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This work aimed at characterizing the metabolome of the isopod Porcellionides pruinosus and at assessing its

variations over 14 days under laboratory culture conditions and upon exposure to the contaminant metal Nickel

(Ni). The spectral profiles obtained by 1H NMR spectroscopy were thoroughly assigned and subjected to

multivariate analysis in order to highlight consistent changes. Over 50metabolites could be identified, providing

considerable new knowledge on the metabolome of these model organisms. Several metabolites changed

non-linearly with Ni dose and exposure time, showing distinct variation patterns for initial (4 days) and

later time points (7 and 14 days). In particular, at day 4, several amino acids were increased and sugars

were decreased (compared to controls), whereas these variations were inverted for longer exposure, possibly

reflecting earlier and more intensive moulting. Other variations, namely in betaines and choline-containing

compounds, were suggested to relate with osmoregulation and detoxification mechanisms. Ni also had a

marked effect on several nucleotides (increased upon exposure) and a moderate impact on lipids (decreased

upon exposure). Overall, this study has provided new information on the Ni-induced metabolic adaptations of

the P. pruinosus isopod, paving the way for improved mechanistic understanding of how these model organ-

isms handle soil contamination.

Significance: This study provided, for the first time to our knowledge, a detailed picture of the NMR-detectable

metabolome of terrestrial isopods and of its fluctuations in time and upon exposure to the contaminant metal

Nickel. Several time- and dose-dependent changes were highlighted, providing mechanistic insight into how

these important model organisms handle Ni contamination.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

While traditional tests in ecotoxicology provide important informa-

tion about the general impact on the individual (e.g. survival or repro-

duction) and the population, the thorough understanding of how a

contaminant affects an organism requires the study of different levels

of biological organization. Metabolic profiling (metabolomics) enables

alterations in the cellular metabolome (i.e. inventory of endogenous

small molecules b1 kDa) to be monitored, potentially revealing marker

signatures of exposure and providing new insights on induced

biochemical events [1]. Even though the use of metabolomics in

environmental sciences is still scarce, some studies have addressed

the changes in the metabolic profile of some key model species

(e.g. [2–4]). Regarding soil ecotoxicology, most studies have used earth-

worms (e.g. [5,6]), and, to our knowledge, there is only one report on

terrestrial isopods, which presented metabolite fingerprints for the

species Porcellio scaber and Oniscus asellus [7], in a healthy (non-

exposed) condition.

Terrestrial isopods are macro-invertebrates involved in decomposi-

tion processes, vegetal litter fragmentation and recycling of nutrients

[8–13], therefore being essential to maintain the function and structure

of the soil compartment. Exposure to xenobioticsmay affect edaphic or-

ganisms, consequently changing the overall soil function, and decreas-

ing soil quality and soil services [14]. The species Porcellionides

pruinosus has been described as a good test-organism to evaluate soil

contamination or changes in its habitat and several endpoints, from

the individual to lower organizational levels, have been used to evaluate

the effects caused by different stressors [15–19].

Nickel (Ni) is a naturally occurring metal in the environment and

it is considered an essential trace element for diverse biotic functions

in organisms. However, due to its high usage in industry and the in-

voluntary anthropogenic release, this metal can reach high concentra-

tions in soils [20], potentially disturbing the ecosystems' homeostasis.

In previous studies using cell lines [21], daphnids [22] or fish [23], Ni

toxicity has been related to oxidative stress, a process commonly
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induced by metals, which reflects the imbalance between the produc-

tion of reactive pro-oxidant species and the ability to neutralize their

harmful effects. Moreover, Ni is considered a carcinogenic metal, as it

has been reported to impact gene transcription and translation pro-

cesses, and even the phosphate cycle [12,24]. Regarding Ni effects

on soil invertebrates, the information available is still very scarce,

being focused on bioaccumulation and mortality testing (e.g. [20,

25]). Recently, our group has addressed the response of terrestrial

isopods to long-term Ni exposure by measuring changes in energy re-

serves and the activity of detoxification enzymes [12]. This study con-

firmed the induction of oxidative stress and further revealed that

other modes of action should be responsible for Ni toxicity, thus call-

ing for a more detailed understanding of Ni effects at the molecular

level.

