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Abstract 

We have used spin polarized density functional theory calculations to perform extensive 

mechanistic studies of CO2 dissociation into CO and O on the clean Fe (100), (110) and (111) 

surfaces and on the same surfaces coated by a monolayer of nickel. CO2 chemisorbs on all three 

bare facets and binds more strongly to the stepped (111) surface than on the open flat (100) and 

close-packed (110) surfaces, with adsorption energies of -88.7 kJmol-1, -70.8 kJmol-1 and -116.8 

kJmol-1 on the (100), (110) and (111) facets, respectively. Compared to the bare Fe surfaces, we 

found weaker binding of the CO2 molecules on the Ni-deposited surfaces, where the adsorption 

energies are calculated at +47.2 kJmol-1, -29.5 kJmol-1 and -65.0 kJmol-1 on the Ni-deposited 

(100), (110) and (111) facets respectively. We have also investigated the thermodynamics and 

activation energies for CO2 dissociation into CO and O on the bare and Ni-deposited surfaces. 

Generally, we found that the dissociative adsorption states are thermodynamically preferred over 

molecular adsorption, with the dissociation most favoured thermodynamically on the close-

packed (110) facet. The trends in activation energy barriers were observed to follow that of the 

trends in surface work functions; consequently, the increased surface work functions observed on 

the Ni-deposited surfaces resulted in increased dissociation barriers and vice versa. These results 

suggest that measures to lower the surface work function will kinetically promote the 

dissociation of CO2 to CO and O, although the instability of the activated CO2 on the Ni-covered 
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surfaces will probably result in CO2 desorption from the nickel-doped iron surfaces, as is also 

seen on the Fe(110) surface. 

 

Graphical abstract 

 

 

1. Introduction 

CO2 conversion is desirable as it can provide a source of renewable fuels and other carbon-based 

products that are currently obtained from fossil fuels. However, CO2 reduction to useful 

hydrocarbons is still industrially challenging and its use in technological processes is therefore 

limited. The challenges and prospects of CO2 conversion have been reviewed extensively1–6. 

Even though CO2 conversion under sustainable conditions is still a challenge,6 it is known to be 

converted under ambient conditions in biological systems, e.g. carbon-monoxide dehydrogenases 

enzymes containing Fe and Ni active sites8.  

Single crystal heterogeneous transition metal catalysts have received much attention for potential 

CO2 conversion. From the early 1980s onwards, several experimental studies have been 

undertaken to understand the behavior of CO2 on transition metal surfaces; these studies have 

been compiled in two reviews9, 10. In general, except for a few late transition metals such as Fe, 

Ni, and Cu, CO2 was found not to be activated on clean transition metal surfaces, except when 
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promoted by alkali metals. Electron transfer from the surface to the LUMO of CO2 to form an 

activated CO2
- species is the key step to CO2 reduction on catalytic surfaces, which was found 

to be affected by temperature, the presence of promoters, surface morphology and surface 

defects. Despite these many experimental studies, the energetics of CO2 reduction over iron 

surfaces are still not well understood. Although the extent of CO2 activation has been 

investigated computationally on various low Miller index surfaces of Cu11, 12, Ni13 and Co14 as 

well as its dissociation and hydrogenation15–21, this is not the case for the Fe facets, where there 

is no detailed computational study to complement the extensive experimental work 22-27. 

Under the same experimental conditions, at 300 K, CO2 activation and dissociation and 

sequential CO dissociation were reported on Fe (111), but no interaction was observed on the Fe 

(110) facet 22-24. Bent CO2 as a precursor to dissociation has also been reported between 160-180 

K25 and at 130 K26 on Fe (111). Hess et al.26, using high resolution electron loss spectroscopy 

(HREELS) studies,  observed a weakly bound unstable linear CO2 mode and two stable bent CO2 

modes on the (111) facet. CO2 dissociation starts at 130 K and CO dissociation at about room 

temperature. On the (100) facet, Nassir and Dwyer27 first reported the activation of CO2 on at a 

slightly lower energy than on the (111) surface and the concluded from their results that both the 

(111) and (100) surfaces behaved in a similar reactive manner compared to the unreactive (110) 

facet. Using  temperature programmed desorption (TPD) they observed stable Cs and C2v bent 

CO2 adsorption modes compared to the linear CO2 on the surface, two sequential C-O 

dissociations and a stable CO intermediate, whereas low energy electron diffraction (LEED) 

analysis indicated the hollow site as the preferred CO2 adsorption site. Activation was observed 

on the Fe (100) at 110 K, leading to dissociation at 300K, CO dissociation at 723 K and carbon 

desorption at 973 K. Recombination of atomic carbon and oxygen of dissociated CO species at 
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elevated temperatures was also reported at 927 K. These experimental studies and other 

theoretical studies on Ni, Cu and Co show that apart from the type of metal, CO2 activation is 

also affected by the surface morphology. 

