Pruning Hypothesis Spaces
Using Learned Domain Theories

Martin Svatos! (D<), Gustav Sourek!, Filip Zelezny', Steven Schockaert?, and
Ondiej Kuzelka?

! Czech Technical University, Prague, Czech Republic
{svatomal, souregus,zelezny}@fel.cvut.cz
2 School of CS & Informatics, Cardiff University, Cardiff, UK
SchockaertS1Qcardiff.ac.uk
3 Department of Computer Science, KU Leuven, Belgium
ondrej.kuzelka@kuleuven.be

Abstract. We present a method to prune hypothesis spaces in the con-
text of inductive logic programming. The main strategy of our method
consists in removing hypotheses that are equivalent to already consid-
ered hypotheses. The distinguishing feature of our method is that we use
learned domain theories to check for equivalence, in contrast to existing
approaches which only prune isomorphic hypotheses. Specifically, we use
such learned domain theories to saturate hypotheses and then check if
these saturations are isomorphic. While conceptually simple, we exper-
imentally show that the resulting pruning strategy can be surprisingly
effective in reducing both computation time and memory consumption
when searching for long clauses, compared to approaches that only con-
sider isomorphism.

1 Introduction

A key challenge for inductive logic programmming (ILP) algorithms (e.g. Pro-
gol [12]) is the fact that they typically have to search through large hypothesis
spaces. Methods for pruning this search space have the potential to dramatically
improve the quality of learned hypotheses and/or the runtime of the algorithms.
One way of doing this is by filtering isomorphic hypotheses, which is the strat-
egy used, for instance, in the relational pattern mining algorithm Farmr [14].
However, pruning isomorphic hypotheses is often not optimal, in the sense that
it may be possible to prune hypotheses which are not isomorphic, but which are
nonetheless equivalent in the considered domain. For example, the hypothesis
that “if X is the father of Y then X and Y have the same last name” is equiva-
lent to the hypothesis that “if X is male and a parent of Y then X and Y have
the same last name”.

In this paper, we introduce a method which explicitly tries to prune equiva-
lent hypotheses that are created during the hypothesis search, while still main-
taining completeness?. One important challenge is that we need a quick way of

4 As we show later in the paper, the completeness requirement disqualifies relative
subsumption [15] as a candidate for such a pruning method.

2 Svatos, Sourek, Zelezny, Schockaert, Kuzelka

testing whether a new hypothesis is equivalent to a previously considered one.
To this end, we propose a saturation method which, given a first-order-logic
clause, derives a longer saturated clause that is equivalent to it modulo a domain
theory. This saturation method has the important property that two clauses are
equivalent, given a domain theory, whenever their saturations are isomorphic.
This means that we can use saturations to detect equivalent hypotheses as fol-
lows. We compute saturations of all hypotheses as they are being constructed,
as well as certain invariants® of these saturations. Then we use the invariants to
compute hashes for the saturated hypotheses, which allows us to use hash tables
to efficiently narrow down the set of previously constructed hypotheses against
which equivalence needs to be tested. In this way, we can avoid the need to
explicitly compare new hypotheses with all previously constructed ones, which
would clearly be infeasible in spaces with possibly millions of hypotheses. Note
that this technique crucially relies on the use of saturations, and would not be
possible with e.g. just a notion of relative subsumption modulo a background
theory. To avoid the need for any prior domain knowledge, our method learns
the required domain theories from the training data.

We experimentally show that our method can be orders of magnitude faster
than methods which merely check for isomorphism, even when taking into ac-
count the time needed for learning domain theories.

2 Preliminaries

In this section, we first give an overview of the notations and terminology from
first-order logic that will be used throughout the paper, after which Section 2.2
describes the considered learning setting.

2.1 First-Order Logic

We consider a function-free first-order language, which is built from a finite set
of constants, variables, and predicates in the usual way. A term is a variable or
a constant. An atom is a formula of the form p(ti,...,¢,), where p is an n-ary
predicate symbol and t1, ..., t,, are terms. A literal is an atom or the negation of
an atom. A clause A is a universally quantified disjunction of literals V...V, :
¢1V ...V ¢, such that z1,..,x, are the only variables occurring in the literals
@1, ..., k. For the ease of presentation, we will sometimes identify a clause A
with the corresponding set of literals {¢1, ..., ¢x }. The set of variables occurring
in a clause A is written as vars(A) and the set of all terms as terms(A). For a

clause A, we define the sign flipping operation as AL Viea [, where @ = —a
and —a = a for an atom a. In other words, the sign flipping operation simply
replaces each literal by its negation.

A substitution # is a mapping from variables to terms. For a clause A, we
write A0 for the clause {¢0|¢ € A}, where ¢0 is obtained by replacing each

5 We use invariants based on a generalized version of Weisfeiler-Lehman procedure
[22].

Pruning Hypothesis Spaces Using Learned Domain Theories 3

occurrence in ¢ of a variable v by the corresponding term 6(v). If A and B are
clauses then we say that A 6-subsumes B (denoted A <y B) if and only if there
is a substitution 6 such that A9 C B.If A <y B and B <y A, we call A and B 0-
equivalent (denoted A ~y B). Note that the ~ relation is indeed an equivalence
relation (i.e. it is reflexive, symmetric and transitive). Clauses A and B are said
to be isomorphic (denoted A =4, B) if there exists an injective substitution
such that A9 = B. Finally, we say that A OI-subsumes B (denoted A <¢o; B [6])
if there is an injective substitution such that A6 C B. Note that A is isomorphic
to B iff A <po; B and B <o51 A.