The aimof the presentwork is to explore the potential of NMRmeta-

bolomics for characterizing themetabolome of terrestrial isopods of the

species Porcellionides pruinosus, and for assessing its fluctuations over

14 days under laboratory culture conditions and upon Ni exposure.

Two doses have been selected for this study: a low dose corresponding

to the maximum allowed Ni concentration in the Canadian framework

guideline (50 mg Ni/kg soil) [26], and a high dose corresponding to

5× this concentration (250 mg Ni/kg soil). New insights into time-

and dose-dependent effects of Ni on the isopodsmetabolism are expect-

ed to emerge and to provide a more thorough understanding of

biological responses to this metal.

2. Materials and methods

2.1. Test organisms and culture procedure

Organisms used in this assay belong to the species Porcellionides

pruinosus Brandt (1833), and were previously collected from a horse

manure heap and maintained for several generations in laboratory

cultures. In culture, isopods were fed ad libitum with alder leaves

(Alnus glutinosa) andmaintained at 22±1 °C, with a 16:8 h (light:dark)

photoperiod. Twice a week cultures were water sprayed and food was

provided. Only adult organisms (15–25 mg wet weight) were used in

the experiments and no distinction between genders was made, al-

though pregnant femaleswere excluded. Organismswith abnormalities

or moulting characteristics were also excluded from the trials.

2.2. Soil spiking

LUFA 2.2 soil (LUFA-Speyer 2.2, Germany) is a sandy loam and

was used for the exposures. This soil presented a total organic carbon

content of 1.77 ± 0.2%, a pH of 5.5 ± 0.2, nitrogen content 0.17 ±

0.02%, texture characterized by 7.3 ± 1.2% clay, 13.8 ± 2.7% silt and

78.9 ± 3.5% sand, and a water-holding capacity (WHC) of 41.8 ±

3% (g/100 g). Soil was spiked with Nickel (Ni) at concentrations of

50 and 250 mg Ni/kg soil, with a final moisture content equivalent

to 50% of the soil WHC. The concentration of 50 mg Ni/kg soil

represented the maximum concentration allowed by the Canadian

framework guideline [26].

2.3. Exposure experiments

Toxicity tests were performed in plastic boxes (26 length × 18

width × 7.5 height cm), containing approx. 2 cm height of LUFA 2.2

soil layer, with 40 isopods (15–25 mg each) per box. Alder leaf discs

(Ø 10 mm, ± 20 mg) were supplied as food, using a quantity that

prevented organisms to remain on top and avoid contaminated soil. Or-

ganisms were exposed to control soil, 50mg and 250mg Ni/kg soil, in a

16:8 h (light:dark) photoperiod, at 20 °C, for 14 days. During this period,

organisms were sampled at four time points: prior to exposure (named

further on as time 0 or day 0), 4 days, 7 days and 14 days after exposure.

In each sampling time, and for each treatment, three replicates of 6

organisms each were collected.

2.4. Sample preparation for NMR

Organisms were weighted and stored at −80 °C for a period no

longer than one month. Before analysis, each sample (6 organisms per

replicate) was homogenized using a sonicator (Kika Labortechnik,

V200Scontrol, Germany) in 600 μL of K-Phosphate/D2O 0.1 M buffer,

pH 7.0 and centrifuged (10.000 rpm, 10 min, 4 °C). Then, 400 μL of

supernatant were transferred into a 5 mm NMR tube to which 100 μL

of D2O (to provide a lock signal) containing 0.1% TSP-d4 (used for

shimming) were added.

2.5. NMR data acquisition and processing

NMR spectra were recorded on a Bruker Avance DRX 500 spectrom-

eter operating at 500.13 MHz for 1H observation at 300 K. Standard 1D

spectra with water presaturation (pulse programme ‘noesypr1d’,

Bruker library) were acquired with a 6510 Hz spectral width, 32 k

data points, a 2 s relaxation delay (d1), 100 ms mixing time (d8) and

256 scans. All 1D spectra were processed with a 0.3 Hz line broadening,

zero filling to 64 k data points, manual phasing and baseline correction.

The chemical shifts were referenced internally to the glucose signal at δ

5.23 ppm. 2D 1H-1H total correlation (TOCSY) spectra, 1H-13C

heteronuclear single quantum correlation (HSQC) and J-resolved

spectra were also registered for selected samples to assist spectral

assignment. The main acquisition and processing parameters for these

experiments are provided in Supplementary Table S1.

