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We examined complement-dependent cytotoxicity (CDC) by hexamer formation-enhanced CD20 mAb Hx-7D8
of patient-derived chronic lymphocytic leukemia (CLL) cells that are relatively resistant to CDC. CDC was ana-
lyzed in normal human serum (NHS) and serum from an individual genetically deficient for C9. Hx-7D8 was
able to kill up to 80% of CLL cells in complete absence of C9. We conclude that the narrow C5b-8 pores formed
without C9 are sufficient for CDC due to efficient antibody-mediated hexamer formation. In the absence of C9,
we observed transient intracellular increases of Ca2+ during CDC (as assessed with FLUO-4) that were extended
in time. This suggests that small C5b-8 pores allow Ca2+ to enter the cell, while dissipation of the fluorescent sig-
nal accompanying cell disintegration is delayed. The Ca2+ signal is retained concomitantlywith TOPRO-3 (viabil-
ity dye) staining, thereby confirming that Ca2+ influx represents the most proximate mediator of cell death by
CDC.

© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

Recently we reported that IgG antibodies bound to cognate cell sur-
face antigens can assemble into ordered hexamers which efficiently in-
teract with C1q to induce complement activation and complement-
dependent cytotoxicity (CDC) [1]. Hexamer formation is mediated by
non-covalent Fc-Fc contacts between IgG molecules which can be en-
hanced by specific point mutations in the Fc domain. 7D8 is an IgG1
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Type I CD20 mAb that is almost identical to Type I CD20 mAb
ofatumumab in primary amino acid sequence [2]. Hx-7D8was generat-
ed by a glutamic acid to glycine (E430G)mutation inmAb 7D8, and rep-
resents an example of such a hexamerization-enhanced IgG (Hexabody
molecule) [3]. We previously demonstrated that B-cells, including pri-
mary CLL cells opsonized with mAb Hx-7D8 are rapidly (b2 min)
killed by CDC at high levels (N80%) in NHS as well as in C9-
depleted human sera containing only trace amounts of C9 [4]. We
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also found that Hx-7D8 opsonized CLL cells but not Z138 cells could
even be killed by CDC in the presence of a neutralizing anti-C9
mAb. This raised the important question as to whether an incom-
plete membrane attack complex (C5b-8) alone could promote CDC
of CLL cells

reacted with Hx-7D8.
C
C
C
M
N

DC
 complement-dependent cytotoxicity

LL
 chronic lymphocytic leukemia

9-D
 serum genetically deficient in C9

AC
 membrane attack complex containing C5b,C6,C7,C8 and multiple copies of C9

HS
 normal human serum

TX
 rituximab.
R
2. Materials and methods

2.1. Characterization of C9-deficient serum

Serum (2.5 ml) was obtained under informed consent from normal
donors and from an individual genetically deficient in C9 (C9-deficient
serum; homozygous for Arg95-stopmutation) seen at Nagoya Universi-
ty Medical School. To confirm absence of C9, NHS and C9-deficient (C9-
D) serum were diluted in PBS, run on 10% SDS-PAGE (reducing condi-
tions), blotted onto nitrocellulose and probedwith an anti-C9monoclo-
nal antibody (B7). The B7 mAb was generated in mice immunized with
pure human C9 and was confirmed to be C9-specific by ELISA, western
blotting and by capacity to immunoaffinity purify C9 from human
serum in a specific manner [5]. To test effects of C9 deficiency on com-
plement hemolytic activity, antibody-sensitized sheep erythrocytes
(2% in veronal-buffered saline containing Ca2+ and Mg2+; VBS++)
were incubated (37 °C; 15 min) with equal volumes of a dilution series
(in VBS++) of NHS or C9-D serum in triplicate in 96-well microtiter
plates. Plates were centrifuged, supernatant harvested and absorbance
read (540 nm). Controls (100% and 0% lysis) were included and used
to calculate % hemolysis. In some hemolysis experiments, purified C9
was added to neat C9-D serum to restore approximate physiological
concentration (100 μg/mL) prior to testing.

2.2. Tumor cell killing and evaluation of membrane attack complex (MAC)
binding

We followed our published protocols for CDC assays and for labeling
cells with Ca2+-sensitive fluorescent indicator FLUO-4 [3,4]. FITC-
labeled mAb aE11 (Hycult) is specific for a neoepitope on C9 in the
MAC [6]. Fluorescence intensities are quantitated based on molecules
of equivalent soluble fluorophore (MESF units) as we have described
previously [3,4]. CLL cells were obtained as reported [3,4]. CDC assays
were conducted at 37 °C in 25% serum at 5 × 106 cells/ml and 10 μg/
ml CD20 mAb. All experiments were performed in duplicate or tripli-
cate, and means and SD are displayed.

