crater. This absence of the Z3 Stringer on well data 

coincides with its absence on seismic data, suggesting that the Z3 Stringer 

has been fragmented below the syncline structure during salt tectonics (Fig. 

3.12). 

3.7.2 Regional tectonics  

3.7.2.1 Timing of salt movement 

Syn-growth strata are observed to be initiated immediately above the high-

amplitude unit and are followed by thickening of reflections at the middle of 

the synclines (Figs. 3.7). The high-amplitude unit belongs to the Balder 

Formation (Underhill 2009), suggesting that the syn-kinematic growth strata 

initiated from the lower part of the Early to Mid-Eocene Westray and Stronsay 

Groups (Fig. 3.4 and Fig. 3.7). The Base Nordland Group, or the so-called 

Oligocene-Miocene Unconformity, truncates the tilted strata on the flanks of 

the anticlines and represents the base of the upper post-kinematic units, 

signalling that halokinesis ceased in the Miocene. 
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3.7.2.2 Regional driver mechanism of salt tectonics  

The Silverpit Basin is interpreted to have been formed by regional buckling 

during the Cenozoic for the following reasons:  

1. The Upper Permian to Late Cretaceous post-salt megasequences 

display no evidence of growth or syn-kinematic deposits, suggesting 

that salt tectonics did not begin before the Cenozoic (Fig. 3.6). 

2. The short period of salt movement which has been recorded from the 

syn-kinematic units, and the low relief of sediment thickening in the 

Cenozoic (Fig. 3.6) suggest that salt tectonics in the basin is unlikely to 

have been driven by differential loading. Salt structures that were 

created by sediment loading display thick sediment successions with 

clear syn-kinematic thickening, as in the South Oman Salt Basin (Al-

Siyabi 2005; Schoenherr et al. 2007; Kukla et al. 2011). 

3. The well-developed and elongated salt structures of anticlines and 

synclines, as well as the huge amount of truncation during the 

formation of fold structures in the Early Cenozoic, suggest that the 

basin is likely to have been driven by regional compressional buckling 

forces. In this case, the formation of regional-scale anticlines and 

synclines may have been simultaneous.  

3.7.2.3 Regional driver mechanism versus intra-salt deformation 

In the Cavendish area, the Permian Zechstein and post-salt sections of 

Mesozoic sediments form NW-SE trending fold structures of anticlines and 

synclines. 

The Silverpit Basin in the Southern North Sea has been interpreted as part of 

a contractional zone because of the compressional event that happened 
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during the Cenozoic (i.e., the Mid-Tertiary inversion tectonics) (Stewart and 

Coward 1995; Stewart and Allen 2005). Other authors interpreted the fold 

structures to have been formed by salt withdrawal at depth by differential 

loading (e.g., Underhill 2004; Thomson et al. 2005; Underhill 2009). From 

these two models, how can the internal salt deformation be used as an 

indication for the regional-scale tectonics, as in both models synclines and 

anticline structures are formed? 

A buckled basin will likely form synclines and anticlines simultaneously 

because the whole basin has been subjected to a simple shortening event. 

However, in the case of differential loading, assuming a vertical load is 

applied to a salt layer, regional synclines are likely to form at the beginning 

followed by salt evacuation and consequently the development of salt 

anticlines, domes, and diapirs in the adjacent areas. For the later model, the 

salt layer might move for kilometres before it starts to thicken to form pillow 

structures (Vendeville and Jackson 1992a; Rowan 1995; Hudec et al. 2009). 

This has been observed in many examples of salt tectonics (Hudec and 

Jackson 2007), and has been demonstrated by analogue and numerical 

modelling (McClay et al. 1998). Using this model, progressive phases of 

deformation along the Z3 Stringer are expected to form through time with 

variable structural styles. The intra-salt stringer is initially and dominantly 

exposed to the deformation that is related to the subsidence of Top Salt 

(deformations below salt synclines or minibasins) (Fig. 3.15). 

However, by shortening the whole basin and the simultaneous development 

of regional synclines and anticlines, the intra-salt contraction within anticlines 

and domes forms simultaneously with the intra-salt extensional deformations 
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in the subsided regions (Fig. 3.15). This has also been demonstrated by 

analogue modelling of a basal ductile layer substrate that is overlain by 

overburden strata subjected to shortening (Harris et al. 2012). Similar regional 

fold structures to those in the Silverpit Basin are created. The intra-salt 

deformation (the green layer in Fig. 3.16) is characterised by fold structures 

under anticlines and stretching under synclines. The results show that ductile 

flow, shortening, and formation of isoclinal folds occur within anticlines. This 

analogue model suggests that shortening of a ductile layer will result in folding 

similar to that observed in the Z3 Stringer (discussed in more detail in chapter 

4). 
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Fig. 3.15: Suggested models for the development of the folding of the regional Zechstein and 
the internal deformation styles. (1) Regional compression of the basin forms simultaneous 
Top Salt anticlines and synclines associated with simultaneous intra-salt deformation. Folds 
are also expected to form under synclines because of the initial shortening of the basin, which 
will result in an internal flow of the salt. (2) Differential loading by downward salt movement 
will start with downward displacement by Top Salt forming synclines followed by the 
development of anticlines at the flanks. The internal layer will expose extensional deformation 
first below regional synclines and will not fold significantly at this early stage below regional 
anticlines.  
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Fig. 3.16: Shortening a ductile layer in analogue modelling, similar to the Silverpit Basin. (a) Multi-layered infrastructure and superstructure overburden prior 
to deformation. The yellow and the green are the ductile layers. (b) Schematic diagram of previous layers after shortening is applied (after Harris et al. 2012). 
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3.8 Conclusions  

 The detailed stratigraphic description of the Z3 Stringer shows that it is 

characterised by a thin shale layer, 1–2 m thick, overlain by the Platten 

Dolomite Formation, which is approximately 4 m thick. The upper Haupt 

Anhydrite Formation forms the dominant stratigraphy of the Z3 Stringer 

with thickness ranging from 19 m to 60 m. 

 The syn-kinematic units in the Silverpit Basin recorded from Early Eocene 

to Late Oligocene indicate the period of salt activity in the basin and the 

development of the internal deformation.  

 Shortening of the basin by regional compressional events is interpreted to 

be the main driver mechanism for salt tectonics. Bulk shortening of the 

Silverpit Basin resulted in the formation of detached regional anticlines 

with well-developed intra-salt folding and regional synclines of stretching 

and discontinuities. 

 Analogue modelling of shortening a ductile layer overlain by thick 

overburden shows a similar regional structure within the superstructure 

and high shortening deformation within the ductile zone as it is observed 

for the Z3 Stringer. 

 The regional driver mechanism influences the internal salt structural styles; 

however, the structural styles of the intra-salt may differ if a differential 

loading or buckling mechanism is applied to the basin. Thus the internal 

deformation can be used to predict the regional driving mechanism of salt 

tectonics.



Chapter 4:              Kinematic evolution of the Z3 Stringer in areas of salt subsidence  

101 
 

 

 

 

 

Chapter 4: The kinematic evolution of the 

Z3 Stringer within areas of salt subsidence 

in the Silverpit Basin, Southern North Sea 

(SNS) 



Chapter 4:              Kinematic evolution of the Z3 Stringer in areas of salt subsidence  

102 
 

Abstract 

This study investigates the kinematics and dynamics of the internal salt layers within 

areas of salt withdrawal, particularly in areas of salt subsidence. Salt withdrawal is 

defined as the movement of salt outwards from a subsiding region into an adjacent 

rising or uplifted region. The geometric details and the kinematic evolution of this 

mechanism inside the salt layer are not well documented in the literature. A 3D 

seismic case study from the Silverpit Basin in the Southern North Sea is used to 

present a summary of the kinematic evolution of an intra-salt structure within areas 

of salt subsidence from early salt tectonics to the subsequent welding stage. The 

study will contribute to a wider understanding of salt tectonics and the internal salt 

dynamics. 

The internal salt structure was analysed by mapping a 23 to 63 m-thick intra-salt 

dominated anhydrite seismic marker known as the Z3 Stringer using the Top Salt 

surface as a reference for shortening and subsidence magnitudes. Stringer 

deformational styles were established from seismic profiles and 3D maps at variable 

Top Salt subsidence levels, and were used to generate 2D and 3D structural 

evolution models. An apparent relationship has been observed between the brittle 

deformation of the stringer and the amount of top salt subsidence. The structural 

propagation of the intra-salt stringer below areas of top salt subsidence begins with 

the formation of long-wavelength folds at the early stage of top salt subsidence. This 

is followed by lateral stretching and consequently thinning and re-flattening of the 

stringer when subsequent subsidence accumulates. The stringer then starts to break 

and fracture at zones of maximum thinning of the salt below the subsided region and 

is followed by fragmentation, isolation, and finally lateral separation of the stringer 

fragments for distances of up to 5 km. The result of this study strongly contrasts with 
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recently published studies on the structural evolution of the Z3 Stringer, which 

suggest that it has been frequently ruptured during salt depositional processes (e.g., 

Strozyk et al. 2014).  

Understanding the evolution of the internal salt structure is very important for 

assessing hydrocarbon traps, for reservoir quality, sealing, maturity, charge, and 

migration. On seismic data, the complexities of the stringer deformation make it 

difficult to image, particularly in areas where the stringer is steeply dipping. A series 

of methodological steps were introduced here to overcome seismic imaging 

problems in steep stringer geometries. These steps could contribute to the seismic 

interpretation process of the poorly imaged, steeper parts of stringers. This is also 

important for other industrial applications such as geological storage and solution 

mining, where it is an imperative of operational procedures to avoid overpressured 

stringers whilst drilling, as they are potential drilling hazards. 
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4.1  Introduction 

Regions of salt-induced subsidence have been called sinks and rim synclines 

(Trusheim 1960), withdrawal basins (Jackson and Talbot 1991), minibasins (Worrall 

and Snelson 1989), pods (Hodgson et al. 1992), or simply salt synclines (Fig. 4.1a). 

Salt withdrawal is the movement of salt from areas of subsidence into adjacent rising 

regions (anticlines, pillows, diapirs, salt domes) where the salt is accumulating (Fig. 

4.1a,b). Salt withdrawal is caused by either stratigraphic differential sediment loading 

(Cohen and Hardy 1996; Koyi 1996; McClay et al. 1998; Gemmer et al. 2004; 

Gaullier and Vendeville 2005; Vendeville 2005; Warsitzka et al. 2013), tectonics by 

contraction (Humphris 1979; Rowan 2002; Rowan and Vendeville 2006; Ings and 

Beaumont 2010), or extension (Vendeville and Jackson 1992a,b; Jackson and 

Vendeville 1994). Because of these regional forces, salt can either thin or thicken to 

form salt welds, pillows, and diapirs. 

Salt thinning and salt rising regions are two different structural domains (Hudec and 

Jackson 2007; Hudec et al. 2009). The first is where the salt is diverging away from 

the subsiding region, whilst the second is the contraction region where salt 

accumulates from adjacent synclines (Fig. 4.1b). The regional structures of these 

two domains are well documented in the literature (e.g., Jackson 1985; Talbot and 

Jackson 1987; Hudec and Jackson 2007; Hudec et al. 2009) (see also chapter 1). 

However, the detailed structural styles and the kinematic evolution of the internal salt 

structures are still poorly understood. In seismic data, salt structures are studied in 

two different ways. Most commonly, the evaporites are considered as structureless 

homogenous bodies (e.g., Jackson and Talbot 1989; Jackson and Vendeville 1994; 

Rowan 1995; Hudec and Jackson 2007; Hudec et al. 2009). Other studies focused 

on the details of the internal salt structures by mapping and analysing intra-salt 
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seismic markers known as stringers (Jackson et al. 1990; van Gent et al. 2011; 

Kukla et al. 2011; Cartwright et al. 2012; Fiduk and Rowan 2012; Strozyk et al. 2012; 

van Gent et al. 2012; Strozyk et al. 2014).  

Complex intra-salt deformation including folding, thrusting, and lateral extensional 

related structures (e.g., boudinage) has been observed in seismic studies (Fiduk and 

Rowan 2012; van Gent et al. 2011; Strozyk et al. 2012). Similar types of deformation 

have also been observed in salt mines and borehole data (Jackson 1985; Talbot and 

Jackson 1987; Smith 1996) and in surface-piercing salt domes (Peters et al. 2003; 

Reuning et al. 2009). Recent studies of internal salt structures revealed layer-parallel 

extension of boudinage in areas of salt subsidence (Geluk 2000; Geluk 2007; van 

Gent et al. 2011; Strozyk et al. 2012; Strozyk et al. 2014). 

Moreover, 2D geomechanical modelling of a viscous salt layer with a single 

competent, non-Newtonian carbonate inclusion exposed to progressive downward 

subsidence shows the formation of lateral diverging salt flow below the subsided 

region (Li et al. 2012a). This is followed by consequent fragmentation of the stringer 

in a manner similar to tensile failure, followed by separation of the fragments by salt 

flow. Such understanding of the geometrical evolution of the internal salt structure 

will contribute to the understanding of intra-salt reservoir quality and diagenesis (Al-

Siyabi 2005; Schröder et al. 2005; Schoenherr et al. 2009; Reuning et al. 2009), seal 

potential (Daniilidis and Herber 2015), stringer overpressure and the associated 

drilling hazards (Williamson et al. 1997; van Gent et al. 2011), geological storage for 

waste disposal, and solution mining (Coelewij et al. 1978; Fokker et al. 1995; Evans 

and Chadwick 2009). 
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Continuous internal salt markers are rarely well-imaged in seismic either because of 

the difficulty of finding continuous sedimentary bodies within the salt (Cartwright et 

al. 2012) or because of poor seismic processing within the salt. In seismic 

processing, the salt bodies are commonly treated as homogenous bodies. Intra-salt 

inclusions (or stringers) and their velocity anomalies are generally ignored during 

seismic model-building stages (Ji et al. 2011; Rowan and Fiduk 2015). Intra-salt 

seismic imaging requires dedicated and targeted seismic processing and a robust 

velocity model, which will enable reliable depth prognosis for the stringers and the 

pre-salt stratigraphies (Hale et al. 1992; Bernitsas et al. 1997; Cavalca and Lailly 

2005; Jones 2008; Jones and Davison 2014).  

The limitation of seismic imaging within salt increases the challenges for seismic 

interpreters, thus increasing drilling risk. Drilling within the salt in some cases is 

obstructed by unexpected, seismically invisible stringer fragments associated with 

high-pressure kicks, which may cause major drilling hazards (Williamson et al. 1997; 

Kukla et al. 2011). Most of these non-imaged stringer fragments are related to 

steeply dipping portions of stringer (Sleep and Fujita 1997; van Gent et al. 2011; 

Strozyk et al. 2012; Jones and Davison 2014; Strozyk et al. 2014). Nonetheless, 

steeper stringer fragments can act as fluid migration pathways through the salt. If the 

stringer is highly brittle, fracture networks are expected to occur within the stringer, 

which could enhance fluid flow (Danilidis and Herber 2015). Thus, it is important to 

improve the interpretation of poorly imaged stringers within the salt.  



Chapter 4:              Kinematic evolution of the Z3 Stringer in areas of salt subsidence  

107 
 

4.1.1 Aims  

This study aims to understand the kinematic evolution of intra-salt structures, 

specifically in areas of salt withdrawal (e.g., Top Salt subsidence) (Fig. 4.1b) from 

the early stage of salt tectonics to the subsequent welding stage. Detailed 

interpretation of the deformation of the intra-salt stringers at variable stages of salt 

tectonics will allow the understanding of the dynamics and kinematics of the salt and 

of the associated stringers. 

In this chapter, this will be achieved by analysing a highly deformed intra-Zechstein 

seismic marker (known as the Z3 Stringer) within areas of salt-related subsidence 

using 3D migrated seismic data from the Silverpit Basin in the Southern North Sea. 

The results will contribute partially to the full picture of salt flow and to the 

understanding of intra-salt kinematics during subsidence. 

The second aim of this study is to develop interpretation methods to tackle 

seismically non-imaged stringers within thick salt areas where the stringers are 

complexly deformed (below top salt anticlines). This will be achieved by introducing 

systematic steps based on seismic attribute applications to interpret non-imaged 

stringer fragments and to enhance the interpretation process, thus reducing 

interpretation uncertainties. 
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Fig. 4.1: (a) Various regional salt structures; linear structures to the left side and circular structures to 
the right. The degree of halokinesis increases away from the centre (after Fossen 2010). The red 
bracket highlights the shape and degree of halokinesis in the study area (Underhill 2009). (b) The salt 
structure, of anticlines and a syncline, shows two regional structural domains: a salt subsidence 
domain in the middle (also known as salt withdrawal basin, salt sink, syncline, minibasin) and regions 
of salt accumulation (anticline, pillow). The red box in the middle highlights the region that this chapter 
is focused on.  
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4.2  Data, methods, and workflow 

4.2.1  Seismic data 

This chapter is based on the structural interpretation of 3D post-stack time migrated 

seismic data from the Silverpit Basin, Southern North Sea. The interpretation was 

carried out using Petrel 2013 and Geoframe 2007. Overall, three seismic surveys 

were provided: Cavendish, Trent96, and Snsj07 (Fig. 4.2) with a lateral and vertical 

resolution of 25 m and 20 m, respectively. The Cavendish seismic cube is located in 

Block 43/19a around the Cavendish gas field, and has an area of 1293 km² (Fig. 

4.2). The Trent96 survey is located around the Trent gas field, south of the 

Cavendish field. The Snsj07 survey trends NNE and is merged with the Cavendish 

and Trent surveys (Fig. 4.2). The Cavendish and Trent96 surveys were used in this 

study for 3D stringer interpretation. Because of poor seismic quality and high noise 

content within the salt section, the Snsj07 survey was only used for 2D cross-

sectional analysis. 

4.2.2  Seismic interpretation workflow 

Three main horizons were interpreted in the Cavendish and Trent96 surveys: Top 

Salt, Base Salt, and Z3 Stringer. The Top Salt has been interpreted in all of the 

surveys to understand the regional structure of the study area. It was also used to 

determine the amount of subsidence and consequently the thinning of the Zechstein 

salt. Time thickness maps were generated for the Zechstein salt by combining Top 

Salt and Base Salt surfaces. The high density contrast between rock salt (2100 

kg/m3) and the anhydrite (2900 kg/m3) (Koyi 2001), and consequently the high 

acoustic impedance contrast, makes the Z3 Stringer reasonably well-imaged on 

seismic data. 
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Unlike the Base and Top Salt, the seismic interpretation of the Z3 Stringer was 

challenging due to the presence of discontinuities and complex structures. The Z3 

Stringer interpretation workflow commenced by mapping the reflector in areas where 

it is more continuous using the 3D seeded autotracking technique. This technique 

allows horizon mapping in all directions, and the interpretation follows the targeted 

reflector in areas where the amplitude is continuous. Where the Z3 Stringer is 

significantly deformed and highly discontinuous, a 2D manual interpretation 

technique was used instead. 

After the completion of horizon interpretation, the new horizon was then transformed 

into a surface using a Petrel technique called ―Structural Operation‖ to interpolate the 

gridding gaps between inlines and crosslines. The autotracked surface has high 

discontinuities of gentle and steep gaps (Fig. 4.3a,c). Because of the well-known 

seismic limitation of imaging steeply dipping stringers (e.g., Sleep and Fujita 1997; 

van Gent et al. 2011; Strozyk et al. 2012; Jones and Davison 2014; Strozyk et al. 

2014), the autotracked surface was interpolated to fill all the gaps (Fig. 4.3b). In this 

case the Z3 Stringer is displayed as a continuous surface with no discontinuities, 

which will be later used for further analysis and seismic attribute analysis (Fig. 

4.3b,d). Furthermore, seismic attribute surfaces were generated from the new 

interpolated Z3 Stringer surface. These include acoustic amplitude, RMS amplitude, 

and dip magnitude. RMS amplitude is the amplitude measured over a specified 

window around the interpolated surface (e.g., 5 ms, 10 ms). 

Acoustic and RMS amplitudes were used to detect discontinuities within the Z3 

Stringer. The non-interpolated Stringer surface is then superimposed with the dip-

angle interpolated surface in order to identify the dip magnitude at discontinuities. 

The dip at which most of the stringer fragments are seismically not imaged was 
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determined to be 45°. Discontinuities were then classified into steeper (>45°) and 

non-steeper gaps (<45°) based on the dip surface. By filtering the discontinuities in 

the dip magnitude surface, shallow discontinuities can be illuminated on the seismic 

data and can be interpreted as real gaps (e.g., derived by tectonics). However, 

steeper discontinuities could either be continuous but seismically not imaged or have 

been fragmented vertically (e.g., boudinage). These have therefore been interpreted 

further on 3D maps and 2D profiles. A summary of the seismic interpretation and 

attribute generation to simplify the non-imaged stringers is presented in Fig. 4.4. 
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Fig. 4.2: The 3D seismic surveys used in this study: the Cavendish survey in the north and the 
Trent96 merged with snsj07, in the south. The dashed circle east of the Trent96 survey is the location 
of the Silverpit Crater. The three surveys are posted with the Top Salt two-way-travel-time surface. 
The dashed lines are fold axes of anticlines (A1–A5) and synclines (S1–S6) of Top Salt (after Coward 
and Stewart 1995). 
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Fig. 4.3: Interpretation of the Z3 Stringer (a) TWT 3D seeded autotracked Z3 Stringer surface. (b) 
Interpolated Z3 Stringer surface. Note that gaps are filled. (c) The profile shows the 3D autotracked 
surface in Petrel. Note that the interpretation terminates in areas where the amplitude is missing 
(discontinuities). (d) The profile shows the interpolated interpretation. Note that discontinuities (e.g., 
fold limbs) are mapped. 
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Fig. 4.4: Seismic interpretation workflow for the steep Z3 Stringer using Petrel 2013. 



Chapter 4:              Kinematic evolution of the Z3 Stringer in areas of salt subsidence  

115 
 

4.3 2D seismic interpretation of the Z3 Stringer under major synclines 

4.3.1 Cavendish 3D survey 

4.3.1.1 Base and Top Salt 

In the Cavendish area, the sub-salt structure consists of SE–NW striking faults with 

major displacements only at the middle of the study area, and forms a NW–SE 

striking graben and horst blocks (Fig. 4.5a). The Top Salt forms low- to moderate-

amplitude synclines and anticlines. 

The Cavendish area was divided into eight domains based on the Top Salt regional 

structure. Four synclines (S1–S4) and four anticlines (A1–A4) form the large-scale 

structural elements in the Cavendish area (Fig. 4.2, see also Fig. 3.14c). Synclines 

(S1, S2, and S3) and anticlines (A1, A2, and A4) are elongated SE–NW structures 

(Fig. 4.2 and Fig. 4.5b). The folds on the western side, S4 and A3, are striking NE 

and ENE, respectively. In general, synclinal structures are associated with thin salt 

below them, whereas anticlines have thicker salt below. S1 is characterised by the 

highest downward displacement of Top Salt and thus the thinnest salt below (Fig. 

4.5b). In contrast, A3 and A4 have the largest fold amplitudes and are therefore 

associated with the thickest salt sections. S2 and A2 are characterised by moderate 

fold amplitudes and limited thickness change (Fig. 4.5b). Base Salt is not 

significantly displaced by sub-faults in a wide area of the Cavendish survey; thus the 

Top Salt is considered the major indicator of gross salt thickness (Fig. 4.5b). 

4.3.1.2 Internal Z3 Stringer 

The Z3 Stringer is folded and highly discontinuous (Fig. 4.5c). Large areas of 

discontinuity occur along the strike of S1 with a scale of hundreds of metres to 

kilometres.
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Fig. 4.5: Two-way-travel-time structure maps: (a) Base Salt. (b) Time thickness of the Zechstein salt 
(coloured surface) superimposed with the Top Salt surface (contours). (c) Two-way-travel-time 
autotracked Z3 Stringer surface. (d) Time-derived dip map of the Z3 Stringer. Darker shades of red 
indicate steeply dipping geometries. 
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The time dip surface of the Z3 Stringer displays shallow dip magnitudes in the east 

and steeper dips in the western areas (Fig. 4.5d). Minimum stringer dips found below 

S1 indicate that discontinuities occur within flat to gently dipping stringer fragments 

(Fig. 4.5c and Fig. 4.5d). However, gaps that occur below the area of A3 and A4, 

where the Zechstein salt is thick, are observed to form within steeper stringer parts 

(Fig. 4.5c and Fig. 4.5d). 

Four NE–SW representative seismic profiles (Profiles A–D) are used to illustrate the 

internal structure style of the Zechstein below the Top Salt major synclines (Fig. 

4.5b). Profile A and Profile B pass through S1, whereas Profile C and Profile D pass 

through S2 and S4, respectively. 

Profile A 

The profile passes through a large portion of S1 in the eastern side of the Cavendish 

survey and perpendicular to the sub-salt and post-salt structures (Fig. 4.5a,b). 

Significant reactivated extensional faults in the sub-salt section led to a series of 

horsts and grabens, none of which extends upwards to penetrate the post-Zechstein 

section, thereby showing the effective decoupling between the sub- and post-salt 

(Fig. 4.6). The salt section below S1 is reduced largely by Top Salt subsidence and 

secondarily by the sub-salt faults. Below the subsided region, the Z3 Stringer is 

broken into smaller single blocks with lateral displacements that range from 0.5 km 

to 2 km in a direction perpendicular to the regional strike of S1 (Fig. 4.6). A 

displacement of 2.1 km is recorded below the hinge of S1. The isolated stringer 

blocks illustrate flat to gently folded geometries and are surrounded by Z2 and Z3 

halite intervals. In the northeast, the salt section is thicker and the Z3 Stringer is 

more continuous and folded. The presence of continuous reflectors crossing the 

stratigraphy in areas where the Z3 Stringer is not flat but highly folded or steeply 
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dipping might confuse the interpretation (marked with arrows in Fig. 4.6a). These are 

well known to be seismic-processing related artefacts (see more of intra-salt imaging 

problems in Hale et al. 1992; Bernitsas et al. 1997; Cavalca and Lailly 2005; Jones 

2008; Jones and Davison 2014). In the southwest of the profile, some of the fold 

limbs are not present and instead seismic migration artefacts of curved styles 

occurred. Two initial assumptions were made to interpret the steeper limbs: (1) fold 

limbs are structurally broken (Fig. 4.6b) or (2) fold limbs are continuous but 

seismically not imaged (Fig. 4.6c). 
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Fig. 4.6: Profile A (see Fig. 4.5b for location). (a) Uninterpreted seismic section intersected the hinge zone of S1. (b) Interpretation of the seismic profile. Note 
the gaps within folded structures to the left. (c) The continuous interpretation model for steeper discontinuities. Note the two folds to the left interpreted as 
continuous fold limbs (blue). 
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Profile B 

The profile passes through the depocentre of S1, the centre of A1 in the northeast, 

and part of A4 in the southwest (Fig.4.7; for location see Fig.4.5b). Below the hinge 

zone of S1, the Z3 Stringer was broken into 300 m to 2 km of flat to gently dipping 

fragments with 1 to 2 km lateral gaps in between (Fig. 4.7). The maximum gaps 

occur at the middle of the hinge zone; however, the space between the broken 

blocks decreases while moving away from the hinge zone of S1 towards the 

southwest. Other discontinuities are found below A1 and A4 zones where the 

Zechstein salt is thick. 

Within thicker salt zones, the Z3 Stringer formed well-developed folds (Fig. 4.7a). 