Example 1. Let us consider the following four clauses:

C1 =pi1(A,B)V —p2(4, B)
Co =p1(A, B)V —pa(A, B) V —p2(4,C)
Cs =p1(X,Y)V-pa(X,Y) V =p2(X, Z)
Cys =p1(A, B)V —p3(A, B)

Then we can easily verify that C; ~¢ Cy =¢ C3 (and thus also C; =¢ C; for
i,7 € {1,2,3}). We also have C] #;5, Ca, C1 %50 Cs, C2 =5, Cs, as well as
C; 29 Cy and Cy A¢ C; for any i € {1,2,3}. Finally we also have C; <o C; for
1€ {1,2,3}, Cy =01 C3 and C3 <oy Cs.

A literal is ground if it does not contain any variables. A grounding substitu-
tion is a substitution in which each variable is mapped to a constant. Clearly, if 6
is a grounding substitution, then for any literal ¢ it holds that ¢ is ground. An
interpretation w is defined as a set of ground literals. A clause A = {¢1, ..., o, }
is satisfied by w, written w | A, if for each grounding substitution 6, it holds
that {¢10, ..., 9,0} Nw # 0. In particular, note that a ground literal ¢ is satisfied
by w if ¢ € w. The satisfaction relation |= is extended to (sets of) propositional
combinations of clauses in the usual way. If w =T, for T a propositional com-
bination of clauses, we say that w is a model of T'. If T has at least one model,
we say T is satisfiable. Finally, for two (propositional combinations of) clauses
A and B, we write A = B if every model of A is also a model of B. Note that
if A <y B for clauses A and B then A = B, but the converse does not hold in
general.

Deciding 6-subsumption between two clauses is an NP-complete problem.
It is closely related to constraint satisfaction problems with finite domains and
tabular constraints [4], conjunctive query containment [3] and homomorphism of
relational structures. The formulation of #-subsumption as a constraint satisfac-
tion problem has been exploited in the ILP literature for the development of fast
f-subsumption algorithms [11, 8]. CSP solvers can also be used to check whether
two clauses are isomorphic, by using the primal CSP encoding described in [11]
together with an alldifferent constraint [7] over CSP variables representing logi-
cal variables. In practice, this approach to isomorphism checking can be further
optimized by pre-computing a directed hypergraph variant of Weisfeiler-Lehman
coloring [22] (where terms play the role of hyper-vertices and literals the role of

4 Svatos, Sourek, Zelezny, Schockaert, Kuzelka

directed hyper-edges) and by enriching the respective clauses by unary liter-
als with predicates representing the labels obtained by the Weisfeiler-Lehman
procedure, which helps the CSP solver to reduce its search space.

2.2 Learning Setting

In this paper we will work in the classical setting of learning from interpretations
[16]. In this setting, examples are interpretations and hypotheses are clausal
theories (i.e. conjunctions of clauses). An example e is said to be covered by a
hypothesis H if e = H (i.e. e is covered by H if it is a model of H). Given
a set of positive examples £t and negative examples £, the training task is
then to find a hypothesis H from some class of hypotheses H which optimizes
a given scoring function (e.g. training error). For the ease of presentation, we
will restrict ourselves to classes H of hypotheses in the form of clausal theories
without constants, as constants can be emulated by unary predicates (since we
do not consider functions).

The covering relation e = H can be checked using a #-subsumption solver
as follows. Each hypothesis H can be written as a conjunction of clauses H =
Cy A--- ANCy,. Clearly, e = H if there is an 4 in {1,...,n} such that e | —=C;,
which holds precisely when C; <y —(Ae).

Ezxample 2. Let us consider the following example, inspired by the Michalski’s
East-West trains datasets [20]:

e = {eastBound(carl), hasCar(carl), hasLoad(carl,loadl), boxShape(loadl),
—eastBound(loadl), ~hasCar(loadl), ~hasLoad(loadl, carl),
—hasLoad(loadl, load1), ~hasLoad(carl, carl), ~boxShape(carl)}

and two hypotheses H; and Ho

Hy = eastBound(C') V —hasLoad(C, L) V —boxzShape(L)
Hy = —eastBound(C) V —hasLoad(C, L)

To check if e = H;, ¢ = 1,2, using a #-subsumption solver, we construct

ﬂ(/\ e) = —eastBound(carl) V —hasCar(carl) V —~hasLoad(carl,loadl)V

V boxShape(loadl) V eastBound(load1) V hasCar(loadl)V
V hasLoad(load1, carl) V hasLoad(load1, loadl) V hasLoad(carl, carl)
VbozShape(carl)

It is then easy to check that Hy Z¢ —(Ae) and Hy =<y =(/Ae), from which it
follows that e = Hy and e [~ Ho.

In practice, when using a f-subsumption solver to check C; <o —=(Ae), it
is usually beneficial to flip the signs of all the literals, i.e. to instead check
C; =p \ e, which is clearly equivalent. This is because §-subsumption solvers

Pruning Hypothesis Spaces Using Learned Domain Theories 5

often represent negative literals in interpretations implicitly to avoid excessive
memory consumption®, relying on the assumption that most predicates in real-
life datasets are sparse.

