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Abstract 

An increasing number of studies using real-time fMRI neurofeedback have 

demonstrated that successful regulation of neural activity is possible in various 

brain regions. Since these studies focused on the regulated region(s), little is 

known about the target-independent mechanisms associated with 

neurofeedback-guided control of brain activation, i.e. the regulating network. 

While the specificity of the activation during self-regulation is an important factor, 

no study has effectively determined the network involved in self-regulation in 

general. In an effort to detect regions that are responsible for the act of brain 

regulation, we performed a post-hoc analysis of data involving different target 

regions based on studies from different research groups. 

We included twelve suitable studies that examined eight different target regions 

amounting to a total of 175 subjects and 899 neurofeedback runs. Data analysis 

included a standard first- (single subject, extracting main paradigm) and second-

level (single subject, all runs) general linear model (GLM) analysis of all 

participants taking into account the individual timing. Subsequently, at the third 

level, a random effects model GLM included all subjects of all studies, resulting in 

an overall mixed effects model. Since four of the twelve studies had a reduced 

field of view (FoV), we repeated the same analysis in a subsample of eight 

studies that had a well-overlapping FoV to obtain a more global picture of self-

regulation. 

The GLM analysis revealed that the anterior insula as well as the basal ganglia, 

notably the striatum, were consistently active during the regulation of brain 

activation across the studies. The anterior insula has been implicated in 

interoceptive awareness of the body and cognitive control. Basal ganglia are 

involved in procedural learning, visuomotor integration and other higher 

cognitive processes including motivation. The larger FoV analysis yielded 

additional activations in the anterior cingulate cortex, the dorsolateral and 

ventrolateral prefrontal cortex, the temporo-parietal area and the visual 

association areas including the temporo-occipital junction.  

In conclusion, we demonstrate that several key regions, such as the anterior insula 

and the basal ganglia, are consistently activated during self-regulation in real-time 

fMRI neurofeedback independent of the targeted region-of-interest. Our results 



imply that if the real-time fMRI neurofeedback studies target regions of this 

regulation network, such as the anterior insula, care should be given whether 

activation changes are related to successful regulation, or related to the regulation 

process per se. Furthermore, future research is needed to determine how 

activation within this regulation network is related to neurofeedback success. 

 

Keywords: Neurofeedback, real-time fMRI, brain regulation. 

 

 

  



 

1. Introduction 

Neurofeedback using real-time functional magnetic resonance imaging (rt-fMRI) 

enables participants to obtain voluntary control over multiple brain regions. 

Studies using this technique have demonstrated that it may be possible to 

successfully manipulate brain areas including the anterior cingulate cortex (ACC, 

Weiskopf et al., 2003;Hamilton et al., 2011), the posterior cingulate cortex 

(Brewer and Garrison, 2014), the anterior insular cortex (AIC, Caria et al., 

2007;Caria et al., 2010;Berman et al., 2013), posterior insular cortex (PIC, Rance 

et al., 2014), amygdala (Posse et al., 2003;Zotev et al., 2011;Bruhl et al., 2014), 

primary motor and somatosensory cortex cortices (Yoo and Jolesz, 2002;Berman 

et al., 2012), premotor area (Johnson et al., 2012), visual cortex (Shibata et al., 

2011), auditory cortex (Yoo et al., 2006;Haller et al., 2013), substantia 

nigra/ventral tegmental area (Sulzer et al., 2013), nucleus accumbens (Greer et 

al., 2014) and inferior frontal gyrus (Rota et al., 2009; for a review see Ruiz et al., 

2014).  

 

Real-time fMRI neurofeedback has also been explored as a supplementary 

treatment for various neurological disorders. For instance, real-time fMRI 

neurofeedback has shown positive benefits for diseases such as schizophrenia 

(Ruiz et al., 2013), depression (Linden et al., 2012;Young et al., 2014), tinnitus 

(Haller et al., 2010), Parkinson’s disease (Subramanian et al., 2011) and nicotine 

addiction (Canterberry et al., 2013;Hartwell et al., 2013;Li et al., 2013). However, 

effect size of neurofeedback varies and in a lot of studies some participants fail to 

attain self-regulation. The neural mechanisms of neurofeedback as used for self-

regulation of bodily functions are not well understood, which may be a roadblock 

to achieving consistent outcomes between studies and successful translation into 

clinics. 