2.6. Multivariate analysis

After normalization by total spectral area and scaling to Unit

Variance (UV), principal component analysis (PCA) and partial-least

squares discriminant analysis (PLS-DA) were applied to the 1D spectra

(suppressed water region excluded) using the SIMCA-P 11.5 software

(Umetrics, Umeå, Sweden). A default seven-fold internal cross

validationwas used, fromwhichQ2 and R2 values, respectively reflecting

predictive capability and explained variance, were extracted. The results

were visualized through scores scatter plots and corresponding loadings,

whichwere recovered bymultiplying the loadingweightsw by the stan-

dard deviation, and coloured as a function of variable importance in the

projection (VIP) in Matlab 7.14.0.739 (The MathWorks Inc., Massachu-

setts, USA). Hierarchical cluster analysis (HCA) was also applied, based

on the Pearson correlation coefficient with single linkage, using the

GENE-E software (http://www.broadinstitute.org/cancer/software/

GENE-E/index.html). Moreover, unidimensional statistical total correla-

tion spectroscopy (STOCSY) [27] was performed in Matlab 7.14.0.739

for assignment and search of metabolic correlations.

2.7. Spectral integration and univariate statistical analysis

To evaluate metabolite quantitative variations, selected signals in

the 1D spectrum were integrated using Amix-Viewer (version 3.9.14,

BrukerBiospin, Rheinstetten, Germany) and normalized by the total

spectral area. The resulting data was plotted into a heatmap using the

GENE-E software (http://www.broadinstitute.org/cancer/software/

GENE-E/index.html). For each metabolite, the difference between the

means of two groups (control and exposed) was considered significant

when the p-value, calculated using the two-sample t test or the non-

parametric analogue Wilcoxon rank sum test with continuity correc-

tion, was lower than 0.05 (confidence level 95%).
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3. Results

3.1. Metabolic profile of the species P. pruinosus

Fig. 1 shows a typical 1H NMR spectrum of an isopod supernatant,

where a multitude of signals was detected, reflecting the complex sam-

ple composition. Spectral assignment strongly relied on 2D NMR

spectra, namely 1H-1H TOCSY, 1H-13C HSQC and J-resolved spectra,

shown in Supplementary Figure S1, and matching of 1D and 2D spec-

tral data to reference spectra in the BBIOREFCODE-2–0–0 database

(Bruker Biospin, Rheinstetten, Germany), as well as other existing data-

bases [28,29]. The low-frequency region (δ 0–3) shows resonances from

organic acids (e.g. lactate, acetate, succinate, citrate, 2-ketoglutarate) and

from several amino acids, both common (e.g. branched chain amino

acids, arginine, lysine, proline, glutamate, glutamine) and less common

(e.g. 3-aminobutyrate, 4-aminobutyrate, 2-aminoisobutyrate). More-

over, several spin systems with patterns slightly shifted from those of

free amino acids were detected in the TOCSY spectrum (correlations

with the δ 4.1–4.4 α-CH region) and assigned to amino acid residues

bound in a peptide chain. These compounds were partially responsible

for somebroad signals observed in the 1Dprofile, togetherwith lipid res-

onances. In particular, lipid fatty acyl chain signals were clearly detected

in the TOCSY andHSQC spectra and further highlighted in the 1D STOCSY

correlation plot (Supplementary Figure S2A). Moreover, cross peaks

typical of glyceryl resonances in phospholipids (δ 4.09, 4.30, 5.22) as

well as of CH2-N and CH2-OP choline protons (δ 3.88, 4.46) were detect-

ed in the TOCSY spectrum, thus suggesting phophatidylcholines to be the

main lipids present. In the mid-frequency region (δ 3–5.5), additional

metabolites detected included glucose, some unassigned sugars, taurine,

choline-containing compounds and betaines, with the most abundant

betaine being glycine-betaine. Another relatively prominent betaine

detected was assigned to 2-aminoisobutyrate-betaine, based on the

correlation highlighted in the 1D STOCSY between the δ 1.50 and the

3.26 singlets (Supplementary Figure S2B). In the high-frequency region

(δ 5.5–10), the signals detected were assigned mainly to aromatic

amino acids (tyrosine, phenylalanine, tryptophan), fumarate,

nitrogenated bases and nucleotides (AMP, ADP, ATP, IMP, UMP, uracil

and UDP/UTP), some of these assignments having been confirmed

by spiking with standard compounds. Overall, as summarized in

Supplementary Table S2, over 50 metabolites together with lipids and

small peptides could be detected, providing, for the first time to our

knowledge, a detailed picture of the metabolic profile of P. pruinosus

terrestrial isopod.