2.3 Theorem Proving Using SAT Solvers

The methods described in this paper will require access to an efficient theo-
rem prover for clausal theories. Since we restrict ourselves to function-free theo-
ries without equality, we can rely on a simple theorem-proving procedure based
on propositionalization, which is a consequence of the following well-known re-
sult” [13].

Theorem 1 (Herbrand’s Theorem). Let £ be a first-order language without
equality and with at least one constant symbol, and let T be a set of clauses.
Then T is unsatisfiable iff there exists some finite set To of L-ground instances
of clauses from T that is unsatisfiable.

Here A# is called an L£-ground instance of a clause A if 6 is a grounding substi-
tution that maps each variable occurring in A to a constant from the language
L.

In particular, to decide if 7 = C holds, where T is a set of clauses and C' is
a clause (without constants and function symbols), we need to check if T A =C
is unsatisfiable. Since Skolemization preserves satisfiability, this is the case iff
T A=Cgy is unsatisfiable, where —Clgy, is obtained from —C' using Skolemization.
Let us now consider the restriction Lg of the considered first-order language
L to the constants appearing in Cgy, or to some auxiliary constant sqg if there
are no constants in Cs;. From Herbrand’s theorem, we know that 7 A =Clgy is
unsatisfiable in Lgy iff the grounding of this formula w.r.t. the constants from
Lgy, is satisfiable, which we can efficiently check using a SAT solver. Moreover, it
is easy to see that T A—Clgy is unsatisfiable in Lgy iff this formula is unsatisfiable
in £ 8.

In practice, it is not always necessary to completely ground the formula
T AN=Cgp. It is often beneficial to use an incremental grounding strategy similar
to cutting plane inference in Markov logic [19]. To check if a clausal theory T is
satisfiable, this method proceeds as follows.

Step 0: start with an empty Herbrand interpretation H and an empty set of
ground formulas G.

5 This is true for the §-subsumption solver based on [8] which we use in our imple-
mentation.

" The formulation of Hebrand’s theorem used here is taken from notes by Cook and
Pitassi: http://www.cs.toronto.edu/~toni/Courses/438/Mynotes/page39.pdf.

8 Indeed, if TA—=C'sy, is unsatisfiable in £, then there is a set of corresponding £-ground
instances of clauses that are unsatisfiable. If we replace each constant appearing in
these ground clauses which does not appear in Cs, by an arbitrary constant that does
appear in Cgg, then the resulting set of ground clauses must still be inconsistent,
since T does not contain any constants and there is no equality in the language,
meaning that 7 A =Cgi cannot be satisfiable in Lg.

6 Svatos, Sourek, Zelezny, Schockaert, Kuzelka

Step 1: check which groundings of the formulas in T are not satisfied by H (e.g.
using a CSP solver). If there are no such groundings, the algorithm returns
‘H, which is a model of 7. Otherwise the groundings are added to G.

Step 2: use a SAT solver to find a model of G. If G does not have any model
then 7 is unsatisfiable and the method finishes. Otherwise replace H by this
model and go back to Step 1.

3 Pruning Hypothesis Spaces Using Domain Theories

In this section we show how domain theories can be used to prune the search
space of ILP systems. Let us start with two motivating examples.

Ezample 3. Let us consider the following two hypotheses for some target con-
cept x:

Hy, = 2(A) V ~animal(A) V —cod(A)

Hy = 2(A) V —fish(A) V —cod(A)

Intuitively, these two hypotheses are equivalent since every cod is a fish and
and every fish is an animal. Yet ILP systems would need to consider both of
these hypotheses separately because H; and Hs are not isomorphic, they are
not #-equivalent and neither of them -subsumes the other.

Ezample 4. Problems with redundant hypotheses abound in datasets of molecules,
which are widespread in the ILP literature. For instance, consider the following
two hypotheses:

Hy = 2(A) V —carb(A) V —bond(A, B) V —bond(B, C) V —~hydro(C)
Hy = 2(A) V —carb(A) V —bond(A, B) V —bond(C, B) V —hydro(C)

These two hypotheses intuitively represent the same molecular structures (a
carbon and a hydrogen both connected to the same atom of unspecified type).
Again, however, their equivalence cannot be detected without the domain knowl-
edge that bonds in molecular datasets are symmetric®.

In the remainder of this section we will describe how background knowledge
can be used to detect equivalent hypotheses. First, we introduce the notion of
saturations of clauses in Section 3.1. Subsequently, in Section 3.2 we show why
pruning hypotheses based on these saturations does not hurt the completeness of
a refinement operator. In Section 3.3, we then explain how these saturations can
be used to efficiently prune search spaces of ILP algorithms. In Section 3.4 we
describe a simple method for learning domain theories from the given training
data. Finally, in Section 3.5 we show why using relative subsumption is not
sufficient.

9 In the physical world, bonds do not necessarily have to be symmetric, e.g. there is an
obvious asymmetry in polar bonds. However, it is a common simplification in data
mining on molecular datasets to assume that bonds are symmetric.

Pruning Hypothesis Spaces Using Learned Domain Theories 7

3.1 Saturations

The main technical ingredient of the proposed method is the following notion of
saturation.

