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We report photon-noise limited performance of horn-coupled, aluminum lumped-element kinetic

inductance detectors at millimeter wavelengths. The detectors are illuminated by a millimeter-

wave source that uses an active multiplier chain to produce radiation between 140 and 160 GHz.

We feed the multiplier with either amplified broadband noise or a continuous-wave tone from a

microwave signal generator. We demonstrate that the detector response over a 40 dB range of

source power is well-described by a simple model that considers the number of quasiparticles. The

detector noise-equivalent power (NEP) is dominated by photon noise when the absorbed power is

greater than approximately 1 pW, which corresponds to NEP � 2� 10�17 W Hz�1=2, referenced to

absorbed power. At higher source power levels, we observe the relationships between noise and

power expected from the photon statistics of the source signal: NEP / P for broadband (chaotic)

illumination and NEP / P1=2 for continuous-wave (coherent) illumination. VC 2016 Author(s). All
article content, except where otherwise noted, is licensed under a Creative Commons Attribution
3.0 Unported License. [http://dx.doi.org/10.1063/1.4942804]

A kinetic inductance detector1 (KID) is a thin-film

superconducting resonator designed to detect photons that

break Cooper pairs. This detector technology is being devel-

oped for a range of applications across the electromagnetic

spectrum. Our devices are being developed for cosmic

microwave background (CMB) studies.

The randomness of photon arrivals sets the fundamen-

tal sensitivity limit for radiation detection. In recent years,

several groups have used spectrally filtered thermal sources

to perform laboratory measurements of both aluminum and

titanium nitride KIDs that demonstrate sensitivity limited

by photon noise.2–6 Here, we use an electronic source to

demonstrate photon-noise limited performance of horn-

coupled, aluminum lumped-element kinetic inductance

detectors7 (LEKIDs) sensitive to a 40 GHz spectral band

centered on 150 GHz.

The array of devices used in this study was fabricated by

patterning a 20 nm aluminum film on a high-resistivity crys-

talline silicon substrate, with twenty detectors per array. Each

resonator comprises lithographed structures that behave elec-

trically as lumped elements, namely, an interdigitated capaci-

tor and an inductive meander that is also the photon absorber.

Schematics of a detector and the horn coupling scheme are

shown in Figure 1. These devices were fabricated at STAR

Cryoelectronics using the same lithographic mask used to

pattern the devices described in a previous study.8 The same

processing steps were used in this study except that the silicon

wafer was immersed in hydrofluoric acid prior to aluminum

deposition in order to clean and hydrogen-terminate the

silicon surface to reduce oxide formation. We measure a

superconducting transition temperature Tc ¼ 1:39 K. The res-

onance frequencies are 95 MHz < fr < 195 MHz. Under the

lowest loading conditions, the internal quality factors are

Qi � 5� 105. The coupling quality factors are Qc � 5� 104.

The volume of each inductive meander is 1870 lm3, assuming

nominal film thickness. The detector bath temperature is

12061 mK, obtained in a cryostat using an adiabatic demag-

netization refrigerator backed by a helium pulse tube cooler.

Detector readout is performed with a homodyne system

using a cryogenic SiGe low-noise amplifier and open-source

digital signal-processing hardware.8,9 All the data shown are

from a single representative detector with fr ¼ 164 MHz and

were taken at a constant readout tone power of approximately

�100 dBm on the feedline. The package that contains the

detector chip is machined from QC-10, which is an aluminum

alloy known to superconduct at the bath temperature used

here.

Figure 1(a) is a schematic of the millimeter-wave

source, located outside the cryostat. Within the source, the

output of a 12� active multiplier chain passes through two

variable waveguide attenuators that allow the output power

to be controlled over a range of more than 50 dB. Thea)Electronic mail: daniel.flanigan@columbia.edu
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primary components of the source are listed in the supple-

mentary material.10

The output spectrum is controlled by a band-pass filter

with a sharp roll-off outside its passband of 140 to 160 GHz.