3. Results and discussion

3.1. Analyses of C9-D serum and CDC

Weobtained serum fromapatient devoid of C9due to anArg95-stop
mutation. Using immunoblot (Fig. 1A) and a classical pathway hemolyt-
ic assay (Fig. 1B), we confirmed the absence of C9 and hemolysis. Addi-
tion of 100 μg/ml C9 restored hemolytic activity to levels comparable
with NHS.

In 25% C9-D serum, CLL cells from six patients reactedwithmAbHx-
7D8 were killed, with CDC varying between 36 and 85%, while CDC of
CLL cells from the same patients in 25% NHS was ≥82% (Fig. 1C). Addi-
tion of 18 μg/ml purified C9 to 25% C9-D serum measurably increased
CLL cell killing (p b 0.01); on average, CDC increased ~10%. In order to
define background CDC, and to test for cell killing in the absence of
complement, mAb Hx-7D8 was reacted with cells from three patients
in media, and CDC averaged b20%, which was slightly less than the av-
erage CDC of cells incubated with the isotype control mAb Hx-b12 in
25% NHS (Fig. 1C). CDC of Z138 cells was low in C9-D serum, and
remained low after C9 addition, but substantial CDC of Z138 cells was
observed in 25% NHS (Fig. 1D). These resultsmight be due to high levels
of CD59 on these cells. Finally, we reacted CLL cells from two patients
with rituximab (RTX), in NHS, or in C9-D serum ± C9 (Fig. 1C). CDC
was 16% or less, even in NHS, in agreement with reports that RTX gen-
erally does not mediate CDC of CLL cells [7–9].

3.2. Binding of the MAC to cells

Based on probingwith FITCmAb aE11, specific for the neoepitope on
activated C9, there was no MAC assembly on CLL or Z138 cells reacted
with mAb Hx-7D8 in C9-D serum (Fig. 1 EF). However, addition of C9
to C9-D serum led to substantial binding ofMACs to CLL cells, withmod-
est but statistically significant increases in binding to Z138 cells. Under
comparable conditions in intact NHS, more MAC binding was demon-
strable. There is a considerable range of binding of FITC mAb aE11 to
CLL cells reacted with Hx-7D8 in NHS, and binding correlates with ex-
pression levels of CD20. That is, cells with more CD20 bind more mAb
Hx-7D8 mAb and activate complement more efficiently, leading to de-
position of more MACs (Fig. 1G). For CLL cells of 3 patients with lower
CD20 levels, we observed a 10-fold increase in the FITCmAb aE11 signal
(MESF units) for C9-D serumwith C9 added. However, there was a 100-
fold increase for CLL cells from patients with higher CD20 levels (Fig.
1E). The increase in the FITC mAb aE11 signal on addition of C9 was
only 3-fold for Z138 cells (Fig. 1F), which might be explained by their
high CD59 expression. In summary, these results demonstrate that
there is noMAC generated in the C9-D serum, but the CLL cells can nev-
ertheless be killed at moderate to high levels.

3.3. Analyses of the role of Ca2+ in CDC

Detailed CDC studies in NHS previously demonstrated that influx of
large amounts of Ca2+ into cells, mediated by the membrane attack
complex (C5b-9), is the most proximate mediator of cell death [3,4,
10]. Whether Ca2+ influx mediated by C5b-8 plays a similar role in
CDC of CLL cells incubatedwithmAbHx-7D8 in sera lacking C9, is there-
fore a key issue.

We examined the kinetics of Ca2+ flux in CLL cells loadedwith fluo-
rescent Ca2+ indicator FLUO-4. In C9-D serum, FLUO-4 loaded cells op-
sonized with mAb Hx-7D8 were killed, but CDC was slower and less
complete than observed in intact NHS: 71% dead at 2 min vs 89% dead
at 1 min, respectively (Fig. 2A). Prior to onset of CDC, FLUO-4 labeled
cells exhibited dim green fluorescence. Early in the CDC reaction, a
bright fluorescent signal was generated in live cells as the cell mem-
brane was first permeabilized [4]. This bright transition state was
short lived; later, as the cell membrane was more completely permeat-
ed and the cell was killed, FLUO-4 leaked out and a smaller FLUO-4 sig-
nal remained in dead cells, due to Ca2+-chelated FLUO-4 localized to
mitochondria. However, in C9-D serum the transition state intermedi-
ate was considerably more stable, as reflected in the long time
(N1.5 min) the cells had a bright FLUO-4 signal (Fig. 2B). It is likely
that damage to CLL cell plasma membranes by C5b-8 allows influx of
sufficient Ca2+ to kill cells, but egress of FLUO-4 is slower due to less ef-
ficient permeabilization of plasma membranes (i.e., smaller pores) of
the CLL cells by C5b-8 relative to C5b-9 [11]. Due to the small amount
of C9-D serum available we were not able to directly measure pore
sizes in these experiments. We can also differentiate the action of
C5b-8 on CLL cells compared to that of C5b-9 based on a slower killing
reaction. The results in both Figs. 1 and 2 indicate that less killing is ob-
served in C9-D serum compared to intact NHS, and although there are
several possible explanations for this finding, including the relative
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levels of CD59 on the cells, examination of this question is beyond the
scope of this brief report.