Definition 1 (Saturation of a clause). Let B be a clausal theory and C a
clause (without constants or function symbols). If B = C, we define the satura-
tion of C w.r.t. B to be the mazimal clause C' satisfying: (i) vars(C") = vars(C')
and (i) BAC'0 |= C8 for any injective grounding substitution 0. If B = C, we
define the saturation of C w.r.t. B to be T, where T denotes tautology.

When B is clear from the context, we will simply refer to C’ as the saturation
of C.

Definition 1 naturally leads to a straightforward procedure for computing
the saturation of a given clause. Let P = {l1,la,...,l,} be the set of all literals
which can be constructed using variables from C' and predicate symbols from
B and C. Let 0 be an arbitrary injective grounding substitution; note that we
can indeed take 6 to be arbitrary because B and C' do not contain constants. If
B £ C, the saturation of C' is given by the following clause:

\{leP:BE-iovCo} (1)

This means in particular that we can straightforwardly use the SAT based theo-
rem proving method from Section 2.3 to compute saturations. The fact that (1)
correctly characterizes the saturation can be seen as follows. If C’ is the satura-
tion of C' then BA C'0 = C by definition, which is equivalent to B A —~(C0) =
—(C"0). We have —(C'8) = A{i6 : BA—(CO) E 10} = A\{i6 : BAIO = C6},
and thus C'0 = \/{l0 : BA IO = CO}. Finally, since 6 is injective, we have'®
C'=(C'0)0~ =\{l:BAIO = CH}.

Ezxample 5. Let us consider the following theory
B = {—friends(X,Y) V friends(Y, X)}
which expresses the fact that friendship is a symmetric relation and a clause
C = —friends(X,Y) V happy(X).

To find the saturation of this clause, we first need a suitable injective substitution
0; let us take § = {X — ¢1,Y +— c2}. Then we have

BU—(C0) = BU{friends(c1,c2) A —happy(c1)}
= friends(ci, ca) A friends(ca, c1) A —happy(c1),

After negating the latter formula and inverting the substitution (noting that it
is injective) we get the following saturation:

C" = =friends(X,Y) V ~friends(Y, X) V happy(X).

10 Note that we are slightly abusing notation here, as 87! is not a substitution.

8 Svatos, Sourek, Zelezny, Schockaert, Kuzelka

Now, let us consider another clause D = —friends(X,Y) V happy(Y). This
clause is not isomorphic to C'. However, it is easy to see that its saturation

D' = —friends(X,Y) V —friends(Y, X) V happy(Y)
is isomorphic to the saturation C” of C.

The next proposition will become important later in the paper as it will allow
us to replace clauses by their saturations when learning from interpretations.

Proposition 1. If C' is a saturation of C w.r.t. B then BAC' = C.

Proof. We have BAC' = C iff BAC' A—C is unsatisfiable. Skolemizing —C, this
is equivalent to BA C’ A—(C0gy) being unsatisfiable, where gy, is a substitution
representing the Skolemization. As in Section 2.3, we find that the satisfiability
of BAC" A —(Clgy) is also equivalent to the satisfiability of the grounding of
B AC"AN—=(COgy) w.r.t. the Skolem constants introduced by 6gj. In particular,
this grounding must contain the ground clause C’fgy. From the definition of
saturation, we have that B A C'0g, A =(Clsy) = F, where F denotes falsity
(noting that fgy, is injective). It follows that B A C' A =C = F, and thus also
BAC EC. O

The next proposition shows that saturations cover the same examples as the
clauses from which they were obtained, when B is a domain theory that is valid
for all examples in the dataset.

Proposition 2. Let B be a clausal theory such that for all examples e from a
given dataset it holds that e |= B. Let C be a clause and let C' be its saturation
w.r.t. B. Then for any example e from the dataset we have (e = C) < (e = C).

Proof. From the characterization of saturation in (1), it straightforwardly follows
that C' = C’, hence e |= C implies e = C’. Conversely, if e = C’, then we have
e = BAC, since we assumed that e = B. Since we furthermore know from
Proposition 1 that BA C’" = C, it follows that e = C.

Finally, we define positive and negative saturations, which only add positive or
negative literals to clauses. Among others, this will be useful in settings where
we are only learning Horn clauses.

Definition 2. A positive (resp. negative) saturation of C is defined as C"' =
CU{l € C' :1is a positive (resp. negative) literal} where C' is a saturation

of C.

Propositions 1 and 2 are also valid for positive or negative saturations; their
proofs can be straightforwardly adapted. When computing the positive (resp.
negative) saturation, we can restrict the set P of candidate literals to the pos-
itive (resp. negative) ones. This can speed up the computation of saturations
significantly.

Pruning Hypothesis Spaces Using Learned Domain Theories 9

3.2 Searching the Space of Saturations

In this section we show how saturations can be used together with refinement
operators to search the space of clauses ordered by OI-subsumption!!. Specifi-
cally, we show that if we have a refinement operator that can completely generate
some set of clauses then we can use the same refinement operator, in combination
with a procedure for computing saturations, to generate the set of all saturations
of the considered set of clauses. Since this set of saturations is typically smaller
than the complete set of clauses (as many clauses can lead to the same saturated
clauses), this is already beneficial for reducing the size of the hypothesis space.
In Section 3.3, we show that it also allows us to very quickly prune equivalent
clauses. First we give a definition of refinement operator [21].