The dip magnitudes of the stringer below A1 and A4 are much greater than the 

stringer dips below S1. Stringer discontinuities below A1 and A4 occur at places 

where fold limbs are expected. These discontinuities can either be interpreted as 

fractured fold limbs (Fig. 4.7b) or part of seismic imaging limitations, and thus might 

be continuous or thin below the seismic resolution (Fig. 4.7c). 

In a similar way to Profile A, two initial interpretation models have been proposed for 

interpreting vertical gaps. The first model is the discontinuous model, where gaps are 

interpreted as fractured fold limbs (Fig. 4.7b). The second model is the continuous 

model, where gaps that occur at steep geometries are interpreted as continuous fold 

limbs by connecting the end parts of the broken syncline hinge with the end parts of 

the upper fold limbs even though the intervening fold limbs are not imaged (Fig. 

4.7c).
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Fig. 4.7: Profile B (see Fig. 4.5b for location). (a) Uninterpreted and (b, c) interpreted seismic section across A4, S1, and A3. Note the long lateral 
displacement between the stringer fragments and the flat geometry of the broken stringer below the hinge and flanks of S1. (b) The discontinuous 
interpretation model. Note that stringer interpretation assumes no imaging limitation and that steeper gaps are real gaps. (c) The continuous interpretation 
model. Note that steeper gaps are interpolated to form syncline structures. 
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Profile C 

The profile passes through the depocentre of S2 in the south, A2 in the middle, and 

S1 in the northeast (Fig. 4.8). Lateral displacement occurred below the hinge zone of 

S2. Below the southern flank of S2, the stringer is continuous and gently folded in 

spite of Top Salt subsidence. S1 is more subsided than S2 (red dashed line in Fig. 

4.8b) and therefore extensional-related deformations appear more obvious (Fig. 

4.8b). Discontinuities below S1 are more frequent, with extreme flatness of the 

stringer fragments, which may indicate the amount of stretching applied to the 

stringer during salt withdrawal phases. 

Profile D 

The profile passes through S4 and A3 in the western part of the Cavendish survey 

(Fig. 4.9). Below the hinge zone of S4 to the southwest, the Z3 Stringer is gently 

folded. However, along the northern flank of S4, the salt section is small and the Z3 

Stringer is almost flat and has a similar geometry as the Top Salt. In the areas below 

A3, the Z3 Stringer is folded and complexly deformed with high seismic noise and 

migration artefacts where steep reflectors cross the stratigraphy. 
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Fig. 4.8: Uninterpreted and interpreted Profile C (see Fig. 4.5b for location). The arrows highlight seismic artefacts. Note the stringer folding below S2 and the 
lateral gap close to the syncline hinge. Note the flat stringer blocks below S1. Steeper geometries are not picked by seismic data and thus may be continuous 
(dashed blue lines). The horizontal red dashed line is used to show the difference in subsidence between S1 and S2. Note that S1 is more subsided and thus 
a smaller salt section exists below; thereby, the S1 exhibits more stretching and lateral displacement than the S2. 



Chapter 4:                             Kinematic evolution of the Z3 Stringer in areas of salt subsidence 

 

124 
 

 

 

 

Fig. 4.9: Profile D (for location see Fig.4.5b). (a) Uninterpreted and (b) interpreted seismic profile. Note the behaviour of the Z3 Stringer with respect to the 
displacement of the Top Salt. From the middle to the right of the profile, the Z3 Stringer is almost parallel to Top Salt. Complex deformation in the form of 
folding and discontinuities occurred below the hinge of A3 towards the thick salt section in the southwest.  
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4.3.2 Trent 3D survey 

The Trent 3D seismic survey is located a few hundred metres south of the 

Cavendish survey. The area is also affected by the NW trending sub-salt faults (Fig. 

4.10a). 

The Top Salt is characterised by a deep NW striking syncline structure (S5) in the 

middle of the survey and an anticline structure in the southern part (Fig. 4.10b). 

Along the strike of S5, the Zechstein salt is extremely thinned (Fig. 4.10c) by uplift of 

basement blocks (Fig. 4.10a) and Top Salt subsidence (Fig. 4.10b). An obvious 

relationship can be inferred between the salt thickness (Fig. 4.10c) and the 

displacement between stringers (Fig. 4.10d). Base Salt offsets with Top Salt 

subsidence strongly correlate with the structure of the Z3 Stringer, where it is 

observed to be highly fragmented into smaller blocks of 300 m to 5 km in length and 

widely displaced (Fig. 4.10f). The thick Zechstein salt in the southern part of the 

Trent survey is characterised by a thick salt section related to Base Salt low and by 

the formation of the Top Salt anticlines (Fig. 4.10c). Within these zones, the Z3 

Stringer is complexly folded, with steeper fragmented geometries (Fig. 4.10e,f). This 

is discussed in further detail in chapter 5. 
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Fig. 4.10: TWT structure maps of the Trent96 survey. (a) Base Zechstein. (b) Top Zechstein. (c) Base 
Zechstein / Top Zechstein time isochron surface (salt thickness). (d) Z3 Stringer surface. (e–f) 
Uninterpreted and interpreted seismic profiles show sub-salt, intra-salt, and post-salt structural styles.  
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4.3.3 SNSJ07 survey 

The SNSJ07 seismic survey is located south of the Cavendish area, and part of the 

survey is merged with the Trent96 survey. Inlines and crosslines strike NE–SW and 

NW–SE, respectively (Fig. 4.2). 

A NE–SW seismic profile was selected to interpret the internal salt structure below 

S5, A5, and S6 (Fig. 4.2). The amplitude of these folds (S5, A5, and S6) is higher 

than the amplitude of folds in the Cavendish area. This reflects that the degree of 

halokinesis in the SNSJ07 area is higher than of that in the Cavendish area. Below 

the flank of S6, the Z3 Stringer is tilted and laterally displaced parallel to the Top Salt 

(Fig. 4.11a). Below S5 in the northeast, the salt section is thinned to its minimum 

thickness and only a single stringer fragment is found below the syncline. However, 

below A6, the stringer is significantly deformed within the Zechstein salt, which 

results in poor seismic imaging. Curved discontinuous stringer blocks occur at the 

upper part of the salt section and are interpreted as anticlinal hinges. Small reflectors 

are present in the lower part of the salt section, and some are curved upward (Fig. 

4.11a). These fragments are interpreted as synclinal hinges. Therefore the whole 

structure can be interpreted as (1) complex fold structure with fractured limbs (Fig. 

4.11b) and (2) folding with continuous limbs (e.g., isoclinal-tight upright folds) (Fig. 

4.11c). 

The first interpretation is based only on what is directly imaged on seismic data. The 

second scenario considers the limitations of seismic imaging and integrates 

structural examples from salt mines (e.g., Schléder et al. 2008) (Fig. 4.11a,b) or 

surface piercing salt domes (e.g., Seidle 1921) (Fig. 4.11d) where anhydrite stringers 

were folded within the salt section with isoclinal tight folds. 
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Fig. 4.11: (a) Seismic profile perpendicular to the overburden structure of the Snsj07 survey (see Fig. 
4.2 for location). Z3 Stringer interpretation below A5. (b) The Z3 Stringer is highly fractured into 
fragments located at higher and lower depths. (c) The Z3 Stringer is mapped as a continuous folded 
layer. (d) Case study of internal Zechstein deformation through a salt dome (after Seidle 1921). Note 
the continuity of the stringer and the complexity of folding. 
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4.4  3D description of Z3 Stringer under major synclines 

Regions that subsided below S1 and S5 were selected to study the three-

dimensional strain of the Z3 Stringer. These areas are characterised by significant 

Top Salt subsidence and a highly thinned salt section, which consequently results in 

Stringer fragmentation and displacement with salt flow. 

4.4.1  3D description of Z3 Stringer below S1 

The region of extensional-related deformation of the Z3 Stringer below S1 is an area 

of about 10 km in width and more than 40 km in length along the strike and the 

flanks of S1 (Fig. 4.12). For a better description of the structural style of the stringer 

compared with post-salt geometry, the Z3 Stringer surface was superimposed with 

the Top Salt surface in order to understand the influence of the regional structure on 

the stringer deformation (Fig. 4.12a). The zone of maximum displacement occurs at 

the middle of S1 and strikes parallel to its fold axis (Fig. 4.12). The stringer has 

lateral large scale discontinuity (LLSD) along the hinge zone of S1 and lateral 

smaller scale displacements (LSSD) at a greater distance from the hinge zone, 

normally below the flanks of the regional syncline. The edges of the fractured 

Stringer are oriented NW, similar to the S1 fold axis. Stringer blocks surrounded by 

Z2 and Z3 salt are scattered along the zone of S1. The 3D stringer surface displays 

flat to shallow-dipping stringer blocks within the thin salt section. Folds are well-

developed below the flanks of the regional syncline away from the hinge zone of S1. 

Two groups of folds occurred below the two flanks of S1, and they are opposite in 

both curvature and vergence (Fig. 4.12b). In map view, the fold axes are arcuate and 

convex outwards from the strike of S1. Fold vergence has been observed below the 

two flanks of the regional syncline where longer fold limbs (LFL) occur close to the 

regional structure and shorter fold limbs (SFL) form behind it (Fig. 4.12b). 
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Fig. 4.12: Selected area below S1. (a) 3D autotracked (non-interpolated) Z3 Stringer surface 
superimposed with Top Salt topography displayed as contours. (b) Interpretations of (a). The strike of 
stringer fold axes below the flanks of S1 and the edges of the discontinuous blocks follow the same 
trend of the S1 fold axis. Note the opposite curvature direction of the two group of folds at the two 
sides. Note the vergence of the folds where the long fold limbs (LFL) are close to the regional syncline 
while the shorter fold limbs (SFL) are the ones behind. 
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4.4.2 3D description of Z3 Stringer below S5 

Base Salt and Top Salt surfaces are superimposed with the Z3 Stringer surface in 

order to analyse the internal structure within the regional context (Fig. 4.13). Three 

regional structural elements can be identified based on the selected area. The thin 

salt section in the middle was the result of both S5 subsidence and uplift of the sub-

salt horst structure (Fig. 4.13a). Two thick salt sections at the sides of the Trent 

survey form the other two structural elements in the region and are created by sub-

salt graben structures and top salt thickening. The Z3 Stringer is largely fractured 

and laterally displaced within the thinned salt area. The stringer blocks have variable 

sizes and irregular boundaries. The 3D display shows flat blocks occur along the 

hinge zone of S5. However, complex folding with steep geometries occurs within the 

thick salt areas. A summary of the structure styles is shown in Fig. 4.13. 

4.4.2.1 Geometrical measurements of the stringer fragments 

Twenty stringer fragments were selected from the area below S5 (Fig. 4.14) for 

simple measurements of strike, length, width, and aspect ratio. The average length 

of the selected stringer blocks is 1408 m, and their average width is 463 m, with 

maximum and minimum lengths of 4046 m and 289 m and maximum and minimum 

widths of 1330 m and 200 m, respectively (Table 4.1). The maximum and average 

length/width of the fragments is 7.6 and 3.4, respectively, reflecting the 

predominantly elongated shapes of the fragments. The orientation of each block is 

the strike of the long axis drawn from the end parts of the fragment. The results show 

an average strike of 110° (Fig. 4.14 and Table 4.1). This strike is almost parallel to 

the regional S5 axis (~115°). By plotting strike readings of the fragments against 

their lengths, a direct relationship is found. Fragments which are more elongated 

(higher L/W, Table 4.1) tend to have a strike range between 90° and 120°, while less 
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elongated fragments have variable trends (Table 4.1). This suggests that elongated 

stringers have better orientation with the regional structure and almost sub-parallel to 

the S1 axis. 

The stringer thickness in wells 43/19-2 (T1) and 43/19-1 (T2) is 23 m and 63 m, 

respectively. The average aspect ratios (W/T1 and W/T2) of these thicknesses are 

21.1 and 7.3. Experiments on boudinage deformations show that thick layers have 

wider boudins than thin layers which tend to have smaller widths. Typical 

characteristic aspect ratios of boudins fall in the range of 2 to 4, and further layer-

parallel extension will only increase the separation and displacement between the 

broken boudins (Fossen 2010). The reason for the bigger aspect ratios of the Z3 

Stringer can be related to the uncertainties of its thickness (see chapter 3) or to the 

ductile behaviour of the anhydrite in the subsurface. 
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Fig. 4.13: Z3 Stringer time surface superimposed with top and base Zechstein. Note the alignments of 
S5 and sub-salt blocks. (b) Annotated Z3 Stringer surface. Note that the stringer blocks in the middle 
are almost flat. Complexity and shortening increase away from the centre to the sides of the study 
area where the Zechstein salt is thick. The horizontal extent of the surface is 10 km.  
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Fig. 4.14: (a) Trent96 map shows the Z3 Stringer blocks used for strike, length, and width 
measurements. The strikes are measured based on the longer diameter, which has been drawn by 
connecting the end parts. The width is calculated perpendicular to the length diameter. A mean strike 
of 110 is measured. (b) The strike vs. length of the fragments shows longer fragments tend to have 
strike close to the average. 
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Table 4.1: Geometrical measurements of 20 stringer fragments below the area of S5. (L) is the length 
of the fragments, (W) the width, (T1) the thickness of the Z3 Stringer from well 43/19-2, (T2) the 
thickness of the stringer from well 43/19-1, (L/T1) and (L/T2) are length divided by thickness, (W/T1) 
and (W/T2) are the aspect ratios based on the two thicknesses. 

Blocks Azimuth L (m) W (m) T1 (m) T2 (m) L/T1 L/T2 W/T1 W/T2 L/W  

B1 160.0 2050 558 23 63 89.1 32.5 24.3 8.9 3.7 

B2 141 1447 673 23 63 62.9 23.0 29.3 10.7 2.2 

B3 91 2189 1089 23 63 95.2 34.7 47.3 17.3 2.0 

B4 174 553 353 23 63 24.0 8.8 15.3 5.6 1.6 

B5 107 4046 565 23 63 175.9 64.2 24.6 9.0 7.2 

B6 127 1627 250 23 63 70.7 25.8 10.9 4.0 6.5 

B7 114 1907 400 23 63 82.9 30.3 17.4 6.3 4.8 

B8 113 1524 200 23 63 66.3 24.2 8.7 3.2 7.6 

B9 117 1575 250 23 63 68.5 25.0 10.9 4.0 6.3 

B10 95 1535 441 23 63 66.7 24.4 19.2 7.0 3.5 

B11 57 2308 522 23 63 100.3 36.6 22.7 8.3 4.4 

B12 58 1372 424 23 63 59.7 21.8 18.4 6.7 3.2 

B13 140 723 336 23 63 31.4 11.5 14.6 5.3 2.2 

B14 100 950 450 23 63 41.3 15.1 19.6 7.1 2.1 

B15 59 932 250 23 63 40.5 14.8 10.9 4.0 3.7 

B16 142 289 260 23 63 12.6 4.6 11.3 4.1 1.1 

B17 58 450 292 23 63 19.6 7.1 12.7 4.6 1.5 

B18 114 801 311 23 63 34.8 12.7 13.5 4.9 2.6 

B19 125 457 297 23 63 19.9 7.3 12.9 4.7 1.5 

B20 113 1433 1330 23 63 62.3 22.7 57.8 21.1 1.1 

Average 110 1408 463 23 63 61.2 22.4 20.1 7.3 3.4 

Max   4046 1330 23 63 175.9 64.2 57.8 21.1 7.6 

Min   289 200 23 63 12.6 4.6 8.7 3.2 1.1 
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4.5  3D description of the Z3 Stringer within thick salt sections 

In areas where the salt section is thick and Top Salt forms well-developed anticline 

structures (e.g., below A3, A4, and A5), the stringer inside the salt section tends to 

be highly folded, with steeper fold limbs. In most cases, steep stringer parts are not 

well-imaged on seismic data due to seismic processing limitations (van Gent et al. 

2011; Strozyk et al. 2012). This type of discontinuity is very common in the study 

area. It is characterised by seismically chaotic areas, including seismic artefacts 

such as smiles and crossing reflectors, between visible stringer fragments (e.g., Fig. 

4.11a). 

4.5.1 Interpretation workflow for steep discontinuities 

The Stringer horizon probe (Fig. 4.15a) and the autotracked Stringer surface (Fig. 

4.3a) are highly discontinuous stringer surfaces from both geological and seismic 

processing related discontinuities. The common style of steep related discontinuities 

is characterised by gaps located between visible syncline hinges at the bottom and 

part of the upper fold limbs at the top (Fig. 4.15a). Petrel was used to fill the gaps by 

connecting the end points of the structure using the interpolation technique to 

develop an interpolated surface of the Z3 Stringer (Fig. 4.15b). Dip magnitude and 

RMS amplitude surfaces were generated from the interpolated surface. 

The dip at which steeper stringer segments were found to be absent was determined 

both on profiles and on the 3D surface (Fig. 4.15c). In a 1:1 scale, this dip was 

measured to be 45°± 2°. By merging the Stringer horizon probe-extracted surface 

over the 3D time dip surface, the gaps that occur in areas of high dip (>45°) are 

discriminated from those that form at shallower dips (<45°). If the dip of stringer 

discontinuities is found shallower than 45°, the gaps are interpreted as structural 



Chapter 4:              Kinematic evolution of the Z3 Stringer in areas of salt subsidence  

 

137 
 

discontinuities. However, if the gaps occur at more than the critical dip, then the 

stringer discontinuity is likely related to local seismic imaging and the interpretation is 

less confident. 
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Fig. 4.15: Workflow to resolve the vertical gaps that form between visible stringer fragments. (a) 
Amplitude extraction of the Z3 Stringer. (b) Interpolated Z3 Stringer surface. (c) Amplitude extraction 
surface superimposed with the interpolated surface. (d) Sketches of possible end-member scenarios 
for the steep discontinuities. The first (left) shows fracturing of the stringer and a subsequent 
displacement of the fragment by vertical flows in the salt. The second (right) shows a continuous 
stringer with steeply inclined fold limbs which are seismically not resolved because of the thin and 
steep fold limbs.  



Chapter 4:              Kinematic evolution of the Z3 Stringer in areas of salt subsidence  

 

139 
 

4.5.2 Interpretation within selected areas 

Two areas below A1 (Fig. 4.16a,b) and A5 (Fig. 4.16c,d) were selected to analyse 

and interpret discontinuities that occur at steep parts of the Z3 Stringer. RMS seismic 

amplitude, surface probe, and dip angle seismic attributes were generated from the 

interpolated surface of the Z3 Stringer to detect the locations of discontinuities and 

their dip magnitudes. By superimposing the 3D RMS seismic amplitude surface with 

the 3D surface probe, the areas of zero amplitude are located at steep parts of the 

stringer (Fig. 4.16a). However, gently dipping fold limbs, syncline hinges, and 

anticline hinges are continuous and well-imaged (Fig. 4.16a,b). Another area has 

been selected for RMS seismic amplitude (Fig. 4.16c) versus dip angle attribute (Fig. 

4.16d). By comparing the dip angle surface with the seismic amplitude of the Z3 

Stringer, the dip in areas of discontinuities can be determined. 

The result shows a relationship between the distribution of the discontinuities and 

their dip magnitudes. The discontinuities are mainly located at steeper fold limbs 

(>45°), and most of high dip magnitudes are associated with minimum to zero 

seismic amplitudes (Fig. 4.16c,d). In contrast, the well-imaged areas of the Z3 

Stringer fall within areas of shallower dips. The dip angle of the interpolated surface 

of the Z3 Stringer can then be used to differentiate between gaps that occur at 

steeper dips from those that occur at shallower dips. 
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Fig. 4.16: The two areas selected for analysis of steep discontinuities of the Z3 Stringer (Area 1: a,b 
and Area 2: c,d). Area 1: (a) The 3D geobody surface probe (grey) represents the Z3 Stringer 
reflection amplitude and is superimposed with Stringer RMS amplitude surface (coloured surface) to 
detect amplitude strength and weakness. The purple colour represents zero seismic amplitude (gap), 
and red, maximum seismic amplitude. (b) The surface probe superimposed with the interpolated 
stringer surface. Area 2: (c) RMS amplitude surface displayed on the 3D stringer surface. (d) Stringer 
dip angle surface. (e,f) Profiles show that steeper dips are associated with low to zero seismic 
amplitudes (discontinuities), whilst shallow dips have higher amplitudes and thus good continuity.  



Chapter 4:              Kinematic evolution of the Z3 Stringer in areas of salt subsidence  

 

141 
 

4.6 Discussion  

4.6.1 Interpretation of Z3 Stringer discontinuities 

The discontinuities of the Z3 Stringer will be discussed in two contexts:  

1. Within shallow stringer dips in areas below subsided Top Salt. These 

discontinuities include lateral large-scale and small-scale discontinuities. Their 

discussion will lead to the understanding of the salt dynamics and flow 

behaviour in areas of salt-induced subsidence, as well as the kinematic 

evolution of the stringer (including the timing of deformation and the 

geometrical evolution). 

2. Within vertical stringer geometries in areas below Top Salt anticlines. The 

discussion of this part will contribute to the interpretation of Z3 Stringer 

discontinuities that have not been resolved on seismic data. 

4.6.2 Lateral large-scale discontinuities below S1 and S5 

The lateral large-scale discontinuity of the Z3 Stringer largely occurs in areas below 

S1 and S5 where Top Salt exhibits a large magnitude of subsidence (Fig. 4.12 and 

Fig. 4.13). Visible stringer fragments which are distributed within these areas are 

characterised by shallow dip magnitudes and displacements of 1–4 km. The shallow 

dip magnitudes are contradictory to the notion of seismic limitations that could be 

produced by steep reflections (Sleep and Fujita 1997; Shan and Biondi 2008; van 

Gent et al. 2011; Zhuo and Ting 2011; Strozyk et al. 2012; Jones and Davison 

2014). Therefore, the fragments of the stringer below the regional extensional areas 

of S1 and S5 are interpreted as large-scale boudin structures formed by lateral 

extensional forces induced by the lateral flow of Z2 and Z3 halite away from the 

synclinal areas. 
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The occurrences of these large-scale displacements along the hinge zones of the 

major synclinal structures is an indication of large-scale diverging salt flow in a 

direction perpendicular to the strike of the elongated major synclines (Fig. 4.17b). 

Since the large displacements of the stringer were recorded along these regional 

synclines, the subsided Top Salt synclinal hinge, where the salt section appears 

thinned below, is the place where the salt starts flowing and diverging (Fig. 17c,d). 

The strike of the elongated fragments within the hinge zone of S1 supports this 

interpretation (Fig. 4.12 and 4.14a). 

Additionally, the opposite curvature and vergence of the two fold groups below the 

flanks of S1 (Fig. 4.12b and Fig. 4.17b) provide evidence for two opposing flow 

directions with variable rates that may have largely relied on the subsidence 

magnitudes along the strike of S1 (see Fig. 4.12a). The curvature of the fold axis of 

an individual fold in plan view (Fig. 4.17b and Fig. 4.12b) has been interpreted to be 

related to the variable speed of salt flow. Highly subsided zones along the strike of 

the regional syncline would be expected to generate higher flow with higher speed, 

and consequently the stringer is folded with a curved axis and obvious vergence 

(Fig. 4.17c). However, such curvature and vergence are not found at the flanks of 

Syncline 2. 

Top Salt-induced subsidence at S2 and S4 is considered to be low to moderate 

compared to S1 and S5 (Fig. 4.8 and Fig. 4.2). The stringer below S2 shows fold 

structures and small-scale lateral extensional displacements with no evidence of 

isolated individual fragments (Fig. 4.18c). Similarly, the stringer shows flat to gently 

folded geometry below S4 (Fig. 4.18d). This suggests a relationship between the 

amount of Top Salt subsidence and the degree of fragmentation of the stringer. A 
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similar result was found by geomechanical modelling of a non-Newtonian viscous 

salt with an embedded brittle elastic-plastic single stringer subjected to variable top 

salt displacement magnitudes (Li et al. 2012a) (Fig. 4.17e). 

The elongated structure of the Top Salt synclines, which have been interpreted to be 

formed by regional buckling of the basin (see chapter 3), suggests that the 

extensional mechanism applied to internal salt structures below the regional 

synclinal hinge zone areas (S1, S5) is uniaxial extension (Fig. 4.17d). In this case, 

one strain component (e.g., εxx, perpendicular to the S1 axis) is more dominant than 

the other (e.g., εyy, parallel to the S1 axis). This is possibly supported by the close 

relationship between the mean strike of the long axes of the fragments and the strike 

of the regional structure (Fig. 4.14a and Table 4.1). 

Similar approaches have been used in DEM numerical modelling (e.g., Abe et al. 

2013) and analogue experiments (Kettermann 2009). However, isotropic layer 

parallel extension (pure flattening εxx = εyy) might be expected to occur below salt 

structures that resulted from differential loading, in particular where minibasins of 

spherical shape (e.g., Jackson et al. 2015) create multidirectional strain within the 

salt section, resulting in radial fracture propagation similar to chocolate tablets, as 

described experimentally by Ghosh (1988) and Zulauf et al. (2011). The deformation 

style of the Z3 Stringer below the elongated Syncline 1 and Syncline 5 could be 

compared with the stringer‘s deformation below circular minibasins in the South 

Oman Salt Basin (see chapter 7). This summarises the effect of regional salt 

tectonics on the intra-salt deformation, geometry, and style in areas of salt 

subsidence.  
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Fig. 4.17: (a) Representative seismic profile across S1 (see Fig. 4.12b for location, A-A‘) illustrating 
the large-scale displacement of the Z3 Stringer and the boudinage structure. (b) Superimposed with 
3D stringer surface. (c) Simplified cross-sectional sketch of (a,b). (d) Simplified map view sketch of 
the flow direction and the formation of the opposite fold curvatures. (e) Numerical results after Li et al. 
2012a. (Right) boudinage of competent stringer by downward Top Salt subsidence. (Left) Diverging 
flow below the subsided region. 
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Fig. 4.18: Stringer structural style with progressive Top Salt subsidence and thickness change. 
Subsidence and salt thickness within major synclines increase from bottom (e) top to top (a). Note the 
change of the stringer structural style by the change in salt thickness and subsidence rate. Lateral 
displacement is associated with thinning of the Zechstein (e.g., a, b) whereas folds are formed in 
areas of non-subsided and thick (anticlines, pillows) salt sections (for locations see Fig. 4.5b). 
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4.6.3 Lateral small-scale discontinuities (LSSD) 

The lateral displacement of the stringer was observed to decrease when moving 

away from areas of high subsidence. Profiles across S1 revealed lateral small-scale 

discontinuities (LSSD) with visible displacements of less than 500 m largely occur 

below the flanks of the regional synclines. These small discontinuities can occur 

within flat or gently folded stringer geometries (Fig. 4.19a). The morphology of the 

fracture patterns is either sharp linear boundaries (Fig. 4.19b), triple junctions with 

angular boundaries (Fig. 4.19c), or en echelon-like structures (Fig. 4.19d). 

On 2D profiles (e.g., Fig. 4.19a), the stringer fragment seems to be isolated and 

could be interpreted as a boudinage structure that either formed simultaneously or 

was reworked during progressive deformational events. In map view, however, the 

majority of the LSSD gaps do not fragment the stringer into isolated parts. The gaps 

are either branched from the LLSD zone or form separately hundreds of metres 

away (Fig. 4.20a, b). The LSSD can either strike parallel, oblique, or perpendicular to 

the major syncline axis (Fig. 4.19b,c,d and Fig. 4.20c). 