Earlier theoretical works have reported spontaneous CO2 activation on the low Miller indices of 

iron and the energetics to dissociate CO2 species on the (100) and (111) surfaces but not the 

(110) surface28–33. A recent DFT study has shown that nickel deposition on iron surfaces 

increased the work function of the (100) and (111) facets but reduced the work function of the 

most stable and close-packed (110) surface34. This result suggests that Ni monolayer deposition 

may affect the thermodynamics and/or kinetics of CO2 adsorption and dissociation. To 

understand fully the role of the surface structure and composition on the energetics of CO2 

dissociation on the Ni-deposited Fe surfaces, here we have calculated the adsorption energies, 

activation energy barriers and geometric structures of reactants, products, and transition states of 

the process of CO2 dissociation on bare Fe surfaces and compared them with those on the same 

surfaces coated in a monolayer of nickel.  

2. Computational Details 

All calculations were carried out using the generalized gradient approximation (GGA) within the 

spin-polarized density functional theory (DFT) method with plane-wave basis set and ultra-soft 

pseudopotentials, as described within the Quantum ESPRESSO Package35, which performs fully 

self-consistent DFT calculations to solve the Kohn-Sham equations36. The Perdew, Burke, 

Ernzerhof (PBE)37 GGA exchange-correlation functional was employed. The Fermi-surface 

effects were treated by the smearing technique of Fermi-Dirac, using a smearing parameter of 

0.003 Ry in all calculations. An energy convergence threshold defining self-consistency of the 
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electron density was set to 10-6 eV and a defining mixing factor for self-consistency of 0.2. The 

graphics of the atomic structures were prepared with the XCrysDen software38. 

The various low Miller index surfaces were created from the optimized bulk using the 

METADISE39 code. Surfaces were described by a slab model, where periodic boundary 

conditions are applied to the central super-cell so that it is reproduced periodically throughout 

space. Super-cells large enough to prevent lateral interactions between adsorbates were 

employed, such that adsorbates (molecular and dissociated species) are more than 5 Å away from 

their periodic images. Super-cells of the p(3 x 3) (100) surface, p(2 x 2) (110) surface and p(3 x 

2) (111) surface were employed for both adsorption and dissociation studies, representing CO2 

surface coverages of  1/9, 1/8 and 1/6 respectively. The surface coverage is defined as the 

number of adsorbed CO2 molecules relative to the number of metal atoms in the topmost layer of 

each surface. The Brillouin zone was sampled using a Monkhorst-Pack40 k-point mesh of (9 x 9 

x 9) for the bulk material and (3 x 3 x 1), (5 x 5 x 1) and (3 x 5 x 1) mesh k-points for the (100), 

(110) and (111) surface calculations respectively. A vacuum region of 12 Å perpendicular to 

each surface was tested to be sufficient to avoid interactions between periodic slabs. An energy 

cut-off of 40 Ry (544 eV) and charge density cut-off of 320 Ry (4354 eV) for the expansion of 

the plane-wave basis set were found to be adequate for converging the total energy of the bulk 

iron to 1 meV. 

Following convergence tests, the (110), (100) and (111) slabs were built to thicknesses of 4, 5 

and 6 layers, respectively, which settings are sufficient to converge the surface energies of the 

facets 34. The top layer of iron is replaced with nickel in the nickel-deposited surfaces resulting in 

a total surface coverage. In all calculations, the top 3 layers and adsorbates were allowed to relax 
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explicitly and the bottom layers were fixed at their bulk equilibrium position to mimic the bulk 

material. The amount of charge gained by the CO2 molecule from each surface was calculated 

using the Löwdin scheme41. The transition state structures were searched using the climbing 

image nudged elastic band (CI-NEB) method42 and transition state structures were located as the 

structure with the highest energy along the reaction coordinate, characterised by one and only 

one imaginary frequency. The reaction energy (ΔE) is calculated as the total energy difference 

between the final state and the reactants. Energy barriers are also calculated as the total energy 

difference between the transition state and the reactants. London dispersion interactions were not 

accounted for in the present study, as recent periodic DFT calculations of the water gas shift 

reaction on Cu(321) shows that including dispersion terms does not change the qualitative 

picture of the overall reaction, maintaining both the rate determining step and the predominant 

route. However, we do expect that the dispersion contributions may make a difference to the 

stability of the CO2 molecule, intermediates or products on the different Fe surfaces43. 

3. Results and Discussion 

3.1 Adsorption sites, modes and strengths of CO2 on bare and Ni-deposited Fe surfaces 

We first explored the preferred CO2 binding sites (Figure 1) and different modes of binding on 

the bare Fe (100), (110) and (111) facets and later introduced nickel to the surfaces at the most 

preferred adsorption modes. The initial adsorption sites investigated included the top, bridge and 

hollow sites as well as the sub-layer top site (shallow top), the sub-sub-layer top site (deep top) 

and the sub-layer bridge site (shallow bridge) on the (111) surface, as indicated in Figure 1. 