 

One of the most important but least understood characteristics of neurofeedback 

is the specificity of activation during self-regulation. Previous investigations in 

real-time fMRI neurofeedback have attempted to control for specificity of the 

self-regulation using feedback from another region (deCharms et al., 2005), 



subtracting the mean activity of a reference slice that does not contain involved 

brain regions (Caria et al., 2007;Rota et al., 2009), or using post-hoc statistical 

methods (Blefari et al., 2015). In contrast, we are here interested in the regions 

that are additionally activated during self-regulation, that is, regions that are 

involved in the cognitively demanding task of neurofeedback regulation. 

 

In their landmark study, deCharms et al. reported that reduced pain perception 

via ACC regulation may have resulted from the contribution of a higher order 

region despite rigorous controls (deCharms et al., 2005).  If so, exactly which 

regions would be responsible for effects of self-regulation?   

  

To answer this question, it is important to consider the cognitive processes 

involved during neurofeedback and the corresponding networks. One of these 

networks is the central executive network (CEN) that is active in most cognitively 

demanding task, likely reflecting working-memory involvement and decision-

making (Koechlin &Summerfield 2007, Miller &Cohen 2001). It includes the 

dorsolateral prefrontal cortex (dlPFC) and the posterior parietal cortex 

(Sridharan, 2008). In addition, the saliency network that is comprised of the AIC 

and the ACC as main components will be involved in neurofeedback relevant tasks 

including attentional control and monitoring. Menon and Uddin (2010) suggest 

that this network coordinates task-related information processing by recruiting 

various other, more specialized networks. For neurofeedback, these might include 

reward-learning areas, recruiting the striatum (Hollerman et al., 1998;Samejima 

et al., 2005;Daniel and Pollmann, 2014) and frontal cortex  (Watanabe, 

1996;O'Doherty et al., 2003) and areas responsible for interoception (Craig, 

2002;Lerner et al., 2009) such as parts of the AIC. Neurofeedback will likely use 

subnetworks cutting through all the above-mentioned networks. 

 

Indeed, studies using a single region of interest suggest involvement of the 

dorsolateral prefrontal cortex (dlPFC), the dorsomedial prefrontal cortex 

(dmPFCZotev et al., 2013), the ventromedial prefrontal cortex (vmPFC, Haller et 

al., 2010) and the anterior mid-cingulate cortex (Lee et al., 2012) to anterior 

cingulate cortex (Lawrence et al., 2013;Zotev et al., 2013) in the regulation 



process. A number of feedback studies show activation of the posterior ACC 

(pACC,), although this area was not targeted (e.g. Caria et al., 2007;Rota et al., 

2009;Lee et al., 2012;Veit et al., 2012;Lawrence et al., 2013). Similarly, several 

studies reported activation of the insula during neurofeedback runs (e.g. Rota et 

al., 2009;Haller et al., 2010;Lee et al., 2012;Paret et al., 2014). 

 

In the current investigation, we assess the brain network mediating regulation in 

real-time fMRI neurofeedback. We hypothesized that regardless of the target 

region used, a common brain network is involved in the regulation process itself. 

Consequently, we performed a meta-analysis using individual participant data 

(IPD meta-analysis) across multiple previously reported rt-fMRI neurofeedback 

studies with different target regions in order to cancel out target region-specific 

effects and identify those activations commonly related to the regulation process. 

It should be noted that, at the current stage, we can not distinguishing between 

self-regulation processes and other processes involved in neurofeedback 

including feedback processing and learning as the current study does not include 

control runs without feedback (“transfer runs”). Our results suggest the existence 

of a neurofeedback network consisting of the anterior insula, basal ganglia, dorsal 

parts of the parietal lobe extending to the temporo-parietal junction, ACC, dlPFC, 

ventrolateral prefrontal cortex (vlPFC) and visual association areas including the 

temporo-occipital junction. 