The shorter lengths and multidirectional strikes of the LSSD have been interpreted to 

be related to (1) the speed and rate of salt flow decreasing away from the source 

layer and the S1 axis, and thus resulted in smaller displacements away from the 

maximum subsidence zone with randomly oriented fractures that are not 

perpendicular to the main extension direction (Fig. 4.19d); and (2) the influence of an 

opposite flow generated from an adjacent regional structure, (e.g., Jackson 1985; 

Talbot and Jackson 1987; Hudec and Jackson 2007; Hudec et al. 2009; van Gent et 

al. 2011), which might reduce the withdrawal salt flow that comes from S1 and create 

multidirectional flow. 
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Fig. 4.19: (a) Uninterpreted and interpreted seismic profiles across S1 show the distribution of LSSD. 
Note that LSSD form below the flanks of the regional syncline, within a flat (left) or folded stringer 
geometry (right). (b,c,d)  LSSD morphology (see Fig. 4.20a for regional location). (b) Linear LSSD of 
400 m width and 3 km length oblique to the major syncline axis (S1). (c) Connected triple junction with 
major NE and NW strikes. (d) En echelon style oblique to the S2 axis. 
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Fig. 4.20: Summary structural map of the Cavendish area showing discontinuities. (a) Acoustic 
amplitude surface of the Z3 Stringer shows discontinuities (in red). (b) Interpretation of discontinuities. 
Three main types of discontinuities were annotated: large-scale lateral displacements (LLSD), small-
scale lateral displacements (LSSD), and steep stringer discontinuities or fold limb discontinuities 
(FLD). (c) LLSD and LSSD below the S1 area. (d) Conceptual sketch explaining strike variability of 
the LSSD related to the speed of the flow. Long arrows represent higher-speed salt movement, while 
short arrows, lower-speed salt movement.  
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4.6.4 Timing of Z3 Stringer brittle and boudinage deformation 

Boudinage structures within salt deforming layers have been extensively discussed 

in the literature (Borchert and Muir 1964; Burliga 1996; Davison 1996; Smith 1996; 

Schléder et al. 2007; 2008; van Gent et al. 2011; Strozyk et al. 2012; Strozyk et al. 

2014). Two models are suggested herein for the timing of the initial stringer brittle-

boudinage structures for the dominated anhydrite Z3 Stringer:  

Model 1: Early-stage boudinage before salt tectonics 

This model suggests that the stringer has been frequently ruptured during early 

stages by one of the following mechanisms (Fig. 4.21a): 

(a) The overburden above the stringer creates compaction at stresses that are 

sufficient to break the stringer before any salt tectonics.  

(b) A high viscosity contrast between the stringer and the incompetent salt 

allows the stringer to collapse and boudinage with no lateral stretching (Bons 

et al. 2004) (Fig. 4.22f). 

(c) There was an early syndepositional gravity gliding of the salt (Strozyk et al. 

2014). Such structures then intensively deform during salt tectonics by folding 

within areas below synclines where salt is shortened and widely displaced by 

extensional deformation. 

Model 2: Late-stage boudinage after salt tectonics 

Alternatively, the stringer experiences brittle deformation during major salt movement 

and is largely localised in areas of high subsidence (Fig. 4.21b). Major salt tectonics 

in the basin has been recorded in the Early Cenozoic (Coward and Stewart 1995; 

Stewart and Allen 2005; Underhill 2009). In this model, the stringer does not reveal 
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significant structural deformation from the time of deposition in the Late Permian to 

Early Cenozoic. 

The second model is more applicable for the brittle extensional-related deformations, 

since the Z3 Stringer has been observed to be continuous after halokinesis with 

either flat to gently folded structures, as in areas below S4 (Fig. 4.9), or folded with 

open-upright fold structure, as in areas below S2 (Fig. 4.8). This suggests the Z3 

anhydrite stringer behaves in a ductile manner. As such, it could be concluded that it 

is extremely difficult to break the anhydrite stringer before salt tectonics and that any 

sub-salt fault reactivation is insufficient to induce salt flow and subsequent brittle 

deformation of the Z3 Stringer. It is argued here that the majority of the stringer brittle 

deformation occurred during salt tectonics and required a significant amount of 

stretching to produce frequent breaks and rupturing (e.g., S1 and S5). 
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Fig. 4.21: 2D Conceptual sketches (not to scale). (a) Early stage of boudinage formation before major 
salt tectonics either during salt deposition or during the deposition of the Triassic-Cretaceous 
overburden. (b) Late-stage brittle-boudinage and folding in the Early Cenozoic time during salt 
tectonics in the basin. Refer to (Fig. 3.6) for scale and timing of megasequences. 
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4.6.5 Folding and boudinage below hinges and flanks of regional synclines 

4.6.5.1 Boudinage within folded LSSD zone 

The lateral small-scale brittle deformation structures formed within folded structures 

below the flanks of major synclines between the extensional subsided regions and 

the contraction zones (Fig. 4.22a,b). Such deformation can be interpreted as follows: 

1. Simultaneous shortening and extension took place, shortening in one 

direction and extensional-brittle deformation in another direction (Fig. 4.22d). 

This type is common in highly rheological layered rocks (Grujic and 

Mancktelow 1995; Zulauf and Zulauf 2005).  

2. The stringer was initially folded by salt flow during the early subsidence stage, 

and was subsequently stretched and fragmented during extreme thinning of 

the salt section. 

3. Part of the stringer is subjected to zones of shortening, where part of the 

stringer fell into the shortening field and the remaining part is within the 

extensional brittle zone (e.g., transition zone). 

4. The stringer progressively deformed and was dragged after being boudinaged 

during salt movement into folded-boudin trains during salt accumulation. 

4.6.5.2 Folding below hinges of regional synclines 

The majority of the stringer fragments in areas below extremely subsided synclines 

are flat (Fig. 4.10e, Fig. 4.13, and Fig 4.22a,b,c). In this case, the boudins are 

classified based on salt flow direction, where initial and large-scale gaps form below 

the hinge zone after the stringer was stretched by a diverging salt flow and resulted 

in almost flat boudin shapes (Fig 4.22c). However, gently folded individual fragments 

were also found (Fig. 4.6 and Fig.4.7). The mechanical properties of the stringer 
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within the salt and the presence of extreme lithological heterogeneities (e.g., weak 

potash layers below Z3 Stringer, see section 3.5.1.2) are considered factors 

contributing to folding within high lateral stretching areas. Moreover, the ductile 

behaviour of the anhydrite stringer itself causes the layer to fold even within zones of 

regional extension (van Gent el. 2011) and to fragment during extreme stretching. 

Highly brittle and competent stringers tend to be less folded and more boudinaged, 

such as the carbonate stringer in the South Oman Salt Basin (e.g., Li et al. 2012a). 
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Fig. 4.22: Boudinage of the Z3 Stringer. (a) Profile across S1. (b) Simplified sketch of the common Z3 
structural styles. (c) Boudinage classified based on salt flow direction where the initial and large-scale 
gap created below the hinge zone by stretching the stringer via opposite flow directions resulted in 
almost flat boudins. (d) Further away from the hinge, the stringer is stretched in one dominant 
direction, and the salt flows faster than the stringer, thus gaps occur. Folding may occur within this 
zone due to progressive deformation events, because of the transition from extension into contraction, 
or a combination of these two. (e) Folding of the stringer by salt accumulation from all directions, 
typical for a spherical pillow (e.g., A3). (f–g) Two boudinage processes (Bons et al. 2004) (f) Inflation 
and collapse upon emplacement, no lateral extension required. (g) Boudinage by layer-parallel 
stretching. 
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4.6.6 Interpretation of steep discontinuities below anticline structures 

The seismic reflections of steep or thin stringers are strongly reduced or absent 

(Sleep and Fujita 1997; van Gent et al. 2011; Strozyk et al. 2012; Strozyk et al. 

2014). Most steep stringer geometries are not imaged on seismic data (Fig. 4.11, 

Fig. 4.15, and Fig. 4.16). The most common stringer structure within areas of thick 

salt sections (i.e., below A1, A2, A3, A4 and A5) is a fold structure; as a result, most 

of the steep stringer parts are located within fold limbs. 

Four possible end-member scenarios for such discontinuities are proposed. First, the 

stringer is continuous, with steeply inclined fold limbs that are seismically not 

resolved (Fig. 4.23a). Second, the stringer is too thin, below seismic resolution, and 

therefore could not be imaged (Fig. 4.23b). Third, the stringer is physically fractured 

and displaced vertically by salt flow as a boudin fragment (Fig. 4.23c). Fourth, the 

stringer is fractured parallel to the folded layer into smaller boudins that are either too 

steep or too small and thin to be imaged (Fig. 4.23d). 

The Z3 Stringer was observed to experience brittle deformation only within areas of 

significant subsidence by Top Salt (e.g., S1, S5). The stringer is still continuous and 

folded below S2, with no significant brittle deformation (Fig. 4.8). Therefore, it can be 

inferred that the Z3 Stringer did not deform easily in a brittle manner during the early 

stages of subsidence, and a high rate of Top Salt subsidence was required for the 

anhydrite to reach the brittle phase and fail. However, the formation of a regional 

anticlinal structure is the opposite. Buckling of the basin with salt movement from 

areas where top salt has subsided into the generated anticline structure creates a 

contractional system inside the larger salt cored anticline (Hudec and Jackson 2007; 

van Gent et al. 2011). This contraction within the anticline structure is likely to fold 
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the ductile anhydrite stringer into high-amplitude folds (Fig. 4.11d). The anhydrite 

layer is sufficiently ductile to fold when shortening forces are applied parallel to the 

layering with no significant brittle deformation. Similar examples have been 

documented in salt mines (e.g., Wagner and Jackson 2011), salt outcrops (Fig. 

4.11d) (Seidl 1921; Bornemann 1991), on seismic data in NW Europe (van Gent et 

al. 2011; Strozyk et al. 2012; Strozyk et al. 2014), and in model experiments (Zulauf 

et al. 2003; Zulauf et al. 2009). Therefore, the stringer is interpreted to rupture only if 

it has been highly stretched parallel to layering (e.g., below S1 and S5). A steeply 

inclined limb of folded stringer within compressional salt zones (e.g., regional 

anticlines, pillows) is unlikely to be the cause for generating brittle deformation, since 

stretching would be required to deform the stringer in a brittle fashion within the 

pillow structure. 

The absence of any stringer fragments scattered between the upper and lower 

hinges, either in the limb area or displaced nearby, supports the continuity model of 

the anhydrite stringer within steeply folded structures. Therefore, vertically 

fragmented and displaced stringer limbs (Fig. 4.23c,d) might rarely be the case for 

non-imaged steeper parts within the core of regional anticlinal structures, except 

where the stringer has been reworked and dragged from the extensional regions 

(e.g., S1, S5) into areas of shortening (A1–A5). 

The interpretation of the stringer in the Silverpit area cannot be applied as a case 

study for the late stage of halokinesis that requires vertical ascent of the stringer 

during the formation of salt domes or salt diapirs (e.g., Bornemann 1991; Koyi 2001; 

Peters et al. 2003; Reuning et al. 2009). Based on a cross-section of the Gorleben 

salt dome in Germany (Bornemann 1991), which is considered to be a late 
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halokinesis stage, the Z3 Stringer is still continuous up until the top of the dome. 

However, further examples are needed to confirm the continuity and folding of an 

anhydrite layer within salt accumulation zones at late stages of halokinesis (e.g., 

diapir build-up). Therefore, the continuity of the stringer within zones of salt 

contraction is at least applicable for areas of low to moderate halokinesis grade, 

similar to the salt pillows in the Cavendish area. 

 

 

Fig. 4.23: Four possible scenarios to explain the vertical gaps between visible stringer fragments: (a) 
The stringer is continuous but too steep to be imaged. (b) The stringer is continuous but too thin to be 
imaged. (c) The stringer is fractured and disrupted vertically. (d) The steeper stringer part is 
fragmented into smaller boudins parallel to the folded layer; the fold hinges are thickened while the 
limbs are extended and boudinaged. 
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4.6.7 Kinematic evolution of the Z3 Stringer in areas of salt subsidence 

4.6.7.1 Evolution modelling strategy  

The stringer evolution model in this study is based on observations of seismic 

profiles and 3D maps focusing on the behaviour of the stringer at variable Top Salt 

subsidence magnitudes. The whole basin is regionally buckled, which resulted in the 

formation of NW–SE syncline and anticline structures (see chapter 3). This process 

also causes the Top Salt to move downwards to form elongated synclines and 

consequently reduce the salt thickness below. Since Top Salt is the major factor that 

controls the salt thickness, especially in the Cavendish area (Fig. 4.5b) (Underhill 

2009), it has been chosen here as a reference for the subsidence rate and thus 

represents the stage of tectonics (i.e., early, middle, late; similarly: low, moderate, 

high). A similar application to test the stringer deformation was followed in numerical 

modelling (Li et al. 2009), where the stringer was subjected to progressive downward 

displacements by Top Salt. Therefore, a low grade of subsidence is considered in 

areas of less displacement by Top Salt (e.g., S2), whilst late-stage tectonics is from 

areas where Top Salt is highly subsided (e.g., S1 and S5). 

4.6.7.2 2D structural evolution of the Z3 Stringer  

Stage 1: Before any salt tectonics, the original configuration of the Z3 Stringer is 

interpreted to be flat. This interpretation is based on examples where the Z3 Stringer 

is almost horizontal and parallel to the Top Salt surface, with no evidence of folding 

or brittle deformation (e.g., Fig. 4.24a). 

Stage 2: The second stage is the beginning of Top Salt subsidence. Stringer 

deformation developed during this phase was collated from areas where the Top Salt 

starts to sink. Areas below S2 were chosen to represent the structural style of the 



 

159 
 

stringer at the early stage of subsidence. The structural style of the stringer below 

the hinge zone of S2 shows an initial bending of the stringer (Fig. 4.24b). This is 

related to the initial flow of the upper halite Z3 member and possibly to an early 

withdrawal of the Z2 halite.  

Stage 3: With progressive Top Salt subsidence, the Z3 Stringer forms large gentle-

wavelength folds below the subsided areas (Fig. 4.24). Exceptional examples may 

occur where the stringer could also break below the thinnest zone of the subsided 

region simultaneously during the development of these regional folding (Fig. 4.24d). 

This could be interpreted to be related to local weaknesses within the stringer such 

as small faults or fractures that help to break apart the stringer at this stage. This 

suggests that stringer brittle deformation and development of folding can occur 

simultaneously during the same deformational event (e.g., Zulauf and Zulauf 2005). 

Stage 4: During the next stage of the deformation, the Top Salt continues to subside 

and the cross-sectional area of the salt section is reduced. The Z3 Stringer is 

stretched and begins to have low structural relief (Fig. 4.24e). In a similar manner to 

the previous stage, during flattening and stretching, the stringer may exceed its 

tensile strength and break laterally. The shallow dips of the stringer below S1 and S5 

suggest extreme stretching and flattening prior to the stage of lateral extension. The 

regional downward displacement by Top Salt and the overburden squeeze the salt 

section and induce high lateral salt flow, which ultimately reduces the chances of fold 

formation below the hinge zone. 

Stage 5: Continuation of Top Salt subsidence reduces the thickness of the Zechstein 

salt by lateral salt flow, which causes the stringer to break significantly into single 

isolated fragments (Fig. 4.24f). 
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Stage 6: The stringer fragments are dragged and carried away from the subsided 

regions into the flanks of the synclinal structures. This lateral movement of the 

stringer fragments is estimated to reach up to 4–5 km in the present study area (Fig. 

4.24f).
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Fig. 4.24: Seismic profiles (a–g) at variable Top Salt subsidence magnitudes were selected to 
represent the stringer evolution from early salt tectonics to nearly the welding stage. The downward 
displacement magnitude of Top Salt (subsidence rate) increases from (a) to (g).  
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4.6.7.3 4D evolution of the Z3 Stringer  

Areas of stringer deformation below S1 (Fig. 4.12) and S5 (Fig. 4.13) were selected 

to represent the final 3D configuration of the stringer structural styles at the late 

stage of Top Salt subsidence. The initial configuration of the Z3 Stringer before any 

Top Salt displacement is assumed to be flat (Fig. 4.25a). 

Early salt tectonics created linear Top Salt synclines and anticlines. In the early 

stage of subsidence, the stringer formed elongated large-wavelength folds with axes 

parallel to the regional syncline (Fig. 4.25b). Examples of these folds can be 

observed below regional synclines of modest subsidence (Fig 4.24c and d). With 

progressive Top Salt subsidence, the thickness of the salt section is reduced by salt 

evacuation and therefore higher-velocity salt flow was generated, which 

consequently stretched and flattened the Z3 Stringer. This resulted in linear to 

irregular breaks almost parallel to the regional structure (Fig. 4.25c). 

This alignment is similar to the formation of subparallel fracture alignments when 

uniaxial to sub-uniaxial extension is applied to the competent layer during the early 

stage of deformation, with the x to y strain ratio of 1:0 and 1:0.5 (Abe et al. 2013). 

The breaks within the stringer are then connected and linked up to form isolated 

stringer fragments, which were later carried laterally by salt flow for 4–5 km (Fig. 

4.25d). 

The final configuration is represented by a large zone of discontinuity where salt only 

yields smaller stringer fragments. The stringer is almost flat to gently folded in the 

middle of the subsided area and has a gentle, open inclined fold structure below the 

flanks of the regional syncline.  
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Fig. 4.25: 3D sketch of the structural evolution of the Z3 Stringer with progressive Top Salt 
subsidence from (a) to (d). 
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4.7  Conclusion  

Internal salt structures were mapped using 3D seismic reflection data from the 

Silverpit Basin in the Southern North Sea with an aim of evaluating the kinematic 

evolution of the stringer in areas of salt subsidence related to regional basin 

buckling. The study concludes with the following:  

 The presence of high-acoustic-impedance Z3 Stringer enables tracing the 

internal geometry of the salt structure and has significantly helped in 

improving our understanding of internal salt dynamics within areas of salt 

subsidence. 

 The deformation of the intra-salt stringer is largely influenced by the regional 

deformational history. 

 The structural propagation of the intra-salt Z3 Stringer below areas of Top Salt 

subsidence begins with the formation of gentle, long-wavelength folds, 

followed by lateral stretching, re-flattening, and finally fragmentation and 

lateral separation of the stringer fragments for distances close to 4–5 km. 

 Top Salt structural and salt thickness surfaces are important tools to predict 

the internal structural style within the salt. 

 In areas where the salt is subjected to high rates of subsidence, extensional 

related structures such as boudinage, lateral stretching, and fragmentation of 

the inclusions are generated. However, contraction-related structures (e.g., 

folds) are created in areas where Top Salt forms anticlines and the salt 

section is thick. 

 The stringer is fractured and displaced laterally below regions of high 

subsidence (S1 and S5). However, modest Top Salt subsidence was still not 
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able to fracture the stringer (e.g., stringer below S2, S4), suggesting that the 

stringer brittle deformations were only initiated during the major salt tectonics 

in the Cenozoic. 

 In areas where the salt section is thick, the stringer is easily folded and more 

resistant to brittle deformation; thus steeply inclined fold structures, which in 

most cases were not seismically imaged, are likely to be continuous or 

thinned during folding. 
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Abstract 

The kinematics of the intra-salt Z3 Stringer under local compressional domains have 

been summarised in three dimensions below five Top Salt anticlinal regions in the 

Southern North Sea. 

The internal Z3 Stringer folds strongly correlate to the shape, trend, and tightness of 

the regional Top Salt anticlines. The Top Salt anticlines and synclines are classified 

as low-, moderate-, and high-amplitude folds. These magnitudes control the strain 

intensity of the stringer within the salt layer. Low regional Top Salt anticlines are 

associated with intra-salt gentle folds and broader hinges, while highly folded Top 

Salt anticlines are associated with tighter folds of open and close types. In addition, it 

has been noted that the shape of the Top Salt anticlines, whether linear or sub-

circular, controls the alignment, orientation, and shape of the stringer folds. 

For an elongated Top Salt anticline with high fold amplitude, four groups of stringer 

folds were formed: (1) non-cylindrical, curvilinear, tight upright folds, parallel to the 

regional structure formed at the crest of the regional anticline; (2) non-cylindrical 

curvilinear folds parallel to the regional structure but with inclined fold axes plunging 

towards the anticline crest, formed in the distal areas along the hinge zone of the 

regional anticline; (3) non-cylindrical tilted fold hinges perpendicular to the strike of 

the Top Salt anticline, formed at the middle flanks of the elongated anticline 

structure; and (4) non-cylindrical large-scale passive inclined folds formed at the 

basal part of the regional anticlinal domain close to the adjacent regional synclines. 

For moderate-amplitude and elongated Top Salt anticlines, the stringer folds are 

dominantly curvilinear upright with horizontal hinge lines parallel to the regional 

anticlinal strike. Low-amplitude linear Top Salt anticlines generate upright gentle 
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folds but with broader hinges. Sub-circular and domal Top Salt anticlinal shapes 

generate multidirectional constrictional folds of domes and basins. 

Such results led to the conclusion that these folds were largely formed by buckling 

mechanisms during the major tectonic phase of the basin in the Early Cenozoic.  
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5.1 Introduction 

5.1.1 Background studies 

Seismic and experimental observations on external salt layers have shown the 

presence of regional salt structures such as salt domes, salt diapirs, salt walls, salt 

pillows, salt anticlines, salt synclines, and salt minibasins (Hudec and Jackson 2007) 

(Fig. 5.1). The internal salt deformation of these regional structures can be divided 

into two main domains: (1) The first is an intra-salt extensional domain, created in 

areas below regional synclines and minibasins, where the whole salt layer is thinned. 

The internal competent stiff layers at such domains experience lateral fragmentation, 

boudinaging, and lateral displacement (van Gent et al 2011; Cartwright et al. 2012; 

Strozyk et al. 2012; Strozyk et al. 2014) (Fig. 5.2a,b,c). The structural evolution of 

the stringer below areas of Top Salt synclines has been discussed in chapter 4. (2) 

The second is a compressional domain below salt thickening regions such as salt 

domes and salt anticlines. This is characterised by shortening-related deformation 

such as open to isoclinal, upright to recumbent folds (van Gent et al 2011; Cartwright 

et al. 2012; Fiduk and Rowan 2012; Strozyk et al. 2012; Strozyk et al. 2014; Jackson 

et al. 2015) (Fig. 5.2a,b,c,e).  

Such internal structural domains of extension and contraction have been observed 

seismically, experimentally, and geologically. For example, analogue modelling 

simulating gravity spreading of a tilted basin shows the formation of complex 

shortening-related deformations, which include isoclinal and recumbent folds in the 

contracted, down-dip thickened zone (Dooley et al. 2008; Cartwright et al. 2012) 

(Fig. 5.2b). Internal salt studies in the contractional part of the Santos Basin revealed 

the formation of large-scale simple upright open folds, inclined thrusted folds, and 
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isoclinal recumbent folds (Fig. 5.2c and 5.2d), all formed during bulk shortening of 

the basin (Davison et al. 2012; Fiduk and Rowan 2012; Jackson et al. 2015). 

Similarly, studies of intra-salt layers in the contraction part of the Levant basin 

revealed upright detachment buckle folds and thrust-ramp folds formed during an 

early gravity-spreading of the basin (Cartwright et al. 2012). The Z3 anhydrite-

carbonate stringer present onshore and offshore Netherlands revealed complex 

deformations in areas below salt domes (van Gent et al 2011; Strozyk et al. 2012; 

Strozyk et al. 2014). Outcrop and mining observations of the Z3 Stringer 

deformations within salt domes revealed high-amplitude isoclinal, upright folds 

formed at the middle of the structure, while inclined folds formed below, on the flanks 

of the salt dome (Seidl 1921) (Fig. 5.2e). Similar high-amplitude folds below salt 

domes have been observed on seismic data from the north of the Netherlands and 

the Southern North Sea (Strozyk et al. 2014). Scaled physical experiments also 

provide insights into salt domes‘ kinematics and internal structures (Jackson and 

Talbot 1989; Koyi 2001).  

In simple cases, internal salt structures within thickened salt diapirs have simple, 

upright, and symmetrical internal anticlines (Fig. 5.2f). The internal layers were 

entrained with the upward salt flow without being fractured. Similar continuity of intra-

salt layering was found in the Gorleben salt dome, where the Z3 Stringer is steeply 

dipping within the dome and was carried upwards by salt movement for more than 3 

km without significant fragmentation in the stringer (cf. Bornemann 1991; Bauerle et 

al. 2000) (Fig. 5.2g). However, using numerical modelling, Koyi (2001) found that the 

vertical uplift of the internal competent layers may eventually result in significant 

brittle extensional deformation during the development of the salt dome. Recent 

seismic studies of the Z3 anhydrite stringer within the Zechstein salt onshore and 
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offshore Netherlands suggest the combination of boudinage and folding within the 

salt dome (van Gent et al. 2011). The flow into the dome creates vertical extension 

of the steeply inclined stringer, which leads to tensile failure, while coeval horizontal 

compression creates constrictional folds with steeply inclined axes. Talbot and 

Jackson (1987) suggested more extreme folding within the salt diapir. The stem of 

the diapir is characterised by vertical fold axes known as curtain folds (Fig. 5.2h).  

Although there are many examples of diapirs exposed at the Earth‘s surface, such 

as the Great Kavir in Iran and the salt domes in Oman, such exposures are largely 

two-dimensional (Jackson et al. 1990). In addition, salt domes are mostly exposed to 

dissolution near and at the surface, which leads to rotation and a chaotic 

juxtaposition of the internal stringers, hence strongly masking the original internal 

structural configuration (Jackson et al. 1990; Reuning et al. 2009). Furthermore, the 

internal structure of exposed diapirs can be strongly deformed by gravity spreading 

of salt extruding at the Earth‘s surface, such as the external salt diapirs in Iran 

(Talbot and Jackson 1987; Talbot 1998; Talbot and Aftabi 2004). Mining data yield 

only a quasi-3D appreciation of intra-salt structure due to the relatively limited 

distribution of mine galleries and boreholes. Thus most of the intra-salt structure is 

inferred from limited three-dimensional coverage provided by cross-sectional 

sketches, boreholes, and galleries. Seismic data, on the other hand, is the best 

source of information to analyse the 3D internal salt structure (van Gent et al. 2011; 

Strozyk et al. 2012). However, this is still poorly documented in the literature and 

only a few studies have been recently published (van Gent et al. 2011; Cartwright et 

al. 2102; Strozoyk et al. 2012; Strozoyk et al. 2014). Thick salt is typically 

acoustically transparent on seismic reflection data, and internal salt stratigraphic 

markers that record strain are typically poorly imaged (van Gent et al. 2011). Even in 
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the presence of a high-amplitude reflection within the salt layer, seismic imaging 

limitations are likely to occur within the salt due to the complexity of the internal 

structure and the occurrence of steeply dipping intra-salt geometries (Strozyk et al. 

2012). Such limitations may challenge the interpretation and the data may need 

further corrections in order to generate realistic intra-salt geometries (van Gent et al. 

2011). Therefore, the 3D description of intra-salt structures, especially in thicker salt 

regions, is not fully understood and is still poorly presented in the literature.  
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5.1.2 Aims of this chapter 

The Silverpit area in the Southern North Sea is an important area for understanding 

the early internal deformation of the Zechstein salt under a compressional regime 

because of the following reasons: 

1. A well-imaged anhydrite stringer known as the Z3 Stringer (Underhill 2009) 

present in the study area can be used to analyse the internal structure of the 

salt in three dimensions (see chapters 3 and 4). 