For each adsorption structure, energy minimizations were carried out until convergence within 1 

meV per cell was achieved. The lowest-energy CO2 adsorption structures on the bare and Ni-

deposited surfaces are presented in Figures 2 and 3, respectively, (the remaining binding modes 
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and calculated binding energies are given in the Supporting Information (SI) Figure S1−S3 and 

Table S1). 

For the Fe (100) surface calculations, a p(3 x 3) super-cell was employed for the CO2 adsorption 

and dissociation reactions, similar to earlier calculations28,29. The super-cell is made up of nine 

surface atoms and five atomic layers. The lowest-energy CO2 adsorption configuration at the 

Fe(100) surface was calculated at the hollow site in the C2v mode, where the CO2 molecule binds 

through the carbon and two oxygen atoms (Figure 2a), releasing an energy of 88.7 kJmol-1 upon 

adsorption (Table 1). The adsorption energies of the other stable adsorption configurations are 

calculated at -62.7 kJmol-1 for CO2 adsorption at bridge site, -53.7 kJmol-1 for the Cs mode at the 

hollow site, -15.4 kJmol-1 for CO2 adsorption at top Fe site, and -2.0 kJmol-1 for linearly 

physisorbed CO2.( SI Figure S1b−d). The calculated adsorption energies and structural 

parameters of the lowest-energy structure are similar to those reported in earlier investigations.28, 

29   Glezakou et al.28 also obtained the hollow-C2v structure as the preferred CO2 activated mode 

on the Fe (100) surface with an adsorption energy of -69.9 kJmol-1, when they studied CO2 

corrosion pathways using spin-polarized DFT and norm-conserving pseudopotentials. Later, Liu 

et al.29, employing spin-polarized DFT and projected augmented wave pseudopotentials, also 

reported the hollow-C2v structure as the preferred structure with an adsorption energy of -61.9 

kJmol-1. Recently, Nie et al. have similarly obtained the hollow-C2v structure, with a binding 

energy of -91.66 kJmol-1 with the DFT-GGA calculation using projected augmented wave 

pseudopotentials. These results are consistent with our binding energy of            -88.7 kJmol-1 at 

the Fe(100) surface, where the small difference could be attributed to the differences in 

pseudopotentials employed.  On the Ni-deposited Fe(100) surface (Figure 3a), the binding site 

and mode of CO2 adsorption remains the same as on the bare Fe(100) surface, but the adsorption 
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becomes unstable with an endothermic energy of +47.2 kJmol-1. This drastic change in binding 

strength from -88.7 kJmol-1 to +47.2 kJmol-1 could at least in part be attributed to the higher 

electronegativity of nickel, resulting in less electron transfer into the CO2 moiety, as nickel is 

observed to bind adsorbates less strongly compared to iron13, 30. For the pure fcc nickel metal, the 

CO2 binding energy was calculated to be -7.7 kJmol-1 at the Ni (100) surface 13.  

  

For the CO2−Fe(110) complexes, a p(2 x 2) super-cell made up of eight top atoms and four 

atomic layers was employed for the CO2 adsorption and dissociation reactions. As on the 

Fe(100) surface, several possible sites and modes of adsorption of CO2 including bridge-C2v, 

hollow-C2v and hollow-Cs configurations were explored on the Fe(110) surface in order to 

predict the lowest-energy structure. The hollow-Cs structure (Figure 2b), was calculated to be the 

preferred CO2 adsorption mode on the Fe (110) surface, with an adsorption energy of                    

-70.8 kJmol-1. This structure is energetically more stable than the hollow-C2v structure (SI Figure 

S2b) and the bridge-C2v structure (SI Figure S2c) which released adsorption energies of                    

-46.8 kJmol-1 and 45.6 kJmol-1, respectively. The lowest-energy hollow-Cs structure (Figure 2b), 

was previously reported by Wang et al.30 on Fe (110), where they used a five atomic-layered slab 

to obtain an adsorption energy of -65.9 kJmol-1 (Table 2), consistent with the -70.8 kJmol-1 

obtained in this work.  On the nickel-deposited Fe(110) surface, the CO2 remains at the preferred 

hollow site (see Figure 3b), but the binding energy is reduced from -70.8 kJmol-1 to -29.5 kJmol-1 

due to weak interactions between the CO2 and the interacting Ni atoms, which results in less 

electron transfer to the adsorbate. Compared to the bare Fe(110) surface, where the CO2 

molecule was adsorbed in 4-fold coordination, at the Ni-covered (110) surface, the CO2 molecule 

is 2-fold coordinated to the Ni atoms, which explains the weaker adsorption energy calculated 

for the Ni-covered surface.  
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On the Fe(111) surface, a p(3 x 2) super-cell was employed for both CO2 adsorption and 

dissociation. We have explored several initial guess CO2 structures adsorbed at bridge, shallow 

top, shallow bridge and deep top adsorption sites in order to determine to lowest-energy 

structure. Shown in Figure 2c is the lowest-energy  CO2 adsorption structure identified at the 