  



 

2. Materials and Methods 

2.1 Study selection 

Studies were selected based on a Web of Knowledge 

(https://apps.webofknowledge.com) search for the keywords: “real time fMRI”, 

"real time functional” or “rtfMRI” (in January 2014) as well as studies indicated in 

the real-time community (rtfmri@sympa.ethz.ch) literature updates. This search 

provided us with a total of 316 publications. Next, we used the following selection 

criteria, 1) rt-fMRI neurofeedback, 2) 1.5 or 3.0 T static field strength, 3) at least 

four healthy participants, and 4) at least three neurofeedback runs. These criteria 

were used to exclude technical proof-of-principle studies (usually with less 

subjects) as opposed to the “typical” neurofeedback studies using standard 

methodology. Twenty-eight studies were aggregate based on these criteria. 

Subsequently, we contacted the corresponding authors, and 12 of these 

corresponding authors agreed to provide us with the raw data of 12 studies that 

were used for the analysis. 

 

2.2 Included studies 

We were able to obtain 12 studies targeting nine different regions of interest, 

notably the insula (5), amygdala (2), primary motor cortex (1), premotor cortex 

(1), auditory cortex (1), visual cortex (1), anterior cingulate cortex (1), substantia 

nigra/ventral tegmental area (1) and the ventrolateral prefrontal cortex (1). 

Overall, a total of 175 subjects performed 899 neurofeedback runs. The studies 

are summarized in Table 1. 



Study Target area N Sessions 

Runs 

per 

Session 

Regulation 
External 

stimuli 

Blocks 

per 

run 

Length 

of 

block 

[s] 

Type of 

localizer 

1) Berman 

et al. (2012) 

Primary 

Motor 

Cortex 

10 1 3 UP - 5 20 functional 

2) Berman 

et al. (2013) 

Rostral 

Insula 
13 1 4 UP - 4 30 functional 

3) Bruhl et 

al. (2014) 
Amygdala 6 4 

2-3, 

total: 

8-11 

runs 

DOWN, NO 
visual 

(pictures) 
10 20 functional 

4) Hui et al. 

(2014) 

Premotor 

Cortex 
12 1 4 UP - 7 30 functional 

5) Johnston 

et al. (2011) 

VLPFC, IC, 

others 
17 1 3 UP - 12 20 functional 

6) Paret et 

al. (2014) 
Amygdala 16 1 3 DOWN 

visual 

(pictures) 
15 26 functional 

7) Robineau 

et al. (2014) 

Visual 

Cortex 

(interhem. 

balance) 

14 3 4 

UP (one 

hemisphere 

stronger 

than other 

one) 

- 3 30 functional 

8) Sulzer et 

al. (2013) 
SN/VTA 15 1 3 UP - 9 20 anatomical 

9a) Emmert 

et al. (2014)-

AIC 

anterior 

Insula 
14 1 4 DOWN pain 4 30 functional 

9b) Emmert 

et al. (2014)-

ACC 

 

ACC 14 1 4 DOWN pain 4 30 functional 



Table 1: Studies included in the current post-hoc analysis. In addition to the 

analysis across all studies, the analysis was repeated using the first eight studies 

(highlighted in bold) with a larger field of view. 

 

2.3 Analysis of MRI data 

A standard mixed effects general linear model (GLM) analysis was conducted in 

FMRIB Software Library (FSL 5.0.6, FMRIB, Oxford, UK) (Smith et al., 2004). 

Preprocessing was performed using standard parameters (motion correction, co-

registration, normalization to Montreal Neurological Institute (MNI) space, 

smoothing using a 5 mm Gaussian kernel). 

