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Highlights

• We use GRACE data to improve a hydrological model estimations

• Data assimilation is used to ingrate observation into a model

• We apply stochastic and deterministic ensemble-based Kalman filters (EnKF) and Particle

filter

• Filters performances are compared to reach the best result

• Independent in-situ measurements are used to evaluate the results
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Abstract

The time-variable terrestrial water storage (TWS) products from the Gravity Recovery And1

Climate Experiment (GRACE) have been increasingly used in recent years to improve the simu-2

lation of hydrological models by applying data assimilation techniques. In this study, for the first3

time, we assess the performance of the most popular data assimilation sequential techniques for4

integrating GRACE TWS into the World-Wide Water Resources Assessment (W3RA) model.5

We implement and test stochastic and deterministic ensemble-based Kalman filters (EnKF), as6

well as Particle filters (PF) using two different resampling approaches of Multinomial Resam-7

pling and Systematic Resampling. These choices provide various opportunities for weighting8

observations and model simulations during the assimilation and also accounting for error distri-9

butions. Particularly, the deterministic EnKF is tested to avoid perturbing observations before10

assimilation (that is the case in an ordinary EnKF). Gaussian-based random updates in the11

EnKF approaches likely do not fully represent the statistical properties of the model simula-12

tions and TWS observations. Therefore, the fully non-Gaussian PF is also applied to estimate13

more realistic updates. Monthly GRACE TWS are assimilated into W3RA covering the entire14

Australia. To evaluate the filters performances and analyze their impact on model simulations,15

their estimates are validated by independent in-situ measurements. Our results indicate that16

all implemented filters improve the estimation of water storage simulations of W3RA. The best17

results are obtained using two versions of deterministic EnKF, i.e. the Square Root Analy-18
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sis (SQRA) scheme and the Ensemble Square Root Filter (EnSRF), respectively improving19

the model groundwater estimations errors by 34% and 31% compared to a model run without20

assimilation. Applying the PF along with Systematic Resampling successfully decreases the21

model estimation error by 23%.22

23

Keywords: Data assimilation, GRACE, Hydrological modelling, Kalman filtering, Particle

filtering.

1. Introduction

Hydrological models offer important tools for simulating and predicting hydrological24

processes at global (e.g., Doll et al., 2003; Hunt, 2006; Coumou and Rahmstorf, 2012; van Dijk25

et al., 2013) and regional (e.g., Chiew et al., 1993; Wooldridge and Kalma, 2001; Christiansen26

et al., 2007; Huang et al., 2016) scales. Models are still being developed to simulate all available27

hydrological processes (e.g., groundwater recharge) and the inclusion of all interactions between28

water cycle components (e.g., evapotranspiration, precipitation, and runoff). Currently, the29

most important deficiencies in hydrological models are caused by a high level of uncertainties30

in imperfect modelling of complex water cycle processes, data deficiencies on both temporal31

and spatial resolutions (e.g., limited ground-based observations), uncertainties in input and32

forcing data, and uncertainties of (unknown) empirical model parameters (Vrugt et al., 2013;33

van Dijk et al., 2011, 2014). Since making models more complex introduces ever increasing34

model parameters that cannot be well interpreted and makes computations more expensive, a35

logical step to address these limitations is the assimilation of observations into models (e.g.,36

McLaughlin, 2002; Zaitchik et al., 2008; van Dijk et al., 2014). Data assimilation techniques37

have found increasing interests with the availability of new data sources, such as those derived38

from satellite remote sensing observations. For example, time-variable gravity fields from the39

Gravity Recovery And Climate Experiment (GRACE) mission (Tapley et al., 2004) can be40

converted to terrestrial water storage (TWS) fields, a fundamental parameter of the water41

cycle that might be used to reduce uncertainties in hydrological models.42

Data assimilation is a procedure that constrains the dynamic of a model with available43

observations in order to improve its estimates (Bertino et al., 2003). The solution of the data44

assimilation problem is based on the Bayes’ rule (Jazwinski, 1970; van Leeuwen and Evensen,45

3



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

1996), which basically computes the Probability Density Function (PDF) of the state, i.e., the46

model variable of the system that should be estimated, given the data. The updated distribution47

is then propagated with the model to the time of the next available observation to obtain the48

prior PDF. In the case of a nonlinear or non-Gaussian system (as it is the case for hydrological49

models), it is not possible to analytically derive the posterior (analysis) PDF of the state (Hoteit50

et al., 2008; Vrugt et al., 2013). The Bayesian estimation problem, therefore, needs to be solved51

numerically, using either variational smoothing or sequential filtering methods (Subramanian52

et al., 2012).53

Variational methods look for the model trajectory that best fits the data by minimizing a54

chosen cost function that measures the misfit between the model state and the observations55

(Talagrand and Courtier, 1987). These methods require coding and executing an adjoint model,56

which is very demanding in terms of human and computational resources (Hoteit et al., 2005).57

Furthermore, variational methods do not provide an efficient framework for updating the esti-58

mating statistics during the data assimilation process (Courtier et al., 1994; Kalnay, 2003). In59

contrast, sequential techniques process the data as they become available following two steps60

including a forecast step to propagate the distribution forward in time and an analysis step61

to update the distribution with the newly available observation. Monte Carlo methods are62

commonly used in the forecast step (based on ensembles or particles) and Kalman (Ensemble63

Kalman filtering) or point-mass weight (Particle filtering) updates are applied in the analysis64

step (Evensen, 2009; Hoteit et al., 2012). Sequential methods do not require an adjoint and are65

becoming increasingly popular because of their reasonable computational requirements (Hoteit66

et al., 2002; Bertino et al., 2003; Robert et al., 2006).67

The Particle filter (PF) is based on a point-mass (particle) representation of the system68

state’s PDF. It forecasts the PDF by propagating the particles forward in time. At the analysis69

time, the state PDF is updated by assigning new weights to the particles based on incoming70

observations (Doucet et al., 2001; Pham, 2001; Hoteit et al., 2012). The fundamental problem71

of this technique is the degeneracy phenomenon of its particles, with only very few particles72

carrying most of the weights (Subramanian et al., 2012). Moreover, errors in the assimilated73

observations may propagate to the estimated distribution because the method was not designed74

to improve the structure of the model (Hoteit et al., 2008; Smith et al., 2008). This problem75

is addressed by the Ensemble Kalman filters (EnKFs), which assume a Gaussian forecast PDF76
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at the analysis time, so a Kalman update-step is applied to the particles (Hoteit et al., 2015).77