Fe(111) surface, the other stable structures calculated are shown in (SI Figure S3). In the lowest-

energy bridge-C2v structure (Figure 2c), the carbon atom binds at the shallow top site and the 

oxygen atoms bind at the top bridge site, releasing an adsorption energy of -116.8 kJmol-1 (see 

Table 1). Compared to the bridge-C2v structure, positive adsorption energy energies of                   

27.1 kJmol-1 and 1.7 kJmol-1 were calculated for the top-C2v structure (SI Figure S3a) and the 

slanted linear CO2 structure (SI Figure S3b), respectively. The vertical linear structure at the top 

Fe site (SI Figure S3c) released only small adsorption energy of -1.1 kJmol-1. These adsorption 

energies suggest that the C2v bent and linear vertical modes are stable CO2 structures on the 

surface, as reported in earlier experimental work10. The bridge-C2v structure was also previously 

predicted to be the bent adsorption mode of CO2 at the Fe (111) surface; Ho and co-workers used 

spin polarised density functional theory to study CO2 hydrogenation to formate and then its 

dissociation on Fe (111).31, 32 They reported an adsorption energy of -107.1 kJmol-1 for CO2 

adsorption, which compares well with our result of -116.8 kJmol-1.  On the Ni-deposited Fe(111) 

surface, CO2 remains at the bridge shallow site (see Figure 3c), with the binding strength of CO2 

reduced from -116.8 kJmol-1 to -65.0 kJmol-1 with a reduced amount of charge transfer to the 

CO2 moiety.  

 

Generally, CO2 is more stable in the Cs mode on the close-packed (110) surface, whereas, as also 

suggested by experiment, the more open (100) and (111) surfaces behave almost alike, with CO2 

adsorbing in the C2v mode. The Cs adsorption mode reduces the coordination number (to two 
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instead of three) as well as surface interactions and charge transfer between CO2 and the (110) 

surface, due to the high surface atom density and crowding at the hollow site on the close-packed 

(110) face. The trend in the adsorption energies  shows that CO2 adsorption is most favoured on 

the open and least stable surfaces in the order (111) > (100) > (110), i.e. -116.8 kJmol-1 > -88.7 

kJmol-1> -70.8 kJmol-1. This finding is consistent with the work of O'Shea et al.14 on cobalt metal 

surfaces, who observed that CO2 interacts and binds most strongly to the most open low Miller 

index (110) surface of fcc Co metal. Ni deposition on the Fe surfaces is found to drastically 

reduce the adsorption strength of CO2, with the adsorption even becoming endothermic at the Ni-

deposited (100) surface. The observed trend for CO2 adsorption on the Ni-deposited surfaces is 

(100) +47.2 kJmol-1 < (110) -29.5 kJmol-1 < (111) -65.0 kJmol-1, with the binding least favoured 

on Fe(100), where the adsorbed CO2 interacts primarily with the iron beneath the nickel layer at 

the hollow site. The molecular binding energies of CO2 on pure Ni (fcc) were reported to be -7.7 

kJmol-1 at Ni (100), -37.6 kJmol-1 at Ni (110) and +29.9 kJmol-1 at Ni (111) surfaces, 

respectively,13 where adsorption is endothermic on one of the surfaces of nickel. The 

endothermic binding energies of CO2 on Ni (111) and Ni-doped Fe(100) seem to suggest that the 

CO2 moiety prefers to be free rather than bind to these surfaces.  The electronic contributions to 

the observed differences in the reactivity of the bare Fe surfaces to the Ni-deposited surfaces 

towards CO2 activation are discussed in the next section. 

 

3.2 Electronic properties and vibrational frequency analyses 

The activation of CO2 was found to be characterized by charge transfer from the iron slab to the 

activated moiety, where the extent of CO2 activation, measured from the elongation of the C-O 

bond, is found to be proportional to the extent of charge transfer. Indeed a plot of the C-O bond 

distance against the charge gained by the CO2 adsorbed in the lowest-energy structures at the 



 
 
 
 
 
 

11 
 

different surfaces (Figure 4) shows a linear correlation between the amount of charge transfer 

and the extent of CO2 activation. The order of the C-O bond activation is Fe(100) > Fe/Ni(100) > 

Fe (111) > Fe(110) > Fe/Ni(110) > Fe/Ni(111), which is thus the same as the order for the 

amount of charge gained by the CO2 molecule. Compared to the bare Fe surfaces, we observed a 

smaller degree of charge transfer from the Ni-deposited surfaces to the CO2, which is consistent 

with the weaker binding and shorter C-O bonds calculated at the Ni-surfaces than on the bare Fe 

surfaces. 