The first level analysis used the individual study’s block design as a regressor to 

model neurofeedback blocks. At the second level, all runs per subject were 

combined in a fixed effects analysis. Finally, a third level FMRIB’s local analysis 

and mixed effects (FLAME1, (Woolrich et al., 2004)) analysis was conducted to 

combine all subjects of all studies resulting in an overall mixed effects analysis. At 

the third level, the analysis was performed including coding for the different 

studies as co-regressors. 

Due to the restricted brain coverage of some studies, we performed this analysis 

two times. The first analysis used the entire data set and the restricted 

overlapping field of view (FoV) covered by all 175 subjects (see Supplementary 

Figure 1 for FoV and regions of interest). In order to provide insight into regions 

outside of this small overlapping FoV, the analysis was repeated with a subsample 

of 8 studies and 103 subjects (first 8 rows of Table 1, see Supplementary Figure 2 

for FoV) with a larger overlapping FoV. All resulting activations were family wise 

error (FWE) multiple-comparison corrected using voxel-based thresholding at 

p<0.05.  

10) Frank et 

al. (2012) 

anterior 

Insula 
21 2 3 UP - 7 30 anatomical 

11) Haller et 

al. (2013) 

Auditory 

Cortex 
12 4 4 DOWN auditory 4 58 functional 

12) Veit et al. 

(2012) 

anterior 

Insula 
11 1 3 

UP, DOWN, 

NO 

visual 

(pictures) 
6 9 functional 



3. Results 

 

Figure 1: Main effect of the third level mixed effects analysis. (A) Results from the 

main analysis using all 12 studies with a restricted field of view (FoV) (B) Results 

from the subsample analysis of eight studies with a larger FoV. The light grey area 

indicates the overlapping FoV, areas in red-yellow indicate regions that are active 

during regulation, while areas in dark-light blue depict areas with reduced 

activation during regulation. 

 

The third level mixed effects analysis of all 12 studies yielded two main regions 

that are consistently activated during neurofeedback: the bilateral anterior insula 

and the basal ganglia. Considering the subsample analysis with a larger field of 

view (n=8 studies) additional significant areas include the posterior ACC (pACC), 

the bilateral ventrolateral prefrontal cortex (vlPFC) and an area in the bilateral 

dorsolateral prefrontal cortex (dlPFC) extending to the premotor cortex (PMC), a 

large temporo-parietal area bilaterally, and lateral occipital areas including visual 

association areas and the temporo-occipital junction bilaterally (see figure 1). In 

addition, the analysis with 8 studies showed additional brain areas that are 

deactivated during neurofeedback, including the posterior cingulate cortex (PCC), 

the precuneus and bilateral transverse temporal area (see figure 1 and table 2). 

 

 

 

 

 

Activations  



 

Table 2: MNI coordinates of the local maxima of all reported clusters of subsample 

analysis (n=8) using a larger field of view. 

4. Discussion 

Cluster Area MNI coordinates t-stat 

value 

z-stat 

value X Y Z 

1 pACC 6 20 36 10.57 8.58 

2 

  

AIC R 32 26 4 12.30 9.49 

AIC L -36 20 -2 13.66 10.14 

3 

  

 

  

vlPFC R 54 12 14 9.79 8.12 

vlPFC L -50 8 4 11.00 8.81 

dlPFC/PMC R 42 0 42 10.05 8.27 

dlPFC/PMC L -34 -4 40 11.42 9.04 

4 

  

  

  

Temporo-parietal R 62 -34 34 6.73 6.07 

Temporo-parietal L -58 -32 32 7.64 6.73 

Parietal R 30 -48 40 5.42 5.05 

Parietal L -30 -48 38 7.78 6.82 

5 

  

Occipital R 46 -58 12 7.62 6.71 

Occipital L -46 -70 8 7.82 6.85 

6 Basal Ganglia (BG) & 

Thalamus 

Strong activation with several local maxima throughout 

BG (putamen, caudate nucleus, nucleus accumbens, 

globus pallidus) and thalamus. 