Within this passband, the source can produce radiation in

two modes. In broadband mode, amplified noise is multi-

plied into a broadband chaotic signal. In continuous-wave
mode, a multiplied tone from a signal generator approxi-

mates a monochromatic coherent signal. We have measured

the source output in both modes using a Fourier transform

spectrometer; these measurements show that in broadband

mode the power is constant within a factor of two across the

output band, and in continuous-wave mode, it appears mono-

chromatic with negligible higher harmonics.

Figure 1(b) shows the signal path from the source

through the cryostat to the detectors. The source output is

split using a waveguide directional coupler that sends 99%

of the power into a calibrated, isolator-coupled zero-bias

diode power detector (ZBD), the voltage output of which is

recorded using a lock-in amplifier. The remaining 1% of the

power travels through a vacuum window and into the cryo-

stat through WR6 waveguide. A piece of Teflon at 4 K

inserted into the waveguide absorbs room-temperature ther-

mal radiation. Two mirrors transform the output of a conical

horn into a collimated beam. A 6.4 mm thick slab of micro-

wave absorber (Eccosorb MF-110), regulated at 2 K during

these measurements, attenuates incoming signals and pro-

vides a stable background load. A metal-mesh filter at the de-

tector apertures defines the upper edge of the detector band

at 170 GHz. The lower edge of the band at 130 GHz is

defined by the cutoff frequency of a 1.35 mm diameter circu-

lar waveguide in the detector package. We note that the

source output is within the single-mode bandwidth of both

WR6 waveguide and the circular waveguide. The radiation

from the source incident on the detector horns is linearly

polarized, and the electric field is aligned with the long ele-

ments of the inductive meanders in the detectors.

Figure 2 shows the main results of this work. All power

values in this figure refer to the power from the source

absorbed by the detector: PA ¼ gSPS, where PS is measured

by the ZBD. Before calibration, the efficiency gS is known

only approximately from measurements and simulations of

the components between the source and the detector. We

accurately determine gS, and thus the absorbed source power,

by measuring the relationship between emitted source power

and detector noise. This calibration relies on the assumption

that all components between the source output and detector

are linear: We have linearized the ZBD response at the higher

power levels, all other components are passive, and we

assume that filter heating is negligible. To perform the calibra-

tion we use measurements of the noise-equivalent power

(NEP), defined as the standard error of the mean in the

inferred optical power at a given point in the optical system

after 0.5 s of integration.11,12 We calculate the NEP using

measurements of the detector noise and responsivity.

At each source power level, to determine the resonance

frequency and the quality factors, we sweep the readout

tone generator frequency fg across a resonance and fit a res-

onator model to the forward scattering parameter S21ðfgÞ
data.8 Figure 2(c) shows the detector response to source

power in both broadband and continuous-wave modes. At

low source power in both modes, the fractional frequency

shift xðPAÞ ¼ frð0Þ=frðPAÞ � 1 is approximately linear in

power, while at high power x / P
1=2
A . This behavior is

described by a model in which the fractional frequency shift

is proportional to the number of quasiparticles

Nqp ¼ N�½ð1þ 2smaxðC0 þ CSÞ=N�Þ1=2 � 1�: (1)

Here, CS / PA is the rate of quasiparticle generation due to

absorbed source photons, C0 is the constant generation rate

due to other effects (such as absorption of ambient photons

and thermal phonons), and N� and smax are material-

dependent constants that describe the observed saturation of

the quasiparticle relaxation time at low quasiparticle num-

ber:13 sqp � smax=ð1þ Nqp=N�Þ. (This saturation is not

experimentally accessible here.) We calculate the responsivity

dx=dPS at each source power level with a finite-difference

derivative that uses the fractional frequency response at adja-

cent power levels.