Although we observed that on a particular facet stronger binding corresponds to more charge 

transfer, the same cannot be said across the various facets. Whereas we would expect the (111) 

surface to activate CO2 to the highest degree, due to its largest CO2 binding energy, we observed, 

however, that CO2 activation is most pronounced on the (100) facet, the surface with the lowest 

work function. Similarly, Wang et al.30 did not find a strong correlation between CO2 activation 

and binding strength across different transition metals (first row TM) and therefore attributed the 

strength of interaction to both the extent of activation and the d-band centre of the metal. We 

have also observed that for different surface structures of the same material or composition, the 

binding energy does not correlate to, or does not solely define, the extent of activation. Our study 

suggests that the extent of activation should be attributed to the extent of electron transfer. 

 

Vibrational analyses of all the adsorption structures yielded no imaginary frequencies, showing 

that these structures are local minima. Table 2 summarises the three distinct high-frequency 

vibrational frequencies, which correspond to the symmetric (υs) and asymmetric (υas) stretching 

modes and the (υb) bending mode for CO2 adsorbed in the most stable adsorption configuration 

on each surface.  For the lowest-energy adsorption structure on the Fe (100) surface (Figure 3a), 
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the υs, υas, and υb modes can be assigned to 846.1 cm-1, 1112.1 cm-1 and 750.3 cm-1, respectively. 

For the most stable adsorption geometry at the Fe (110) surface (Figure 3b), the υs, υas, and υb 

were assigned to 810.3 cm-1, 1505.8 cm-1 and 733.5 cm-1. On the Fe (111) surface, the υs, υas, and 

υb modes for the lowest-energy adsorption structure (Figure 3c) can be assigned to 1006.7 cm-1, 

1246.4 cm-1 and 750.3 cm-1. We note that on all three surfaces there is a significant redshift of 

the υs and υas modes, compared with the values (1300.0 and 2105.7 cm-1) of a free CO2 molecule, 

whereas the bending modes are blue-shifted. The significant red-shifts in the stretching modes 

show that the CO2 molecule is activated, which is consistent with the calculated elongated C-O 

bonds and bent <OCO angles. The C-O stretching vibrational frequencies of CO2 adsorbed on 

the deposited surfaces are less red- and blue-shifted compared to the bare Fe surfaces, which 

indicates lesser CO2 activation on these nickel-modified surfaces than on the bare Fe surfaces. 

 

3.3 CO2 dissociation on bare and Ni-deposited Fe surfaces 

We next sought to determine the preferred dissociation site of CO2 (CO2 → CO + O). The 

reaction energy (ΔE) is calculated as the total energy difference between the final state (i.e. slab 

with both CO + O adsorbed on it) and the reactants (i.e. isolated slab + isolated CO2). To this 

end, the inter-nuclear C-O bond distance was increased beyond the C-O bonding distance and the 

dissociated oxygen atom was placed at various sites on the surface i.e. top, bridge and hollow 

sites (see Figure 1). For each adsorption structure, energy minimizations were carried out until 

convergence within 1 meV per cell was achieved. Several initial sites were explored on each 

surface for the dissociated CO and O fragments in order to determine the most stable adsorption 

sites and structures.  
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On the bare Fe(100) surface, we found that the hollow site was the preferred adsorption site for 

both CO and O (see Figure 5a, Table 3). The adsorption of both CO and O at the hollow sites 

released an adsorption energy of -179.9 kJmol-1, whereas for the co-adsorption of oxygen at the 

bridge site with CO at the hollow site, an adsorption energy of -143.7 kJmol-1 was released. Our 

results are consistent with those of Glezakov et al., who reported a co-adsorption energy of                  

-126.0 kJmol-1 for CO and O at the hollow sites using the projected augmented wave 

pseudopotentials28.  On the nickel-deposited Fe(100) surface (Figure 6a), the CO moves from the 

most table hollow site to the bridge site. The co-adsorption energy released reduced drastically 

from -179.9 kJmol-1 to -0.7 kJmol-1, partly due to the change in binding site and weaker binding, 

as observed even for bare nickel surfaces when compared to bare iron surfaces 13, 30.  The bridge 

site shows more affinity for the adsorbate as the electron density is reduced at the hollow site due 

to an increased gap between nickel atoms (as a result of their smaller size) and higher nickel 

electronegativity.  

On the Fe(110) surface, we found the hollow sites to be the preferred adsorption sites for both 

CO and O species after geometry optimisations (Figure 5b). The co-adsorption energy was 

calculated at -202.4 kJmol-1 as shown in Table 3. Compared to the Fe(100) surface, the CO 

molecule was adsorbed in an upright configuration at the Fe (110) surface. No stable structure 

was obtained for O at a top or bridge site, as it moved to the hollow site during energy 

minimization. On the Ni-deposited Fe(110) surface, the hollow sites remained the preferred 

binding site for CO and O (Figure 6b), but the co-adsorption energy of (CO + O) reduced from          

-202.4 kJmol-1 to -114.6 kJmol-1. Here again, we see that the nickel reduces the binding strength 

due to the higher electronegativity of nickel compared to iron. The CO bond is also less 
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activated, i.e. being 1.19 Å compared to 1.21 Å on the bare surface due to less electron transfer 

(see Table 3).   