 

20 0 10 11.04 8.83 

-20 0 12 11.07 8.85 

Deactivations   

Cluster Area MNI coordinates   

X Y Z   

1  Precuneus 0 -68 24 7.59 6.70 

PCC 8 -56 38 6.44 5.85 

2  Temporal Transverse L -36 -20 16 9.72 8.08 

Temporal Transverse R 38 -14 18 8.34 7.21 

3  Parietal R 46 -68 36 6.71 6.06 



The IPD meta-analysis of rt-fMRI neurofeedback studies with a variety of target 

regions identified a regulation network that includes notably the anterior insula, 

the basal ganglia, the temporo-parietal area, the ACC, the dlPFC, the vlPFC and the 

visual association area including the temporo-occipital junction (see Figure 2). 

 

 

Figure 2: Schematic display of main brain areas involved in self-regulation. This 

network includes the ACC (yellow), the dorsolateral PFC extending to PMC (dark 

green), the ventrolateral PFC (light green), the anterior insula (red), part of the  

inferior and superior parietal lobule extending to the temporo-parietal junction 

(violet) and the lateral occipital cortex extending to the temporo-occipital junction 

(blue). 

 

Anterior insula activation is known to occur during interoceptive cognition and 

self-awareness processes (Craig, 2002;Critchley et al., 2004). Additionally, 

specifically the right AIC and the adjacent vlPFC are implicated in cognitive control 

tasks such as motor inhibition, reorienting and action updating (Levy and Wagner, 

2011) using fronto-basal-ganglia connections. Similarly, basal ganglia are 

involved in interoceptive processes (Schneider et al., 2008) and also motivational 

processing (Lehericy and Gerardin, 2002;Arsalidou et al., 2013), as needed in 



feedback tasks. Moreover, the basal ganglia are essential for learning; whereas the 

dorsomedial striatum is known to be involved in declarative learning, the 

dorsoventral striatum is a key region mediating procedural learning (Yin and 

Knowlton, 2006;Balleine and O'Doherty, 2010). Interestingly, in their review Aron 

et al. pointed out that cognitive control tasks often employ a fronto-basal-ganglia 

network, which might explain our observation of both AIC/vlPFC and BG 

activation (Aron et al., 2014). 

 

The temporo-parietal activation could be related to integration of the visual 

feedback and feedback related processes involving recall of memories (Zimmer, 

2008) as well as self-processing and multisensory integration of body-related 

information (Arzy et al., 2006). PACC activation might reflect motivational aspects 

of the neurofeedback such as the rewarding effect of positive feedback and 

avoidance of negative feedback (Amiez et al., 2005;Magno et al., 2006;Posner et 

al., 2007). The dlPFC and premotor areas are implicated in the imagination of 

action, which likely relates to the mental imagery used during neurofeedback 

(Hanakawa et al., 2003;Lotze and Halsband, 2006). Finally, visual association area 

activation and the temporo-occipital junction activation may reflect visual 

imagery (D'Esposito et al., 1997;Zimmer, 2008) as well as processing of the visual 

feedback. To differentiate between effects of visual feedback and visual imagery 

one would have to include studies that use non-visual feedback. Unfortunately, to 

our knowledge there is only one study (Posse et al., 2003) using auditory feedback 

and this study did not fit our criteria (only two feedback runs for four of the six 

subjects). 

 

In addition, our analysis showed some brain areas that were deactivated during 

neurofeedback, including the PCC as well as the precuneus. These areas are part 

of the default mode network (Raichle et al., 2001;Greicius et al., 2003;Raichle and 

Snyder, 2007), which is consistently deactivated during cognitively demanding 

tasks. Additionally, the transverse temporal area shows deactivations, possibly 

reflecting a shift of the focus away from scanner noise during the task i.e., a 

decrease of auditory activation due to visual feedback (Laurienti et al., 2002) 

and/or the task performance. 



 

As most studies included in our IPD meta-analysis involved participants 

attempting to up-regulate a target brain area, the effect of regulation and the areas 

involved in the regulation process per se cannot be distinguished in these studies. 