2. The regional external salt structures form anticlines of low-moderate and high 

fold amplitudes (Underhill 2009), which posits the basin as a suitable case 

study for understanding the early to late kinematic evolution of intra-salt 

deformation below anticlinal regions. 

3. The Z3 Stringer in the basin is situated between two purely thick halite 

intervals, known as Z2 Halite and Z3 Halite, so the Z3 Stringer is a good 

marker to test models for the internal salt kinematics without underestimating 

sub- and post-salt structures such as faulting (van Gent et al. 2012) and 

shearing (Cartwright et al. 2012). 

This aim of this chapter is to understand the kinematics of the intra-salt Z3 Stringer in 

areas of salt thickening in the Southern North Sea Basin. Five Top Salt anticlinal 

structures with variable shortening magnitudes were selected from the Cavendish 3D 

seismic survey in the Southern North Sea for the analysis of their internal 

deformation. The main focus is to present a high-resolution 3D study of intra-salt 

deformation by providing new insights into their detailed structural styles below each 

of the regional compressional anticlinal structures. An additional aim is to test the 
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relationships between shortening, shapes, and orientation of the regional Top Salt 

structure with the internal deformation of the stringer using quantitative analysis of 

strike, interlimb angle, and wavelength measurements, as well as qualitative 

descriptions based on 3D curvature attributes and 2D seismic profiles. 

 

Fig. 5.1: (a) Large-scale salt structures (after Fossen 2010); linear structures to the left side and 
circular structures to the right. Degree of halokinesis increases away from the centre. The red brace 
highlights the shape and degree of halokinesis in this study. (b) Salt structure of anticlines and a 
syncline shows two regional structural domains: a salt syncline domain in the middle and regions of 
salt accumulation (anticline, pillow). The two blue boxes highlight the regions that this chapter is 
focused on. 
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Fig. 5.2: Examples of intra-salt structures. (a) Strozyk et al. (2014). (b) Cartwright et al. (2012). (c) 
Jackson et al. (2015). (d) Fiduk and Rowan (2012). (e) Seidle (1921). (f) Escher and Kuenen (1929). 
(g) Bornemann (1991). (h) Talbot and Jackson (1987). 
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5.2 Methods and workflow 

A 3D post-stack time migrated seismic survey from the Cavendish Field in the 

Silverpit Basin, Southern North Sea, was used for structural interpretation of the Z3 

Stringer within the Zechstein salt (see chapters 2 and 4 for geophysical details). The 

study is based on qualitative and quantitative descriptions of the highly deformed Z3 

Stringer. In order to separate the deformation of the stringer that formed within 

regional synclines from that formed within regional anticlines, five major anticlinal 

domains were highlighted. The Top Salt structure was divided into domains of 

anticlines based on Top Salt topography, the thickness of the salt layer, and the 

shape of the regional anticlines (Fig. 5.3a). These domains are Anticline 1 Domain 

(A1D), Anticline 2 Domain (A2D), Anticline 3 Domain (A3D), Anticline 4 Domain 

(A4D), and Anticline 5 Domain (A5D). This allows the description of the stringer 

deformation only within areas of salt thickening. By applying the mean curvature 

seismic attribute to the Top Salt surface, the boundaries between Top Salt anticlines 

and Top Salt synclines can be distinguished (Fig. 5.3e). Mean curvature allows the 

recognition of the dominant orientation of the fold whether it is a synform or antiform 

(Lisle and Toimil 2007). Areas of zero mean curvatures are planes; therefore, mean 

curvature allows the discrimination between antiform and synform similar to an 

inflection line (Fig. 5.3e). 

The qualitative analyses of the intra-salt Z3 Stringer are based on seismic profiles, 

3D structural maps, and 3D seismic attributes. Fold curvature attributes were applied 

to the stringer folds for a better description of their curvatures, strike measurements, 

and for testing and describing their cylindricity (Lisle and Toimil 2007).  
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The qualitative description was supported by quantitative structural analyses. These 

include wavelength, interlimb angle, and strike measurements of the folded Z3 

Stringer in each regional anticlinal domain. A 1:1 scale was used for the 

measurements by scaling the horizontal seismic scale to be equal with the vertical 

thickness of the well 43/19-2 (Fig. 5.3c). The wavelength and interlimb angle were 

measured individually in each domain on profiles perpendicular to their strike. 

Interlimb angle measurements were used in order to understand the tightness of the 

stringer folds. The strikes of the anticlines and synclines of the Z3 Stringer were 

traced using the maximum and minimum curvature attributes. The traced segments 

were then imported into ArcGIS to generate rose diagrams.  

Curvature attributes 

The basic descriptions of folds rely on the assumption that folds are cylindrical (i.e., 

the surface can be described as consisting of antiforms and synforms in two 

dimensions). Geological surfaces, however, are non-cylindrical in nature and much 

of the geometrical information is lost if simplistic descriptions are used (Lisle and 

Toimil 2007). Curvature computations have been employed by structural geologists 

to describe the geometry of folded surfaces (e.g., Roberts 2001; Lisle and Toimil 

2007), to quantify the degree of deformation or strain in deformed strata (e.g., Lisle 

1994), and to predict fracture orientations and densities in bent strata (e.g., 

Bergbauer 2002). Four important curvatures were used in this study to analyse the 

fold structures of the Z3 Stringer: minimum, maximum, mean, and Gaussian 

curvatures. In this study, curvature attributes were used for four major purposes: 

1. For the regional Top Salt structures, mean curvature was applied to the Top 

Salt surface to determine the borders between anticlines and synclines, where 



Chapter 5:              Kinematic evolution of the Z3 Stringer in areas of salt thickening  

 

178 
 

zero curvature (Fig. 5.3e, yellow lines) reflects the inflection surface of the 

folds and thus distinguishes anticlines from synclines (Lisle and Toimil 2007).  

2. For the Z3 Stringer folds, mean curvature was used to classify the stringer 

folds into synclines and anticlines, with inflection surfaces in between.  

3. Minimum curvature was generated for better detection of synclines and their 

hinge lines in the Z3 Stringer (Fig. 5.3f). 

4. Maximum curvature was generated to detect positive curvatures of antiforms 

and their hinge lines in the Z3 Stringer (Fig. 5.3g). 

5. Maximum and minimum curvatures help to describe the folds in three 

dimensions, as well as simplifying the tracing workflow of synclines and 

anticlines for strike calculations. In addition, minimum curvature can help 

detecting minor synclines within the major anticlines. Similarly, maximum 

curvature can help detecting minor anticlines within the major synclines. 

Gaussian curvature is an important method for describing the cylindricity of 

the folds by classifying them into zero curvature (plane), dome, basin, and 

saddle (Fig. 5.3d, see also chapter 2 for more details).  
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Fig. 5.3: (a) Seismic profile across the eastern part of the Cavendish Survey shows the difference in 
the Z3 Stringer structural styles below Top Salt anticlines and synclines. (b) Simplified 2D sketch 
based on the mean curvature attribute of Top Salt in (e). (c) Approximately 1:1 scale (measured from 
well 43/19-2). (d) Fold classification based on mean curvature (KM) and Gaussian curvature (KG). 
Cylindrical folds are where KG is equal to zero (4, 6). Non-cylindrical folds (includes 1, 2, 3) are where 
the KG is not equal to zero (after Roberts 2001). (e) The mean curvature attributes of the Top Salt 
surface determining the extent and the borders between Top Salt anticlines and synclines. (g) 
Maximum curvature attribute of the Z3 Stringer folds. Note that synclines (red) and anticlines (blue) 
are well represented in both curvatures. 
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5.3 External salt structure 

The Top Salt in the Cavendish area forms low- to moderate-amplitude anticlines and 

synclines, which significantly control the thickness of the underlying salt (Fig. 5.4a,b). 

The eastern Top Salt folds (A1, S1, A2, S2, S3, and A4) are oriented NW–SE with 

elongated planforms. However, the western folds (A3, S4 and A5) are oriented NE–

SW to N–S with sub-circular planforms (Fig. 5.4a). Superimposing Top Salt 

topographic contours over the salt thickness surface indicates that the salt thickness 

is correlated with the Top Salt geometry (Fig. 5.4b). 

The Cavendish area was divided into five anticlinal domains based on the Top Salt 

surface (Fig. 5.4b). 

 A1D is an elongated anticline structure with maximum length and width of 11 

km and 7 km, respectively. The maximum thickness of the Zechstein at the 

anticline hinge of this domain is 660 ms (1400 m). The topographic change 

observed within the anticline is bounded by the presence of S1 and S3 to the 

south and the north, respectively (Fig. 5.4c).  

 A2D is located in the middle of the study area, and has an average thickness 

of 478 ms (approximately 1 km) across a large area of the basin. The 

thickness change between A2 and its adjacent S2 is negligible because of 

folding of the sub-salt layers in a similar way as the Top Salt. 

 A3D is a sub-circular anticlinal structure in the southwestern part of the 

Cavendish survey. The domain is bounded by S4 to the west, A4 to the 

southeast, A2 and S2 to the east, and A5 to the north (Fig. 5.4). 
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 The A4D is an elongated NW–SE domain located in the south of the study 

area. The southern part of the domain is not fully covered in the Cavendish 

data (Fig. 5.4a, b, and c). 

 The A5D is a part of an anticlinal structure located in the northern part of the 

study area. The full extent and shape of the A5D are unknown (Fig. 5.4c). 
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Fig. 5.4: Regional Zechstein structure. (a) Two-way-travel-time of Top Salt. (b) Time thickness of the 
Zechstein salt (coloured surface) superimposed with Top Salt (contours). Note that the thickness of 
the Zechstein has an almost similar structure to the Top Salt. The five anticlinal regions are 
highlighted. (c) 3D view of the Top Salt surface. 
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5.4 Generic 2D description  

The regional structure of the Zechstein is characterised by salt-related anticlines and 

synclines with variable wavelengths and amplitudes. These synclines and anticlines 

have variable intra-salt deformational styles. Major Top Salt synclines generate 

internal stretching, resulting in extension and boudinage deformations inside the salt 

layer. 

The amplitude map of the Z3 Stringer (Fig. 5.5a) is useful to indicate discontinuities 

in the seismic reflector, and has been structurally interpreted in chapter 4. The 

stringer discontinuities below S1, S3, and part of S4 have been interpreted to 

represent large-scale extensional deformation (Fig. 5.5a). The profile across the 

Cavendish survey shows a large-scale extensional gap of the stringer layer below S1 

(Fig. 5.5c). Similarly, extensional-related discontinuities formed below S3 (Fig. 5.5c). 

However, few discontinuities are present below Top Salt anticlines (A1, A2, A3, and 

A4; Fig. 5.5a). These discontinuities are related to steeply dipping geometries and 

thus are seismically not resolved, because of the limitations of the reflection method 

(van Gent et al. 2011; Strozyk et al. 2012) (see also chapter 4). 

The interpreted Z3 Stringer surface has consequently been interpolated across any 

gaps formed within steeply dipping stringer parts (e.g., within steep fold limbs) (Fig. 

5.5b). The interpolated surface of the stringer indicates that the dominant 

deformations below Top Salt anticlines are fold structures (Fig. 5.5b). The stringer 

folds below A3D are complexly folded (Fig. 5.5b); however, folds below A4D have a 

more linear shape (Fig. 5.5b). The upper enveloping surface of the stringer anticlines 

below A1D is harmonic with the Top Salt, which means that the stringer was 

regionally elevated during the development of A1 (Fig. 5.5c). Regions of flat and 



Chapter 5:              Kinematic evolution of the Z3 Stringer in areas of salt thickening  

 

184 
 

undeformed Z3 Stringer with diameters from 5 to 10 km were observed in areas of 

less deformed Top Salt structure, such as the eastern part of S2 and A2 and the 

northern flank of A2 (Fig. 5.6a). Long-wavelength folds with broader anticlines were 

formed below S2 (Fig. 5.6e). The stringer folds below the low-amplitude A2 are more 

gently folded than those below S2 (Fig. 5.6f). The tightness of the folds increases 

below the well-developed A4D and A3D (Fig. 5.6g,h). The stringer folds below the 

hinge zone of A1 are upright and more shortened, while being inclined below the 

flanks of A1 (Fig. 5.6h). Such inclination can also be seen below the flanks of S1 

(Fig. 5.6d). The interlimb angle of the folds below each domain is shown in Fig. 5.7. 

Anticlinal domains tend to have tighter stringer folds than synclinal domains. Open to 

close folds form below the core of A1D, A3D, and A4D, while gentle folds form below 

S4D and S1D (Fig. 5.7a). The wavelengths of the folds below two selected regional 

synclines (S1D and S4D) and three selected regional anticlines (A1D, A2D and A4D) 

are shown in Table 5.1. 
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Fig. 5.5: Seismic interpretation of the Z3 Stringer in the Cavendish survey. (a) Z3 Stringer amplitude 
map (coloured surface) superimposed with Top Salt topography (contours) shows zero seismic 
amplitudes or gaps (in red), and strong seismic amplitudes represent continuous stringer (in green). 
The gaps are either structurally derived (e.g., below S1 and S4) or part of seismic limitations (areas 
below A1D, A3D, and A4D). (b) 3D TWT interpolated Z3 Stringer surface shows more complex folding 
below regional anticlines. (c) Regional profile across the main regional structures. Note the complexity 
of folding in each domain.  
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Fig. 5.6: (a) Time dip surface of the Z3 Stringer. (b) Top Salt TWT structure map. Black lines 
represent seismic profiles c to d. (c) Seismic profiles across flat stringer zones. (d) Seismic profile 
across S1D. (e) Profiles across S2D show large-scale gentle folds to flat geometries. (f) Seismic 
profiles across A2D display upright gentle folds. (g) Profiles across A4D show open upright folds with 
high amplitudes. (h) Profiles across A1D. 
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Fig. 5.7: The interlimb angles of the Z3 Stringer folds below each domain, displayed as histograms. 
The X-axis and Y-axis represents the interlimb angles and the number of the folds used, respectively. 
Angles are grouped into fold classes (i.e., isoclinal, tight, close, open, and gentle) based on the fold 
tightness classification of Fleuty (1964). See Appendix 5.1 for the measurements. See chapter 2 for 
the classification of the folds based on the interlimb angle. 
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Table 5.1: Wavelengths of the Z3 Stringer folds below two synclinal domains (S1D and S4D) and 
three anticlinal domains (A1D, A2D, and A4D). Note the long wavelengths of the folds below 
synclines (S1D and S4D) and the shorter wavelengths of the folds below anticlines (A1D and A4D). 
A2D is characterised by moderate fold wavelengths. All readings are in metres. 

   S1D S4D A1D A2D A4D 

Number of folds 42 27 34 36 42 

Mean 1797 1451 592 1287 589 

Median 1607 1455 525 1335 563 

Mode 865 1337 500 1350 617 

Std. Deviation 641 94 185 152 154 

Range 2123 234 698 563 582 

 

5.5 Detailed 3D description of the Z3 Stringer 

The three-dimensional description of the Z3 Stringer below the anticlinal domains is 

based on 3D time surfaces and curvature attributes. Each domain is introduced 

individually.  

5.5.1 Anticline 1 Domain (A1D) 

The A1D is located in the northern part of the study area (Fig. 5.4), and is bordered 

to the south by Syncline 1 and to the north by Syncline 3. The 3D display of the 

stringer folds within this domain reveals regional elevation of the fold structures (Fig. 

5.8). The folds are structurally deeper around the flank of the domain and become 

shallower and tightly folded below the domain crest (Fig. 5.8a). The stringer folds 

within the domain can be divided into two groups: an inner area, representing the 

group of folds below the crest of the anticlinal domain, and an outer area, 

representing the flanks of the domain (Fig. 5.8a). Four groups of folds have been 

observed (Fig. 5.8a,b): (1) NW–SE upright curvilinear folds parallel to the strike of 

the A1 at the centre of the domain; (2) NW–SE curvilinear folds parallel to the 

regional structure with tilted and doubly-plunging hinges towards the core of the 

anticline, at the western and eastern flanks of the elongated A1D; (3) NE–SW and N-
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S striking curvilinear folds with hinges perpendicular and oblique to the regional 

strike of the A1, in the middle of the outer flanks area; and (4) regional long strike 

folds with large wavelengths, in the distal area of the domain. 

The amplitude and frequency of the stringer folds are higher along the hinge zone of 

the A1 and decrease gradually away from the crest of the domain (Fig. 5.8b). The 

folds within the inner area in the middle of the domain are upright with tighter 

wavelengths. However, folds at the flanks of the domain are wider and inclined in 

cross-sectional view (Fig. 5.8b,c). The mean wavelength of the stringer folds below 

the A1D is 592 m (Table. 5.1). The majority of the folds within the inner area of the 

domain have interlimb angles between 70° and 120° (Fig. 5.8a); based on fold 

tightness, these folds are classified as ―open folds” (Fleuty 1964). Few folds have 

tighter angles, and they are classified as ―close folds” (interlimb angles ranging from 

30°to 70°). 
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Fig. 5.8: (a) 3D TWT surface of the Z3 Stringer within Anticline 1 domain (A1D). The stringer within 
the core of the domain is intensively folded with tight folds and consistent NW–SE strikes. Four types 
of folds are annotated. (b and c) Uninterpreted profile across the A1D displays tight upright folds 
within the core of the anticline and inclined long-wavelength folds below the flanks of the regional Top 
Salt structure. 
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5.5.2 Anticline 2 Domain (A2D) 

The Top Salt A2 anticline is less folded relative to the anticlines A1, A3, and A4 (Fig. 

5.4). The salt thickness is almost constant in the areas below A2 and S2 (Fig. 5.4b). 

The interlimb angles of the Z3 Stringer folds below A2D show that more than 50% of 

the folds are ―gentle” and 40% are ―open folds‖ (Fig. 5.7). The mean wavelength of 

the folds is 1,287 m, which is twice that of the folds below the A1D (Table. 5.1). The 

Z3 Stringer time map displays an elevated group of folds below the A2D 

characterised by broader anticlinal hinges and narrower synclinal hinges (Fig. 

5.9a,b). Profiles across A2 and S2 display the internal fold style of each domain (Fig. 

5.9g,h). The folds below A2 are gently folded and elevated within the regional 

structure, while folds below S2 are broad with flat hinges (Fig. 5.9g). 

Minimum curvature attributes of the Z3 Stringer display the negative curvatures 

(synclines) of major- and minor-scale folds (Fig. 5.9c), whereas maximum curvature 

attributes display positive curvatures (anticlines) of major and minor scales (Fig. 

5.9d). The major synclines are well detected by minimum curvatures, indicating that 

minimum curvatures are aligned with the hinge zones of the folds (Fig. 5.9c). 

Maximum curvatures, on the other hand, show that some anticlinal hinges are 

broader and sometimes hinges formed at the sides of the antiform shape (Fig. 

5.9d,g). The minimum curvature attributes also indicate minor-scale synclines within 

the major anticlines, suggesting that the hinge lines are not straight, and instead they 

are folded and thus non-cylindrical (Fig. 5.9c). These minor folds are perpendicular 

to the major ones. Tracing the major anticline and syncline fold axes of the Z3 

Stringer (Fig. 5.9e) revealed that the overall trend of the folds is NW–SE, parallel to 

the regional structure (Fig. 5.9f).  
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Fig. 5.9: Z3 Stringer deformation below A2D. (a) Z3 Stringer TWT. (b) Mean curvature. (c) Minimum 
curvature. (d) Maximum curvature. (e) Stringer synclines and anticlines annotated from the minimum 
and maximum curvatures, respectively. (f) Rose diagram of the fold axes shows NW dominant 
direction. (g) and (h) 2D seismic profiles across A2D; see (a) for location. Note the wide anticlinal 
hinges and narrow synclinal hinges. Numbers (1–5) show the locations of the structures on the map 
and profiles. 
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5.5.3 Anticline 3 Domain (A3D) 

The A3D is located in the western side of the Cavendish survey (Fig. 5.4), within a 

thick salt section, and is sub-circular in shape. The thickness of the salt can reach up 

to 1410 m in the middle of the domain. The Z3 Stringer was complexly folded into 

synclines and anticlines of dome and basin shapes (Fig. 5.10a). The folds are rarely 

linear in shape. The interlimb angles for these folds are between 70° to 110°. 

The Z3 Stringer mean curvature attribute, which displays the major synclines and 

anticlines of the Z3 Stringer surface, shows lateral upright anticlines and synclines of 

dome and basin shapes as well as plunging fold axes (Fig. 5.10b). Similar steeply 

plunging folds but with smaller degree of curvatures can be seen using the minimum 

curvature attributes (Fig. 5.10c). 

The detailed description of the non-cylindricity of the stringer folds below this domain 

was done by applying Gaussian curvature attributes (Fig. 5.11). The folds are 

characterised by dome and basin shapes (similar to folds number 7 and 8 in Fig. 

5.3d), and they are connected by anticlinal and synclinal saddle shapes (similar to 

fold # 1 and # 3 in Fig. 5.3d). Cylindrical anticlines and synclines (i.e., fold number 4 

and number 5 Fig. 5.3d) do not exist. Saddle shapes are folds that combine two 

opposite curvatures, either anticlinal saddle or synclinal saddle (folds # 1and # 3 in 

Fig. 5.3d). This structural style reflects the non-cylindricity of these folds. 
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Fig. 5.10: Z3 Stringer deformation below Anticline 3 Domain (A3D) (a) Z3 Stringer TWT. (b) Mean 
curvature attributes show the major synclines and anticlines on the Z3 Stringer surface. Note the 
steeply dipping folds. (c) Minimum curvature attributes highlight negative curvatures (red) of major 
and minor synclines of the stringer. (d) Maximum curvature displays positive curvatures and thus 
highlights anticlines of the stringer (in blue). Both the major and minor anticlines are shown, including 
the minor anticlines within the major synclines. (e) 2D maximum curvature and (f) 2D minimum 
curvatures used to annotate anticlines and synclines, respectively in (g). (h) Rose diagram of the fold 
axes shows multidirectional strikes.  
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Fig. 5.11: Detailed 3D description of the Z3 Stringer folds (see Fig. 5.10a for location). (a) Contoured 
3D time surface shows the major anticlines. (b) 3D Gaussian curvature attribute surface. Blue colours 
indicate positive Gaussian curvature, either basins or domes (similar to folds number 7 and 8 in Fig. 
5.3d). Red colours indicate negative Gaussian curvatures, or saddle folds (similar to folds number 1 
and 3 in Fig. 5.3d).  
 

5.5.4 Anticline 4 Domain (A4D) 

Unlike the A3D, the A4D is an elongated NW–SE striking anticline structure (Fig. 

5.4). The Z3 Stringer displays NW–SE elongated curvilinear doubly plunging upright 

anticlines and synclines (Fig. 5.12b,g). The major synclines and anticlines strike 

NW–SE, parallel to the regional structure (Fig. 5.12a,d). However, along the strike of 

each major fold, the hinge line forms minor synclines and anticlines which are 

perpendicular to the major curvatures. Consequently, the hinge lines are not zero 

curvature (straight hinge lines), and instead they curve, forming synforms and 

antiforms, which reflects the non-cylindricity of the folds (Fig. 5.12b,e). 

The folds of the Z3 Stringer are tighter, with smaller hinge zones where the salt 

reaches it maximum thickness (Fig. 5.4). However, the stringer folds in the eastern 

part of the domain are less tight and with longer strikes (Fig. 5.12b,c). Most of the 

anticlines and synclines have profiles penetrating the folds below A2D, S2D, and 

A4D, showing the increase in tightness and frequency of the folds and the decrease 

in fold wavelengths below A4D (Fig. 5.12g,h).  
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Fig. 5.12: The Z3 Stringer below Anticline 4 Domain (A4D). (a) Mean curvature attribute displays the 
major anticlines and synclines of the Z3 Stringer. (b) Minimum curvature highlights major synclines 
and the detailed minor synclines. (c) Maximum curvature attribute displays the antiforms of the Z3 
Stringer. (d) Annotation of the synclines (red lines) and anticlines (blue lines) shows well-aligned NW 
direction. (e) and (f) Zoom-in on the folds in (c). Note the details of minor folds within the major 
synclines. (g) Seismic profile across A4D shows that both anticlines and synclines are well-folded. (h) 
Seismic profile across S2D and A4D.  
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5.5.5 Anticline 5 Domain (A5D) 

A5D is part of a small domal structure in the northwestern area of the Cavendish 

survey (Fig. 5.4). The full extent of the anticlinal structure is not covered by the 

Cavendish survey. The internal Z3 Stringer around the flanks of the domain is 

characterised by folds with inclined hinges and radial patterns, striking towards the 

centre of the domain (Fig. 5.13a, b). However, upright folds (e.g., Fig. 5.13a,b,c,d) 

are formed at the crest of the regional anticline. Regional syncline stringer folds form 

around the flank of the domain. 

A seismic profile across the eastern folds displays frequent refolding of previously 

wider anticlinal hinges into smaller folds (Fig. 5.13e). The folds on the southern flank 

of the domain are characterised by narrow synclinal hinges and elevated wider 

anticlinal hinges (Fig. 5.13f). The anticlinal hinges are welded to the upper roof of the 

Zechstein-3 brittle layers by thinning of the Z3 salt and thickening of the Z2 salt (Fig. 

5.13f). 
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Fig. 5.13: The Z3 Stringer folds structural style below A5D. (a) TWT of the Z3 surface. (b) 3D 
Minimum curvature attribute shows radial and non-cylindrical folds with inclined and steeply dipping 
fold hinges. (c) Plan view of 3D time elevation surface of the Z3 Stringer folds below A5D. (d) 
Interpretation of the folds in (c) shows four styles of folds. (e) A 2D seismic profile passing through the 
NW–SE folds into the eastern flank of the domain. (f) Profile across the southern flank of the A5D 
through the NNE striking folds.  
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5.6 Discussion and summary 

5.6.1 External salt structure 

A1D, A3D, and A4D are considered to be well-developed anticlines with large fold 

amplitudes. A2D has smaller fold amplitude compared to A1D, A3D, and A4D. A1, 

A2, and A4 are interpreted as linear Top Salt structures, whereas A3D and A5D 

have sub-circular to polygonal structures (Fig. 5.4c). Based on the structure of Top 

Salt and thickness of the Zechstein salt, A1, A3, and A4 have been significantly 

folded, while A2 is the least folded anticline (Fig. 5.4a and b).  

5.6.2 Tightness and wavelengths of the Z3 Stringer folds 

The dominant fold types of the intra-salt stringer below A1D, A3D, and A4D are open 

folds with mean interlimb angles of 88°, 98°, and 94°, respectively (Fig. 5.7). Gentle 

folds are rarely found below these domains. However, the Z3 Stringer below S1D 

and S4D is gently folded, with average interlimb angles of 147° and 150°, 

respectively. Close and open folds are rarely observed below these domains. The 

stringer folds from the A2D domain display both open and gentle fold types with a 

mean interlimb angle of 122° (Fig. 5.7). Fold wavelength measurements of the 

stringer folds revealed smaller wavelengths below A1D and A4D than A2D, and 

much bigger wavelengths below synclinal domains S1D and S4D (Table 5.1). 