To measure detector noise, we record time-ordered data

S21ðfg ¼ frÞ. Using the resonator model from the fit to the

FIG. 1. Experiment schematics. (a) The millimeter-wave source components. (b) The source and cryogenic setup. (c) A cross-section of an array element. The

inner conical flare and fused silica layer are designed for impedance matching. (d) The lumped circuit elements of one LEKID. Parts of this figure are repro-

duced with permission from H. McCarrick et al., Rev. Sci. Instrum. 85, 123117 (2014). Copyright 2014 AIP Publishing LLC.
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frequency sweep, we convert these data into units of frac-

tional frequency shift x and then calculate the single-sided

spectral density Sxðf Þ. Figures 2(a) and 2(b) show the meas-

ured noise spectra and fits to the following model:10

Sx fð Þ ¼ W2 1þ fk=fð Þa

1þ f=fcð Þ2
þ A2; (2)

where the free parameters are the detector white noise W2,

the red noise knee frequency fk, the spectral index a, the cut-

off frequency fc, and the amplifier noise A2. This model

treats the detector noise as the sum of a white noise process

with spectral density W2 and a red noise process with spec-

tral density R2 ¼ W2ðfk=f Þa, both rolled off at fc.

The detector audio bandwidth of about 1 kHz corres-

ponds to a limiting time constant s ¼ ð2pfcÞ�1
that is

approximately equal to both the resonator ring-down time

sr ¼ Q=pfr and the expected quasiparticle relaxation time sqp

for aluminum. Both of these time constants are expected to

decrease as the absorbed optical power increases, as observed

in the data.

To model the detector noise, we first consider noise

sources independent of the quasiparticle system. White noise

due to the cryogenic amplifier dominates at frequencies well

above the detector bandwidth, and we account for it in the

noise spectra model. Two-level systems (TLS) in amorphous

dielectric surface layers located near the resonator produce

fluctuations in the local dielectric constant and thus in fr.
14 In

a separate experiment, described in the supplementary mate-

rial,10 we determined that TLS noise is negligible at the read-

out power level (�100 dBm) used in the measurements

presented here and thus do not include it in the noise model.

The chosen readout power level is high enough to suppress

TLS noise but is not so high that nonlinear effects due to res-

onator bifurcation become significant.

The remaining noise sources involve fluctuations in

the quasiparticle system: Generation by optical photons,

FIG. 2. Primary results of the experiment. (a) Spectral density Sx of detector time-ordered data versus frequency under continuous-wave illumination with

� ¼ 148 GHz (solid lines), and the result of fitting the data to Equation (2) (dashed lines). At high power, the red noise component is dominated by fluctua-

tions from the signal generator that feeds the multiplier; these fluctuations are correlated among detectors. (b) Spectral density under broadband illumina-

tion, and fits of Equation (2). The spikes above 400 Hz are pickup from a fan in the source. The red noise below 100 Hz at low source power in both modes

is produced by vibrations from the pulse tube cooler that vanish when it is turned off. The detector white noise levels from the fits are used to calculate NEP

values. (c) Fractional frequency response versus absorbed power in both source modes. The error bars are statistical errors from the resonator fits. We use

the finite-difference derivative of these response data to calculate the NEP. The dashed black line and solid gray line are guides that show how the response

scales at both low and high absorbed power. (d) Noise-equivalent power versus absorbed power in both source modes. All data points and lines are refer-

enced to absorbed power. The error bars are propagated statistical errors from the finite difference derivative and the detector noise fits. The solid green line

is the sum of the quadratic and linear terms in the fit of Equation (6) to the broadband NEP2 data. The dotted green line is the quadratic term, which is the

photon wave noise contribution. The dashed green line is the linear term, which contains equal contributions from photon shot noise and quasiparticle

recombination noise. The broadband frequency used is � ¼ 150 GHz, near the band center. The solid brown line (nearly coincident with dashed green) is

the linear term in the fit of Equation (6) to the continuous-wave NEP2 data, in which the quadratic term is omitted.
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readout photons, and thermal phonons, as well as quasipar-

ticle recombination, e.g., via phonon emission. All of these

sources are expected to produce white noise that rolls off at

the frequency corresponding to the larger of sr and sqp.13 We

expect readout generation to be negligible at high source

power and treat it as constant. (Where present, the photon

wave noise introduces correlations between photon arrival

times. This noise has a bandwidth equal to the 20 GHz band-

width of the absorbed broadband radiation, so it is also

expected to appear white in the detector audio band.15)