Definition 3 (Refinement operator). Let L be a first-order language. A re-
finement operator'? on the set C of all L-clauses is a function p : C — 2€ such
that for any C € C and any D € p(C) it holds C o5 D. A refinement operator
p is complete if for any two clauses C' and D such that C <po; D, a clause E
isomorphic to D (D =5, E) can be obtained from C by repeated application of
the refinement operator (i.e. E € p(p(...p(C)...))).

Most works define refinement operators w.r.t. 6-subsumption instead of OI-
subsumption [21]. We need the restriction to OI-subsumption as a technical
condition for Proposition 3 below. It should be noted, however, that our results
remain valid for many refinement operators that are not specifically based on
OlI-subsumption, including all refinement operators that only add new literals
to clauses. Also note that we do not use OI-subsumption as a covering operator
but only to structure the space of hypotheses. Therefore there is no loss in what
hypotheses can be learnt.

The next definition formally introduces the combination of refinement oper-
ators and saturations.

Definition 4 (Saturated refinement operator). Let L be a first-order lan-
guage. Let p be a refinement operator on the set C of all L-clauses containing at
most n variables. Let B be a clausal theory. Let op : C — C be a function that
maps a clause C to its saturation C" w.r.t. B. Then the function pg = oo p is
called the saturation of p w.r.t. B.

Clearly, the saturation of a refinement operator w.r.t. some clausal theory
B is a refinement operator as well. However, it can be the case that p is com-
plete whereas its saturation is not. As we will show next, this is not a problem
for completeness w.r.t. the given theory B in the sense that saturations of all
clauses from the given class C are guaranteed to be eventually constructed by
the combined operator, when p is a complete refinement operator.

11 Note that we only use OI-subsumption to partially order the constructed hypotheses,
not to check the entailment relation.

12 What we call refinement operator in this paper is often called downward refinement
operator. Since we only consider downward refinement operators in this paper, we
omit the word downward.

10 Svatos, Sourek, Zelezny, Schockaert, Kuzelka

Proposition 3. Let L be a first-order language. Let p be a complete refinement
operator on the set of L-clauses C, B be clausal theory, op a function that maps
a clause C to its saturation C' w.r.t. B and let pg be the saturation of p w.r.t. B.
Let C € C be a clause, S¢ and let Sg be the sets of clauses that can be obtained
from C' by repeated application of p and pg, respectively. Then for any clause
D € Sc there is a clause D' € SB such that o(D) ~s, D'.

Proof. We first note that if A <o; B then op(A4) <or op(B) (assuming an
extended definition of OI-subsumption such that A <oy T for any A), which
follows from the monotonicity of the entailment relation f=. Let us define X =
{o5(A)|A € Sc}. Note that X and S5 are not defined in the same way (X is
the set of saturations of clauses in S¢ whereas Sg is the set of clauses that can
be obtained by the saturated refinement operator pg from the clause C). We
need to show that these two sets are equivalent. Clearly, Sg C X. To show the
other direction, let us assume (for contradiction) that there is a clause X € X
for which there is no clause Y € SE which is isomorphic to X. Let us assume
that X is a minimal clause with this property, meaning that for any clause
X'’ contained in the set Zx = {Z € X|Z <or X N X %5, Z} there is a
clause Y/ € Sg which is isomorphic to X'. Clearly, if there is one such clause
X then there is also a minimal one which follows from the fact that all the
considered clauses are finite and <p; is a partial order. Let us take a clause
X' € Zx which is maximal'® w.r.t. the ordering induced by <o; and let Y’
be the respective isomorphic clause from S5. Then p(Y”) must contain a clause
Y" Y %4, Y, that Ol-subsumes X, which follows from completeness of the
refinement operator p. However, then o5(Y”) must be contained in S5. It must
also hold that op(Y") <or o5(X) = X. Here, o5(Y") <01 05(X) follows from
the already mentioned observation that if A <o; B then oz(A) <01 op(B), and
the equality og(X) = X follows from the idempotence of o, noting that X is
already a saturation of some clause. However, this is a contradiction with the
maximality of X’ and the corresponding Y. O

3.3 Pruning Isomorphic Saturations

When searching the space of clauses or, in particular, saturations of clauses, we
should avoid searching through isomorphic clauses. It is easy to see that the sets
of clauses generated by a (saturated) complete refinement operator p from two
isomorphic clauses C and C” will contain clauses that are isomorphic (i.e. for any
clause in the first set there will be an isomorphic clause in the second set and
vice versa). Therefore it is safe to prune isomorphic clauses during the search.
When searching through the hypothesis space of clauses, most ILP algorithms
maintain some queue of candidate clauses. This is the case, for instance, in
algorithms based on best-first search (Progol, Aleph [12]). Other algorithms, e.g.
those based on level-wise search, maintain similar data structures (e.g. Warmr

13 If we ordered the set of clauses by §-subsumption instead of Ol-subsumption then
there would not have to exist a maximal clause with this property.