This allows an efficient implementation of the Bayesian filtering approach for data assimilation78

into large systems using small ensembles (van Leeuwen and Evensen, 1996; Hoteit et al., 2008).79

EnKFs can be classified into stochastic and deterministic filters, depending on whether80

the observations are perturbed with noise before assimilation, or not (Tippett et al., 2003;81

Hoteit et al., 2015). In the stochastic EnKF, each ensemble member is updated with perturbed82

observations, readily providing an analysis ensemble for the next filtering cycle. In contrast,83

a deterministic EnKF updates only the mean and the covariance of the ensembles exactly as84

in the Kalman Filter, and thus require a resampling step to generate a new analysis ensemble.85

The resampling step is not unique, and as such several deterministic EnKFs have been proposed86

(Sun et al., 2009; Hoteit et al., 2015).87

Sequential filtering methods have been extensively applied and compared in oceanic and88

atmospheric applications (Garner et al., 1999; Elbern and Schmidt, 2001; Bennett, 2002; Kalnay,89

2003; Schunk et al., 2004; Lahoz, 2007; Zhang et al., 2012; Altaf et al., 2014). In hydrological90

studies, data assimilation has been used to estimate different water compartments, such as soil91

moisture (e.g., Reichle et al., 2002; Brocca et al., 2010; Renzullo et al., 2014) and surface water92

storage (e.g., Alsdorf et al., 2007; Neal et al., 2009; Giustarini et al., 2011). However, the93

efficiency of various filtering methods in dealing with remotely sensed data in hydrology has94

not been fully investigated (McLaughlin, 2002; Schumacher et al., 2016).95

Global terrestrial water storage data derived from the GRACE satellite mission can be now96

employed to improve the behaviour of hydrological models (e.g., Zaitchik et al., 2008; Tang-97

damrongsub et al., 2015; Thomas et al., 2014; van Dijk et al., 2014; Eicker et al., 2014; Reager98

et al., 2015), providing unprecedented temporal and spatial coverage. For instance, Zaitchik et99

al. (2008) demonstrated the relevance of GRACE data in improving the estimation of ground-100

water variability over the four major sub-basins of the Mississippi through data assimilation101

into the Catchment Land Surface Model using an ensemble Kalman smoother. Houborg et al.102

(2012) investigated drought conditions in North America through GRACE data assimilation.103

The developed GRACE-based drought indicators in the USA led to an improved monitoring of104

soil moisture and groundwater conditions of deep layers. The impact of GRACE error corre-105

lation structure on the assimilation of GRACE data was very recently studied by Schumacher106

et al. (2016). Yet, to the best of our knowledge, however, a comparison with the application107
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of different sequential filtering methods for assimilating GRACE TWS in models has not been108

fully explored.109

In this study, we investigate the performance of the most common sequential filtering tech-110

niques for data assimilation using the hydrological model of the World-Wide Water Resources111

Assessment (W3RA; van Dijk, 2010) over Australia. The amount of rainfall in Australia, es-112

pecially over its northern and eastern parts, is low in comparison to other inhabited continents113

on Earth leading to prolonged drought in the interior regions (Forootan et al., 2016). Hence,114

accurate estimation of water storages (e.g., using hydrological models) is necessary to manage115

water resources in this region. Here, different filters are used to assimilate GRACE TWS into116

W3RA to improve its estimates. Both stochastic and deterministic EnKFs are tested and their117

performances are compared against two standard Particle filters. We applied the standard118

EnKF and its deterministic variants, including, the Square Root Analysis (SQRA) scheme fol-119

lowing Evensen (2004) and Schumacher et al. (2016), the Ensemble Transform Kalman Filter120

(ETKF, Bishop et al., 2001), the Deterministic EnKF (DEnKF, Sakov and Oke, 2008), and121

the Ensemble Square-Root Filter (EnSRF, Whitaker and Hamill, 2002). We also implement122

the static-ensemble variant of the EnKF, the Ensemble Optimal Interpolation (EnOI, Evensen,123

2003), in an attempt to reduce the computational burden. To mitigate the deficiency that may124

arise from limited ensemble sizes and knowledge of model errors’ statistics (Anderson et al.,125

2007; Oke et al., 2007), covariance inflation (e.g., Anderson et al., 1999, 2007; Ott et al., 2004)126

and localization techniques (e.g., Bergemann and Reich, 2010; Hamill and Snyder, 2002) are127

applied. The performance of these ensemble filters is assessed against two nonlinear Particle128

filters based on two different resampling strategies: (i) Multinomial Resampling and (ii) System-129

atic Resampling techniques (Arulampalam et al., 2002). The summary of applied filters in this130

study is presented in Table 1. The results of assimilations are evaluated by comparing their es-131

timates against independent groundwater in-situ measurements over the Murray-Darling basin132

and measurements from the moisture-monitoring network in the Murrumbidgee catchment in133

New South Wales, Australia.134

TABLE 1
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2. Model and Datasets135

2.1. W3RA136

The World-Wide Water Resources Assessment (W3RA), based on the Australian137

Water Resources Assessment system (AWRA) model (version 0.5) is used in this study138

(http://www.wenfo.org/wald/data-software/). The model was first developed in 2008 by the139

Commonwealth Scientific and Industrial Research Organisation (CSIRO) to monitor, represent140

and forecast Australian terrestrial water cycles. The W3RA is a grid-distributed biophysical141

model that simulates landscape water stores in the vegetation and soil systems (van Dijk, 2010).142

The 1◦×1◦ global daily fields of minimum and maximum temperature, downwelling short-wave143

radiation, and precipitation from Princeton University (http://hydrology.princeton.edu) are144

used for meteorological forcing data (Sheffield et al., 2006). This one-dimensional grid-based145

water balance model represents the water balance of the soil, groundwater and surface water146

stores in which each cell is modelled independently of its neighbours (van Dijk, 2010; Renzullo147

et al., 2014). The model state is composed of the 1◦×1◦ W3RA model storages of the top,148

shallow root and deep root soil layers, groundwater storage, and surface water storage in a one-149

dimensional system (vertical variability). In this study, we use W3RA providing daily model150

states for the period of February 2002 to December 2012. More detailed information on the151

W3RA model can be found in van Dijk (2010).152

2.2. GRACE-derived Terrestrial Water Storage153

Here, we use monthly GRACE level 2 (L2) products along with their full error infor-154

mation between February 2002 to December 2012 as provided by the ITSG-Grace2014 gravity155

field model (Mayer-Gurr et al., 2014). The GRACE monthly Stokes’ coefficients are truncated156

at spherical harmonic degree and order 90, which resulting in approximately ∼300 by 300 km157

spatial resolution at the equator.158

Following Swenson et al. (2008), degree 1 coefficients are replaced to account for movements159

of the Earth’s centre of mass (i.e., realized by a set of tracking stations on the surface of the160