 

On the Fe(111) surface, we found the preferred adsorption sites for both CO and O at the shallow 

top sites, with an exothermic adsorption energy of  -128.8 kJmol-1 ((Figure 5c, Table 3). On the 

Ni-deposited Fe(111) surface (Figure 6c), the co-adsorption of CO and O was calculated at           

-52.4 kJmol-1 compared to -128.8 kJmol-1 calculated on the bare Fe(111).  On the clean Fe 

surfaces, we observed that (CO + O) binds most strongly to the facet, where CO2 binds least 

strongly, with the (CO + O) binding energies following the trend (110) > (100) > (111). On the 

Ni-deposited surfaces, the observed trend is (100) < (111) < (110), which suggests that the (CO + 

O) species bind more strongly to the close-packed (110) surface than the more opened (111) 

surface. This scenario was also observed on the low Miller index surfaces of nickel13, where the 

Ni (110), the most open facet, binds CO2 most strongly but only weakly binds CO + O. The 

molecular and dissociative (CO + O) binding energies of CO2 were reported at -7.7 and -116.7 

kJmol-1 at Ni (100); -37.6 and -69.5 kJmol-1 at Ni (110); +29.9 and -51.1 kJmol-1 at Ni (111) 

surfaces, respectively. These results suggest that (CO + O) binds most strongly to the surface 

with the highest work function, due to the strong affinity of the surface towards electrophiles like 

oxygen.  

3.4 Energy barriers to CO2 activation and dissociation  

Unlike the previous studies of CO2 dissociation energies on Fe (100)28 and Fe (111)32 that 

focused on the barriers leading to dissociation, we have calculated both the activation energies 

required for CO2 adsorption (activation) and dissociation by locating the transition state 

structures TS1 and TS2 between the stable states of the isolated, adsorbed and dissociated CO2 
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molecule on the various iron facets. The reaction energy profiles for CO2 dissociation on both the 

bare Fe and Ni-deposited surfaces is shown in Figure 7, whereas the geometries of stationary 

point structures along the reaction coordinate are shown in SI Figure S4-S6. All of the reported 

energies were corrected by the zero-point energy (ΔZPE), calculated as the difference between 

the zero point vibrational contributions, 












63

1 2

n

i

ihv
, of the final adsorbed CO2 and the initial 

gaseous CO2, where h is Plank’s constant and ʋ is the vibrational frequency.  

It can be seen from the energy profile that the CO2 dissociation step on the facets is the rate-

determining step. The rate depends on the barrier to C-O bond dissociation (TS2) and not to 

adsorption (TS1), which is highest on the bare (110) surface. Although the barrier to CO2 

adsorption is rarely explored in the literature, it reveals additional information about the ease of 

transformation. The negative activation energy barriers (TS1) of -9.8 kJmol-1 and -4.6 kJmol-1 on 

the Fe(100) and Fe(111) surfaces, respectively, suggest a barrier-less reaction to adsorb and 

activate CO2 on these surfaces. However, an energy barrier of 19.6 kJmol-1 has to be overcome 

to adsorb and activate CO2 on the Fe(110) surface, indicating that CO2 will more easily desorb 

from the Fe(110) surface than continue to dissociation. The energy barriers for dissociation from 

the activated state on the pure iron surfaces are calculated to be 40.3 kJmol-1, 126.9 kJmol-1 and 

83.2 kJmol-1 on the (100), (110) and (111) facets, respectively, with ZPE correction. The earlier 

reports by Glezakou et al.28 of a dissociation energy barrier on the (100) facet of 47.3 kJmol-1 

and Chen et al.32 on the (111) facet of 90.9 kJmol-1 agree well with our calculated values of 46.3 

kJmol-1 and 85.6 kJmol-1, respectively, without the zero-point vibrational energy corrections.  

On the nickel-deposited surfaces, the barrier to dissociation is lowest on the (100) surface with a 

barrier of 76.7 kJmol-1, followed by the (110) surface with a barrier of 88.3 kJmol-1, and finally 
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the (111) surface with barrier of 129.6 kJmol-1. Compared to the bare Fe surfaces, the barriers 

leading to CO2 dissociation on the Ni-deposited surfaces increased by 36.4 kJmol-1 and             

46.4 kJmol-1 on the (100) and (111) surfaces, respectively, but decreased by 38.6 kJmol-1 on the 

(110) surface. These results corresponds to the increased work functions calculated at the (100) 

and (111) facets upon the deposition of a monolayer of nickel. The work functions on the various 

facets, i.e. the bare Fe(100), Fe(111), Fe(110) and nickel-coated Fe(100), Fe(111) and Fe(110) 

surfaces have been calculated to be 3.80, 3.86, 4.57, 4.29, 4.28 and 4.72 eV, respectively34. 