Pruning Hypothesis Spaces Using Learned Domain Theories 11

[5]). Many of the clauses that are stored in such queues or similar data structures
will be equivalent, even if they are not isomorphic. Existing methods, even if they
were removing isomorphic clauses during search'?, have to consider each of these
equivalent clauses separately, which may greatly affect their performance. This
is where using saturations of clauses w.r.t. some background knowledge is most
useful because it can replace the different implicitly equivalent clauses by their
saturation.

In theory, one could try to test isomorphism of all pairs of clauses currently
in the queue data structures. However, this would be prohibitively slow in most
practical cases. To efficiently detect equivalences by checking isomorphism of
saturations, we replace the queue data structure (or a similar data structure
used by the given algorithm) by a data structure that is based on hash tables.
When a new hypothesis H is constructed by the algorithm, we first compute
its saturation H’. Then, we check whether the modified queue data structure
already contains a clause that is isomorphic to H’. To efficiently check this, we
use a straightforward generalization of the Weisfeiler-Lehman labeling procedure
[22]. We then only need to check whether two clauses are isomorphic if they have
the same hash value. We similarly check whether H’ is isomorphic to a clause
in the so-called closed set of previously processed hypotheses. If H’ is neither
isomorphic to a clause in the queue nor to a clause in the closed set, it is added
to the queue.

Ezample 6. Let us again consider the two clauses from Example 3: H; = z(A) V
—animal(A) V —cod(A) and Hy = x(A) V —fish(A) V =cod(A). Suppose that the
theory B encodes the taxonomy of animals and contains the rules —cod(X) V
fish(X) and —fish(X) V animal(X). Computing the saturations of Hy and Hs,
we obtain H] = z(A4) V —animal(A) V —=cod(A) V —fish(A) and H) = z(A) V
—fish(A) V —cod(A) V —~animal(A), which are isomorphic. Therefore both of them
can be replaced by the same saturations while the corresponding algorithm keeps
searching the hypothesis space.

Similarly as shown above for the two clauses from Example 3, saturations could
be used to detect equivalence of the two clauses from Example 4 w.r.t. the
corresponding background knowledge theory B.

In addition to equivalence testing, saturations can be used to filter trivial
hypotheses, i.e. hypotheses covering every example, without explicitly computing
their coverage on the dataset (which would be very costly on large datasets). We
illustrate this use of saturations in the next example.

Ezample 7. Consider a domain theory B = —professor(X) V —student(X) which
states that no one can be both a student and a professor. Let us also consider
a hypothesis H = employee(X) V —professor(X) V —student(X). If the domain
theory B is correct, H should cover all examples from the dataset and is thus
trivial. Accordingly, the saturation of H contains every literal, and is in particular
equivalent to T.

' For instance, Farmr [14] or RelF [9] remove isomorphic clauses (or conjunctive pat-
terns), but many existing ILP systems do not attempt removing isomorphic clauses.

12 Svatos, Sourek, Zelezny, Schockaert, Kuzelka

3.4 Learning Domain Theories for Pruning

The domain theories that we want to use for pruning hypothesis spaces can be
learned from the given training dataset. Every clause C' in such a learned domain
theory should satisfy e = C for all examples e in the dataset. We construct such
theories using a level-wise search procedure, starting with an empty domain
theory. The level-wise procedure maintains a list of candidate clauses (modulo
isomorphism) with ¢ literals. If a clause C' in the list of candidate clauses covers
all examples (i.e. e = C for all e from the dataset) then it is removed from the
list and if there is no clause in the domain theory which #-subsumes C, then C
is also added to the domain theory. Each of the remaining clauses in the list,
i.e. those which do not cover all examples in the dataset, are then extended in
all possible ways by the addition of a literal. This is repeated until a threshold
on the maximum number of literals is reached. The covering of examples by the
candidate clauses is checked using #-subsumption as outlined in Section 2.

It is worth pointing out that if we restrict the domain theories, e.g. to contain
only clauses of length at most 2 or only Horn clauses, the saturation process will
be guaranteed to run in polynomial time (which follows from the polynomial-
time solvability of 2-SAT and Horn-SAT).

3.5 Why Relative Subsumption is Not Sufficient

Although the motivation behind relative subsumption [15] is similar to ours,
relative subsumption has two main disadvantages that basically disqualify it for
the purpose of pruning the hypothesis space. The first problem is that pruning
hypotheses that are equivalent w.r.t. relative subsumption may not guarantee
completeness of the search. This is the same issue as with pruning based on
plain #-subsumption which, unlike pruning based on isomorphism, may lead to
incompleteness of the search. Note that this is already the case in the more
restricted setting of graph mining under homomorphism [18]. The second issue
with relative subsumption is that it would need to be tested for all pairs of
candidate hypotheses, whereas the pruning based on saturations and isomor-
phism testing allows us to use the more efficient hashing strategy based on the
Weisfeiler-Lehman procedure.

4 Experiments

In this section we evaluate the usefulness of the proposed pruning method on real
datasets. We test it inside an exhaustive feature construction algorithm which
we then evaluate on a standard molecular dataset KM20L2 from the NCI GI
50 dataset collection [17]. This dataset contains 1207 examples (molecules) and
94263 facts.