One study aiming at down regulation of the auditory cortex (Haller et al., 2010) 

found that the dlPFC and vmPFC were simultaneously up-regulated, suggesting 

that these areas might be involved in the regulation process. In accordance with 

this study, we found an up regulation of the dlPFC. Additionally, we detected pACC 

activation that is close to the vmPFC area. Due to our restricted FoV we have no 

data available to validate the vmPFC activation itself. Increased basal ganglia and 

thalamus activation over runs has also been previously reported in a 

neurofeedback study (Lawrence et al., 2013). Other studies suggested that a part 

of the ACC and anterior mid-cingulate cortex is involved in brain regulation(Lee 

et al., 2012;Lawrence et al., 2013;Zotev et al., 2013). This result is also confirmed 

by our analysis. However, for the studies using a single ROI we cannot exclude the 

possibility that the shown effect was a result of the brain regulation (i.e., the 

activation was caused by the target region activation change) rather than the 

regulation process itself.  

 

One study used several different visual regions of interest within the same 

subjects (Harmelech et al., 2015) and showed that some of the higher-level visual 

areas and the inferior parietal lobe (IPL) are easier to regulate than lower-level 

areas such as V1. Our study showed involvement of part of the IPL during self-

regulation in general. This observation implies that the observed activation 

change in the IPL in this study might in fact be a mix between activation change 

due to successful neurofeedback and activation related to the cognitively 

demanding process of regulation per se. Note however, that this study employed 

auditory feedback, whereas all studies in our IPD meta-analysis used visual 

feedback. Unfortunately, this study does not report about common activation 

outside of their chosen target regions.  

 

Other studies that assessed processes related to self-regulation including 

meditation, mental imagery and sham neurofeedback reported activations that 



are partly overlapping with our results. For example, an involvement of the lateral 

PFC and the insula was observed in experienced meditators during mindfulness 

meditation (Farb et al., 2007) underlining the importance of these areas for self-

awareness in the present.  

 

Additionally, some of the reported regions, especially the parietal and prefrontal 

areas, are implicated in mental imagery (McNorgan, 2012), which could be one 

cognitive component involved in neurofeedback regulation. Temporo-occipital 

activation can be observed specifically during visual imagery of form and motion 

(McNorgan, 2012).  

 

Interestingly, another study assessing sham neurofeedback reported very similar 

activations (Ninaus et al., 2013). The authors reported the involvement of the 

bilateral insula, dorsomedial and lateral PFC, supplementary motor area, left ACC, 

right superior parietal lobe, right middle frontal activation, left supramarginal 

gyrus and left thalamus during attempted brain regulation with sham feedback in 

comparison to a passive viewing condition. This suggests that, independent of the 

outcome of the neurofeedback, a wide network of areas involved in cognitive 

control and sensory processing is recruited during attempted self-regulation. 

When looking at the comparison of viewing of moving bars and viewing of static 

bars, they found, among others, a strong activation in the middle occipital gyrus, 

very similar to the temporo-occipital activation found in this study, confirming 

that this activation is likely induced by the visual stimulation during feedback 

delivery. However, Ninaus et al. do not report a significant activation of the basal 

ganglia that showed strong activation in our IPD meta-analyses. This difference 

might either result from the difference in contrast (comparison against rest vs. 

comparison against passive viewing of moving bars) or might reflect a learning 

process specific to neurofeedback, that is not present in the sham feedback 

condition. 

 

In order to test for neurofeedback-specific effects, some rt-fMRI studies include a 

transfer run without feedback presentation (e.g. Haller et al., 2013;Sulzer et al., 

2013). These transfer runs can help to disentangle learning effects from the actual 



regulation process. In the future, when more studies using a transfer run will be 

available, a novel IPD meta-analysis could be run that includes a contrast of 

transfer runs in comparison to normal feedback runs to more specifically identify 

the neuronal mechanisms underlying visually-guided neurofeedback. 