In summary, the lowest fold interlimb angles and smaller fold wavelengths are found 

below mature anticlines (i.e., A1D and A4D), whereas wider interlimb angles and 

bigger wavelengths are observed below regional synclines (e.g., S1D and S4D). The 

A2D has anticlines with intermediate interlimb angles and wavelengths.  
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5.6.3 Two-dimensional evolution model 

Using the profiles in Figure 5.6, the stringer kinematic evolution can be staged based 

on the magnitude of the deformation of the Top Salt surface. Each Top Salt anticline 

represents a certain amount of shortening, thus early stringer deformational styles 

are from areas below A2D, whereas late stages were noted from areas below A1D, 

A3D, and A4D. 

The presence of flat stringer regions at the current structural configuration supports 

the quiescence of the stringer prior to salt tectonics (Fig 5.6a, c). It also 

underestimates the occurrence of syndepositional deformations or intra-salt 

stratigraphic and diagenetic processes that might change the geometry of the 

stringer (e.g., van Gent et al. 2011; Strozyk et al. 2014). Therefore, the stringer has 

been interpreted to be flat at early stages before the occurrence of any tectonic 

events in the basin (Fig 5.14a). Below less folded regions of the A2D, the stringer 

folds form regional low-amplitude upright gentle folds with broader hinges (Fig 5.6d 

and Fig 5.14b). However, below more folded regions of the A2D across the 

depocentre of the A2D, the stringer folds are folded by open and gentle folds (Fig 

5.14c and 5.9h). In some cases, the synclinal hinges of these folds are narrow, while 

the anticlines have broader hinges (Fig 5.9h and 5.14d). This can be interpreted in 

two ways: (1) The original stratigraphic position of the stringer within the salt section 

where the salt above the stringer (Z3 Halite) is less than the salt below (Z2 Halite), 

and therefore it probably had enough space to generate synclines. However, 

opportunity for salt flow is limited by the small thickness and space available above 

the stringer and therefore resulted in wide anticlinal hinges. (2) The stringer is 

underlain by 35 m of potash salt, which is a weak K-Mg salt rock much less dense 
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than halite (ranges between 1.5 kg/m3 and 1.8 kg/m3 according to Urai et al. 2008). 

This might induce extreme rheological heterogeneities and high viscosity contrast 

with the stringer layer (Urai et al. 2008; Raith et al. 2015). However, such geometries 

of narrow synclinal hinges and broader anticlinal hinges are less developed in areas 

below highly shortened regional anticlines such as the stringer folds below the A4D 

and the A1D. The stringer below the A4D is well-folded and forms upright open 

anticlines and synclines with almost similar hinge widths (Fig 5.14d). The high 

shortening of the regional structure in the A4D area might overcome the influence of 

the rheological heterogeneities and allow the formation of well-developed anticline 

and syncline open-fold structures. 

The final structural configuration of the Top Salt in the study area has been 

interpreted where the Top Salt anticline structure is bounded by two synclinal 

structures (Fig 5.14e). An example of such structure is the A1D (Fig. 5.4a, c). Unlike 

the A4D, the A1D is bounded by the major S1 to the south and the S3 to the north. 

The occurrence of A1 between well-developed synclines (i.e., S1 and S3) creates 

steeper Top Salt flanks, which have an influence on the internal structural style of the 

stringer (Fig 5.15a). The Z3 Stringer below the flanks of the A1D tends to form 

inclined large-wavelength folds, with an obvious vergence away from the regional 

synclines (Figs. 5.14e, 5.15a, and 5.6d). The longer limbs of these folds are tilted 

parallel to the Top Salt surface. Although the A4 is well developed and has the 

maximum salt thickness below (Fig. 5.4a,b), such inclination and vergence of the 

stringer folds is not created below the southern flank of the A4D (Fig 5.15b). This is 

because the southern flank of the A4D is gentle, since the S2 has a smaller synclinal 

magnitude compared to S1 and S3 (Fig 5.15b). In some cases, the final phase of 
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shortening of the regional A1 might result in the formation of long-wavelength 

inclined folds at the flanks of the well-developed Top Salt anticline, while extreme 

shortening of the stringer folds is concentrated only at the crest of the anticline (Fig 

5.15a,b). Although the stringer below A1 has been exposed to intensive deformation, 

the final structural configuration might give lower shortening results compared to 

those below anticlines of low to moderate amplitude.  

 

Fig. 5.14: Schematic showing Z3 Stringer fold evolution with increasing Top Salt shortening (left). The 
Top Salt is shifted downwards as a reference for the stringer anticline/syncline amplitudes (red lines). 
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Fig. 5.15: The influence of Top Salt geometry on the internal structural style of the Z3 Stringer. (a) 
Steeper flanks at the sides of A1 form between well-developed synclines (S1 and S3). (b) Simplified 
2D sketch shows the common structural style of the Z3 Stringer at such Top Salt geometries. (c) Z3 
Stringer style below gentle flank of A4 because of the small amplitude of S2. (d) Simplified 2D sketch. 
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5.6.4 Three-dimensional evolution of the Z3 Stringer 

5.6.4.1 Folds below Top Salt linear anticlines 

The Top Salt and the Zechstein thickness maps show that A2 is less folded 

compared to A4 (Fig. 5.4b). The 3D view shows a clear change in the style of the 

folds below the A2D/S2D from those of the folds below the A4D (Fig. 5.16a). 

Although the A2 is linear in shape, the stringer folds below the A2D have sinusoidal 

and wide anticlinal hinges with long wavelengths (Fig. 5.16a). The NW–SE 

elongated A4D in the southern part of the basin experienced upright curvilinear NW–

SE internal stringer folds. The tightness and the alignment of these folds increase 

towards the core of A4 (Fig. 5.16a). The hinge lines of the major maximum and 

minimum curvatures (major stringer synclines and anticlines) of these folds are 

parallel to the regional structure (Fig. 5.16b). However, along the hinge lines of these 

anticlines and synclines, minor curvatures of depressions and culminations occur 

(Fig. 5.16c). This means that the folds are non-cylindrical in shape, and there are 

anticlinal and synclinal saddles or elongated domes and basins (Fig. 5.16c).  

The southern and northern flanks of the A1D are largely influenced by the adjacent 

S1 and S3. These synclines have an impact on shaping the folding style at the flanks 

of the A1D (Fig. 5.15a). The basal part of the flanks of the A1D is characterised by 

large-wavelength verging folds (Fig. 5.17b). These folds are driven by salt 

evacuation from synclines and are similar to passive flow folds (Figs. 5.17b,e). 

Plunging folds that are perpendicular to the regional structure (Fig. 5.17b,e) 

characterise the middle steeper flank in the centre of the domain. Similarly, hinge 

folds formed at the edges of the domain with strikes parallel to the regional structure 

(Fig. 5.17b,e). The hinges of the stringer folds are gradually elevated from lower 
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depths in the lower part of the domain flanks to shallower depths in the upper part of 

the flanks, and finally fatten at the crestal zone of the regional anticline (Fig. 5.17c,d). 

Tighter, higher-amplitude upright folds with consistent NW–SE striking folds that are 

parallel to the regional structure (Figs. 5.17b,e) characterise the stringer folds below 

the core of the anticline.  

 

 

Fig. 5.16: The Z3 Stringer structural styles below the elongated A2D and A4D.  
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Fig. 5.17: The Z3 stringer structural styles below the elongated A1D. (a and b) 3D time surface of the 
Z3 Stringer below A1D. Four groups of folds at different part of the domain. (c and d) 2D cross-section 
along the hinge zone of the stringer folds (see (b) for locations). Note the inclination of the hinges at 
the flanks and the horizontal hinge shapes at the anticline crest. (e) 3D sketch summarizing the fold 
styles at each part of the domain.  
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5.6.4.2 Folds below non-elongated Top Salt anticlines 

Non-elongated anticlines such as the A3D and A5D form more complex stringer 

folds than those below linear anticlines (e.g., A4D). The folds below the A3D are 

multidirectional and highly non-cylindrical in shape (Fig. 5.18a). The folds 

characterised by basins and domes are connected by saddle synclines and 

anticlines (Fig. 5.11). The majority of these folds are non-cylindrical upright folds; 

however, their limbs are also folded to form steeply plunging fold axes (Fig. 5.10b 

and Fig. 5.18b). Such complex multidirectional structural styles of the stringer folds 

are compatible with the external shape of the A3D. Unlike A4, the dome and non-

elongated shape of the A3 might create constrictional contraction inside the domal 

A3D area. 

The folds below the flanks of the A5D are curvilinear non-cylindrical folds (Fig. 

5.18c), with hinges and minor curvatures along the hinge axes (Fig. 5.13b). The folds 

form a radial pattern around the regional flanks of the domain. The inclination of the 

axes of the folds that form around the domain flanks decreases away from the crest 

of the anticline to very shallow degrees at the lower part of the flanks (Figure 5.17). 

However, the folds that occur close to the crest of the A5 have sub-horizontal fold 

axes but with multidirectional strikes (Fig. 5.18c, d). Such geometrical shapes of the 

stringer fold structures can be interpreted as resulting from a constrictional 

mechanism as the stringer moved along with the salt flow into the salt structure (Fig. 

5.18d).
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Fig. 5.18: Stringer folds below non-elongated Top Salt anticlines. (a) 3D time surface of the stringer 
folds below A3D. (b) 3D sketch of the Z3 Stringer folds characterised by major non-cylindrical upright 
domes and basins with minor folds with steeper fold axis. (c) Intra-salt folds below part of the circular 
A5D. The white lines represent the contours of the Top Salt anticline. (d) 3D sketch of the domal top 
salt structure in (c) shows radial linear tilted folds axes at the flanks of the regional structure, while 
non-cylindrical folds with multidirectional strikes form at the core of the regional anticline.  
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5.7 Conclusions 

The internal Z3 Stringer in the Cavendish area in the Southern North Sea was used 

to investigate the internal kinematic evolution of the intra-salt structures within areas 

of salt thickening (i.e., Top Salt anticlinal structures). Stringer structural styles have 

been gathered from five Top Salt anticlinal structures for qualitative and quantitative 

descriptions, which helped to understand their kinematic evolution. The magnitude of 

Top Salt anticlinal deformation is used as a reference to analyse the stages of 

deformation of the intra-salt. 

 The internal deformation of the Z3 Stringer within areas of Top Salt anticlines 

is largely contractional-related deformation of fold structures with variable 

scales and strain magnitudes. 

 Unlike observations of the intra-salt multi-layered evaporites in the Eastern 

Mediterranean (e.g., Cartwright et al. 2012), this study revealed highly non-

cylindrical buckled folds. The degree of non-cylindricity increases when the 

external shape of the Top Salt is spherical, allowing the development of 

multidirectional, steeply plunging intra-salt folds. 

 Top Salt elongated and well-developed anticlinal structures generate non-

cylindrical curvilinear folds (e.g., A4D). These folds formed along the hinge 

zone of the regional anticline, with tilted fold axes below the flanks of the 

regional anticline and horizontal to sub-horizontal fold axes in areas within the 

crest of the regional anticline. Top Salt non-elongated and well-developed 

anticlinal structures generate highly non-cylindrical multidirectional upright 

folds associated with steeply dipping fold axes (e.g., A3D). Such folds might 
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be elevated during the rise of the domal shape to form radial patterns of 

steeply dipping fold axes (e.g., A5D).  

 The kinematic evolution of the initially flat Z3 Stringer started with the 

development of large-wavelength gentle folds during early stages of 

shortening of the anticlinal structures (e.g., folds within A2D), followed by folds 

with higher amplitude and tightness, (close to open folds) with more 

progressive shortening of the Top Salt anticline (e.g., folds within the A4D). 

The final phase of shortening of the regional anticlines produced long-

wavelength, inclined and highly plunging stringer folds at the flanks of the 

regional structure, and extreme shortening of tight folds at the crest of the 

regional anticline (e.g., folds within the A5D). 
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Abstract 

 

This study describes the stratigraphy and regional structural evolution of the Ara 

Group evaporites and the associated intra-salt carbonate stringers in the Birba area 

in the South Oman Salt Basin. A combination of 3D seismic reflection data, three 

regional 2D seismic lines, and well data was used for this purpose. The chapter 

discusses the regional salt tectonics in the basin and describes the structure and 

stratigraphy of the stringers on a regional scale. From the interpretation of wireline 

logs, the lithology of the Ara Group includes halite, limestone, dolomite, and 

anhydrite. Seismic-well calibration revealed the presence of at least five intra-salt 

carbonate stringers in the Birba Area. The lower four stringers are observed both on 

seismic and well data. The upper A5C stringer is locally deposited and significantly 

discontinuous, and thus is rarely found. The carbonate stringers in the Birba area 

have limited original stratigraphic extent and isolated distributions, and were further 

fragmented during subsequent salt tectonics. Seismic interpretation of the Top Salt 

shows the presence of five minibasins, MB-1 to MB-5, and large structural walls of 

thick salt, formed by down-building during sediment loading. The sediments that 

deposited within the minibasins are characterised by distinctive syn-kinematic 

packages which were filled into the depocentre through a complex interaction of 

sediment loading, faulting, and halokinesis. The dynamic evolution of the basin fill is 

indicated by striking shifts in the location of the depocentre.  
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6.1  Introduction 

6.1.1  Importance of the Ara Group  

The South Oman Salt Basin is composed of six evaporite-carbonate cycles of infra-

Cambrian age known as the Ara Group evaporites. These evaporites form the 

primary petroleum system for the South Oman Salt Basin (SOSB) and represent a 

unique self-charging petroleum play (Al-Siyabi 2005; Amthor et al. 2005; Schoenherr 

2007). The Ara Group consists of salt walls and diapirs, which contain four to five 

carbonate stringers 20–200 m thick termed ―A1C–A5C‖, which formed at depths of 3 

to 5 km (Al-Siyabi 2005). The carbonate stringers are significantly deformed by 

halokinesis (Peters et al. 2003; Al-Siyabi 2005; Reuning et al. 2009). 

The most important explored and producing fields from the stringers in the South 

Oman Salt Basin are the Birba and Harweel oil fields (Al-Siyabi 2005). These fields 

contain well-developed intra-salt carbonate stringers containing carbonate source 

rocks, which are in close proximity or even within layered reservoirs that are sealed 

by the surrounding salt (Amthor et al. 2005). The reservoirs are commonly 

overpressured, and consist of porous dolomitic carbonates encased in salt at depths 

of 3–5 km (Al-Siyabi 2005). 

However, some drilled reservoirs have failed to produce at significant rates due to 

poor reservoir quality related to diagenetic processes such as porosity plugging by 

bitumen and evaporite minerals (Al-Siyabi 2005; Schoenherr 2007). The Ara 

carbonate stringers also represent significant drilling hazards due to their fluid 

overpressure (Kukla et al. 2011). Hence, it is imperative to understand their complex 

deformation, reservoir quality and distribution, fault system and sealing capacity, and 

the depositional environments. 
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6.1.2 Aims of this chapter  

The aims of this chapter are the following:  

 To provide a detailed lithological description of the Ara Group and understand the 

petrophysical properties of rock salt and the associated A1C–A4C stringers. 

 To understand the influence of the stratigraphy of the evaporites on the structural 

styles of stringers.  

 To establish a stratigraphic framework of the Ara carbonate stringers before 

halokinesis in order to be able to differentiate the stratigraphic features of 

stringers from those deriving from salt tectonics. Understanding the original 

depositional geometry of the stringers will help to interpret the structural features 

and improve reservoir quality and prediction. 

The following steps were taken to achieve the above-stated aims: 

 Well-to-seismic calibration, to accurately identify and interpret the four 

seismically visible stringers and understand their seismic character.  

 Well-to-well correlation using wireline logs, to understand the petrophysical 

properties of the evaporite facies.  

 Vertical and lateral stratigraphic description of the stringers, to understand the 

extent of the stringers, the lateral lithological changes, and the depositional 

environment of the stringers. 

 Tectono-stratigraphic evolutional models of the basin using 2D seismic 

profiles.  
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6.2 Data and methods 

The data used in this chapter include the following:  

1. An onshore 3D time migrated seismic survey from the Birba area in the South 

Oman Salt Basin (Fig 6.1) is a wide azimuth acquisition survey that covers a 

surface of about 2,100 km2. The acquisition and processing seismic 

parameters of the survey are shown in Table 6.1. 

2. Three regional 2D seismic lines crossing the 3D data were used to 

understand the regional setting of the salt basin (Fig 6.1).  

3. The data also include 28 wells that penetrated the Ara Group and the 

associated stringers (Fig 6.1). These wells were used to map and identify the 

stringers and other key horizons, as well as to examine the stratigraphy of the 

evaporites. 

Eight key horizons have been mapped through all the 3D Birba survey (Fig. 6.2). 

These include Base Salt (A0C), Top A1C, Top A2C, Top A3C, Top A4C, Top Salt, 

Base Natih Formation, and Top Natih Formation. Top and Base Salt were interpreted 

to understand the thickness and geometry of the salt layer. Top Salt is a very 

important surface that displays salt structures in the area such as salt walls, salt 

minibasins, and minibasin flanks. The overburden horizons, Top and Base Natih, 

were used to analyse the overburden megasequences. Other overburden horizons 

were only used for local analsyis such as understanding the development of 

minibasins (e.g., MB2 in section 6.5).   
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Fig. 6.1: The data used in this chapter include a 3D seismic cube shown here with the Top Salt 
surface, three regional 2D lines with NW and NE strikes, and 28 wells that penetrated the carbonate 
stringers. For better display of the wells see (Fig. 6.7). For coordinates and location of the study area 
see (Fig. 6.3). 
 
 
 

Table 6.1: Acquisition and processing geophysical parameters of the Birba 3D WAS survey. 

 

Receivers 25 × 200 m 

Sources 50 × 50 m 

Frequencies 6 to 86 Hz 

Acquisition CMP 12.5 × 25 m 

Processing CMP 25 × 25 m 

Processing Fold 2000 

In-line Offsets ±4.9875 km 

X-line Offsets ±3.975 km 
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Fig. 6.2: (Left) Seismic section displays the key horizons interpreted in this chapter. The intra-salt 
carbonate stringers include A1C, A2C, A3C, and A4C, with A2E, A3E, and A4E salt intervals in 
between. The upper A5E and A6E halites form the most thickness of the evaporites. Note that the 
Top Salt surface is seismically not imaged to the right. The A4C and A3C stringers are close to each 
other and separated by a thin halite unit (A4E), as represented by the right shift in the density curve. 
Above the salt is the Haima Supergroup, mainly composed of clastic units of sandstone and shale. 
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6.3  Geological setting  

Oman is located in the eastern part of the Arabian Plate (Fig. 6.3). This tectonic plate 

is bounded by a collision margin to the north and northeast (Taurus/Zagros Zone), 

rifted margins to the southeast (Arabian Sea, Gulf of Aden), the Red Sea to the 

southwest, and a strike-slip margin to the west (Dead Sea transform fault), (Al-

Barwani and McClay 2008) (Fig. 6.3). The South Oman Salt Basin (SOSB) is one of 

three restricted salt basins that include the Ghaba Salt and the Fahud Salt Basins 

(Fig. 6.3).  

The SOSB is an asymmetric NE–SW striking salt basin with a lateral extent of 400 

km and a width of 150 km. The basin is characterised by a series of salt ridges and 

minibasins that formed above a NW-striking Proterozoic basement (Al-Barwani and 

McClay 2008). The SOSB is bounded by the Ghudun High and Western Margin to 

the west, the Tertiary Basin to the east, and the Central Oman High to the north (Fig. 

6.3). 

The case study area is in the Birba Oil Field, which is located in the southern part of 

the SOSB, northeast of the Harweel Field and west of the Marmul Field (Fig. 6.3). 

Six surface-piercing salt domes crop out in the desert of interior North Oman in the 

Ghaba Salt Basin (Fig. 6.3). The outcrops provide significant information on the 

dynamics of the Ghaba Salt Basin, and an analoge for the deep buried carbonate 

stringers in the SOSB (Peters et al. 2003; Al-Siyabi 2005; Reuning et al. 2009). 

However, until now, very little data have been published on these prominent 

topographic and geological features (Peters et al. 2003; Reuning et al. 2009).  
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Fig. 6.3: Tectonic map of Oman with oil fields displaying the distribution of the three Oman Salt Basins 
i.e., South Oman Salt Basin (SOSB) in the south, Ghaba Salt Basin in the north, and Fahud Salt 
Basin in the northwest. Note the SW–NE trend of the SOSB. The six Ara salt domes that outcrop in 
the Ghaba Salt Basin are shown as white circles. The study area (green square) is located in the 
southwestern part of the South Oman Salt Basin (after Peters et al. 2003). 
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6.4 Chronostratigraphy of the South Oman Salt Basin 

6.4.1 Overview and background 

The sub-salt deposits in the South Oman Salt Basin belong to the Neoproterozoic 

Huqf Supergroup, which contains both continental siliciclastic and marine carbonate 

of the Abu Mahara and Nafun Formations (Fig. 6.4). These have been deposited in a 

strike-slip setting followed by tectonic quiescence and subsidence (Al-Siyabi 2005; 

Amthor et al. 2005). Later uplift created topographic changes, segmentation of the 

basin, and fault-bounded sub-basins, which were filled by the Ara Group in the Late 

Neoproterozoic (Al-Siyabi 2005). Regional differential subsidence of the basin in the 

Late Neoproterozoic and during the deposition of the Ara Group led to the formation 

of a transgressive to highstand environment and the deposition of 

carbonate/evaporite cycles (A0–A6). The cycles allowed the deposition of at least six 

isolated carbonate layers known as the Ara carbonate stringers, with thickness 

ranging from 20 to 200 m (A1C–A5C), at the lower part of the group, and A6C at the 

top of the salt (Mattes 1990; Loosveld et al. 1996; Al-Siyabi 2005) (Fig. 6.4).  

In the Early Cambrian, massive continental clastic sediments were derived from 

basement highs in the west and deposited into the Ara Group, resulting in regional 

differential loading of the basin, which led to intense deformation and fragmentation 

of the intra-salt carbonate stringers (Al-Siyabi 2005) (Fig. 6.5b). This event is obvious 

on seismic data, and is related to the Nimr and Amin Groups of the lower Haima 

Supergroup (Al-Barwani and McClay 2008) (Fig. 6.4 and Fig. 6.5b). The Haima 

Supergroup is significantly variable in thickness, largely controlled by halokinesis, 

and reaches up to 2500 m in thickness of clastic deposits within minibasins and 

thinner deposits over elevated salt walls and salt domes (Fig. 6.5b). In the Middle to 



Chapter 6:            Salt tectonics and stratigraphy of the Ara Group in the SOSB 

 

221 
 

Late Cambrian, growth faults over the salt ridges and the reactivation of basement 

faults created a second phase of salt tectonics (Loosveld et al. 1996) (Fig. 6.5b). The 

end of halokinesis is indicated by the presence of the conformable and horizontal 

layers of the Natih and overlying formations (Al-Barwani and McClay 2008) (Fig. 

6.5b).  
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Fig. 6.4: Stratigraphy of the South and North Oman with a detailed stratigraphic column of the typical 
Ara Group. The brittle carbonate stringers are the A1C to A6C, and the halite salt intervals in between 
are the A1E to A6E (modified after Peters et al. 2003). 
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Fig. 6.5: (a) South Oman intra-salt play map created after Birba-1 (BB-1) hydrocarbon discovery. (b) 
Interpreted N–S seismic profile across the Greater Birba area showing the basin geometry, 
stratigraphic extent, and structural configuration of carbonate stringers (after Al-Siyabi 2005). Note 
that the carbonate stringers are classified as Stringer-1, 2, 3, and 4 from the top to the base, which is 
the old terminology of the stringers. Note the discontinuity of the A6C stringer at Top Salt in the 
middle (green coloured). 
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6.4.2  Regional seismic profiles across the Birba field  

Three regional 2D seismic lines were used to describe the structure of the SOSB on 

a regional scale (Fig. 6.6). The basin is regionally tilted and deepening towards the 

northwest, associated with major thickness of the overburden, while shallowing 

towards the southeast with thinning of the salt layer and the overburden (Fig. 6.6c). It 

is clear that Top Salt-subsided regions are associated with a thick succession of the 

Haima Supergroup; thus, the variable salt thickness is largely controlled by 

halokinesis during post-salt deposits. However, there is no significant topographic 

change of the base Ara, and therefore it has a limited effect on the thickness of the 

Ara Group compared to Top Salt. 

The stringers are not regionally continuous and display local distributions especially 

above sub-salt structural highs where marine carbonates are expected to be 

deposited (Fig. 6.6b,c). In some areas, the stringers are obvious with at least four 

visible layers. However, in other areas, for example, the southwest of KAB-1H1, only 

the lower stringer (A1C) is observed (Fig. 6.6b). In general, the intra-carbonate 

layers are largely prevailing in the Birba area. The interpretation of regional seismic 

lines indicates that the stringers are not laterally extended along the SOSB and can 

be isolated for tens of kilometres, which suggests that the distribution of the stringers 

is significantly influenced by their depositional environments.  



Chapter 6:                             Salt tectonics and stratigraphy of the Ara Group in the SOSB 

 

225 
 

 

Fig. 6.6: Interpreted 2D regional profiles from the SOSB crossing the 3D Birba area and some wells (see Fig. 6.1 for location and Fig. 6.7 for wells and minibasins). Note the stringers are widely distributed in the Birba area. The Ara salt 
and the associated Ara carbonate stringers are thinning and terminating to the southeast. Profile B indicates that MB-5‘s long axis is oriented northeast, with a scale reach to 50 km. 
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6.4.3 Tectono-stratigraphy of the Birba Area 

6.4.3.1 Top Salt structure 

The seismic interpretation of the Top Salt in the Birba 3D survey revealed five 

minibasins (MB-1, MB-2, MB-3, MB-4, and MB-5) and irregular salt walls (Fig. 6.7). 

Minibasins are areas where salt evacuation creates synclines, which were later filled 

by additional sediments (Hudec 2009; Andresen et al. 2011; Li et al. 2012a; Peel 

2014). The minibasins in the Birba area are randomly oriented with variable shapes. 

The shape of the minibasins is either rounded (e.g., MB-2) or elliptical with irregular 

flanks (e.g., MB-1, MB-3, MB-5; Fig. 6.7). MB-1 and MB-4 have an E–W trend, whilst 

MB-5 is striking NE (Fig. 6.7). A well-to-seismic correlation profile is used to identify 

the tops and the extent of the stringers in the basin (Fig. 6.8). The A1C–A4C 

stringers occur in the lower Ara Group and are vertically separated by halite intervals 

of variable thickness, ranging from 10 m to 200 m.  

6.4.3.2 Large-scale megasequences 

Four seismic profiles oriented N–S (Profile A–D) and an E–W profile (Profile E) were 

used to investigate the regional salt structures and the tectono-stratigraphy of the 

basin (Fig. 6.7).  

Profile A  

Profile A passes through the MB-1, MB-3, and MB-4, in the western part of the study 

area (Fig. 6.9). Clear indications of syn-kinematic deposits and variable thickness 

above the Ara Group were observed on seismic data. Specifically, the tilt and growth 

of the post-salt units indicate deposition during salt movement (Fig. 6.9).  
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Fig. 6.7: Top Salt time structure map highlights the main minibasins with the location of the wells. 
Note the irregular shape of Top Salt structures. The N–S lines are the profiles selected for 
interpretation. 
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Fig. 6.8: Well-to-seismic calibrated profile with key horizons (see Fig 6.7 for location). Logs are posted as density, sonic, and gamma ray. Note that Top Salt is not imaged in some areas (e.g., middle of the profile). Note the change in the 
density logs at Top Salt and at the carbonate stringers. An increase in the gamma ray curve above the salt in AWN-1 indicates syn-kinematic clastic deposits. The horizon interpretations displayed on the profile are base Ara (yellow), A1C 
(pink), A2C (blue), A3C (red), and A4C (green). Wells BB-2, BB-3, BB-4, BUD-1, and BUD-2 all penetrated the A4C and A3C stringers. BUDNE-2 in the north penetrated the sub-salt section and only found the A1C stringer.  
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Fig. 6.9: Uninterpreted and interpreted Profile A (see Fig 6.7 for location). Note that the deeper minibasins are filled by Syn-kinematic-1 (Nimr Group), which is not observed in shallower minibasins.  
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The massive deposits above the Ara Group at the cores of the MB-4 and MB-1 

belong to the lower part of the Haima Supergroup, the Nimr Group (Fig. 6.4), which 

was deposited during salt tectonics (Al-Siyabi 2005; Al-Barwani and McClay 2008). 