4.1 Methodology and Implementation

The evaluated feature construction method is a simple level-wise algorithm which
works similarly to the Warmr frequent pattern mining algorithm [5]. It takes two

Pruning Hypothesis Spaces Using Learned Domain Theories 13

parameters: maximum depth d and maximum number of covered examples ¢ (also
called “maximum frequency”). It returns all connected!® clauses which can be
obtained by saturating clauses containing at most d literals, and which cover
at most t examples. Unlike in frequent conjunctive pattern mining where mini-
mum frequency constraints are natural, when mining in the setting of learning
from interpretations, the analogue of the minimum frequency is the maximum
frequency constraint!®.

The level-wise algorithm expects as input a list of interpretations (examples)
and the parameters ¢t and d > 0. It proceeds as follows:

Step 0: set i := 0 and Lg := {0} where O denotes the empty clause.

Step 1: construct a set L; 11 by extending each clause from L; with a negative
literal (in all possible ways).

Step 2: replace clauses in L;;; by their negative saturations and for each set
of mutually isomorphic clauses keep only one of them.

Step 3: remove from L;y; all clauses which cover more than ¢ examples in the
dataset. ‘

Step 4: if L;;1 is empty or ¢ +1 > d then finish and return U;ﬁ) L;. Otherwise
set i := 4+ 1 and go to step 1.

As can be seen from the above pseudocode, we restricted ourselves to min-
ing clauses which contain only negative literals. This essentially corresponds to
mining positive conjunctive queries, which is arguably the most typical scenario.
Nonetheless, it would be easy to allow the algorithm to search for general clauses,
as the f-subsumption solver used in the implementation actually allows efficient
handling of negations.

We implemented the level-wise algorithm and the domain theory learner in
Javal”. To check the coverage of examples using #-subsumption, we used an
implementation of the #-subsumption algorithm from [8]. For theorem proving,
we used an incremental grounding solver which relies on the Sat4j library [1] for
solving ground theories and the #-subsumption engine from [8].

4.2 Results

We measured runtime and the total number of clauses returned by the level-wise
algorithm without saturations and with saturations. Both algorithms were ex-
actly the same, the only difference being that the second algorithm first learned
a domain theory and then used it for computing the saturations. Note in par-
ticular that both algorithms used the same isomorphism filtering. Therefore any
differences in computation time must be directly due to the use of saturations.

15 A clause is said to be connected if it cannot be written as disjunction of two non-
empty clauses. For instance VX,Y : pi1(X) V p2(Y) is not connected because it can
be written also as (VX : p1(X))V (VY : p2(Y)) but VX, Y : p1(X) Vp2(Y) Vps3(X,Y)
is connected. If a clause is connected then its saturation is also connected.

16 Frequent conjunctive pattern mining can be emulated in our setting. It is enough to
notice that the clauses that we construct are just negations of conjunctive patterns.

17 Available from https://github.com/martinsvat.

14 Svatos, Sourek, Zelezny, Schockaert, Kuzelka
T T T T T
— 4 /
% 10 // .% 104 [
: .’-/'/ :
hat 2
= 2
g 10 Z 10°F
3 / 4*
ol
100 | | | 10 | |
2 4 6 0 6
depth depth
T T T T T
= 10° 2 10t
o) 0
E =
= 3
= 2 2|
g 10 z 10
Z Ik
0 ol
10 I I I 10 1 I
2 4 6 0 4
depth depth

Fig. 1. Left panels: Runtime of the level-wise algorithm using saturations for prun-
ing (red) and without using saturations (blue). Right panels: Number of clauses
constructed by the algorithm using saturations (red) and without using saturations
(blue). Top panels display results for maximal number of covered examples equal to
dataset size minus one and bottom panels for this parameter set to dataset size mi-
nus 50, which corresponds to minimum frequency of 50. One minute, one hour, and
ten hours are highlighted by yellow, green, and purple horizontal lines. Runtimes are
extrapolated by exponential function and shown in dashed lines.

We performed the experiments reported here on the NCI dataset KM20L2.
The learned domain theories were restricted to contain only clauses with at
most two literals. We set the maximum number of covered examples equal to
the number of examples in the dataset minus one (which corresponds to a mini-
mum frequency constraint of 1 when we view the clauses as negated conjunctive
patterns). Then we also performed an experiment where we set it equal to the
number of examples in the dataset minus 50 (which analogically corresponds to
a minimum frequency constraint of 50). We set the maximum time limit to 10
hours.

The results of the experiments are shown in Figure 1. The pruning method
based on saturations turns out to pay off when searching for longer clauses where
it improves the baseline by approximately an order of magnitude and allows it
to search for longer hypotheses within the given time limit. When searching for
smaller clauses, the runtime is dominated by the time for learning the domain

Pruning Hypothesis Spaces Using Learned Domain Theories 15

theory, which is why the baseline algorithm is faster in that case. The number
of generated clauses, which is directly proportional to memory consumption,
also becomes orders of magnitude smaller when using saturations for longer
clauses. Note that for every clause constructed by the baseline algorithm, there
is an equivalent clause constructed by the algorithm with the saturation-based
pruning. We believe these results clearly suggest the usefulness of the proposed
method, which could potentially also be used inside many existing ILP systems.