Earth). Degree 2 and order 0 (C20) coefficients from GRACE are not well determined (e.g.,161

Tapley et al., 2004; Tregoning et al., 2012) and are replaced by more reliable estimations of162

the Satellite Laser Ranging solutions (Cheng and Tapley, 2004). Correlated noise exists in L2163

products due to anisotropic spatial sampling, instrumental noise (K-band ranging system and164
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GPS), and temporal aliasing caused by the incomplete reduction of short-term mass variations165

(Forootan et al., 2014). These errors are reduced by smoothing based on a Gaussian averaging166

kernel with 300 km half radius and destriping following Swenson and Wahr (2006). However,167

the smoothing may cause signal attenuation (Klees et al., 2008) and can result in considerable168

spatial leakage, such as the apparent movement of masses from one region to another (Chen169

et al., 2007) especially over coastlines (see examples within Australia in e.g., Brown and170

Tregoning, 2010; Forootan et al., 2012). In order to address this issue, following Swenson and171

Wahr (2002), we apply an isotropic kernel using a Lagrange multiplier filter to best balance172

signal and leakage errors over the basin of interest.173

An additional post-processing step is applied to convert the filtered L2 gravity fields (after174

removing the mean field of study period) to gridded TWS fields (1◦×1◦) following Wahr et al.175

(1998). The GRACE TWS data are gridded at the same spatial 1◦×1◦ resolution of W3RA176

resulting in 794 grid points for Australia that covers an area of 7.692 million km2 located177

between 10◦S and 46◦S latitude, and 110◦E and 160◦E longitude. GRACE data provide178

changes in TWS while W3RA produces absolute TWS. Accordingly, the mean TWS for the179

study period is taken from W3RA and is added to the GRACE TWS change time series in order180

to obtain absolute values in accordance with the model (Zaitchik et al., 2008). In addition, the181

monthly full error information of the Stokes’ coefficients is used to construct an observation182

error covariance matrix for the GRACE TWS fields (Eicker et al., 2014; Schumacher et al.,183

2016).184

2.3. In-situ data185

For validating the assimilation results, we use in-situ groundwater level data that are186

collected over the Murray-Darling Basin. The independent in-situ measurements from the model187

and observations are provided by New South Wales Government (NSW) groundwater archive188

(http://waterinfo.nsw.gov.au/pinneena/gw.shtml). Monthly well measurements are acquired189

and time series of groundwater storage anomalies are generated. Measurements with data gaps190

and those without showing seasonal variations are flagged (we assume these belong to confined191

aquifers) and are thus excluded (Houborg et al., 2012; Tangdamrongsub et al., 2015). Selected192

bore-water levels are then converted to variations in groundwater (GW) storage. To this end,193

instead of using specific yield estimates (Rodell et al., 2007; Zaitchik et al., 2008) that is not194

available in the region, TWS variation from GRACE and GLDAS soil moisture are used to195
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scale the observed head following Tangdamrongsub et al. (2015). Tregoning et al. (2012) show196

that this approach can be used to find a scaling factor over the Canning Basin and Murray197

Basin in Australia. The scaled in-situ groundwater level fluctuations are then used to assess198

the assimilation results.199

In addition, in-situ measurements of the moisture-monitoring network200

(http://www.oznet.org.au/) in Murrumbidgee catchment (Smith et al., 2012) are used201

to evaluate the results. These data are known as the OzNet network, which provides long-term202

records of measuring volumetric soil moisture at various soil depths at 57 locations across203

the Murrumbidgee catchment area. Following Renzullo et al. (2014), we averaged the204

measurements into a daily scale and use 0–8 cm to evaluate the estimated model top-layer soil205

moisture and the 0-30 cm and 0-90 cm measurements for the evaluation of the model shallow206

root-zone soil moisture estimation. The distribution of the in-situ moisture network, as well as207

in-situ groundwater stations, are shown in Figure 1.208

FIGURE 1

3. Filtering Methods and Implementation209

The Bayesian filtering procedures are selected here for data assimilation (Jazwinski,210

1970; van Leeuwen and Evensen, 1996). The analytical process conditions a prior PDF of the211

state with available observations to compute the posterior PDF based on Bayes’ rule (Koch,212

2007) in two steps; (1) forecasting the state PDF using a dynamical model and (2) updating the213

forecast PDF by assimilating observations using Bayes’ rule. In the case of a linear system with214

Gaussian noise, the popular KF provides the Bayesian filtering solution by computing the first215

two moments of the state PDF, which remains always Gaussian (van Leeuwen and Evensen,216

1996). This two-step process is repeated whenever new observations become available. The217

basic KF equations are given by Kalman (1960) starting from an analysis of the state, Xa
t , and218

the associated error covariance, P a
t , at a given time t. These can be summarized as:219

1) The forecast step consists of the evolution of the state estimate and its error covariance220

matrix with a linear dynamical model (M) to the assimilation step (the time of the next avail-221

able observation),222
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Xf
t+∆t = MXa

t + η, (1)

P f
t+∆t = MP a

t M
T +Q, (2)

where Xf
t+∆t refers to the forecast state (Xf ) at time t + ∆t, with ∆t represents the model224

time step, and T is the transpose index. In Eq.1, η is the process noise, which is drawn from225

N(0, Q) with covariance matrix Q, and P f
t+∆t (in Eq.2) denotes the forecast error covariance226

(P f ) at time t+ ∆t.227

2) The analysis step updates the forecast state using new incoming observations Y that are228

related to the state vector by the linear observation operator (H) as,229

230

Y = HX + ε, (3)

where ε is the measurement noise. The analysis state (Xa) is then computed using231

232

Xa = Xf +K(Y −HXf ), (4)

P a = (I −KH)P f , (5)

K = P fHT (HP fHT +R)−1, (6)

where K refers to the Kalman gain, R is the observation error covariance matrix, and I denotes233

the identity matrix.234

The KF algorithm is not suited for high-dimensional or non-linear systems (Pham, 2001).235

The ensemble Kalman filter provides an efficient alternative for the implementation of the KF236

with these systems by representing the first two-moments of the state using a sample of state237

vectors, called ensemble. The forecast state and covariance matrix in Eq.1 and Eq.2 are then238

estimated as the sample mean and covariance of the ensembles members Xi, i = 1 . . . N :239

240

X̄f =
1

N

N∑

i=1

Xf,i, (7)