Although the dissociated CO2 states are lower in energy than the molecularly adsorbed states, the 

barriers to be overcome in order to desorb CO2 from the Fe and Ni/Fe surfaces are generally 

lower than the barriers to dissociate the molecule into CO and O species, suggesting that the 

adsorbed CO2 molecule may easily desorb from the surfaces rather than dissociate. On the Ni/Fe 

(100) and (111) surfaces, the activation energy barriers to dissociation of the CO2 molecule are 

even higher than the barriers to desorption, indicating that the activated CO2 moiety will either 

remain molecularly adsorbed or desorb from these Ni/Fe surface rather than dissociate. A 

previous study29 of CO2 decomposition on (100) surfaces of fcc iron and nickel revealed an 

increased barrier to dissociation relative to the gaseous CO2, while the barrier from the activated 

to dissociated states showed that dissociation on Ni (100) was faster, with barriers of                   

51.0 kJmol-1 and 113.4 kJmol-1 on nickel and iron, respectively, although CO2 activation was 

more prominent on the iron facet.  As shown in Figure 8, we obtained a correlation between the 

work function and the activation energies required for CO2 dissociation, i.e. the higher the work 

function, the higher the energy barrier to dissociation from its activated state. The regression 

factor of 0.71 is relatively high and therefore suggests that the work function provides a 

reasonably accurate indication of the energy requirements for dissociation. The surfaces 
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exhibiting relatively low work functions are more promising for CO2 activation and dissociation 

as they favor electron transfer. However, the observed TS1 barriers indicate that CO2 

dissociation is favoured only on the pure Fe(100) and Fe(111) surfaces, and not on the other 

surfaces investigated.  

We have also plotted the activation energies for the activation and dissociation steps as a 

function of the reaction energy (Figure 9) and derived the Brønsted-Evans-Polanyi (BET) 

relationship of the activation and dissociation steps of CO2 on the Fe and Ni/Fe surfaces. The 

BEP relationships are important to estimate reaction barriers on other metal surfaces for C−O 

bond activation and decomposition. As shown in the plot for the activation barriers (ΔE‡) and the 

reaction energies for both the activation and decomposition elementary steps for CO2 

dissociation, a linear relationship is obtained, with regression factors of 0.87 and 0.56 

respectively.  This shows a stronger correlation for the activation step than for the decomposition 

step, and the BEP relationship has been developed to be ΔE‡ = 2.40 ΔE - 108.03 (kJmol-1) for 

CO2 activation and ΔE‡ = 0.71 ΔE – 153.97 (kJmol-1) for its dissociation.  

4. Summary and Conclusions 

CO2 adsorption and dissociation was investigated on the low-index (100), (110) and (111) 

surfaces of bcc Fe as well as their facets coated with a monolayer of Ni, using density functional 

theory calculations within the generalized gradient approximation (GGA-PBE) and exchange 

correlation functional. We have observed that the adsorption energy for CO2 decreases in the 

order Fe (111) > Fe (100) > Fe (110) on the clean surfaces, which is consistent with previous 

studies. However, we have found that the co-adsorption energies of the dissociated products (CO 

and O) decrease in the reverse order:  Fe (110) > Fe (100) > Fe (111). Nickel deposition favours 

CO2 adsorption in the order (111) > (110) > (100) and (CO + O) adsorption in the reverse order, 
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except on the (100) facet where binding of adsorbates is not favoured. With the calculated energy 

barriers, the Brønsted-Evans-Polanyi (BEP) relationship was developed with the kinetic energy 

barriers and reaction energies for both CO2 activation and dissociation reaction steps. The energy 

barriers for dissociation of the CO2 molecule into CO and O species were found to be generally 

higher than the energy barriers for the activation of the CO2 molecule. The kinetic energy 

barriers leading to dissociated CO2 products on the (100), (110) and (111) surfaces from the 

activated intermediate were calculated at 40.3 kJmol-1, 126.9 kJmol-1 and 83.2 kJmol-1, 

respectively, which increases on (100) and (111) and reduces on (110) upon deposition of Ni, as 

shown in their work function alterations, with changes most pronounced on (111) > (100) > 

(110). The transition state barriers leading to activation and dissociation show that the CO2 will 

prefer to desorb from the Fe (110) facet rather than form surface-bound dissociated species, in 

good agreement with experimental results, where at 300 K no CO2 decomposition was observed 

on the (110) surface compared to the (111) and (100) surfaces. Deposition of a monolayer of Ni 

on the Fe (110) facet reduces the rate-determining barriers leading to CO2 dissociation, but 

generally the unstable activated CO2 on the various facets will desorb rather than dissociate. The 

zero point vibrational energy contributions were treated and the energy changes fell within a 

range of 6.9 to 62 kJmol-1. The direct dissociation process is thermodynamically most favoured 

on the (110) facet before and after Ni deposition, considering that the activated intermediate is 

less stable and the dissociated product is most stable on this facet, thus favouring product 

formation. Thus, at high temperatures CO2 dissociation to CO and O should be most favourable 

on the (110) facets. However, despite variations in the work functions of the iron facets upon Ni 

deposition, suggesting easier decomposition on the (110) but not on the (100) and (111) surfaces, 

CO2 decomposition is kinetically challenging on the Ni-doped surfaces, due to the instability of 
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the activated CO2 moiety. These findings indicate that, although reducing the work functions of 

iron surfaces through deposition of a second metal could enhance the kinetics of the direct 

dissociation of CO2, especially on the most stable and therefore possibly dominant Fe (110) 

facet, the thermodynamics remain challenging for CO2 decomposition, probably resulting in CO2 

desorption from the nickel-doped iron surfaces before dissociation of the molecule into surface-

bound species.    
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LIST OF TABLES  
 

Table 1: Adsorption energy and structural parameters of CO2 adsorbed on Fe (100), (110) and (111) surfaces.  