5 Related Work

The works most related to our approach are those relying on a special case of
Plotkin’s relative subsumption [15] called generalized subsumption [2]. Gener-
alized subsumption was among others used in [10]. In Section 3.5 we discussed
the reasons why relative subsumption is not suitable for pruning. Background
knowledge was also used to reduce the space of hypotheses in the Progol 4.4
system [12], which uses Plotkin’s relative clause reduction. Note that the latter
is a method for remowing literals from bottom clauses, whereas in contrast our
method is based on adding literals to hypotheses. Hence, the Progol 4.4 strategy
is orthogonal to the methods presented in this paper. Another key difference is
that our approach is able to learn the background knowledge from the training
data whereas all the other approaches use predefined background knowledge.
Finally, our approach is not limited to definite clauses, which is also why we do
not use SLD resolution. On the other hand, as our method is rooted in first-order
logic (due to the fact that we use the learning from interpretations setting) and
not directly in logic programming, it lacks some of the expressive power of logic
programming.

6 Conclusions

In this paper, we introduced a generally applicable method for pruning hypothe-
ses in ILP, which goes beyond mere isomorphism testing. We showed that the
method is able to reduce the size of the hypothesis space by orders of magni-
tudes, and also leads to a significant runtime reduction. An interesting aspect of
the proposed method is that it combines induction (domain theory learning) and
deduction (theorem proving) for pruning the search space. In future, it would
be interesting to combine these two components of our approach more tightly.

Acknowledgements MS, GS and FZ acknowledge support by project no. 17-26999S
granted by the Czech Science Foundation. This work was done while OK was with
Cardiff University and supported by a grant from the Leverhulme Trust (RPG-2014-
164). SS is supported by ERC Starting Grant 637277. Computational resources were
provided by the CESNET LM2015042 and the CERIT Scientific Cloud LM2015085,
provided under the programme “Projects of Large Research, Development, and Inno-
vations Infrastructures”.

16 Svatos, Sourek, Zelezny, Schockaert, Kuzelka
References
1. Berre, D.L., Parrain, A.: The SAT4J library, release 2.2. Journal on Satisfiability,

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Boolean Modeling and Computation 7, 50-64 (2010)

. Buntine, W.L.: Generalized subsumption and its applications to induction and

redundancy. Artif. Intell. 36(2), 149-176 (1988)

. Chekuri, C., Rajaraman, A.: Conjunctive query containment revisited. Theor.

Comput. Sci. 239(2), 211-229 (2000)

. Dechter, R.: Constraint processing. Elsevier Morgan Kaufmann (2003)
. Dehaspe, L., Raedt, L.D.: Mining association rules in multiple relations. In: Induc-

tive Logic Programming, 7th International Workshop, ILP-97, pp. 125-132 (1997)

. Ferilli, S., Fanizzi, N., Di Mauro, N., Basile, T.M.: Efficient #-subsumption under

object identity. In: AT*IA Workshop, 2002), pp. 59-68 (2002)

. van Hoeve, W.J.: The alldifferent constraint: A survey. CoRR ¢s.PL/0105015

(2001). URL http://arxiv.org/abs/cs.PL/0105015

. Kuzelka, O., Zelezny, F.: A restarted strategy for efficient subsumption testing.

Fundam. Inform. 89(1), 95-109 (2008)

. Kuzelka, O., Zelezny, F.: Block-wise construction of tree-like relational features

with monotone reducibility and redundancy. Mach. Learn. 83(2), 163-192 (2011)
Malerba, D.: Learning recursive theories in the normal ILP setting. Fundam.
Inform. 57(1), 39-77 (2003)

Maloberti, J., Sebag, M.: Fast theta-subsumption with constraint satisfaction al-
gorithms. Machine Learning 55(2), 137-174 (2004)

Muggleton, S.: Inverse entailment and progol. New Gen. Comput. 13(3&4), 245
286 (1995)

Newborn, M.: Automated theorem proving - theory and practice. Springer (2001)
Nijssen, S., Kok, J.N.: Efficient frequent query discovery in FARMER. In: Knowl-
edge Discovery in Databases: PKDD’03, 7th European Conference on Principles
and Practice of Knowledge Discovery in Databases, pp. 350-362 (2003)

Plotkin, G.D.: A note on inductive generalization. Machine intelligence 5(1), 153~
163 (1970)

Raedt, L.D.: Logical settings for concept-learning. Artif. Intell. 95(1), 187-201
(1997)

Ralaivola, L., Swamidass, S.J., Saigo, H., Baldi, P.: Graph kernels for chemical
informatics. Neural Netw. 18(8), 1093-1110 (2005)

Ramon, J., Roy, S., Jonny, D.: Efficient homomorphism-free enumeration of con-
junctive queries. In: Preliminary Papers ILP 2011, p. 6 (2011)

Riedel, S.: Improving the accuracy and efficiency of MAP inference for markov
logic. In: UAI 2008, 24th Conference on Uncertainty in Artificial Intelligence, pp.
468-475 (2008)

Stepp, R.E., Michalski, R.S.: Conceptual clustering: Inventing goal-oriented classi-
fications of structured objects. Machine learning: An artificial intelligence approach
2, 471-498 (1986)

Tamaddoni-Nezhad, A., Muggleton, S.: The lattice structure and refinement op-
erators for the hypothesis space bounded by a bottom clause. Machine Learning
76(1), 3772 (2009)

Weisfeiler, B., Lehman, A.: A reduction of a graph to a canonical form and an
algebra arising during this reduction. Nauchno-Technicheskaya Informatsia 2(9),
12-16 (1968)