The NEP model includes theoretical expectations for

photon noise and quasiparticle recombination noise. We

denote by n the mean photon occupancy of a single spatial/

polarization mode of the electromagnetic field with fre-

quency �. For example, for a thermal source at temperature

T, the occupancy is n ¼ ½expðh�=kBTÞ � 1��1
, where h is

Planck’s constant and kB is Boltzmann’s constant. If we

assume that the radiation occupies an effective optical band-

width B� � sufficiently narrow that quantities such as occu-

pancy and absorption efficiency can be treated as constant,

then the power from this mode that is absorbed by a detector

with absorption efficiency g is PA ¼ gnBh�. If the source is

thermal, then the contribution of photon noise to the NEP is

given by12

NEP2
A;c ¼ 2gnð1þ gnÞBðh�Þ2 ¼ 2h�PA þ 2P2

A=B; (3)

which is referenced to absorbed power. We refer, respectively,

to these two terms as shot noise and wave noise, following

Hanbury Brown and Twiss.16 If the source is monochromatic

with perfect temporal coherence, then only the shot noise term

is present regardless of the occupancy: this behavior repre-

sents a key difference between a quantum coherent state and a

quantum-statistical thermal state of the field.17,18 For a ther-

mal source, if gn� 1, the shot noise dominates, which is typ-

ical in optical astronomy; if gn� 1, the wave noise

dominates, which is typical in radio astronomy.

We measure power at the output of the source and detec-

tor NEP referenced to the same point. Referencing the pho-

ton NEP to the source output gives

NEP2
S;c ¼ NEP2

A;c=g
2
S ¼ 2h�PS=gS þ 2P2

S=B: (4)

The presence of the efficiency gS in the linear term of this

equation enables extraction of the absorbed source power.

Previous studies that calculated the absorption efficiency

of a KID by measuring the scaling of photon shot noise with

optical power have used superconducting films with transi-

tion temperatures similar to the film used here but larger

photon energies.2,3,5,6 Here, the photons have energies

h�� 2D, where D is the superconducting energy gap, so

each photon excites only two quasiparticles close to the gap;

in this limit the quasiparticle recombination noise is signifi-

cant. The recombination noise contribution to NEPA is10

NEP2
A;R ¼ 4DPA=gpb; (5)

where gpb is the pair-breaking efficiency. For photon ener-

gies 2D < h� < 4D, a recent measurement19 found gpb

� 2D=h�, in agreement with theory.20 Using this value, the

recombination NEP equals the shot noise term in the photon

NEP. This is expected based on the symmetry between

uncorrelated pair-breaking events and uncorrelated pair-

recombination events. Finally, we introduce a small constant

term NEP0 to account for noise sources independent of source

power, such as TLS noise and quasiparticle generation-

recombination noise from thermal phonons, readout photons,

and ambient photons.

To calculate the detector NEPA, which is shown in

Figure 2(d), we use the measured fractional frequency shift x
(unitless), the measured fractional frequency noise power Sx

(1/Hz), and the source power PS (watts) as measured with a

calibrated ZBD mounted on the directional coupler outside

the cryostat (see Figure 1). The source power absorbed by

the detector is related to PS by PA ¼ gSPS, where gS is an

overall system efficiency from the source output to the detec-

tor that includes the transmission through the directional

coupler, the attenuation of the stainless steel waveguide, the

geometrical dilution due to the internal optics, the loss in the

Eccosorb, and the detector absorption efficiency. To com-

pute the responsivity to changes in the source power, we plot

x versus PS and calculate the slope of this curve dx=dPS at

each PS using a finite difference algorithm. We use this

responsivity to convert the fractional frequency noise meas-

urements (Sx) to NEPS. Note that for NEPS, we use only the

white noise component, W, obtained by fitting Equation (2)