P f =
1

N − 1

N∑

i=1

(Xf,i − X̄f )(Xf,i − X̄f )T =
1

N − 1
AfAfT . (8)

X̄f is the forecast ensemble mean and Af (Af = [Af,1 . . . Af,N ]) is the forecast ensemble of241

anomalies (perturbations; Af,i = Xf,i − X̄). When a new observation is available, the forecast242
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ensemble is then updated with the data using Eq.4, as in the KF. Several ensemble Kalman243

filters have been proposed, all sharing the same forecast step in which an available analysis244

ensemble ([Xa,1 . . . Xa,N ]) is propagated forward with the model. The analysis step based on245

the KF, however, can be applied stochastically or deterministically.246

3.1. Stochastic Ensemble Kalman Filter (EnKF)247

The analysis step of the Stochastic EnKF updates each ensemble member with a per-248

turbed observation written as,249

250

Xa,i = Xf,i +K(Y i −HXf,i), i = 1 . . . N, (9)

where Y i = Y + εi, with εi a random error sampled from N(0, R). The use of perturbed251

observations in the EnKF results in an analysis error covariance that matches that of the KF,252

in a statistical sense (Hoteit et al., 2012). The advantage of the stochastic update is that it253

readily provides a randomly sampled ensemble from the Gaussian-assumed state analysis PDF254

for the next forecast cycle (Hoteit et al., 2015). However, as illustrated by Whitaker and Hamill255

(2002), sampling error can be reflected in the EnKF background covariance matrix, especially256

for the small-size ensembles. This could be particularly pronounced when a large number of257

(independent) observations are assimilated (Nerger, 2004), as the observation covariance cannot258

be properly sampled with a small ensemble (Hoteit et al., 2015).259

3.2. Deterministic Ensemble Kalman Filters260

Instead of updating each forecast member separately, deterministic EnKFs (DEnKFs)261

update the forecast ensemble in two steps, first the ensemble-mean and then the ensemble262

perturbations (Tippett et al., 2003) are calculated so that the sample mean and covariance of263

the updated ensemble exactly match those of the Kalman filter in Eq.4 and Eq.5.264

Various methods have been proposed in order to update the ensemble perturbations. SQRA265

resamples the new ensemble perturbations (Aa) from the forecast ensemble perturbations (Af )266

as,267

268

Aa = AfV
√
I − ΣTΣΘT , (10)

11
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where Σ is computed by applying the following singular value decomposition (SVD),269

UΣV T = SV D(Λ−
1
2ZTHA), (11)

ZΛZT = (HP f (H)T +R)−1, (12)

where Θ in Eq.10 being a random orthogonal matrix for redistribution of the variance among270

the ensemble members (see Evensen, 2004, 2007, for more details). This is very similar to the271

random rotation that has been introduced in the context of the Singular Evolutive Extended272

Kalman (SEEK) filter (Pham, 2001; Hoteit et al., 2002).273

ETKF introduces a transformation matrix to directly compute the analysis ensemble per-274

turbations from their forecast counterparts,275

276

Aa = Af .T, (13)

where T = U(I+Λ)−1/2, with U and Λ, respectively being the orthogonal and diagonal matrices277

computed from an eigenvalue decomposition of (HXf )
T
R−1(HXf ).278

DEnKF and EnSRF adopt a similar analysis step to the EnKF in the sense that they279

compute the analysis perturbations from the forecast perturbations by updating each ensemble280

perturbation with a Kalman-like update step. To match the KF covariance matrix by an ensem-281

ble of perturbations, DEnKF computes a first-order approximation of the Kalman gain (Sakov282

and Oke, 2008). This approximate gain K̃ is then used to compute the analysis perturbations283

as,284

285

Aa = Af − 1

2
KHAf . (14)

EnSRF exploits the serial formulation of the KF analysis step in which the observations are286

assimilated each at a time to compute the analysis perturbations that exactly match the KF287

covariance using the modified gain (αK) with,288

289

α =
(

1 +

√
R

HP fHT +R

)−1
. (15)

This requires the observations to be uncorrelated, which can always be satisfied by scaling the290

observations with the square-root inverse of the observational error covariance matrix (Hoteit291

et al., 2015).292
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Another form of ensemble Kalman filtering is the so-called Ensemble Optimal Interpolation293

(EnOI) scheme, which is basically the EnKF, but without an update of the ensemble anomalies.294

More precisely, EnOI only updates the forecast state with a Kalman gain computed from a295

preselected static ensemble. The main advantage of not updating the ensemble is of course296

to reduce the computational load, but it can also be beneficial to retain the spread of the297

ensemble and to enforce climatological smoothness in the update step. EnOI can be stochastic298

or deterministic (Hoteit et al., 2002). Here we only test the more standard stochastic variant299

(Evensen, 2003).300

3.3. Particle Filtering301

Particle filtering is also a sequential Monte Carlo method that was originally proposed302

by Gordon et al. (1993) and has since been applied in numerous studies (Doucet, 1998; Aru-303

lampalam et al., 2002). The idea is to represent the state PDF by a set of weighted particles304

(Arulampalam et al., 2002), hence the name Particle Filter (Gordon et al., 1993; Doucet, 1998),305

which is similar to the ensemble members in the EnKF but with non-uniform weights. The306

state PDF is then decomposed as,307

308

P (Xt|Y1:t) ≈
N∑

i=1

ωi
tδ(Xt −Xi

t), (16)

where {Xi
t ; i = 1 . . . N} are the particles at time t, observations between time 1 and t are309

denoted by Y1:t, ω
i
t are the weights of the particles, and δ is the Dirac function. In the forecast310

step, the PF just integrates the particles forward with the model, exactly as the EnKF, and311

their weights remain the same. In the analysis step, only the weights, and not the particles, are312

updated with the incoming observation as,313

314

ωi
t =

P (yt|Xi
t|t−1)

∑
j P (yt|Xj

t|t−1)
. (17)

The PF suffers from the degeneracy problem in which the weights of all particles become315

negligible except only for a very few, requiring a prohibitive number of particles to prevent316

particles collapse (Arulampalam et al., 2002). Degeneracy can be mitigated using the so-called317

resampling technique (Doucet et al., 2005), which resamples a new set of particles with uniform318

weights after every update step based on the analysis PDF. In this study, we consider two of the319

most common resampling techniques: the Particle filter with Multinomial Resampling (PFMR)320
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and Particle filter with Systematic Resampling (PFSR), as proposed by Doucet et al. (2005).321

PFMR is the most straightforward resampling scheme, where N independent random numbers322