3.2. Metabolic variations in control organisms over time

In order to evaluate the inherent biological variability of the organ-

isms used and assess the possible influence of sampling time on the

metabolic responses to Ni exposure, the metabolic fluctuations in con-

trol animals upon culture time (0 to 14 days) were investigated. The

scores scatter plot resulting from applying PCA to the spectral profiles

(Fig. 2A) showed a trend for separation in PC2 between samples collect-

ed at days 0 and 4 and those collected at later time points, although one

of the time 0 samples was further away from its group. Hierarchical

cluster analysis (HCA) corroborated these results, as shown by the

dendogram in Fig. 2B. Spectral integration of individual metabolites

was then carried out to assess the quantitative variations responsible

for the observed clustering. The main variations are summarized in

the form of a heatmap shown in Fig. 2C, which is colour-coded accord-

ing to the percentage of variation in the controls collected at 4, 7 and

14 days relatively to the time 0 controls. While the levels of some

metabolites were found to be stable over time (e.g. arginine, proline,

fumarate, phosphocholine) or to vary randomly (e.g. lipids), other com-

pounds showed quite consistent variations over culture time. Interest-

ingly, several amino acids (e.g. branched chain and aromatic amino

acids) showed a common variation pattern, non-linear with time, de-

creasing in the first 4 days and increasing at 7 and 14 days. Betaines in-

creased from early days, this increase being more marked at day 4 for

the most abundant glycine-betaine, whereas the levels of choline and

glycerophosphocholine (GPC) were decreased (at day 4 and at all time

points, respectively). Another particularly prominent variation was the

increase in adenosine triphosphate (ATP), accompanied by the decrease

in inosine monophosphate (IMP). The nitrogenated base uracil and the

nucleotide uridine monophosphate (UMP) were also found to be in-

creased in relation to time 0. Finally, in regard to carbohydrates and or-

ganic acids, glucose and several sugars were decreased at days 7 and/or

14, whereas succinate was increased.

Fig. 1.Representative 500MHz 1HNMR spectrum of the aqueous supernatant obtained from the terrestrial isopod species Porcellionides pruinosus. Some assignments are indicated: three-

letter code used for amino acids, ADP adenosine diphosphate, AIB-Bet 2-aminoisobutyrate-betaine, AMP adenosine monophosphate, ATP adenosine triphosphate, BCAA branched chain

amino acids (leu, ile, val), Bet betaine, Cho choline, Glc glucose, Gly-Bet glycine-betaine, GPC glycerophosphocholine, IMP inosinemonophosphate, PC phosphocholine, PTC phosphatidyl-

choline, Tau taurine, UMP uridine monophosphate, UTP uridine triphosphate, UXP (UDP/UTP).
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3.3. Nickel-induced metabolic variations

As a first approach to unveil trends and clusters within samples

collected in the Ni exposure assay, PCA and HCA have been applied to

the spectral matrix comprising controls and isopods exposed for 4, 7

or 14 days, the resulting scores scatter plot and dendogram being

shown, respectively, in Supplementary Figure S3A,B. As it is apparent

from those plots, when considering all time points, control samples

did not cluster together nor were separated from exposed ones. A

major factor accounting for this scattered distribution could be the

sampling time since it was found to significantly influence the isopods

metabolome, as described in the previous section. Therefore, multivari-

ate analysiswas repeated considering a sub-set of spectra for each expo-

sure period. The respective PCA and PLS-DA scores scatter plots are

shown in Fig. 3. Control and exposed samples showed a trend for sepa-

ration by PCA and a reasonable discrimination by PLS-DA (Q2 0.4–0.5 for

2 latent variables). Inspection of the corresponding LV1 loadings colour-

coded as a function of variable importance in the projection (VIP)