to each Sx measurement. Thus, NEPS ¼ W=ðdx=dPSÞ. To

convert PS to PA, we need to determine gS. The complete

theoretical model for NEPS is

NEP2
S ¼ ðNEP2

A;0 þ NEP2
A;R þ NEP2

A;cÞ=g2
S

¼ NEP2
A;0=g

2
S þ ½2ð2h�PAÞ þ 2P2

A=B�=g2
S

¼ NEP2
S;0 þ 4h�PS=gS þ 2P2

S=B; (6)

which is the sum of the aforementioned noise contributions.

The right-hand side of this equation is quadratic in PS with

unknown quantities NEPS;0; gS, and effective optical band-

width B. The limiting NEPS;0 is discussed below. We fit

Equation (6) to the broadband data using center frequency

� ¼ 150 GHz and obtain gS ¼ 8:50� 10�7ð160:09Þ and

B ¼ 13 GHz. The quadratic term is not expected to be present

for coherent illumination because the source should produce

only shot noise, so we fit Equation (6) to the continuous-wave

data omitting the third term. Here, � ¼ 148 GHz and we

obtain gS ¼ 1:12� 10�6ð160:04Þ. As a final step, we convert

PS to PA using the gS values from the model fitting and pro-

duce Figures 2(c) and 2(d). Note that because the broadband

source involves contributions from the full source output

bandwidth, it is not surprising that the measured gS values dif-

fer between the continuous-wave and broadband modes by

more than the statistical error bars.

Figure 2(d) shows that photon noise dominates under

broadband illumination when PA � 1 pW, which corresponds

to NEPA � 2� 10�17 W Hz�1=2. At high power in each

source mode, we observe the expected relationship between

noise and power: in broadband mode NEP / P because the

quadratic wave noise term dominates, while in continuous-

wave mode NEP / P1=2 because the quadratic term is not

present. This behavior is a clear signature of photon noise.

083504-4 Flanigan et al. Appl. Phys. Lett. 108, 083504 (2016)



Note that the NEPA values reported have the amplifier

noise contribution subtracted because the white noise pa-

rameter W2 in Equation (2) describes the noise power above

the amplifier noise A2. Here, subtracting the amplifier noise

yields an accurate estimate of the detector performance

because, alternatively, the amplifier noise can be sup-

pressed to a negligible level by increasing the readout

power. We verified both approaches yield the same NEPA

versus PA result but chose to report the amplifier-noise-sub-

tracted results.

At low absorbed source power levels in both modes,

where PA < 0:1 pW; NEPA levels off to NEP0. The values

of NEP0 extracted from both of the aforementioned fits are

approximately 5–6� 10�18 W Hz�1=2. To explain this

leveling-off effect, we model the background loading as emis-

sion from a black body at 2 K, which is the temperature of

the Eccosorb in front of the feed horn apertures. Assuming

center frequency � ¼ 150 GHz, optical efficiency gI ¼ 0:7
(obtained from electromagnetic simulations), and detector

bandwidth Bfull ¼ 40 GHz, then the radiative loading from

the Eccosorb is PA ¼ gInð�; 2 KÞh�Bfull ¼ 0:08 pW. This

loading level is close to the observed knee in the curves in

Figure 2(d). Adding an equal recombination noise contribu-

tion to the corresponding photon NEP gives NEPA

¼ ð2 	 2h�PAÞ1=2 ¼ 5:6� 10�18 W Hz�1=2, which is close to

the observed NEP0 value. Therefore, the observed limiting

NEPA is consistent with this expected background loading

model.

Analysis of data from twelve detectors yielded similar

results to those shown in Figure 2(d), with the photon noise

starting to dominate between 0.5 and 1 pW. We conclude

that these detectors become limited by photon noise at

absorbed power levels lower than the background power lev-

els already measured by ground-based CMB polarimeters.
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