(u ∼ U(0, 1)) are generated to select a particle from the old set. PFSR, which is also called323

universal sampling, draws only one random number u1 ∼ U(0, 1/N) and the remaining N − 1324

numbers are then calculated from u1 (Doucet et al., 2005) as,325

326

Ui = u1 +
(i− 1)

N
, i = 2 . . . N. (18)

These are then used to select a new set of particles according to the multinomial distribution327

(Hol et al., 2006).328

PF has been applied in few hydrological studies. Among them, Moradkhani et al. (2005)329

investigated the relevance of the PF for estimating the joint posterior distribution of the pa-330

rameters and state. In another effort, Moradkhani et al. (2012) proposed a modified version of331

the PF, focusing on enhancing the sampling of the posterior with Markov chain Monte Carlo332

(MCMC) moves. Plaza et al. (2012) used the Sequential Importance Sampling with Resam-333

pling (SISR) Particle filter for soil moisture assimilation and focused on the consequent effect334

on baseflow generation. Existing studies focused on the different implementations of PF using335

various resampling techniques. However, a comparison between PFs performances with diverse336

resampling techniques and EnKFs has not been investigated yet in hydrology. Figure 2 shows337

a summary of the steps and filters applied for data assimilation in this study.338

FIGURE 2

3.4. Filter Implementation339

An experimental framework is developed in order to assess the relevance and efficiency340

of the filtering techniques presented in the previous section for assimilating GRACE data into341

the W3RA model. All filters are implemented under identical conditions, using the same spatial342

scales (1◦×1◦) for both the W3RA and the GRACE TWS, and daily temporal scales for the343

W3RA and monthly for the GRACE data. W3RA is integrated to simulate water storages over344

Australia using monthly sequential assimilation cycles of GRACE data applied at the middle345

of each month.346

Several steps need to be undertaken before assimilating GRACE-derived TWS into the347
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W3RA model. Initial ensemble members (particles) are first generated by perturbing the three348

most important forcing variables including precipitation, temperature, and radiation using their349

reported error characteristics (Sheffield et al., 2006). Monte Carlo sampling of multivariate350

normal distributions with the errors representing the standard deviations of the forcing sets351

are used to produce an ensemble (see details in Renzullo et al., 2014). Different ensemble352

sizes (30-120) and their spread are tested which the ensemble with 72 members (72 to 120 are353

suggested by Oke et al., 2008) shows promising performance and is used in this study. The354

model is integrated forward for two years (January 2001 to January 2003) using perturbed355

meteorological forcing datasets and provided a set of 72 different states at the beginning of356

2003 (study period), considered as the initial ensemble (with 72 members). The same initial357

ensemble is used for all the filters.358

We use two tuning techniques of ensemble inflation and localisation in order to enhance the359

assimilation performance of all EnKFs. Ensemble inflation uses a small coefficient (i.e., 1.12360

in our study; Anderson et al., 2001) to inflate prior ensemble deviation from the ensemble-361

mean to increase their variations and alleviate the inbreeding problem (Anderson et al., 2007).362

Another auxiliary technique that has been proved to be helpful when using limited ensemble363

size is localisation, initially proposed by Houtekamer and Mitchell (2001). We choose to use a364

Local Analysis (LA) scheme which works by restricting the impact of a given measurement in365

the update step to the points located within a certain distance from the measurement location366

(Evensen, 2003; Ott et al., 2004). Different localization lengths are applied to reach the best367

case (i.e., 5◦). In terms of computational cost, all implemented filters are required more or368

less the same CPU (central processing unit) time (when implemented with the same number of369

members/particles), with the forecast step of the ensemble being the most demanding.370

4. Results371

In this section, we review and analyze the performance of all the selected filtering372

techniques based on various factors. The implemented filters include (stochastic) EnKF, ETKF,373

SQRA, DEnKF, EnSRF, EnOI and PF with Multinomial (PFMR) and Systematic (PFSR)374

resampling. In addition to improving the estimation of the system state and quantifying the375

associated uncertainties, a suitable data assimilation technique is expected to keep the model376

system stable during the assimilation process after incorporating GRACE data. These are377

15



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

provided at coarse temporal and spatial scales in comparison to the W3RA model, leading378

to only one assimilation step every 30 model time-steps and providing information at about379

three times less than the model grid resolution. Our analysis is organized into two parts;380

we first examine the filters performance by comparing their estimates (analysis and forecasts)381

against the assimilated GRACE data over the whole study area as well as the independent in-382

situ measurements over the Murray-Darling River Basin as well as Murrumbidgee catchment.383

We also compare the filters estimates with the outputs of a model-free run (open-loop) that384

is integrated with the filters initial condition without assimilation to evaluate the impact of385

assimilating GRACE data on the model behavior. Next, the filters behaviors in terms of386

ensemble spread and the impact of assimilation on the forecast and analysis error covariances387

are investigated.388

4.1. Assessment with GRACE and in-situ data389

Spatial correlation maps with high correlations may suggest that the applied filtering390

method efficiently incorporates GRACE data into the model (Figure 3). The correlation be-391

tween the model TWS outputs without assimilation and the GRACE data range between 0.11392

and 0.64, with the highest correlations in the northern region and the lowest in the southern393

region. All filters significantly improve the estimates correlations to the data after assimilation394

with some filters leading almost to the perfect correlation with the data (e.g., EnSRF). The395

model is not able to maintain this high correlation during the forecast and the 30-day assimila-396

tion window, with the correlations mainly decreasing in the center and southern regions. After397

monitoring the impact of observations on the model states throughout the study period, it is398

found that this effect is decreasing gradually (approximately 3-5 days to lose more than 10%)399

by comparing the correlation of the model states with and without assimilation. This mostly400

refers to the daily effects of the perturbed forcing sets on model estimations and may suggest401

that using the denser observation (temporally) could preserve assimilated information during402

the study. The level of improvement in correlations, however, is different for each filter. For403

instance, ETKF, SQRA, and PFSR lead to higher correlations with GRACE-derived TWS,404

suggesting that these methods better reflect the observations in the state estimates. Overall,405

EnKFs seem to perform better than PFs except only for DEnKF which shown no remarkable406

impact on the model behavior after assimilation of GRACE data.407
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FIGURE 3

Those methods with the highest correlations to GRACE data lead, as expected, also the408

least estimation errors (Figure 4). The largest errors are found in the northern and southern409

parts of the domain (Figure 4a), with some of the filters not able to improve remarkably the410

model behavior over these areas. TWS variations are generally higher in the northern part411

of the study area with larger amplitudes especially during monsoonal seasons (Awange et al.,412