 

Our analysis combined up or down regulation studies under the assumption that 

the brain networks involved in the process of regulation per se should be active 

during regulation regardless of regulation direction. The only included study that 

used up and down regulation in the same subjects found IFG activation for up and 

down regulation, supporting this view that the regulation-related network is 

active regardless of the regulation direction (Veit et al., 2012). Note however that 

in this specific investigation, the IFG was also the target region and consequently 

there is a potentially confounding overlap between activations related to the 

process of regulation, and activations to be regulated within this region. Future, 

specifically designed studies that ideally directly compare up versus down 

regulation within the same participants are needed to further elucidate this issue. 

 

Limitations 

It might be interesting to further refine the data analysis by taking into account 

regulation success. It should be noted that there currently is no gold standard for 

the measurement of regulation success in healthy subjects. This could be either a 

neuroimaging variable (e.g. decrease of beta value) or a behavioral measurement 

(performance in a task relevant for the targeted area). In the absence of clearly 

established measurement for regulation success, notably in the current analysis 

across several experimental setups and target regions, it is not possible to 

unambiguously define a universal regulation success parameter across studies. 

When such a gold standard is established in the field, further investigation into 

correlations of activation with regulation success would be desirable to assess in 

detail regions related to successful neurofeedback regulation. 

 

Further limitations include the limited FoV due to the individual slice positioning 

that was intended to include the individual region of interest and not necessarily 

whole brain coverage. We included only studies with visual feedback. Therefore, 



our results also reflect visual processing of the feedback. In all rt-fMRI studies, 

including those used for our analysis, learning processes could confound the 

regulation process as the subjects learn to self-regulate by watching the feedback. 

 

The presented findings may be somewhat limited by the relatively low number of 

studies included (8 for large FoV, 12 for small FoV). The reason for this limitation 

is the rather small number of suitable studies available in this field and the fact 

that this IPD meta-analysis looked at the data itself requiring permission to use 

the original data.  On the other hand the procedure of unifying the analysis steps 

using original data instead of comparing activation clusters reported in the 

literature should enhance the transparency and thus interpretability of results. 

 

 In addition, this analysis is retrospective and the design of the studies was not 

optimized for the IPD meta-analysis. Therefore, data acquisition parameters and 

paradigm (blocks, runs, sessions, up or down regulation, stimuli, instructions) 

vary considerably across studies. On the other hand, this can also be considered 

as strength as it indicates the general validity of our results as the data covers a 

range of different experimental setups and designs.  

 

Outlook 

This IDP meta-analysis is a first step towards an understanding of the underlying 

mechanisms of self-regulation.  As this was a post-hoc analysis using studies that 

were designed independently, not all interesting scientific questions could be 

answered using these data. Here we mention a number of points that could be 

answered in future studies specifically designed for this purpose: 

- What regions are implicated in the neurofeedback modality? E.g., study 

comparing visual and auditory feedback. 

- Are there differences in the regulation matrix depending on the direction of 

regulation? E.g., study using up and down regulation within the same subjects for 

at least two different target regions. 

- Which behavioral measures reflect neurofeedback efficacy independent of the 

target regions? Instead of target-region specific behavioral measures such as 



auditory, emotional or visual variables for regions such as auditory cortex, 

amygdala and visual cortex, respectively. 

- What is the time line of neurofeedback learning (steady-state, linear or non-

linear learning curve)? 

 

Conclusion 

Brain self-regulation during rt-fMRI neurofeedback involves a complex regulation 

network, including notably AIC, BG and the ACC. Taking into account the limitation 

that the current investigation is a retrospective IPD meta-analysis of rt-fMRI 

studies, which were not specifically designed for this purpose, our results suggest 

that some target regions of rt-fMRI neurofeedback studies (notably insula and 

ACC) are also implicated in the process of regulation per se. This may therefore 

represent a potential confound for the regulation of these areas. 
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Supplementary Material 

Supplementary Figure 1: 

 

Overlap of field of view for all studies. The regions of interest are indicated in 

green. MNI coordinates: upper row: 2 -18 2; lower row: Z=18, Z=-6, Z=54. 

  



Supplementary Figure 2: 

 

Overlap of field of view for all studies included in the subsample analysis. MNI 

coordinates: 2 -18 2. 