The shallower MB-3 formed at structurally lower depth and has less overburden 

accumulation. Well MNH-1H1, drilled through the centre of the MB-3, shows that the 

base of the minibasin was filled by the clastic Amin Group (Fig. 6.9). The deeper 

Nimr Group was not encountered by this well. Well AWN-1H1, drilled at the limb of 

the MB-1 (Fig. 6.7), penetrated the deeper Nimr Group (Fig. 6.8). The well reports of 

the AWN-1H1 show that the basal unit is part of the Nimr Group of the lower Haima 

Supergroup (Fig. 6.7). This suggests that deeper minibasins (e.g., MB-1 and MB-4) 

were filled initially by older deposits (i.e., termed here as Syn-kinematic Unit-1) and 

therefore formed earlier than the shallower MB-3, which has been filled by younger 

sediments (i.e., Syn-kinematic Unit-2; Fig. 6.9b). Post-salt extensional faults created 

more accommodation spaces during the deposition of the Syn-kinematic Unit-3 (Fig. 

6.9). Post-kinematic units begin at the base Natih and extend up to the earth‘s 

surface (Fig. 6.9b). The stringers are highly deformed below the MB-1 and MB-4 and 

folded below the northern flank of the MB-4 (Fig. 6.9b). 

Profile B 

This profile passes through the MB-1 and MB-2 in the north, and part of the MB-4 in 

the south (Fig. 6.10). The Ara Group is thinner in the south, where the profile crosses 

part of the MB-4. The MB-2 displays thick sediment accumulation and is 

characterised by gentle to steeply dipping thickening wedges. These sediments are 

syn-kinematic units that deposited during the creation of the minibasin by salt 

evacuation. Extensional faults with growth units formed above the salt structures and 

created further accommodation where the stringers are more continuous. 
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Fig. 6.10: Uninterpreted and Interpreted Profile B (see Fig. 6.7 for location). Note the dipping and thickening of the geometry of the syn-kinematic sediment fill over MB-2.  
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Whilst the stringers were found south of MB-2, no stringer remnants could be seen at 

the depocentre of the minibasin where Top Salt is welded over the basal Ara (Fig. 

6.10).  

Profile C 

The profile passes through the MB-1 in the north, the salt wall in the middle, and the 

southern part of the MB-5 in the south (Fig. 6.7). The post-salt sediments above the 

MB-1 are characterised by a chaotic zone of featureless reflections, indicating high 

seismic noise and poor seismic signal (Fig. 6.11). The stringers are significantly 

deformed into single fragments just below the salt wall of the MB-1. The welded 

areas underneath the MB-1 and MB-5 show no traces of stringers.  

Profile D 

The profile passes through the MB-1 in the north, the thick salt wall in the middle, 

and the MB-5 in the south (Fig. 6.7 and Fig. 6.12). The structural high salt wall is 

bounded by the E–W striking MB-1 to the north and the NE-SW striking MB-5 to the 

south. Well data (AWN-1H1 and MMNW-7) show that the depocentres of the two 

minibasins were filled by the early growth units that belong to Syn-kinematic Unit-1 

(Nimr Group) followed by Syn-kinematic Unit-2 (Fig. 6.12). The stringers in the 

southern limb of the MB-1 are broken into smaller fragments and dipping parallel to 

the Top Salt surface. Below the southern limb of the MB-5, the stringers are 

intensively deformed into smaller fragments with dips similar to Top Salt. Below the 

southern part of the salt wall, only the A1C stringer is observed. Sub-salt faults 

extended upwards and largely faulted the A1C stringer (Fig. 6.12). 
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Fig. 6.11: Profile C passing through the MB-1 in the north to the southern edge of the MB-5. Note the stringer distribution and structural styles at the regional deformation scale. 
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Fig. 6.12: Uninterpreted and interpreted Profile D (see Fig 6.7 for location). Note the welded salt in the MB-5 over the Ara carbonate stringers. Salt rise creates faulting and secondary load. 

MB-5 

MB-1 

N S 



Chapter 6:                                      Salt tectonics and stratigraphy of the Ara Group in the SOSB 

 

235 
 

 

Fig. 6.13: Profile E is an east–west profile passing parallel to the MB-1. The massive sediments cause the salt to withdraw laterally until salt is welded with the stringers.  
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Profile E 

Seismic line-E is oriented E–W and passes through the MB-1 in the north of the 

study area (Fig. 6.13). Syn-kinematic sequences are shown as long tilted reflectors 

downlapping the Top Salt surface. Syn-extensional growth strata are observed 

above the salt wall in the western side of the line formed. Above the salt wall, a clear 

syn-extensional growth unit deposited against the fault and extended up to the Top 

Cretaceous Unconformity. The stringers are intensively deformed below the 

minibasin into small-scale fragments. In the western limb of the minibasin, the 

stringers are discontinuous, tilted, and elevated by salt movement (Fig. 6.13). 

6.5 Geometry of minibasins: Development of the MB-2 

The geometrical details of the post-salt sediments that filled the minibasins (Haima 

pods) and their source and direction are more complex than observed on a large 

scale. For the three different geometries observed within the MB-2, refer to Unit-1, 

Unit-2, and Unit-3 shown in Fig. 6.14h. Unit-1 at the base displays less rotated 

geometry, while Unit-2 and Unit-3 are highly dipping with opposite thickening wedges 

(Fig. 6.14h). Note that the thickening wedge of Unit-2 is rotated upwards due to the 

uplift of the eastern flank of the minibasin (Fig. 6.14h). 

In order to unravel the minibasin development, time thickness maps were generated 

from Top Salt to the top of each unit (Fig. 6.17a–d). In addition, in profiles, the tops 

of these units were backstripped using the flattening technique (Fig. 6.14e,f,g). The 

time thickness map of Unit-1 displays maximum thickness positioned in the middle to 

the NE part of the minibasin (Fig. 6.14b). Similarly, the time thickness map of Unit-2 

displays more eastward thickening shift, which might suggest that the sediments 

were transported from the SW towards the NE (Fig. 6.14c). Backstripping the top of 

Unit-2 (Fig. 6.14b) reveals a downward prograding wedge thickening towards east 
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and thinned towards west. The thickness map of Unit-3 shows maximum thickness is 

located at the north of the minibasin (Fig. 6.14d). Such shift of minibasin depocentres 

might reflect the change in sediment source, which consequently changes the 

depression areas of Top Salt. The complex geometries of the minibasin filling 

packages are possibly due to the progressive displacement during basin fill. 
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Fig. 6.14: Seismic interpretation of the syn-kinematic units over the MB-2. (a) Top Salt time surface 
map of the MB-2. (b–d) Time thickness maps of the Syn-kinematic Unit-1, 2, and 3 (minimum 
thickness in red and maximum thickness in purple). Note the shift in the position of the depocentre 
within each unit. (e–g) Flattening the tops of the interpreted units. (f) Eastward downward thickening 
of Unit-2. (h) The final shape of the basin geometry as observed on the seismic section. 
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6.6  Stratigraphic and petrophysical description of the Ara Group evaporites 

6.6.1 Ara Salt and carbonate stringers  

The interpretation of the Ara Group using petrophysical wireline logs is based on the 

case studies of Schreiber (1988) and previous interpretation of penetrated stringers 

in the South Oman Salt Basin (e.g., Al-Siyabi 2005) (Fig. 6.15). Several wells were 

used to interpret the evaporite layers using wireline logs, such as interval delta time 

or sonic wave (DT), gamma ray (GR), density (RHOB), resistivity (MSFL), and 

neutron logs. By superimposing these logs, the evaporite rocks can be easily 

identified. 

The Ara Group is mostly composed of halite salt (density of 2000 kg/m3), limestone, 

(2700 kg/m3), dolomite (2800 kg/m3), and anhydrite (2900 kg/m3). The large density 

variation between the halite and the other brittle rock makes the density log a 

valuable tool to define the evaporite facies. In general, pure halite has low gamma 

ray, low density, and high resistivity values (Fig. 6.15 and Fig. 6.16).  

The Top Salt is characterised by a sharp shift on the DT curve (sonic) to lower 

values where it changes from the upper clastic shale or sandstone (Lower Haima 

Supergroup) into the salt section (Fig. 6.16a). The average DT value calculated in 

the salt section from well BUD-2H1 is 218.5 µs/ft (~0.00072 s/m in SI unit) (Fig. 

6.16). The density curve is sharply decreasing due to the low density of salt (~2040 

kg/m3). Halite rock has high resistivity and low neutron readings. The GR curve in 

general shows low values (~10 API) almost constant through the halite section, 

indicating the absence of shale or clastic feldspar sediments within the salt. Because 

of the lack of radioactive related deposits (e.g., shale) within the upper section of the 
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Ara salt in well BUD-2H1, the upper halite layers below Top Salt are characterised 

by low gamma ray values of approximately 10 gAPI (Fig. 6.16a). 

Compared with the surrounding halite salt, the stringers are characterised by an 

increase in density and decrease in sonic velocity, which is typical for carbonate rock 

(Fig. 6.15; Fig. 6.16b, and Fig. 6.17). Stringers are dominated by carbonate bodies of 

limestone and dolomite. Thin anhydrite layers are also present within the stringers. 

Anhydrite is denser than limestone, and therefore it is easily identified on the density 

curve (Fig. 6.15). 

On seismic profiles, the A4C and A3C stringers are indicated by a positive reflector 

due to the increase in velocity and density (i.e., acoustic impedance) (Fig. 6.17). The 

negative reflector in between represents the salt layer, which belongs to the A4E salt 

(Fig. 6.17). The A2C stringer is separated from the overlying and underlying strata by 

a zone of chaotic reflections belong to A2E and A3E salt. The salt intervals between 

stringers are significantly variable due to either grounding or folding of the stringers. 
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Fig. 6.15: Typical wireline log response for the evaporite facies of the Ara Group. Note the density 
variation from halite (~2000 kg/m

3
), anhydrite (base Stringer-1 of ~3000 kg/m

3
), and carbonate 

(dolomite and limestone ~2800 kg/m
3 

and ~2900 kg/m
3
, respectively). Also note the low gamma ray 

for salt and the constant sonic log reading, both indicating a clean halite section with no shale or 
mudstone intervals. Logs are from well Birba-1 from the South Oman Salt Basin. Stringer-1 (A4C) is 
an oil-bearing dolomite interval (after Al-Siyabi 2005).  
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Fig. 6.16: (a) Petrophysical characterization of the Top Salt from BUD-2H1. Arrows at the top indicate 
the increasing direction of the wireline log readings. The horizontal blue line is the Top Salt surface. 
Note the decrease in sonic (DT, black), density (green), gamma ray (red), and neutron (blue) curves. 
(b) Well-to-seismic calibration of the Top Salt, A4C, and A3C stringers using wells BB-1 and BB-2 
(see Fig. 6.7 for location). Note that Top Salt is not imaged on seismic data to the right side of the 
profile. Using DT and density curves, the interpretation of Top Salt can be guided. Note also the 
change in the DT and sonic log readings at the level of A4C and A3C stringers. 
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Fig. 6.17: Well-to-seismic tie of the Ara stringers using the density curve of well BB-4. The well 
reaches a depth below the A3C stringer. Note the two high-density carbonate layers belong to A4C 
and A3C stringers, and the thin halite salt in between belongs to the A4E salt.  



Chapter 6:            Salt tectonics and stratigraphy of the Ara Group in the SOSB 

 

244 
 

6.6.2 Vertical stratigraphic description of the Ara Group Evaporites  

6.6.2.1 Typical stratigraphic section  

Well AWN-1H1 is located in the north of the study area at the limb of the MB-1 (see 

Fig. 6.7 for location). The well penetrated three thick carbonate stringers in the lower 

part of the Ara section (Fig. 6.18). The upper part of the Ara Group is 634 m thick 

and is composed of clean halite that belongs to the A5E/A6E halites. This unit has 

low gamma ray (10 gAPI), low density (2040 kg/m3), and low DT values (228 µs/ft ~ 

0.00075 s/m in SI unit), which are typical values for halite rock. 

The upper stringer is the A4C stringer, which is composed of two dolomite layers 

with one anhydrite unit in between them. The anhydrite is identified from the sharp 

shift of density and gamma ray curves. The A4C stringer is underlain by 100 m-thick 

halite that is part of the A4E salt. The A4E salt in turn is underlain by the A3C 

stringer and characterised by 44 m of dolomite. Another salt interval, 146 m thick, 

just below the A3C, belongs to the A3E salt. The continuous lower stringer A1C is 

seismically well known by its regional extent over the whole basin (Al-Siyabi 2005). 

Under AWN-1H1, the A1C is characterised by a 10 m-thick layer of anhydrite at the 

top followed by a thick carbonate layer of dolomite (Fig. 6.18). 

6.6.2.2 Complex stratigraphic section 

In some cases, more stringers than expected were found, and these are interlayered 

by halite intervals with variable thicknesses. The MNH-1H1 in the eastern side of the 

study area encountered at least 12 carbonate layers separated by halite (Fig. 6.19). 

In this case, it is difficult to correlate these layers to their stringer cycles by using only 

wireline logs. Therefore, core or cutting data are required to identify the stringer 

facies. 



Chapter 6:                             Salt tectonics and stratigraphy of the Ara Group in the SOSB 

 

245 
 

 

Fig. 6.18: Well-to-seismic calibration of well AWN-1H1 (see Fig. 6.7 for location). Note the three carbonate stringers belong to the A1C, A3C, and A4C stringers. The A2C stringer is not observed in this well. 
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Fig. 6.19: Well MNH-1H1 in the western side of the study area (see Fig. 6.7 for location). Note the presence of 11 to 12 carbonate/anhydrite layers separated by halite intervals in between. 
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6.6.3 Lateral stratigraphic description and seismic character of the stringers 

6.6.3.1 Correlation of BUR-1H1 and BUR-2H1  

BUR-1H1 and BUR-2H1, located 1369 m from each other, were selected to observe 

the lateral stratigraphic changes of the carbonate stringers and the halite members in 

between (Fig. 6.20). No significant thickness change is observed in the A4C and 

A3C in the two wells, with only a 5 m-thick halite member separating them. This 

conformable continuity between A4C and A3C in the two wells coincides with the 

lateral continuity observed on seismic data (Fig. 6.20). In the BUR-2H1, the strong 

seismic reflection appearing above the A4C is 90 m thick and is interpreted to be the 

A5C stringer.  

6.6.3.2  Correlation of BUD-1H1 and BUD-2H1  

Well BUD-1H1 is 1884 m apart from BUD-2H1 (Fig. 6. 21). The seismic sections 

across the two wells display continuous and correlatable A4C and A3C stringers. 

The petrophysical interpretation shows two carbonate units (A4C and A3C) 

separated by an anhydrite unit in the middle. The thickness of the A4C in BUD-1H1 

and BUD-2H1 is 65 m and 56 m, respectively. The increase in thickness of the A4C 

in BUD-1H1 is interpreted to be related to the oblique drilling of the stringer. 

The A2C anhydrite stringer is not encountered in the wells or seismic data. However, 

by taking an arbitrary line (line B in Fig. 6.21c) to the west, a strong seismic reflection 

appears between the A1C and A3C stringers (Fig. 6. 21b). The seismic amplitude of 

this reflection decreases sharply to the west and instead very low amplitude presents 

below the well. This facies is similar to the facies between A4C and A3C, which has 

been encountered by the two wells. Therefore, this layer is interpreted to be the A2C 

anhydrite. 
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Fig. 6.20: Well BUR-1H1 and BUR-2H1 seismic-to-well correlation. Note the presence of the A5C stringer with high seismic amplitude under BUR-2H1 and a weak reflector at BUR-1H1. Note that A2C stringer is not observed in BUR-
1H1. 
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Fig. 6.21: Well BUD-1H and BUD-2H correlation. (a) Straight seismic line connecting the two wells shows conformable A4C, A3C, and A0C stringers. Note that A2C is not present in the two wells. (b) Composite (arbitrary) line passing 
through the A2C in the western side of the two wells (see Fig. 6.21c for location). (c)  3D time structure map of the A4C and A2C stringers. (d) Petrophysical logs used to interpret BUD-2H1. The high gamma ray reading in the salt section 
above the A4C stringer is interpreted to be related to the presence of siliciclastic materials such as siltstone and shale within the salt. 
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6.6.3.3  Correlation panel for Birba wells (BB-1–BB-6)  

Six Birba wells (BB-1- BB-6) east of the MB-4 (Fig. 6.7) were drilled to target the 

A4C and A3C stringers, and were selected here to examine the stratigraphy of the 

penetrated stringers (Fig. 6.22). The two A4C and A3C stringers are observed in well 

data as two carbonate units separated by either anhydrite (BB-2, BB-3, BB-5) or 

halite (BB-1, BB-4, B-6) (Fig. 6.22). The average thickness of the A4C and A3C 

carbonate units is 50 m and 100 m, respectively. No significant lateral facies change 

is observed in the first five wells except the lateral change of A4E from halite into 

anhydrite. On seismic data, the A4C and A3C are strong-amplitude reflectors (Fig. 

6.23). In the northeast of the study area, well BUDNE-4H1 does not show any 

stringers at the A4C and A3C level, even though the seismic loop is consistent with 

the A4C and A3C (Fig. 6.24). The seismic amplitude of the A4C and A3C stringers is 

weak in BUDNE-4H1 and BUDNE-2H1 compared with the normal seismic character 

of the stringers in BB-3 and BB-4 (Fig. 6.24). Well BUDNE-2H1, about 4 km 

northeast of BUDNE-4H1, found a thin (~5 m) carbonate layer above the A1C 

stringer (Fig. 6.24). Therefore, the stringers with such seismic character are 

interpreted to be very thin or absent. This lateral discontinuity in the A4C and A3C 

could be related either to the original stratigraphic extent of the stringers or to 

halokinesis. MMNW-7 is drilled in the deeper part of the A1C level (see Fig 6.7 for 

location). The stratigraphy of the Ara Group is completely different than that 

observed in the middle and western sides of the study area. The lower part of the 

Ara Group shows a 60 m-thick layer of salt followed by a thick silicilyte unit with high 

GR, interpreted as shale, and a unit with low GR, interpreted as siltstone (Fig. 6.25). 

This silicilyte unit is interbedded by three 10 m-thick denser units of dolomite. The 

A1C is possibly correlated with the lower 10 m-thick dolomite (Fig. 6.28). 
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Fig. 6.22: Correlation panel for Birba wells (BB-1 to BB-7). Note the A4C and A3C stringers separated by anhydrite (left wells) and halite (right wells). 
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Fig. 6.23: Composite seismic profile passing through Birba wells (BB-1 to BB-6). All the wells 
terminate at the A3C (BB-3, BB-4, BB-7) and at A3E (BB-2, BB-5). Note the constant thickness of the 
A3C and A4C stringers.  
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Fig. 6.24: (a) Seismic-to-well calibration of the density curve in BUDNE-2H1 and resistivity curve in BUDNE-4H1. Note that only the A1C has been found in 
logs (yellow intervals), while the upper A3C and A4C stringers were not found, despite the presence of a weak seismic loop. Note also that the A1C is not 
underlain by any salt interval in well BUDNE-2H1. (b) The A4C and A3C within BB-3 and BB-4. Note the strong seismic character of the A4C and A3C 
stringers. The two stringers are found in the two wells.  
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Fig. 6.25: Well MMNW-7 (see Fig. 6.7 for location). (a) E–W profile (inline-8863) passing through the MMNW-7 displays the geometry of the Ara Group and 
stringers. (b) Gamma ray (left) and density curve (right) of well MMNW-7. Note that the Ara Group contains a thin salt section (60 m thick); the rest of the 
chaotic zone is a silicilyte unit of shale (high GR) and other clastic sediments (low GR) with thin dolomite layers characterised by higher density (2700–2800 
kg/m

3
) and low GR readings (yellow sheets on the density curve). 
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6.7 Results of seismic interpretation 

6.7.1 A1C stringer 

The A1C stringer is continuous in most of the study area and has similar topography 

to the base and pre-salt (Fig. 6.26a). The data in the northwestern side of the study 

area is poor and therefore the stringer was not mapped at that location (Fig. 6.26a). 

In the eastern part of the study area, the A1C stringer forms a platform margin 

trending almost NNE–SSW with a steep slope dipping to the east (Fig. 6.26). The 

A1C is not deformed significantly as the upper stringers (A2C–A5C), and it has been 

largely affected by sub-salt faults. An initial interpretation is that the A1C stringer in 

the Birba area is not underlain by salt (Fig. 6.24a).  

6.7.2 A2C stringer 

The A2C stringer is locally distributed in the western part of the study area (Fig. 

6.26b). Profiles perpendicular to the stringer show that the A2C and the overlain A3C 

and A4C stringers are discontinuous from the east and west with downlapping 

geometries (Fig. 6.27a,b). The A4C stringer is observed to pinch out earlier than the 

A2C and A3C slabs, which are extended a few hundred metres further (Fig. 6.27a,b). 

The local extent and the separated blocks of the A2C stringer in the Birba area can 

either be interpreted stratigraphically or tectonically (see chapter 7 for more details).  
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6.7.3 A3C and A4C stringers 

The stringer is largely distributed in the middle and south of the study area (Fig. 

6.26c). Smaller fragments of 4–6 km of the A3C stringer are distributed in the 

northern part of the study area, south of the MB-1 and MB-2 (Fig. 6.26a). 

The A4C stringer has almost similar extent to the A3C stringer in the northern part of 

the study area (Fig. 6.26d). The A4C and A3C stringers are seismically mappable in 

the Birba area. The two stringers share almost similar extent, trend, and 

discontinuities (Fig. 6.26c,d). This is because of the absence of a thick salt layer 

between the two stringers, which reduces the effect of diapirism, folding, and 

discontinuities (Fig. 6.24b and Fig. 6.22). 

If the A4C and A3C surfaces are superimposed with the Top Salt surface, the 

stringers are not found under the depocentres of minibasins (Fig. 6.29 and Fig. 

6.30). Therefore, the disappearance of the stringers is strongly related to salt 

tectonics. However, in the northeastern part of the structural high area, and 

especially east of BUDNE-2 and BUDNE-4, the stingers are not observed although 

the salt section is thick and has almost constant thickness (Fig. 6.30b,c).



Chapter 6:            Salt tectonics and stratigraphy of the Ara Group in the SOSB 

 

257 
 

 

Fig. 6.26: Two-way-travel-time (TWT) structure maps of the stringers in the Birba area.  
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Fig. 6.27: NE–SW seismic line south of the MB-4 displays the western and eastern edges of the A2C, 
A3C, and A4C stringers. Note the downlapping geometry and the discontinuity of the stringers. Note 
that the A1C stringer is more continuous and forms the basement hard boundary for the upper 
stringers (see Fig. 6.26b for location). 
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Fig. 6. 28: Geometry of the A2C, A3C, and A4C stringers south of the MB-4. Note the shape of the isolated stringers. The stringers are largely discontinuous 
below the subsided Top Salt area (see Fig. 6.26c for location). 
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Fig. 6. 29: A4C and A3C stringers superimposed with the Top Salt surface. Note the distribution of the 
two stringers in different areas of the Top Salt. The stringers are discontinuous and not observed 
under minibasins and at the eastern side of the Structural High Region north and east of BUDNE-
2H1. 
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Fig. 6.30: (a) Zoom-in on the northern part of Fig. 6.29. (b, c) Uninterpreted and interpreted seismic 
profile passing through the MB-2 and MB-3 to the west and the deeper part of A1C to the east. Note 
that A4C-A2C stringers are not found in the eastern region. The A1C is interpreted only from seismic 
data to be continuous east of the slope.  

Fig. 6.3b,c 

A1C 
slope 
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6.8 Stratigraphic features of the Ara stringers in the Birba area 

The A1C stringer in the eastern side of the Birba area has an eastward steeply 

dipping slope striking NE–SW (Fig. 6.26a and Fig. 6.31). This geometry is also 

observed in the Base Ara salt and the underlying pre-salt section, forming similar 

geometry of a basin slope (Fig. 6.31). The A1C is thicker to the east towards the 

edge of the slope (Fig. 6.31). In the downslope area, the thickness of the A1C 

stringer is significantly reduced, and small-scale fragments are observed above it. 

These could be either remnants of stringers that were deformed during salt 

subsidence or simply downslope basin deposits. 

The absence of displacement in the underlying stratigraphy below the A1C reduces 

the possibility to interpret the structure as a half graben. Therefore, the A1C structure 

has been interpreted to be the platform margin with steep slope dipping to the east 

(Fig. 6.31). 

Basinward deep marine facies is expected to form east of the slope. This is also 

indicated in well MMNW-7 (Fig. 6.25). The decrease in thickness of the A1C above 

the slope from more than 100 m to about 10 m downslope indicates that the 

carbonate factory is active in the shallow areas in the platform margin and very weak 

in the basin side (Fig. 6.31). If this interpretation is valid, then good carbonate 

reservoirs which are perfectly sealed by salt are expected to be found along the 

strike of the platform margin. 

The A4C and A3C stringers are not found in BUDNE-2 and BUDNE-4 in the eastern 

side of the study area (Fig. 6.26). In spite of the presence of weak seismic loops 

above the A1C stringer, the A4C and A3C stringers were not encountered (Fig. 

6.24). This has been interpreted to be related to an eastward stratigraphic thinning 
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and termination of the A4C and A3C carbonates (Fig. 6.32). The N-S A1C slope and 

the N–S elongation of the A2C, A3C, and A4C stringers support the east-west lateral 

stratigraphic facies changes (Fig. 6.26).  

The A3C and A4C stringers form overlapped dome shapes south of the MB-4 (Fig. 

6.33). Dome-1 and Dome-2 have steep slopes in the northern side where the A3C 

and A4C stringers terminate at the A1C level (Fig. 6.33a,b). Similarly, the A3C–A5C 

stringers display vertical build-up at OM-1H1 (Fig. 6.33e). These have been 

interpreted here as open marine carbonate build-up. 

The A3C and A4C stringers in general are mostly conformable in thickness. 