2009; Seoane et al., 2013). The model seems unable to predict these amplitudes due to larger413

estimated errors even though it performs better in predicting their phases considering high414

correlations in this area. SQRA, EnSRF, and to some extent ETKF, significantly decrease the415

estimation error over the whole domain. This is very important because these filters are able416

to incorporate most of the GRACE signals into the model.417

FIGURE 4

The Root-Mean-Squared Errors (RMSE) time series between the GRACE TWS and filters418

estimates are calculated (Figure 5). In all cases, the analysis step decreases the RMSE with419

respect to the forecast. Nevertheless, the RMSE resulting from DEnKF, EnOI, and PFMR are420

significantly larger, indicating that these methods are not able to improve the model behavior421

after incorporating GRACE data as the rest of the filters do. Estimates by all filters have the422

largest error in some periods (e.g., July and October), which may be caused by uncertainties in423

forcing sets. The RMSEs from SQRA and EnSRF are smaller in comparison to the rest of the424

filters. The smaller average errors during the study period prove the more stable performance425

of SQRA and EnSRF. Results in Figures 4 and 5 suggest that the deterministic SQRA, ETKF,426

EnSRF filters, and to less extent PFSR, are more efficient at assimilating GRACE data. This427

might be due to the fact that for the stochastic ensemble filters perturbations of the obser-428

vations have to be generated that introduce an additional uncertainty source to the analysis429

step and might result in larger discrepancies to the assimilated observations compared to the430

deterministic filters. A summary of the filters’ performance, including the coefficient of deter-431

mination (R2) and RMSE in comparison to the assimilated observations (shown in Table 2)432

indicates higher correlation (84% average) and smaller RMSEs (35% average improvement) in433

the analysis step for all the filters. The maximum improvements regarding the achieved RMSE434
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are achieved by EnSRF and SQRA as 58.88% and 55.17% respectively.435

FIGURE 5
436

TABLE 2

We investigate the performances of the filtering methods through comparison with the437

independent groundwater in-situ data over the Murray-Darling basin (cf. Section 2.3). We438

use the 54 in-situ measurements over the Murray-Darling basin for a grid comparison with439

the estimated GW (Figure 6). The filters estimates are spatially interpolated to the nearest440

observation bore. For each filter, the average RMSEs (over all 54 in-situ data) of the forecast441

state (red) and analysis state (blue) are determined. As for the assimilated GRACE data (cf.442

Figure 5), all the filters decrease the RMSE with respect to the in-situ data, with the largest443

errors resulting from DEnKF, EnOI, and PFMR. Furthermore, the average RMSEs are smaller444

in SQRA and EnSRF. The similar behavior of the filters in the analysis steps can be found445

in Figure 6 as in Figure 5. For some months (e.g., March and July), the larger errors can446

be seen in Figure 6 which are not existed in Figure 5. This can be associated to either an447

incompatibility between groundwater in-situ measurements and GRACE data or the absent448

water compartment terms such as the surface water storage in the model and in-situ data for449

the second assessment (Figure 6).450

FIGURE 6

The relationship between the estimated states and both GRACE data and in-situ measure-451

ments (Figure 7) demonstrates the filters capability to dynamically propagate the information452

extracted from GRACE data into system variables. In agreement with the previous results, the453

best performances are obtained using SQRA, EnSRF, and ETKF (Figures 6 and 7).454

FIGURE 7

The R2 coefficient and RMSE results are summarized in Table 3 as another measure of the455

filter performances. For each filter, 54 error time series are computed (i.e., for each individual456

well), and their averages are then used to calculate R2 and RMSE. The results of all the filters457
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summarized in Table 3 show improvements (by 35% average) in the analysis steps in all cases,458

similar to the assessment against GRACE data (cf. Table 2). SQRA and EnSRF lead to the459

highest correlations to the in-situ measurements of R2, i.e., 0.75 and 0.72 respectively. These460

filters also provide the best estimates in terms of estimation error, while DEnKF and to a461

lesser degree EnOI have the highest RMSEs. The PFs, on the other hand, especially using462

the systematic resampling technique exhibit a reasonably good performance. In terms of the463

assessment results against GRACE data, deterministic filters provide the best performance464

(except for DEnKF), generally better than the stochastic EnKF. Overall, SQRA and EnSRF465

seem to be the most efficient for assimilating GRACE data into W3RA.466

TABLE 3

The correlations between model estimations and OzNet data also indicate the superiority of467

the successful methods in previous assessments (Table 4). Note that considering the difference468

between W3RA estimations (i.e., column water storage measured in mm) and the OzNet mea-469

surements (i.e., volumetric soil moisture) and the fact that converting the model output into470

volumetric units may introduce bias (Renzullo et al., 2014), only correlation analysis is assumed471

here. After estimating correlations for each individual layer, we determine an average correla-472

tion for the total soil column (cf. Table 4). The higher correlations are found in analysis steps473

with the average of 74% in comparison to forecast steps (59%). The highest correlation to the474

OzNet soil moisture measurements belongs to EnSRF with R2 0.84. SQRA also demonstrate a475

significant impact on model estimations with the 35% correlation improvement. The weakest476

performance with R2 0.48 and 0.57 in forecast and analysis step respectively, is achieved from477

DEnKF. These results prove the capability of EnSRF and SQRA in improving non-assimilated478

model states through data assimilation.479

TABLE 4

4.2. Error Analysis480

Analyzing the filters sampled error covariance, particularly the ensemble spread is impor-481

tant to understand the filters behaviors and performances. The performance of ensemble-based482

filters relies on their ability to represent and propagate the error statistics, which of course483
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depends on how the ensemble members are sampled and updated at the analysis steps (Sun484

et al., 2009). We assess the evolution of the ensemble spread and the error covariance matrix485

during the study period. An efficient filtering method should be able to preserve the variation486

of its ensemble to properly span the error sub-space. Error covariance matrices are analyzed in487

terms of estimated errors and correlations.488

One important aspect of a filter performance refers to its ability to sample representative489

ensembles (or particles) at the analysis steps. Figure 8 outlines how the different filtering490

techniques adjust the ensemble members during the assimilation procedure. The average TWS491

variations time series over Australia and their ensembles at the analysis steps are calculated for492

all filters (Figure 8).493

FIGURE 8

Several important points can be made from the evolution of ensembles in the assimilation494

period (Figure 8). Firstly, most of the filters generate ensembles mean (red lines) close to495

the assimilated observations suggesting that the filters provide good estimates of the observed496

variables. However, one should also consider the distribution of the ensemble members. Those497

of EnKF, SQRA, ETKF, EnSRF, and PFSR are consistent over time, which suggests the ro-498

bustness of these techniques over time. The ensemble members, especially those of the EnSRF499

and SQRA, are evenly distributed around the mean, implying a good coverage of the error500

sub-space. The ensembles distribution for DEnKF and EnOI, on the other hand, are different501

and exhibit an excessively large spread. In most of the cases, the range of the ensemble con-502

centration in DEnKF and EnOI are either misplaced or overestimated. This would result in503

underestimating the forecast error and possibly inaccurate assimilation results. In the case of504