(Fig. 4), allowed a number of signals with VIP N 1, representative of spe-

cific metabolites, to be selected for integration, in order to assess the

magnitude and statistical significance of the variations. The results

were expressed as the percentage of increase or decrease in low- and

high-dose Ni-exposed isopods relatively to controls, and summarized

in the form of a heatmap (Fig. 5). A number of amino acids, which had

already shown a typical variation pattern over culture time, increased

in the first 4 days of Ni exposure and then showed decreased levels,

compared to controls, at longer exposure periods. Betaines showed

mostly an increasing trend, with 2-aminoisobutyrate betaine increasing

at earlier exposure times and glycine-betaine at later exposure times.

In regard to choline-containing compounds, choline was increased by

day 4 (both doses) and day 7 (high dose), while PC and GPC showed

increasing trends for longer exposures at highdose. Glucose andother un-

known sugars were decreased after the first 4 days of exposure but then

increased their relative levels, especially after 14 days. Nucleotides were

significantly increased at specific doses and time points; In particular,

AMP and IMPwere increased at 14 days of exposure to lowNi concentra-

tion, while ATP and UMPwere increased at 7 days of high dose exposure.

Finally, non-significant decreases were observed for lipid resonances,

namely at day 4 for the low dose and at days 7 and 14 for the high dose.

Although many of the changes did not reach statistical significance,

these results clearly show that Ni caused the metabolome of isopods to

change in a time- and dose-dependent manner. For most metabolites,

the pattern of variations upon 4 days of exposure was clearly distinct

from that characterizing the longer exposure periods. Dose-dependency

was also noticed, although the stronger effects did not necessarily occur

at the higher dose. HCA performed on the percentage of variation in rela-

tion to controls corroborated these observations, as a first node separated

day 4 fromdays 7+14, irrespectively of dose, and a secondnode separat-

ed the days 7 + 14 cluster into low and high dose (Supplementary

Figure S3C).

Fig. 2. (A) Scores scatter plot obtained by PCA of 1HNMRspectra from control isopods collected at different culture times (0, 4, 7 and 14days); (B) Dendogram resulting from applyingHCA

to the same spectral matrix as in (A); (C) Heatmap of mainmetabolite variations in control isopods over time. The colour scale reflects the direction andmagnitude of these variations (%)

in relation to time 0. * p b 0.05; ** p b 0.01. (1) Variation higher than 100%.
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4. Discussion

In this work, the metabolic composition of the isopod species

P. pruinosuswas thoroughly characterized by 1D and 2D NMR spectros-

copy, which allowed establishing an important background for subse-

quent studies addressing the changes in the isopods metabolome

upon different stimuli. Several amino acids, organic acids, betaines,

choline-containing compounds, sugars and nucleotides were identified,

adding a significant amount of new information to the metabolic com-

position previously reported for these organisms [7].

Interestingly, the metabolome of control organisms suffered several

changes along the culture time, the variations found at day 4 being often

distinct from those recorded for days 7 and 14, particularly in regard to

amino acids and sugars. While amino acids decreased after the initial

4 days, an increase was observed for longer periods, which was accom-

panied by a decrease in glucose and other sugars and an increase in suc-

cinate, one of the intermediates of the tricarboxylic acid (TCA) cycle. It is

thus possible that these concerted changes at later times reflect the pro-

duction of amino acids fromcarbohydrates to sustain isopods growth. In

regard to the marked difference in amino acids variation between day 4

and subsequent time points, it is possible that it reflects an initial

adaptation of the organisms to the new environment. Indeed, terrestrial

isopods are considered sociable [30] and known to produce chemical

clues to interact and aggregate [18,31]. These social interactions have

been highlighted to affect the organisms' fitness according to group

size, as described by the Allee effect, whereby isolated organisms tend

to spend more time and energy searching for other individuals with

which to aggregate [32]. Therefore, the change from culture boxes

where approximately 100 organisms (from mancae to juveniles and

adults) co-habited, to boxes with a total of 20 organisms (all adults)

could possibly alter the production of such chemical clues and, conse-

quently, metabolite levels. Moreover, when organisms were moved to

the test boxes, filled with “new” Lufa 2.2 soil, the structure and the

microbiome of the soil was altered. Such alteration could also have

Fig. 3. Scores scatter plots obtained by PCA (left) and PLS-DA (right) of 1H NMR spectra from control isopods and isopods exposed to Ni for (A) 4 days, (B) 7 days and (C) 14 days.
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possibly affected the organisms'metabolome as the food available is ex-

pected to be differently colonized by microorganisms, thus altering the

availability and acquaintance of essential or non-essential amino acids.