However, the A4C grounding and welding over the A3C is found in areas near 

minibasins (Fig. 6.33f). This could be related to squeezing of the salt between the 

stringers during subsidence.  
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Fig. 6.31: The geometry of the A1C slope in the eastern side of the study area (see Fig. 6.26a). The 
A1C steep geometry is interpreted to be a platform margin and thus the eastern side is the basin 
facies. Note the thickness of the A1C in the platform margin and the small thickness in the basin side.  
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Fig. 6.32: E–W seismic profile in the NE region of the Birba study area (see Fig. 6.7 for location). Note 
the SE thinning of the weak seismic character at the A3C and A4C level. Well BUDNE-2H1 and 
BUDNE-4H1 show a very thin carbonate layer (~2 m) in the first well and no A4C/A3C stringers in the 
second well.  
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Fig. 6.33: (a) 3D TWT surface displays dome shapes in the A4C stringer. (b) N–S seismic profile 
passing through Dome-1 and DRR-1H1. Note the discontinuity of the A4C and the continuity of the 
A1C stringer from south to north. (c) E–W seismic line passing though Dome-1 and Dome-2. Note the 
shape of the domes and their location below the minibasin. (d) A4C–A3C time thickness map. Two 
major thickening areas identified (purple colours). (e) Profile passing through the OM-1 displays the 
thickness change between the A4C and A3C stringers. The complex dome shape is similar to reef 
structures. (f) Welding of the A4C stringer over the A3C stringer with variable thickness change of the 
A4E salt interval.  
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6.9 Discussion  

6.9.1 Salt tectonics in the Birba area 

Three syn-kinematic growth units in the overburden have been interpreted from 

seismic profiles (Fig. 6.9 to Fig. 6.13). 

 Syn-kinematic Unit-1 directly overlies the Ara Salt found within deeper 

minibasins (e.g., MB-1, MB-4, and MB-5; Fig 6.9). This unit belongs to the 

Early Cambrian Nimr Group (Al-Siyabi 2005). The mechanism of down-

building simply means the subsidence of salt by sediment load creates 

minibasins at the middle while the two sides of the salt remain at the same 

level (Jackson et al. 1990; Hudec 2007). This mechanism is the most 

important in the case of salt tectonics driven by sediment load. The structural 

high region, or salt wall, in the northeast of the study area has almost constant 

salt thickness (Fig. 6.7). 

 Syn-kinematic Unit-2 overlies Syn-kinematic Unit-1 and contributes to the 

sinking of the minibasins that were filled by Syn-kinematic Unit-1 as well as 

producing new minibasins in the Ara elevated regions (e.g., MB-3; Fig 6.9 and 

Fig 6.10). 

 The extensional faults in the overburden created syn-extensional growth units 

due to salt rise (e.g., west of Profile E; Fig. 6.13), which also add new load 

over the Ara salt, causing a third phase of salt flow. Syn-kinematic Unit-3 is a 

localised kinematic unit formed by faults displaced from the Top Mahwis 

unconformity up to the base Natih (Fig. 6.15). A summary of the evolution of 

salt tectonics in the Birba area is shown in Figure. 6.34. 
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Fig. 6.34: Schematic 2D model for post-salt evolution in the Birba area summarised from seismic 
profiles (Fig. 6.9 to Fig. 6.13).  
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6.9.2 Detailed evolution of minibasins  

The evolution of minibasins can be more complex depending on the source of 

sediment influx and the subsidence direction of the salt layer (Fig. 6.14). The syn-

kinematic indicators within the MB-2 were used as an example to demonstrate the 

minibasin developments in the study area. The results indicate the complexity of the 

basin filling wedges and thus the complexity of the internal salt dynamics. Three 

strong indicators were mapped within the minibasin, followed by construction of 

thickness maps for each package (Fig. 6.14). The thickness maps of the three units 

revealed a change in the maximum thickness of the units from middle (Fig. 6.14b) to 

the east (Fig. 6.14c) and finally to the north (Fig. 6.14d). Unit-2 displays upward 

thickening with a dip of approximately 30° (Fig. 6.14h). It is not geologically possible 

to deposit syn-kinematic units with such geometry. However, if the top of Unit-3 is 

flattened, Unit-2 indicates downward thickening with a magnitude of 5° to 10°, which 

is more geologically reasonable (Fig. 6.14f). The evolution of the kinematic filling 

units within the MB-2 can be summarised in three stages (Fig. 6.35): 

1.  The minibasin initially filled almost equally from all directions while Top Salt 

was displaced downwards, forming a synclinal basin shape (Fig. 6.35b; see 

also Fig. 6.14b). 

2. The eastern flank of the basin was displaced more than others due to the 

eastward sediment influx resulting in the deposition of the Syn-kinematic Unit-

2 (Fig. 6.35c; see also Fig. 6.14c). 

3. A third salt displacement event took place in the north to northwest of the MB-

2 with the rising of a salt diapir in the east, resulting in the rotation of Unit-1 

and Unit-2, and deposition of Syn-kinematic Unit-3 (Fig. 6.35d; see also Fig. 

6.14d). 
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Fig. 6.35: Schematic model of basin fill units over the MB-2 (see Fig. 6.14). (a) Ara salt before 
sediment influx. (b) Deposition of Unit-1 forming thickening strata in the middle and onlapping at the 
syncline flanks. (c) Deposition of Unit-2 and downward salt depression resulting in an eastward 
thickening wedge. (d) Westward salt movement resulted in the formation of the flank of the MB-2, 
which rotates Unit-2, and the deposition of N–NW thickening wedge of Unit-3. 
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6.9.3  Depositional model of the carbonate stringers in the Birba study area 

Defining platform geometries and stratigraphic features on seismic data is an 

important and primary method for understanding the depositional environment of the 

basins. However, generating platform geometry and later depositional facies models 

for the Ara stringers based on the geometry of the stringers observed from seismic 

data is challenging. This is because of the influence of halokinesis of the Ara salt on 

the carbonate stringers resulted in significant deformation such as folding, faulting, 

and lateral displacement (Al-Siyabi 2005). By superimposing the A1C and the upper 

stringers, the initial depositional environment of the lower part of the basin (A1C-

A4C) can be summarised (Fig. 6.36 and Fig. 6.37). 

 The A1C stringer is thickening to the east until the edge and thinning 

downslope of the basin, indicating a platform margin trending N–S (Fig. 6.31). 

 The western part of the basin displays a gradual deepening of the A1C, 

indicating deeper deposits and lack of A2C–A4C stringer deposits (Fig. 6.27).  

 The carbonate stringers are well distributed in the middle of the study area 

(Fig. 6.26). Therefore, this area is the shallow marine carbonate factory of the 

stringers. 

 The A4C and A3C stringers are thinning and terminating towards the east 

(Fig. 6.32). Similarly, the A2C–A4C stringers are not stratigraphically 

extended towards the western part of the basin (Fig. 6.27). 
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Fig. 6.36: Summary map of the stratigraphic features in the Birba 3D seismic area. The red boundary 
is the current extent of the A4C stringer. 
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Fig. 6.37: (a) The A1C stringer surface (grey) overlain by the A4C surface (blue). (b–c) East-west 
seismic profile through the A1C platform margin. Note the termination of the A4C and A3C stringers in 
the eastern side (right dash line) and the deformation-related discontinuity in the western side (left 
dash line). (d) The depositional model of the Ara stringers in the northern part of the study area.  

Halokines
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6.10  Conclusions  

 Five large minibasins have been identified in the Birba study area. The 

formation of these minibasins is more complex than expected, where the 

overburden sediment switched its depocentre direction because of the 

changes in location of the salt subsidence zones and the change in sediment 

influx. These changes in minibasins generated variable movement of the salt 

and hence complex internal deformations during the creation of the 

minibasins. 

 The calibration and identification of at least five intra-salt carbonate stringers 

was done by well-to-seismic tie of 28 wells in the Birba area. The lower four 

stringers are observed both on seismic and well data. These are A1C, A2C, 

A3C, and A4C. The upper stringer, A5C, is rarely found, and it is significantly 

discontinuous.  

 The A1C is deposited regionally, maintains its thickness in a large area, and is 

only observed to thin and probably terminates beyond the platform margin to 

the eastern side of the study area. 

 The thickness of the halite intervals (A1E–A4E) is variable due to both early 

stratigraphic deposition and tectonics. 

 The carbonate stringers in the Birba area have complex stratigraphic and 

structural geometries. Because of such complex geometries, the stratigraphic 

features can easily be misinterpreted as tectonically derived features. 
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Abstract 

The structure and kinematic evolution of the carbonate stringers in the South Oman 

Salt Basin is described in this chapter using 3D time migrated seismic reflection 

data. Four intra-salt carbonate layers known as the A1C–A4C stringers, which are 

encased within a 1.5–2 km-thick salt and have been subjected to a significant 

differential subsidence, are examined here. To understand the kinematics of the Ara 

carbonate stringers during halokinesis, the geometry of the stringers was studied 

beneath major salt structures such as salt diapirs, salt walls, minibasins, and around 

the flanks of minibasins. The amount of displacement of Top Salt at different parts of 

the basin was used herein as a tool to test the internal kinematics of the stringers. 

The results indicate that differential loading alone was sufficient to significantly 

deform, fragment, drag, and fold the layered stringers within the salt. The kinematics 

of the carbonate stringers during salt halokinesis were documented during three 

main stages: (a) During the early stages of subsidence, the upper stringer (e.g., 

A4C) beneath the subsided region was exposed to lateral extension earlier than the 

underlying stringers (A3C and A2C). With more subsidence, the lower stringers were 

consequently ruptured. (b) During the moderate to late stage of subsidence, the 

stringers beneath the depocentre of the minibasins were broken into smaller stringer 

fragments, while the stringers around the flanks of the minibasins were folded. (c) 

During the welding and late stage of halokinesis, more salt was evacuated from the 

depocentres, which resulted in fragmentation and lateral displacement of the 

stringers in areas of subsidence and vertical displacement and uplift of stringer 

fragments into high elevations (up to 2 km) within the salt walls. 

The results from this chapter highlight the significance of sub- and intra-salt faulting 

on initially breaking the stringers and subsequently creating large-scale gaps. The 
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study contributes to the understanding of pore pressure prediction of the stringers 

and can be used as an initial step for classifying and predicting overpressured 

stringers from hydrostatic stringers.  

7.1 Introduction  

In the South Oman Salt Basin (SOSB), large carbonate bodies, so-called rafts, 

floaters, or stringers, are encased in salt and form substantial hydrocarbon plays (Al-

Siyabi 2005; Peters et al. 2003; Li et al. 2012a). Understanding when and how these 

intra-salt stringers break and how they redistribute fluids is of practical importance for 

hydrocarbon exploration and production. Apart from being exploration targets, the 

stringers can also pose drilling hazards, and non-target stringers are always avoided 

during operations because they contain overpressured fluids (Williamson et al. 1997; 

Koyi 2001; Al-Siyabi 2005; Schoenherr et al. 2007, 2008; Kukla et al. 2011). For well 

engineers, it is important to have an estimate of the pore fluid pressure within the 

stringers in order to avoid taking ―kicks‖ during drilling.  

The SOSB is an intracontinental basin formed by down-building in the absence of 

significant extension or contraction and without significant surface or basal slope (Al-

Marjeby and Nash 1986; Al-Siyabi 2005; Li et al. 2012a; Peel 2014). However, the 

internal salt deformations in the SOSB are found to be more complex because of the 

complex evolution of the salt.  

Salt tectonics in the basin can be summarised to have been formed in least three 

stages: passive as down-building, reactive, and finally active salt tectonics (Loosveld 

et al. 1996; Hudec and Jackson 2007; Reuning et al. 2009). Hence, the early 

structural geometries and the kinematic evolution of the internal salt stringers remain 

a challenge. Recent numerical modelling simulating the stringers in the SOSB 
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revealed that the carbonate stringers can break soon after the onset of salt tectonics 

and can deform in different ways (Li et al. 2012a). If extension along the inclusion 

dominates, the carbonate stringers are broken by tensile fractures and boudinage at 

relatively shallow depth.  

7.1.2 Aims of this chapter 

The aims of this chapter are  

 To understand the kinematic evolution of the intra-salt stringers from the early 

to the late stages of tectonics under salt subsidence and thickening, by 

selecting local areas where the regional salt structure is less deformed to 

represent an early deformation stage of the stringers, and areas from highly 

deformed regional structures to represent the late-stage deformation of the 

stringers (Fig. 7.1). 

 To carry out detailed structural descriptions of the deformed A1C–A4C 

carbonate stringers underneath regional salt structures (e.g., salt minibasins, 

salt walls, and salt flanks) (Fig. 7.1). 

 To use the geometries of the stringers to understand the kinematics and 

dynamics of the salt during halokinesis.  

 To compare the structural styles of carbonate stringers in the SOSB with the 

Z3 anhydrite stringer in the Southern North Sea. 
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Fig. 7.1: 2D Schematic showing the evolution of a minibasin in the SOSB. The stringers inside the salt 
will be described at each stage of subsidence and beneath all the regional structures.  
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7.2  Regional structural description of Top Salt and stringers  

The overall distribution and morphology of the salt structures in the Birba area are 

summarised here to provide a regional framework for the intra-salt structures (Fig. 

7.2a). The basin can be simplified into three regional layers (Fig. 7.2b): (1) sub-salt 

layers characterised by extensional faults; (2) the salt layer, which is highly variable 

in thickness, largely because of evaporite mobility and variously associated with 

minibasins, diapirs, and salt walls; and (3) the thick clastic overburden deposited 

above the salt layer known as the Haima Supergroup, which was deposited during 

halokinesis in the basin (Al-Siyabi 2005; Reuning et al. 2009). The differential 

loading of the thick clastic overburden Haima Supergroup onto the mobile Ara salt 

caused passive diapirism (down-building) until the clastic overburden sediments 

grounded on the sub-salt strata (Al-Siyabi 2005; Reuning et al. 2009).  

The seismic interpretation of the Top Salt surface revealed three main regional salt 

structures: (1) salt minibasins, where the salt is extremely thinned or welded; (2) salt 

walls; and (3) salt flanks (Fig. 7.2a, b). Five salt minibasins (MB-1 to MB-5) and a 

large irregular salt wall with an average height of 1.7 km (Fig. 7.2a) have been found. 

The degree of subsidence of the minibasins varies significantly. For example, the 

MB-1 and MB-2 are completely welded with the A1C (Fig. 7.3a). The deformation of 

the stringers in this minibasin indicates the configuration of the stringers at the late 

stages of halokinesis. The salt walls have relatively simple external morphologies, 

and are defined by relatively flat crests and dipping flanks (20°–50°) (Fig. 7.2). The 

salt walls are up to 2 km tall, 20 km wide, and 60 km long (Fig. 7.2a). Minibasins, on 

the other hand, are circular to sub-circular in shape. The random shapes of 

minibasins, the irregularity of salt walls, and the significantly thick syn-kinematic units 
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in the overburden support the down-building mechanism of the basin (Peters et al. 

2003; Al-Siyabi 2005; Li et al. 2012a).  

 

Fig. 7.2: Two-way-travel-time map of the Top Salt surface shows the most important regional salt 
structures. Note the irregular shapes of the minibasins and the salt walls. Note also the degree of 
subsidence of the minibasins.  



Chapter 7:         Structural description and kinematic evolution of the SOSB stringers 

 

282 
 

 

Fig. 7.3: Distribution and extent of the upper stringers. (a) Ara salt time thickness (Top Salt to A0C). 
(b) A4C stringer surface. (c) A3C stringer surface. (d) The A4C and A3C stringers are superimposed 
on the Top Salt surface. 
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7.3 Deformation of the stringers beneath regional structures 

The degree of subsidence of the salt minibasins varies significantly (Fig. 7.2). For 

example, the northern MB-1 and MB-2 are highly subsided and welded with a 

maximum subsidence recorded within the MB-1 (Fig. 7.3a). However, areas to the 

south of MB-4 and MB-5 are less subsided. In this section, the intra-salt structures 

are first analysed qualitatively: (1) beneath areas of shallow subsidence (e.g., east of 

the MB-4 and south of the MB5); (2) beneath areas of moderate subsidence (e.g., 

south of the MB-4); and (3) within and around areas of high subsidence, where Top 

Salt is completely welded (e.g., MB1, MB2, and MB-4). Such qualitative description 

allowed the understanding of the kinematic evolution of the stringers during the early 

to the late stages of salt tectonics.  

7.3.1 Deformation of the stringers in the area east of MB-4 

In Fig. 7.2.a, the salt section has undergone relatively low subsidence in the area 

east of the MB-4. Hence, this area can be used to analyse the stringers at the early 

stages of subsidence. 

Four linear discontinuities are observed within the A4C stringer surface, with lengths 

of 5 km to 6 km and widths of 100 m to 200 m (Fig. 7.4a). These linear gaps become 

wider towards the west, where the Top Salt is more subsided (Fig. 7.4a). Profiles B, 

C, and D (Fig. 7.4a) are used to demonstrate the propagation of these gaps from 

areas of less subsidence in the east towards areas of high subsidence in the west, 

close to the MB-4. 

The profiles across these gaps show that the A4C stringer is either laterally 

disconnected by small-scale gaps (Fig. 7.4a) or welded over the A3C stringer to form 

two thickening zones of the A4E salt interval on each side of the welded points (Fig. 
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7.4b). The profiles show that the A4C stringer is laterally displaced, while the 

underlying A3C and A2C stringers are more continuous (Fig. 7.4d). The continuity of 

the underlying A3C stringer, in spite of the brittle deformation in the overlying A4C 

stringer, may reflect the effect of the decollement of the A4E salt layer in between, 

suggesting that the A3C stringer does not necessarily deform during the deformation 

of the A4C stringer. 
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Fig. 7.4: (a) RMS seismic attributes of the A4C stringer in the area west of the MB-4. Note the 
annotated linear gaps (1–4). (b,c,d) Seismic profiles showing the discontinuities of the upper A4C 
stringer. The green reflector is the A3C surface. Note that the A3C and A2C stringers are more 
continuous than the A4C as in (b and c), until they eventually break towards the west, as in profile d 
(d).  
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7.3.2 Deformation of the stringers at the middle and at the flanks of the MB-4 

The minibasin MB-4 has an E–W strike, and the minibasin front propagates towards 

the east (Fig. 7.5). The central part of the minibasin is located in the western part of 

the study area. Here, the A4C stringer is discontinuous, about 2 km far from the 

centre of the MB-4 and does not extend further west (Fig. 7.5a). However, the lower 

A2C and A3C stringers are more continuous and extend further west beneath the 

depocentre of the MB-4 (Fig. 7.5a). Beneath the centre of the MB-4, the stringers 

have been significantly fragmented into smaller blocks and are laterally disconnected 

and surrounded by salt (Fig. 7.5b). On seismic profiles, it is difficult to correlate these 

fragments to their stringers (A4C–A2C) due to the smaller sizes and disconnections 

of the broken stringer parts (Fig. 7.5b,c).  

Additionally, the A3C and A2C stringers beneath the northern flank of the MB-4 have 

been both folded (Fig. 7.5c). The cores of these anticlines have been filled by salt 

that was mobilised from the welding zone (Fig. 7.5d,e). The proximal limbs of the 

stringer anticlines, which are the limbs closer to the minibasin flanks, have almost 

similar dip magnitude and direction with the limb of the Top Salt (Fig. 7.5d,e). The 

A3C, and A2C stringers were bent beneath the minibasin during subsidence and 

were dragged to greater depths than their regional stratigraphic position by 

displacing the salt below (Fig. 7.5e). This indicates that the salt layers beneath the 

A3C carbonate stringer have been evacuated during halokinesis to form these 

anticlines. These structures could represent important structural traps. However, 

these anticlines might be thrusted during progressive subsidence with further salt 

flow to the core (Fig. 7.5d,e). 
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Fig. 7.5: (a) 3D TWT surfaces of the A2C stringer (grey) and A4C stringer (blue) east of the MB-4. (b) 
3D visualizations of the A2C stringer (dark grey), A1C stringer (blue), and Top Salt (contoured 
surface) beneath the depocentre of the MB-4. Note the disconnected smaller fragments beneath the 
centre of the minibasin. (c) 3D visualizations of the A3C stringer with Top Salt surface. (d, e) Seismic 
profile across the MB-4 (see (c) for location) shows the geometries of the anticline structure.  
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7.3.3 Deformation of the stringers beneath the flanks of the MB-2 

The MB-2 has a circular shape with a diameter of 8 km, and the Top Salt is 

completely welded at its centre. Thus, no stringer fragments have been recorded 

beneath the minibasin (Fig. 7.6a). However, the A4C and A3C stringers occur south 

of the minibasin, forming three structural styles around the flanks of the MB-2 (Figs. 

7.3 and 7.6): 

1. The A4C and A3C stringers are folded similar to a dome shape or a bulge 

fold, with the A3E salt at the core of the dome shape (Fig. 7.6a). In addition, 

the fold limbs of both A4C and A3C stringers are faulted (Fig. 7.6c).  

2. The stringers are only folded from the proximal part, parallel to the Top Salt 

limb, while the distal part is flat, forming a monocline structure (Fig. 7.6a). The 

folded stringers are likely the response of the subsidence of the overburden 

that dragged part of the stringers downwards during salt evacuation. 

3. The third structural style is manifested where the stringers are flat and sharply 

discontinuous against the flank of the minibasin (Fig. 7.6a). 
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Fig. 7.6: The A4C and A3C stringers around the flanks of the MB-2. (a) 3D visualizations of the Top 
Salt surface (grey) and the A3C stringer surface (coloured). Here, the stringer is either folded into 
dome and monocline structures or sharply fragmented at the edge of the Top Salt. (b) Uninterpreted 
and (c) interpreted seismic profile across the dome showing the folded A3C and A4C stringers with 
intra-salt extensional faults largely concentrated at the hinge and at the northern limb of the fold 
structure. 
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7.3.4 Deformation of the stringers beneath the flanks of the MB-1 

At the depocentre of the MB-1, the Top Salt is deeply subsided and completely 

welded over the A1C (Fig. 7.7a). The internal structural geometries of the stringers 

that are distributed beneath the southern flank of the MB-1 can be grouped into five 

zones based on their structural styles and their positions within the salt (Fig. 7.7c):  

1. Highly fragmented, faulted, and overlapping small-scale fragments of stringers 

(less than 500 m) are found in the lower section close to the minibasin 

welding zone (Fig. 7.7b). This zone shows a chaotic seismic character and 

the stringers are poorly imaged.  

2. At larger distances from the MB-1, large-scale layered stringers are 

extensionally faulted and gently rotated towards the minibasin welding zone 

(Fig.7.7b).  

3. Close to the Top Salt limb, the stringers are steeply rotated, with dip direction 

and magnitude similar to Top Salt (Fig.7.7b). The stringers in this zone are 

stretched and rarely folded. On the 3D display, the stringers are disconnected 

and are highly irregular in shape (Fig.7.7c). Along the strike of the flank of the 

MB-1, the stringers and the Top Salt limb have similar dip directions 

(Fig.7.7c). 

4. At the top of the salt dome, the stringers are either horizontal or gently folded 

and parallel to the Top Salt geometry. A similar structure is also found within 

the core of the salt dome (Fig. 7.7b).  

5. Most distally from the minibasin, some of the stringers are rotated in opposite 

directions within the salt layer. 
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Fig. 7.7: (a) Top Salt surface in the northern part of the study area. (b) Profile crosses the MB-1 
depocentre in the north, the limb of the minibasin, and the salt wall in the south. (c) Interpreted 
seismic profile; see (a) for the location of the profile. (c) 3D visualization of the stringer fragments; see 
(a) for the location. Note the distributions and geometries of the fragments.  
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7.4 Faults within the Ara Group evaporites 

The faults that penetrated the stringers are clearly observed on seismic sections and 

base maps. A seismic line was selected to summarise the main four types of faults 

(Fig. 7.8): sub-salt to intra-salt extensional faults, faults formed entirely within the 

stringers, post-salt to intra-salt extensional faults, and intra-salt thrust faults.  

7.4.1 Sub-salt to intra-salt extensional faults 

Sub-salt faults are mostly extensional faults that propagate upwards and penetrate 

the lower stringers. The variance attribute was computed over the A1C stringer and 

was used to characterise the fault styles (Fig. 7.9b). The A1C stringer is largely 

affected by the pre-salt faults. Most of the sub-salt faults do not extend to penetrate 

the upper A3C and A4C stringers due to the presence of salt intervals (Fig. 7.9b). 

However, the sub-salt faults can be reactivated to penetrate all the stringers and can 

even reach the post-salt section in areas where the salt is welded and the stringers 

are all grounded with no salt layers in between (e.g., Fig. 7.6c and Fig. 7.9a). The 

faults penetrated the post-salt Haima Supergroup in areas where Top Salt is welded 

over the basal Ara. 

Since the salt has been evacuated from underneath the minibasin, faults easily 

propagate upwards in these regions. Such faults might result in leakage of 

hydrocarbon traps of the pre-salt and the stringers into the post-salt Haima 

Supergroup. Another example is shown in Fig. 7.9c,d, where an extensional fault 

propagated upwards, penetrating both the A1C stringer and an overlying 

discontinuous stringer block that belongs to the A2C stringer. The fault plane is 

observed in the A0C (Base Salt), the A1C, and in the A2C stringer block. The 

discontinuous A2C block seems to be grounded over the A1C stringer and hence 

faulted.  
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Fig. 7.8: The four types of faults within the Ara Group evaporites: (1) faults that extend from sub-salt into the salt section, (2) intra-extensional faults, (3) faults 
that propagate downwards from the post-salt section into the Ara salt, and (4) intra-thrust faults.  
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Fig. 7.9: Examples of sub-salt faults that extend upwards and penetrate the stringers. (a) The A1C is largely faulted by sub-salt faults. Note that some faults 
can penetrate the overburden, as shown to the right of the profile, where the salt is welded; see (b) for the location of the seismic line. (b) Variance surface of 
the A1C stringer. Note the style of the extensional faults. (c and d) Sub-salt fault reactivated upwards to fault the A1C stringer and an overlain grounded 
stringer block.   
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7.4.2 Intra-salt extensional faults 

Intra-salt extensional faults are faults that formed within the Ara salt and cut the 

competent carbonate stringers. These faults are common beneath the flanks of 

minibasins, where the stringers are tilted and collapsed by extensional faults into 

smaller blocks (Fig. 7.10a,b). If the stringers are in contact with the flank of the Top 

Salt, the faults can extend further up to penetrate the overburden (Fig. 7.6c). Such 

faults can act as conduits for fluids to flow into the overburden.  

7.4.3 Intra-salt thrust faults 

In the Birba study area, thrusts are rarely found within the Ara Group evaporites. 

Only few examples have been observed. An obvious example of thrust fault is seen 

in the southern part of the study area (Fig. 7.10a). The A2C and A3C stringers have 

been thrusted by shallow dipping reverse faults that detached within the A2E salt 

(Fig. 7.10b). Profiles across the fault strike display maximum displacements at the 

middle and minimum displacements at the fault tips (Fig. 7.10a, c).  

7.4.4 Post-salt to intra-salt extensional faults  

Overburden faults can penetrate the underlying salt section and detach within the 

salt. The stringers are affected by post-salt faults largely in the welded areas. 