PF, the Systematic Resampling technique seems to be more robust; the PFMR ensembles and505

their variation (black dashed lines) span an unrealistically wide range space, even though the506

mean appears fairly close to the observations.507

More information can be inferred about the filters ensemble distributions by evaluating the508

ensembles skewness and kurtosis. These indicate the departure of the ensembles distributions509

from a Gaussian distribution (with a skewness 0 and a kurtosis 3). Kurtosis quantifies the dis-510

tribution shape (i.e., heavy-tailed or light-tailed, in comparison to a normal distribution) and511

skewness measures the distribution asymmetry (Joanes and Gill, 1998). The average (forecast512
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and analysis) ensembles skewness and kurtosis of all filters (Figure 9) show skewness and kur-513

tosis are reduced after analysis steps for all filters, suggesting that the filters posterior become514

closer to Gaussian as assimilation proceeds. This is, however, more pronounced for skewness515

than for kurtosis, showing the filters higher impact on the ensembles distribution asymmetry.516

The stochastic EnKF ensemble is closer to a Gaussian distribution, which is related to the ap-517

plication of random noises to the observation (Hoteit et al., 2015). In contrast, the DEnKF and518

EnOI ensembles are not uniformly distributed, showing a remarkable departure from Gaussian519

distributions that is expected to introduce bias in the assimilation results.520

FIGURE 9

As another evaluation of the filter performance, we further investigate how the model state521

error covariance changes over time for each filter. The forecast and analysis error covariance522

matrices at the analysis step indicate how errors change over time, especially after assimilation.523

We perform two analyses to investigate the influence of the filtering methods on the forecast524

and analysis error statistics. First, the reductions of error (diagonal elements) in the analysis525

covariance matrices in comparison to the forecast covariance matrices are calculated at each526

assimilation step. Next, their minimum, maximum, and average are calculated. The results527

show how different methods can decrease the errors using GRACE data (Table 5). All the528

filters reduce errors, where the best performance resulting from SQRA, EnSRF, and, to a less529

degree, PFSR. Again, DEnKF and EnOI show the weakest effects on error covariance.530

TABLE 5

Further insights can be derived from the correlation between the estimated states on the531

grid points of the study area. For this, 794 grid-points over Australia are considered and the532

spatial correlation coefficients are computed between each of them and the rest of the points in533

the assimilation steps. In most of the cases (95%), data assimilation significantly decrease the534

correlation between grid points in the analysis error covariance matrices. As an example, an535

arbitrary point approximately in the middle of the study area (for a better visual representation)536

at the location 136.6854◦E and 23.9015◦S is chosen and its spatial correlation with the other grid537

points are plotted to show this effect. The average of spatial correlation map for all assimilation538
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steps and for each filter is presented in Figure 10. Similar results are achieved for the other539

grid points.540

FIGURE 10

One can see from Figure 10 that each filtering method affects the correlation between the541

specific point and the others differently where some filters like PFs show higher ability to542

decrease the correlations between errors. This can be related to the native of the algorithm543

of PF, which produces random particles that are consistent with model nonlinear dynamics.544

The results of the correlation analysis (cf. Figure 10) are consistent with the other results, with545

DEnKF and EnOI showing the less ability to reduce errors, also having the least influence on the546

correlations. These results, along with the outcomes of the ensemble distribution analysis (cf.547

Figures 8 and 9), demonstrate the effect of successful ensemble generation on estimated errors.548

The filters (e.g., EnKF, SQRA, and EnSRF) with the higher ability to sample representative549

ensembles lead to the less estimation errors as well as correlations in contrast to the other filters,550

especially DEnKF and EnOI.551

Only a few filters show a good performance in both analyses. These filters, SQRA, and En-552

SRF, not only improve the model state estimates compared to GRACE data and the (ground-553

water level and soil moisture) in-situ measurements but also efficiently decrease the ensemble554

spread and spatial correlation errors. The resulting estimates of groundwater storage further555

exhibit less RMSE against independent groundwater level in-situ data.556

5. Summary and Conclusions557

There is evidence that different filter types are more suited to different applications558

(Reichle et al., 2002). This study considered the implementation of different data assimilation559

filtering techniques based on the two most commonly applied algorithms, ensemble Kalman,560

and Particle Filter, to assess their performances for assimilating GRACE data into the hydro-561

logical model of W3RA. GRACE-derived TWS over Australia was assimilated into the W3RA562

hydrological model using the various filters. Among the ensemble Kalman filters, we tested the563

stochastic and the deterministic schemes (EnSRF, ETKF, SQRA, DEnKF, and EnOI) along564

with two different resampling approaches of Particle Filters (PFMR and PFSR). The effects565
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of the filtering methods on the ensembles spread and the estimation error covariance matrices566

were investigated. The most promising results are obtained using SQRA, EnSRF, and EnKF,567

both in terms of ensemble generation as well as in dealing with the estimation error covariance568

matrices. The greatest error reduction with minimum error covariance is achieved by EnSRF569

(47% average) and SQRA (44% average). These two filters (along with EnKF) also show a good570

ability to sample representative ensembles with enough spread. The filters state estimates were571

evaluated against GRACE data, in-situ groundwater measurements, and in-situ soil moisture572

data. While improvements in the state estimations are observed for all implemented filters, the573

best results are obtained with, respectively, SQRA (75% correlation to the groundwater level574

in-situ measurements and 82% correlation to OzNet soil moisture network), EnSRF (42% error575

reduction), PFSR (37% error reduction) and slightly less successful ETKF (33% error reduc-576

tion). In contrast, DEnKF was the least successful in dealing with error covariance matrices577

and suggested a larger error in the state estimates. SQRA and EnSRF, which efficiently dealt578

with the error covariances, provided the least RMSEs (32.14 mm and 33.74 mm) and maxi-579

mum correlations to both groundwater level and soil moisture in-situ measurements. These580

two filters demonstrated a high capability in assimilating GRACE data. GRACE TWS fields581

are unique in term of resolution, both spatially (almost 3 times rougher than the model) and582

temporally (monthly). The weak spatial resolution also affects the observation error covariance583

structure by increasing the correlation between neighboring grid points when working with a584

fine (e.g., 1◦×1◦) grid. Therefore assimilating such a dataset could be challenging requiring a585

filter that is robust to the system error covariances and also powerful in term of resampling586

representative ensembles after every assimilation step. However, a general conclusion on the587

preference of ensemble filters might not be possible from this study due to model-specific and588

application-specific characteristics. Thus, further research might be undertaken to investigate589

various aspects of filters in different hydrological applications and to explore other filters like590

new designed PFs that were not considered here.591
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Figure 1: The study area is represented by black solid line. The figure also contains the boundary of the Murray-