Control experiments in which cells were incubated with RTX and
sampled at multiple times show a very different pattern (Fig. 2A–B):
CDC was quite low, and there was little evidence for Ca2+ fluxes.
Additional controls included cells thatwere reacted for 900 swith either
no mAb, or with the isotype control Hx-b12, and with either NHS or
with C9-D serum. Under these four conditions, none of the cells were
killed (Fig. 2A). In addition the intensity of the FLUO-4 signals at 900 s
for all of these cells was higher than the signal for cells that were killed

Image of Fig. 1


Fig. 2. Analysis of CDC and Ca2+ fluxes in FLUO-4 loaded CLL cells (pn 2014, red circles,
Fig. 1) reacted with Hx-7D8 or RTX, in either NHS, or in C9-D serum. A. CDC kinetics
mediated by Hx-7D8 in C9-D serum were slower and killing peaked at about 80%,
compared to results in intact NHS where killing reached 95%. CDC mediated by RTX was
low under both conditions. B. During CDC mediated by Hx-7D8, the FLUO-4 signal is
increased considerably and remains substantially elevated for 3 min (indicative of the
transition state intermediate) for CLL cells reacted with Hx-7D8 in C9-D serum. Controls
include cells reacted for 900 s in NHS or in C9-D serum, with either the isotype control
Hx-b12, or with no mAb.
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by Hx-7D8 in NHS (41,000 ± 1000 MESF vs 10,400 ± 280 MESF). This
finding can be most reasonably explained based on the greater loss of
FLUO-4 from the dead cells that were most effectively permeabilized
by the intact C5b-9 complex.

3.4. Implications of this work, based on previous findings

Several reports indicate that erythrocytes and certain nucleated cells
can be slowly killed by CDC in the absence of C9, but the details of these
Fig. 1. C9-deficient serum lacks any detectable C9, but can mediate high levels of lysis of CLL ce
NHS at different dilutions. The membrane was probed with anti-C9 mAb B7. B. Hemolytic
determinations and error bars represent SD of triplicates. CDEF. The ability of mAb Hx-7D8 to
cells from six different patients or of Z138 cells was evaluated in either: C9-D serum (25%); C
7D8 reacted with cells in media (4 of 6 CLL cell samples) as well as RTX (2 CLL samples) o
conditions. Each color represents a different patient (pn); all determinations were in duplica
58 ± 17% for CLL cells reacted in C9-D serum; 67 ± 20% for CLL cells reacted in C9-D serum+
the same three respective conditions: 18%; 23%, and 98%. E. In the same experiments, assem
with FITC mAb aE11. Mean binding and SD of FITC aE11 (MESF units): 700 ± 200 for CLL ce
193,000 ± 178,000 for CLL cells reacted in NHS. F. Detection of MAC on Z138 cells: MESF
differences are based on single tail paired t-tests. *, p b 0.05; **, p b 0.01. G. Binding of anti-C
CD20 on the cells. (Spearman rank correlation coefficient of 1; p = 0.00278). Relative CD20 le
7D8, followed, after a wash, by Alexa 647-labeled anti-Human Fc mAb HB43. Circles represe
represent cells reacted in C9-D serum. The dashed line gives the average signal for cells reacte
reactions, including the role of Ca2+, were never elucidated [12–14].
Sharp et al. recently reported the pore sizes of C5b-9 and C5b-8, to
have a width of 10–11.5 nm and 3.5 nm respectively [11]. Using
serum devoid of C9 due to a genetic defect, our results strongly suggest
that C5b-8 pores can mediate influx of lethal amounts of Ca2+ into CLL
cells to promote CDC. Previouslywe reported that a neutralizing anti-C9
mAb completely blocked mAb Hx-7D8 mediated CDC of Z138 cells, in
both NHS and in C9-depleted serum [4]. However, this neutralizing
mAb failed to block CDC of CLL cells under identical conditions, thus in-
dicating that C9 is not required to mediate CDC of mAb-opsonized CLL
cells, and therefore providing strong motivation for the present series
of experiments, the results of which now re-inforce our previous
findings.

We conclude that CLL cells opsonized with hexamerization-
enhanced CD20 mAb Hx-7D8 are rapidly killed by CDC in the complete
absence of C9, suggesting that assembly of small C5b-8 pores is sufficient
for CDC. This finding supports the potential for future use of hexamer-
formation enhanced mAbs in cancer immunotherapy.
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