Alternatively, the faults might penetrate any stringer fragments that are roofed to the 

Top Salt level. 
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Fig. 7.10: Intra-salt extensional faults from south of the MB-1. (a, b) E–W profile through the MB-1 shows intra-extensional faults. Note that the stringers are 
all rotated parallel to Top Salt. (c) Zoomed-in view of the faulted A4C and A3C stringers. (d) 3D visualization of the faulted stringer blocks.  
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Fig. 7.11: (a) Thrust fault cutting the A3C and A2C stringers. Note that the fault plane is curved, with 
maximum displacements at the middle. (b) The thrust is detached within the A2E salt interval. Note 
also the back thrust fault in the footwall. (c) Along-strike profiles show the displacement changes from 
the fault tips (minimum displacement, A-A‘) to the middle (maximum displacement, D-D‘). 
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7.4.5 Gaps-derived faults 

An example of stringer gaps that formed in areas of thick salt section with no 

significant thinning or subsidence is found to the south of the MB-2 beneath the salt 

wall (Fig. 7.3b,d). In map view, the gap is open towards the west and narrows to the 

east, forming a ―V‖ shape structure. Seismic profiles at the tip of the gap show that 

the stringers were initially faulted by sub-salt extensional faults that extended 

upwards intersecting the A1C, A2C, A3C, and A4C stringers (Fig. 7.12a). A 

westward shift of the profiles shows that the stringers are intensively faulted and 

deformed by intra-salt extensional faults (Fig. 7.12b,c). The faulted stringer blocks 

have been intensively deformed into smaller fragments (Fig. 7.12c). Profiles towards 

the west at the middle of the gap show that the faulted zone is replaced by salt and 

the smaller faulted blocks have been displaced away by the salt, resulting in a large-

scale gap (Fig. 7.12d).  
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Fig. 7.12: Profiles across a gap in the northern part of the study area (see Fig. 7.3b,d for location). (a) 
Sub-salt extensional faults extended upwards and faulted the A4C–A1C stringers. (b) Two faults 
uplifted the A3C/A4C blocks at the middle of the section, forming a horst structure. Note the normal 
fault to the south which might indicate a future weakness zone. (c) Complex faulting of the middle 
zone. (d) Large-scale gap separating the stringers and filled by salt.  
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7.5 Discussion 

In this chapter, the A4C–A1C intra-salt stringers have been structurally described in 

their context beneath regional salt structures. The structural evolution of the stringers 

can be related to the degree of halokinesis represented by each hosting salt 

structure. The deformation style of the stringers can be subdivided into three stages:  

Stage 1: Early deformation stage 

Shallow subsidence of the Top Salt in areas east of the MB-4, (Fig. 7.2a) has been 

interpreted as being representative of the structural configuration of the stringers 

during the early stages of subsidence (Fig. 7.4). Four linear lateral extensional gaps 

were observed within the upper A4C stringer surface, with lengths of 5 km to 6 km 

and widths of 100 m to 200 m (Fig. 7.4a). The underlying A3C and A2C stringers are 

more continuous than the upper A4C stringer. However, profiles towards the MB-4 

where the salt becomes thinner display greater lateral extension in the A4C stringer 

and early small-scale gaps within the underlying A3C stringer (Fig. 7.4c,d and Fig. 

7.13e). With increasing subsidence, all the stringers would be anticipated to 

experience lateral breakages, with gaps separated by salt (e.g., Fig. 7. 13). In this 

case, the A4C stringer reduces the time needed to deform the lower stringers (A3C 

and A2C stringer) by acting as a barrier that prevents the overlying thick A5E–A6E 

salt movements to deform the lower stringers. The A4C stringer deforms first, 

followed by the underlying stringers at later stages of subsidence (Fig. 7.13).  

In areas where the salt section is thick and has not been subjected to significant 

subsidence due to salt depletion, the carbonate stringers nonetheless experience 

structural breaks and gaps by sub-salt and intra-salt faulting (Fig. 7.12). This faulting 
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fragments the stringers into smaller blocks, facilitating their motion even by a modest 

salt flow leaving a structural gap (Fig. 7.12d).  

Stage 2: Intermediate deformation stage 

The stringers beneath a subsided minibasin that has experienced significant salt 

depletion are suggested to deform internally by extensional failure in the early stage 

of subsidence, as seen earlier in this chapter. However, beneath the flanks of the 

minibasins, the stringers are dragged and folded (e.g., Figs. 7.5c,d,e and Fig. 7.6). 

Folds around the minibasins have been created beneath the southern flank of the 

MB-2 and the northern flank of the MB-4. To the south of the MB-2, the A4C and 

A3C stringers are folded and the A3E salt interval is the core of the anticline (Fig. 

7.6). On the northern side of MB-4, the A3C and A2C stringers are folded with the 

A2E salt intervals, forming the core of the anticlines (Fig. 7.5c,d,e). 

These anticlines are interpreted to have formed by outward viscous drag during 

halokinesis, similar to bulge folds (Jackson et al. 1994). The hinge of the anticline 

structure might be thrusted when more salt flows inwards towards the core of the 

anticlines (Fig. 7.5d). In addition, the limbs of the fold structures are collapsed and 

faulted by extensional faults during the late stages of subsidence (Fig. 7.6 b,c and 

Fig. 7.10a,b).  
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Fig. 7.13: Schematic showing the proposed structural evolution of the stringer gaps in areas of 
subsidence (boudinage model) and areas of thick salt structures by faults (faults model). (a–e) The 
lateral extension model (left) observed south of the MB-4 where the Ara salt has shallow subsidence 
(see also Fig. 7.4). (f–j) The faulted model (right) suggests that early gaps can be derived from fault 
activities (see also Fig. 7.12).  
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Detailed description of the formation of bulge folds 

The kinematical evolution of the stringers beneath the minibasin depocentres and 

minibasin flanks has been qualitatively analysed using N–S profiles perpendicular to 

the strike of the MB-4 (Fig. 7.14). The profiles that pass through the eastern shallow 

part of the minibasin (i.e., profiles a, b, c in Fig 7.14) were used to characterise the 

early stages of stringer deformation. On the other hand, the profiles that transect the 

depocentre of the minibasin (i.e., profiles e and f in Fig 7.14) were employed to 

represent the late stages of stringer deformation. 

In the eastern shallow side of the basin, where the salt section is thick, seismic 

profiles show that the A3C, A2C, and A1C stringers are flat (Fig 7.15a). Halite 

intervals between the stringers (A3E, A2E) are laterally constant in this configuration 

(Fig 7.16a). As the Top Salt is grounded over the A3C stringer, the upper A3C and 

A2C stringers are gently folded (Fig 7.15b). With additional Top Salt displacements, 

the stringers are then folded to form syncline structures at the middle just below the 

hinge of the minibasin (Fig 7.15c). The synclinal structures form by evacuating the 

A2E and A3E salt layers underneath (Fig 7.16c). Such salt evacuation from the 

centre of the minibasin has the chance to create two anticlines at the flanks of the 

minibasin (Fig 7.16c). Bulge folds in this case are caused by pressure when the 

underlying A3E salt is flowing against the upper competent stringers, similar to the 

flow of the viscous salt upwards from a diapir stem (Jackson et al. 1994). 

Dynamic bulges can lift strata above the regional surface; such structures are 

common in northern Iran (Ala 1974; Talbot 1979). A bulge structure is likely to 

subside again if the salt source layer is exhausted (Jackson et al. 1994). Further 

subsidence leads to breakage of the stringer just below the hinge of the minibasin 
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(Fig 7.15d). More overburden subsidence causes the stringers to break into smaller 

fragments at the middle of the basin, while the A3E and A2E halite intervals continue 

to thicken the core of the stringer anticlines at the flanks of the minibasin (Fig 7.15d). 

At this stage, the inner limbs of the anticlines are tilted parallel to the Top Salt limb 

until they eventually weld with each other (Fig. 7.6b,c, Fig. 7.15e, and Fig. 7.16d). 

Within the depocentre of the minibasin, the stringers are broken into smaller 

fragments (Fig 7.15e). The final stage of subsidence causes the stringers that are 

beneath the flanks of the minibasin to be fragmented and intensively faulted into 

smaller blocks and finally transported away with the flowing salt (Fig 7.15f). 

 

 

 

Fig. 7.14: 3D visualization of the A3C stringer beneath the MB-4. The Top Salt is shown as contours. 
Profiles (a–f, see Fig. 7.15) are used to investigate the kinematic behaviour of the stringers from the 
minibasin shallower regions (e.g., profile a and b) towards the basin depocentre (e.g., profile e and f). 
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Fig. 7.14 (continued) 
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Fig. 7.15: (a–d) N–S uninterpreted and interpreted profiles perpendicular to the MB-4. (e–f) Crosslines 
from the eastern shallow part of the minibasin to the western, deeper part of the basin where the Top 
Salt is welded over the carbonate stringers.  
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Fig. 7.16: Schematic showing the evolution of the fold near the minibasins and the fragmentation of 
the stringers beneath the minibasin maximum subsidence. The A4C and A3C stringers are used as 
examples. The A1C stringer is used as the base hard mechanical boundary. The green datum 
represents the regional occurrences of the upper stringer.  
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Stage 3: Late deformation stage  

The lateral extension of the stringers during salt subsidence in Stage 1 and Stage 2 

(Fig. 7.4c,d and Fig. 7.13) continues to break the stringers into smaller blocks and 

separate them away from each other by salt flow (Fig.7.5b). The deformed stringer 

fragments are carried away by salt into higher elevations (e.g., Fig. 7.7c). 

7.6 Conclusions  

 Analysing the structural styles of the carbonate stringer based on Top Salt 

displacement and their occurrences within salt structures (e.g., minibasin, salt 

flanks, dome shapes) is an important method for seismic interpreters to 

predict deformational styles of the stringer.  

 Differential loading of thick clastic pods and salt diapirs led to folding and 

fragmentation of the carbonate stringers into isolated stringers that float within 

the Ara salt. 

 Structural styles of the stringers within the Ara salt include boudinage lateral 

extension, extensional and thrust faults, bending faults, and buckled folds.  

 The analysis of these stringers contributes to the understanding of the 

petroleum system of the stringers in the South Oman Salt Basin.  
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8.1 Comparison of intra-salt kinematics from the two case study areas 

Two case studies have been used to analyse and understand the kinematic 

evolution of the intra-salt stringers during salt tectonics. The kinematics of the Z3 

Stringer in the North Sea in areas of regional salt thinning and thickening were 

summarised in chapters 4 and 5, while the structural evolution and kinematics of the 

Ara carbonate stringers in the SOSB were discussed in chapter 7. The important 

factors that control the variable structures and kinematics of the intra-salt are 

discussed next (and summarised in Table 8.1):  

 Mechanical properties of the stringers: In the Southern North Sea, the 

anhydrite layer is observed to have a density of ~3000 kg/m3, and is encased 

by the Zechstein salt, with a density of ~2000 kg/m3 (Fig. 8.1b). The dolomite 

and limestone stringers in the South Oman Salt Basin have densities of ~2700 

to 2800 kg/m3 and are separated by halite intervals (Fig. 8.1a). The variation 

in the density of the anhydrite as compared to the carbonates thus implies 

differences in their rheology and behaviour during regional tectonics (see Urai 

et al. 2008). For example, during shortening, the Z3 anhydrite stringer under 

domes, pillows, and anticline structures commonly forms buckle folds, with a 

fold tightness that ranges from gentle to isoclinal. In contrast, the anhydrite 

stringer forms boudins beneath subsided regions, and also undergoes brittle 

deformation at the late stages of tectonics, suggesting that early subsidence 

is not enough to generate boudin structures. In many cases, during 

shortening, the Z3 Stringer is hardly broken by Top Salt downward 

displacement (e.g., Syncline-2, Syncline-4) but instead folded with variable 

fold amplitudes and wavelengths. The Z3 Stringer only shows evidence for 

lateral stretching and tensile fracturing at extreme thinning of the Top Salt 
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(e.g., Syncline-1). Hence, the anhydrite layer behaves more in a ductile 

manner than most other brittle rocks and does not deform extensionally under 

low to modest subsidence of the overburden. On the other hand, the 

carbonate stringers in the South Oman Salt Basin are rarely folded. When 

subjected to shortening, these stringers tend to form thrust structures (Fig. 

8.1a; Fig. 7.11). The carbonate stringers in areas of extension (i.e., beneath 

minibasins) are extensively fragmented and extensionally faulted at early 

stages of subsidence (sensu Hansen et al. 2004). 

 Regional salt tectonics: The southern North Sea has aligned, elongated, 

generally trending NW–SE, regional buckle folds (Coward and Stewart 1995) 

(Fig. 4.2). Synclines and anticlines induced internal local extension and 

internal local contraction, respectively. The regional shortening of the basin 

generated higher intra-salt shortening within regional anticlines, as 

represented by the folds of the Z3 Stringer. Beneath the hinge zone of the 

regional synclines, lateral extension, boudinages, and large-scale lateral 

displacements of the stringer were observed (Fig. 4.5; Fig. 4.6; Fig. 4.10; Fig. 

4.12). At the flanks of these synclines, flat to gentle, passive flow folds with a 

vergence direction away from the regional strike of the syncline were also 

observed (Fig. 8.1b; see also Fig. 4.17 and Fig. 5.15a, b). Under contractional 

anticlines, open to isoclinal folds with upright and inclined fold axes were 

formed (Fig. 5.14).  

In the SOSB, differential loading of massive clastic sediments over the salt 

resulted in the development of minibasins and irregular salt walls with variable 

shapes and trends. Since the sediment load is the primary factor controlling 

salt movement, the subsidence regions of synclines and minibasins were 
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created first and resulted in extensional deformation to the stringers. Unlike 

the Z3 Stringer, the fold structures of the Ara carbonate stringers are only 

well-developed in the flanks of the minibasin at later stages and have been 

created by salt flowing beneath minibasins into the core of their anticlines 

rather than by salt shortening (Fig. 7.15 and Fig 7.16).  

 Stratigraphic position of the stringers in the salt layer: The Z3 Stringer is 

situated in the upper half of the Zechstein salt and is bounded by two thick 

salt intervals (Fig. 8.1a). In general, such stratigraphic position allows the 

stringer to form well-developed fold structures in areas of contraction. 

However, locally, the stringer anticlines have lower fold amplitudes than 

synclines because salt is thicker below the stringer than above (Fig. 5.9g,h; 

Fig. 5.12h; and Fig. 5.14c). On the contrary, the stringers in the SOSB were 

deposited in the lower part of the salt layer. This stratigraphic position allowed 

the stringers to be affected by the pre-salt faults.  

 Multi-layered stringers vs. single stringer: The presence of multi-layered 

stringers controls the distribution of strain within the stringers during tectonics. 

In the SOSB, the upper stringers were largely affected by tectonics during 

down-building and subsidence, more than the lower stringers (Fig 7.13 and 

Fig. 7.12). The sub-salt faults in the SOSB can propagate upaward and 

penetrate the lower stringers (i.e., A1C and A2C), especially when the 

stringers were grounded and not separated by a salt layer (Fig. 7.9). On the 

other hand, faults are rarely associated with the Z3 Stringer due to the thick 

salt (Z2 halite) below the stringer. The stringer instead is boudinaged in 

extensional regions due to salt movement.  
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Fig. 8.1: Seismic profiles comparing the intra-salt structural styles of the SOSB (top image) and of the Silverpit Basin (bottom image). Note the well-developed 
folding and vergence of the Z3 Stringer. 
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Table 8.1 Summary of the main differences between the two case study areas.  

Basin/Elements Silverpit Area (SNS) Birba Area (SOSB) 

Stringer(s) Dominantly anhydrite Dominantly dolomite and limestone 

Number of stringers Single layer Multi-layered separated by halites 

Thickness of the stringer(s) 23–25 m ~10–200 m 

Average thickness 24 m 60 m 

Evaporite media (salt) Halite Halite 

Original thickness of the salt ~1 km ~2 km 

Salt thickness above the 
stringer(s) 

~200–300 m ~1500–1700 m 

Salt thickness below the 
stringer(s) 

~700–800 m Layers 10–300 m thick, total ~200 m 

Dominant structural styles Folding Lateral extension 

Secondary structural styles Lateral extension and boudinage Bending and faulting 

Stringer shortening Very high Low 

Salt tectonics driver mechanism Downdip contraction zone of an updip dip 
extension and inversion 

Differential loading 

Salt tectonics grade Early to intermediate Late 

Salt tectonics structures Anticlines, synclines, size of pillows Minibasins and salt walls 
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8.2 Internal salt flow pattern in the Silverpit area 

After analysing the internal deformation of the Z3 Stringer, the most important 

question is how the halite intervals respond internally to the regional deformation. 

Three models are suggested here (Fig. 8.2):  

1. The Zechstein salt has a similar trend and is harmonic with the Z3 Stringer 

folds but possibly with small differences in fold magnitude with increasing 

distance from the stringer (Fig. 8.2b). This is supported by the internal 

imaging of seismic data within the Z2 and Z3 halites, and may have formed 

due to the buckling of the basin. 

2. The halite layers are horizontal as when they were deposited. The competent 

contrast between the Z3 Stringer and the incompetent halite causes the 

stringer to fold in a viscous medium (Fig. 8.2c). 

3. The internal salt layers are more complex than expected and strongly 

concordant with the Z3 Stringer (Fig. 8.2d). This is supported by data from 

boreholes and mining galleries (Schléder et al. 2008) (Fig. 1.1). 

The second model suggests that the stringer could cross the layers, penetrate, and 

sink into the halite intervals. The salt in this case is less deformed (Fig. 8.2c). The 

third model suggests that the salt suffered complex deformation, mixing without 

crossing the boundary of the Z3 Stringer unless the stringer is broken, allowing the 

lower Z2 salt interval to flow into the overlain Z3 halite (Fig. 8.2d). 

Based on observations from the Gorleben salt dome (Bornemann 1991) (Fig. 1.2), 

the interpretation in this study is close to that of model 1 (Fig. 8.2b) where the thin 

layers within the Z2, Z3, and Z4, to some extent, have similar geometry. The 

observation also agrees with what has been observed from seismic profiles (Fig. 
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8.3). Although some of these reflections within the salt can be interpreted as noise or 

multiples, the presence of less dense salt (potash and polyhalite salts), or any thin 

competent materials (shale, anhydrite) which have different densities than halite, can 

generate some acoustic impedance (see Raith et al. 2015). The interpretation also 

strongly agrees with what has been observed from other salt domes (e.g., Seidl 

1921) (Fig. 8.3d). 
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Fig. 8.2: Suggested internal salt patterns within the Zechstein. (a) The folding and discontinuity of the 
Z3 Stringer within the Z2–Z3 halite intervals. (b) Model 1: The internal salt patterns have a similar 
shape to that of Z3 Stringer. Units (1–4) are drawn to show the internal dynamic of the salt. (c) The 
salt units are presumably flat and the Z3 Stringer is folded or sinks within the Zechstein salt. (d) The 
internal salt layers are highly complex and shortened, disharmonic with the Z3 Stringer. The Z2–Z3 
halites can mix with each other when the Z3 Stringer is discontinuous. 
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Fig. 8.3: (a) 2D seismic profile across the Cavendish field. (b) The same seismic profile but with 
increased amplitude gain to show the details of the internal pattern of the salt and to highlight the 
internal geometry of the salt. (c) The internal salt layering of the Z2 and Z3 halite intervals interpreted 
by tracing the internal reflectors on seismic profiles. (d) Schematic cross-section across a salt dome 
structure (after Seidl 1921). Note the continuity of the stringer and the internal layers, which have a 
similar pattern to that of the stringer, with fold magnitudes reducing away from the middle of the 
stringer. The interpretation agrees with the observation of the Zechstein layering in the Gorleben salt 
dome.  
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8.3 Implications of the research 

8.3.1 Implications of the SOSB stringers for the petroleum system 

The SOSB is an important and unusual hydrocarbon-producing basin. Self-

charging limestone and dolomite stringers encased within the salt of the 

SOSB represent a unique intra-salt petroleum system (Al-Siyabi 2005; 

Schoenherr et al. 2009). However, the complexity of the deformations of the 

stringers makes the prediction of stringer geometries in the subsurface 

challenging. The reservoirs and the structural traps are scattered in the salt 

within isolated, commonly overpressured carbonate blocks. 

There are two suggested charge models: (1) self-charging petroleum system 

(Frewin et al. 2000) (Fig. 8.5a), where the stringer combines both source rock 

and reservoir facies, and (2) pre-salt charge model, suggesting hydrocarbon 

migration from the sub-salt layers through faults in areas where the stringers 

are welded to the pre-salt section (Al-Siyabi 2005) (Fig. 8.5 b). Sub-salt 

charge situations could be the case in areas beneath minibasins, where the 

stringers are completely welded, as well as in areas where the stringers are 

folded and consequently grounded and penetrated by pre-salt faults (Fig. 8.4). 

In such cases, there are better chances for the reservoirs within the stringers 

to be charged, as they could contribute to the intra-stringer charge volume 

(Fig. 8.4c). However, the stringers might break, and the broken blocks that 

contain hydrocarbon can flow in all directions within the salt (Fig. 8.4d). 

The best examples of structural traps are the four-way-closure traps and 

dome shapes. Such structures are commonly formed around minibasins (Fig. 

8.5c). However, if the limbs of the dome are welded with the Top Salt and 
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followed by active faulting during the formation of the fold structure, 

hydrocarbon might leak to the overburden or may result in uncommercial 

accumulation. Similarly, with the outer limb of the fold structure, the migration 

pathway might be deviated into attached stringer fragments or smeared by 

faults, leaving the crest of the dome structure uncharged. When the hinge 

zone of the folded stringers is faulted by intra-extensional faults, these faults 

might also transfer fluids into an attached adjacent stringer block (Fig. 8.5c). 

8.3.1 Implications of the SOSB stringers to pore pressure prediction 

Drilling through the carbonate stringers and floaters in the SOSB is 

considered one of the major risks that need to be highly considered in the pre-

drilling and during drilling operations (Al-Siyabi 2005; Kukla et al. 2011; 

Strozyk 2017). The stringers in the SOSB are isolated in salt and frequently 

contain low-permeable dolomites that are characterised by high initial 

production rates because of overpressures of more than 22 kPa/m (Kukla et 

al. 2011; Strozyk 2017). Such pressure requires heavy mud weight to 

overbalance the well and avoid any kick from stringer reservoirs. 

The interpretation in this study suggests that the stringers that are surrounded 

by salt are mostly overpressured. This is because the perfect sealing by the 

salt and the generation of the pressure by source rock maturation within the 

stringer itself led to high pressure regimes. In this case, the high rate of 

subsidence does not form an important element for pressure build-up within 

the stringers, as it has been suggested by some studies (e.g., Kukla et al. 

2011). 
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In addition, this study suggests that salt contraction regions can contribute to 

the overpressure of the stringers by squeezing the stringer in a similar 

process as a thrust front (e.g., Platt 1990). If the stringer is grounded with the 

pre-salt rock, which is always hydrostatic (see Al-Siyabi 2005), the stringer is 

interpreted to be hydrostatic because of the potential connection with the pre-

salt layers. 

In summary, the A2C, A3C, A4C, A5C and the floaters within the salt are all 

considered to be overpressured, and thus a mud weight of over 22 kPa is 

required. If the A1C is not underlain by a salt interval, then it is considered to 

have hydrostatic pressure.  
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Fig. 8.4: (a–b) A possible example of hydrocarbon charge by self-charge and pre-salt charge by faults 
when the stringers are grounded and faulted. (c–d) New proposed scenarios. (c) The classic 
hydrocarbon transportation to the hinge of the anticline. (d) The stringer is broken and the reservoir is 
carried away by salt. Note that the hydrocarbon might flow downwards during salt movement. 
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Fig. 8.5: Traps and charge of the Ara carbonate stringers. (a) Stringers are self-charging. (b) Charge 
is supplied from the underlying pre-salt sequence. (c–d) Newly proposed 2D schematic of possible 
petroleum system examples. (d) Bulge folds (see similar structure in Fig. 7.6) show possible 
hydrocarbon leakages by faults from the welded stringer limbs into the overburden. Note that attached 
blocks of stringers may transmit hydrocarbons (left). (e) Tilted unbroken stringer layer; hydrocarbons 
are expected to migrate to the top. (e) Stringer is faulted or boudinaged. Note the upper block that 
contains hydrocarbons has been carried away by salt.  
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8.4  Conclusions 

The main conclusions from this thesis are the following:  

1. Regional salt structures in the Southern North Sea and South Oman Salt 

Basins are characterised by intra-salt layers called stringers. The lithology of 

the stringers includes anhydrites and carbonate rocks. These salt stringers 

have a high acoustic impedance contrast that contradicts the reflectivity of the 

surrounding salt. Hence, they are seismic markers for understanding the 

internal salt dynamics of regional salt structures. 

2. Stringers are deformed largely in response to regional basin deformation. 

Shortening of basins by regional compressional events is a major driver 

mechanism for salt tectonics. For example, bulk shortening of the Silverpit 

Basin resulted in the formation of detached anticlines and synclines with 

highly deformed intra-salt deformation experienced by the Z3 Stringer. When 

compressed, salt stringers respond to the applied stress by either being 

deformed in a ductile manner, as when a ductile layer is overlain by thick 

overburden, or in a brittle manner, by being fractured and displaced. Because 

of regional tectonics, salt stringers can display complex structures such as 

normal and thrust faults, bending faults, synclines, anticlines, boudinages, and 

non-cylindrical buckled folds. 

3. The degree of deformation of the stringers is related to the rheology of the 

encasing regional salt layer. Stringers are easily folded and more resistant to 

brittle deformation in areas where the encasing salt is thick. Deformation in 

the form of boudinaging, lateral stretching, and fragmentation of stringers is 

common in areas where the encasing salt has witnessed a high rate of 
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subsidence. In addition, the shortening intensity of the regional anticlinal 

structures is directly proportional with the tightness of the intra-salt folding and 

inversely proportional to the internal fold wavelengths.  

4. Analysing the structural styles of salt stringers is an important tool for seismic 

interpreters to predict deformational styles of the stringers and understanding 

regional tectonics. The analysis of these stringers will contribute to the 

understanding of the complexity of intra-salt petroleum systems in several salt 

basins around the world.  
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Appendix 2.1: Summary chart of the velocities, thicknesses and formation tops of the internal 
Zechstein intervals. The data were manually collected from the completion report of well 43-
19-2.  
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Appendix 5.1: Interlimb angles of the Z3 Stringer folds below the domains A1D, A2D, A3D, 
A4D S1D, and S4D in the Cavendish 3D seismic survey. 

Interlimb Angles of the Z3 Stringer Folds in (°) 

A1D A2D A3D A4D S1D S4D 

62 67 132 63 66 107 113 

64 69 132 64 67 109 113 

66 94 132 66 67 110 128 

67 95 133 66 69 125 128 

68 96 133 68 88 131 134 

69 98 135 94 88 132 134 

69 99 135 94 88 132 134 

78 101 136 94 88 133 134 

78 103 137 94 88 134 136 

79 104 138 94 88 134 136 

81 105 140 94 88 139 141 

84 105 141 94 88 139 141 

85 106 141 95 89 141 143 

85 107 145 95 89 141 143 

86 108 148 96 90 142 144 

86 110 148 96 90 142 144 

86 110 148 96 90 145 147 

86 110 149 96 90 145 147 

88 110 153 98 92 145 147 

88 111 159 98 92 146 148 

88 113 163 98 92 150 152 

88 115   98 92 150 152 

90 116   100 94 150 152 

90 117   100 94 150 152 

91 118   101 95 151 155 

91 118   101 95 152 155 

91 119   101 95 153 155 

91 119   101 95 153 155 

91 119   101 95 154 156 
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91 120   101 95 154 156 

92 120   102 96 154 156 

92 120   102 96 154 156 

93 122   103 97 155 157 

93 122   103 97 155 157 

94 123   104 98 156 158 

94 123   104 98 156 158 

96 123   106 100 160 162 

96 125   106 100 160 162 

100 125   110 104 161 163 

100 125   110 104 162 164 

100 126   110 104 163 166 

100 126   110 104 164 166 

101 126   111 105 165 167 

101 128   111 105 165 167 

116 129   114 120 173 175 

116 129   115 120 173 175 

117 131   143 137 174 176 

62 67 63 66 107 113 

119 131 143 137 175 177 

88.551 121.942029 98.5102 94.3878 147.367 150 

 