Darling basin and the locations of the groundwater bore stations (blue), and the outline of the Murrumbidgee

catchment with the OzNet soil moisture network (green), which are used for results assessment.
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Figure 2: A schematic illustration of the steps and filters applied for data assimilation in this study.
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Figure 3: Time average correlations between the assimilated GRACE TWS and different filters estimations at

the (a) forecast and (b) analysis steps. Spatial correlation maps are generated at every assimilation step over

the study period and their averages are presented.
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Figure 4: Time average errors between the assimilated GRACE TWS and different filters estimations at the (a)

forecast and (b) analysis steps (units are mm). The spatial distribution of the misfits between the filters solution

and GRACE data is shown, which plots the time-averaged errors calculated at the forecast steps and the analysis

steps.
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Figure 5: RMSE time series between the assimilated GRACE TWS and the filters’ forecasts and analyses which

are calculated over all grid points at the forecast (red) and analysis (blue) steps and their averages at each month

(during the study period) are shown here.
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Figure 6: Same as Figure 5, but for the in-situ groundwater measurements and the filters estimates.
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Figure 7: Comparison between the computed average RMSEs of assimilation results from each applied filter

using GRACE and the groundwater in-situ datasets. This figure presents the average of the best performances

of the filters at the analysis steps from both assessments against GRACE and groundwater in-situs.
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Figure 8: The average TWS variation of ensembles during at the assimilation steps represent by black dashed

lines for each filtering method (units are mm). The blue boxes are the ensemble concentrations and horizontal

red lines show the median values of the ensembles at each analysis step.
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Figure 9: Comparison between the average skewness and kurtosis of each filter for forecast (red circles) and

analysis (blue crosses). Note that a normal distribution has a kurtosis of 3 and uses as a reference so the excess

kurtosis is usually presented by kurtosis–3.
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Figure 10: 2-D representation of correlation coefficients of TWS estimated between the arbitrary point

(136.6854◦E and 23.9015◦S) and the rest of the grid points from the covariance matrices. The temporal av-

erage of the computed correlation coefficients in forecast and analysis steps are presented.
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Table 1: A summary of the applied filters for data assimilation.

Filter Acronym Type Reference

Ensemble Kalman Filter EnKF Stochastic ensemble Kalman filter Evensen (1994)

Square Root Analysis SQRA Deterministic ensemble Kalman filter Evensen (2004)

Ensemble Transform Kalman Filter ETKF Deterministic ensemble Kalman filter Bishop et al. (2001)

Ensemble Square-Root Filter EnSRF Deterministic ensemble Kalman filter Whitaker and Hamill (2002)

Ensemble Optimal Interpolation EnOI Deterministic ensemble Kalman filter Evensen (2003)

Deterministic Ensemble Kalman Filter DEnKF Deterministic ensemble Kalman filter Sakov and Oke (2008)

Particle Filter, Multinomial Resampling PFMR Particle filter Arulampalam et al. (2002)

Particle Filter, Systematic Resampling PFSR Particle filter Arulampalam et al. (2002)

47



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 2: A summary of the statistics derived from the implemented methods using the assimilated GRACE data.

The improvements in the analysis state RMSE estimates are calculated using the GRACE data in comparison

to the model-free run.

Forecast Analysis Improvement (%)

Method RMSE (mm) R2 RMSE (mm) R2

EnKF 26.5165 0.4354 16.5484 0.9084 39.59

SQRA 18.1156 0.4845 8.1208 0.9335 55.17

ETKF 21.8431 0.4456 14.8704 0.9123 41.92

EnOI 35.2105 0.3951 22.9304 0.7165 34.87

EnSRF 17.2950 0.4912 7.1105 0.9518 58.88

DEnKF 41.6417 0.3610 36.7408 0.6324 15.77

PFMR 37.6009 0.3851 30.2198 0.8137 19.63

PFSR 20.0344 0.4722 13.8711 0.9045 41.74
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Table 3: A summary of the statistics derived from implemented methods using the groundwater in-situ measure-

ments. The improvements in the analysis state RMSE estimates are calculated using the in-situ measurements

in comparison to the model-free run.

Forecast Analysis Improvement (%)

Method RMSE (mm) R2 RMSE (mm) R2

EnKF 62.6521 0.2254 41.5469 0.6456 31.68

SQRA 56.3493 0.2834 32.1387 0.7546 42.96

ETKF 60.7741 0.2574 38.2156 0.6718 33.12

EnOI 89.5411 0.1756 61.0514 0.4675 23.82

EnSRF 58.5271 0.2378 33.7420 0.7225 42.35

DEnKF 112.9712 0.1454 84.3153 0.3385 10.36

PFMR 75.3744 0.1914 53.5445 0.5546 14.96

PFSR 61.0124 0.2246 35.4581 0.6840 37.88
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Table 4: A summary of the average correlations between state estimates derived from implemented methods and

the soil moisture in-situ measurements. The improvements in the analysis state estimates are calculated using

the in-situ measurements in comparison to the model-free run.

Method Forecast Analysis Improvement (%)

EnKF 0.6248 0.7824 25.22

SQRA 0.6524 0.8216 35.93

ETKF 0.6412 0.8003 28.81

EnOI 0.5706 0.6940 21.63

EnSRF 0.6331 0.8431 38.17

DEnKF 0.4867 0.5754 18.22

PFMR 0.5574 0.6835 22.62

PFSR 0.6128 0.7568 32.50
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Table 5: Effects of filtering methods on the model state covariance matrix as a percentage improvement.

Method

EnKF SQRA ETKF EnOI EnSRF DEnKF PFMR PFSR

E
rr
o
r
re

d
u
c
ti
o
n

(%
)

Minimum 29 35 22 15 34 6 18 28

Maximum 47 52 44 38 55 20 35 48

Average 35 44 33 21 47 8 27 38
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