Surface Structure 
Eads 

/kJmol-1 

C−O(1), 

C−O(2) /Å 
O−C−O /° Fe−C /Å 

Fe−O(1), 

Fe−O(2) /Å 

∑q 

/e 

Fe(100) Bare Fe (hollow-C2v) -88.7 1.35 119.29 2.15 2.08 -0.08 

 Ni-covered (hollow-C2v) 47.2 1.32 121.4 2.10 2.12 -0.07 

 Glezakou et al.28 -69.9 1.35 117.8 2.11 2.08, 2.05 - 

        

Fe(110) Bare Fe (hollow-Cs) -70.8 1.36,1.23 126.98 1.98 2.04,2.53 -0.06 

 Ni-covered (hollow-Cs) -29.5 1.29,1.24 132.2 1.98 2.08,2.23 -0.05 

 Wang et al.30 -65.9 1.35, 1.22  128.00 1.96 2.01 - 

        

Fe(111) Bare Fe (bridge-C2v) -116.8 1.30 122.3 1.98  1.96 -0.06 

 Ni-covered (bridge-C2v) -65.0 1.27 127.8 1.90 1.98,1.97 -0.045 

 Li and Ho31 -107.1 1.29 122.3 1.96 1.96 - 
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Table 2: The symmetric (υs), asymmetric (υas) and bending (υb) vibrational frequencies of CO2 adsorbed on the low-miller index Fe 

surfaces.  

 

Vib. mode Linear CO2 Fe(100) Fe/Ni(100) Fe(110) Fe/Ni(110) Fe(111) Fe/Ni(111) 

υs /cm-1 1300.0 (1351.2)10 846.1 923.5 810.3 940.6 1006.7 1078.4 

υas /cm-1 2105.7 (2396.4)10 1112.1 1112.4 1505.8 1506.0 1246.4 1436.3 

υb /cm-1 700.0  (672.2)10 750.3 748.2 733.5 730.5 750.3 739.0 
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Table 3: Co-adsorption energies and structural parameters of CO + O on Fe (100), (110) and (111) surfaces. 

 

Surface Nature O-binding site CO-binding site Eads /kJmol-1 C-O(1) /Å C-O(2) /Å Fe-CO /Å Fe-O /Å 

Fe (100) Bare Fe hollow hollow -179.9 1.31 3.02 2.10 2.10 

 Ni-doped hollow bridge -0.7 1.18 3.91 1.90 2.01 

         

Fe (110) Bare Fe hollow hollow -202.4 1.21 3.97 1.97 1.85 

 Ni-doped hollow hollow -114.6 1.19 4.65 1.94 1.87 

         

Fe (111) Bare Fe Shallow top Shallow top -128.8 1.20 3.90 1.78 1.88 

 Ni-doped Shallow bridge Shallow bridge -52.4 1.19 3.01 1.84 1.84 
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LIST OF FIGURES  

 

Figure 1: Top, bridge and hollow starting adsorption sites on the Fe (100), (110) and (111) facets.  
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Figure 2: Stable CO2 adsorption modes on the Fe (100), (110), and (111) surfaces. Colour code: Fe = pink, C = yellow and O = red. 
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Figure 3: Preferred CO2 adsorption site on the nickel monolayer covered Fe (100), (110) and (111) surfaces. Colour code: Fe = pink, 

Ni = blue, C = yellow, and O = red. 
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Figure 4: Amount of charge gained by CO2 and the extent of C−O activation. 
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Figure 5: Co-adsorption structures of CO + O s on the Fe (100), (110) and (111) surfaces.  
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Figure 6: CO + O initial and final adsorption modes on the nickel monolayer covered Fe (100), (110) and (111) surfaces. 
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Figure 7 Energy profile diagram for CO2 activation and dissociation on the bare and Ni-doped Fe (100), (110) and (111) facets, with 

all energies corrected by the ZPE contribution.  
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Figure 8: Plot of work functions of Fe and Fe-Ni (100), (110) and (111) facets against kinetic energy barriers. 
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Figure 9: The Brønsted-Evans-Polanyi (BET) Relation; A Plot of Activation Energies against Reaction Energies on bare and Ni-

doped Fe(100), (110) and (111) facets. 

 

 

 

 

  

 

 