Another consistent variation in control isopods over timewas the in-

crease in betaines, namely glycine-betaine, 2-aminoisobutyrate-betaine

and a third betaine, which could not be unambiguously identified. Beta-

ines are trimethylammonium derivatives of amino acids, which have

been previously reported to be present in high abundance in isopods

[7], as well as in other terrestrial invertebrates such as earthworms

[33], and are known to play a crucial role in themaintenance of osmotic

balance [34]. Theymay be provided in the diet or produced from the ox-

idation of choline (which together with glycerophosphocholinewere in

fact found to decrease over time). Thus, the betaines' increase may pos-

sibly reflect osmoregulation mechanisms to facilitate the organisms'

adaptation to the soil composition and moisture. Finally, prominent

changes were noted in the levels of nucleotides, particularly IMP and

ATP. While the former was decreased in relation to time 0 controls,

ATP and, to a lesser extent, UMP and uracil were increased over culture

time, suggesting energy storage and altered nucleotide metabolism.

Regarding the metabolic consequences of Ni exposure, one of the

most evident alterations was the increase in several amino acids after

the first 4 days of exposure, followed by a consistent decrease to levels

lower than the respective controls, at the subsequent time points eval-

uated (7 and 14 days). Several amino acids are known to be involved

inmoulting related processes [35], throughmultiple ways. For instance,

branched chain amino acids (leucine, isoleucine and valine) are in-

volved in muscle growth [36], as well as in haemocyanin synthesis

and transportation [37], lysine is related to the production of elastin

Fig. 5.Heatmap of mainmetabolite variations in Ni-exposed isopods (low dose 50mg/kg soil; high dose 250mg/kg soil), at different exposure periods (4, 7 and 14 days). The colour scale

reflects the direction and magnitude of these variations (%) in relation to controls (collected for each respective time point). * p b 0.05; ** p b 0.01.

Fig. 4. LV1 loadingsw, coloured as a function of variable importance in the projection (VIP), corresponding to PLS-DAof 1HNMR spectra from control isopods and isopods exposed toNi for

(A) 4 days, (B) 7 days and (C) 14days. Someof themost important variations are labelled: three-letter codeused for aminoacids, AMP adenosinemonophosphate, AIB 2-aminoisobutyrate,

AIB-Bet 2-aminoisobutyrate-betaine, BCAA branched chain amino acids (leu, ile, val), Bet betaine, Glc glucose, Gly-Bet glycine-betaine, IMP inosine monophosphate, PC phosphocholine.
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and collagen [38] and to the absorption of calcium for exoskeleton for-

mation [39], phenylalanine and tyrosine are involved in the synthesis

of the pigment melanin and in haemocyanin transportation processes

[40], while glutamine is involved in muscle growth [41]. As in other

crustaceans, growth and moult are tightly correlated in terrestrial iso-

pods and dependent on the frequent replacement of their cuticle [39].

Althoughmoulting is not considered themain excretion route of metals

in these organisms [42], it has been reported to take part on this process.

For instance, a previous study has shown that copper-containing

granuleswere able to dissolve during themoult process allowing their ex-

cretion [43]. It has also been reported that the regular 28 days moulting

cycle of isopods (species Porcellio scaber) could be altered by metal expo-

sure [44]. In particular, organisms exposed to zinc-contaminated food

showed a trend to moult earlier, as well as a higher number of moults.

In that study, only approximately 20% of control organisms moulted in

the first week of exposure, while this number increased to 50% in the

case of animals exposed high zinc concentration (10 mg Zn/g food) [44].

Therefore, it is possible that the amino acids variation pattern observed

in the present study may reflect a tendency for the organisms to antici-

pate moulting, although this was not confirmed by visual monitoring of

moult processes.

Betaines showed a trend to increase upon Ni exposure, which, as

already mentioned, may relate to their osmoprotective role. Moreover,

their involvement in detoxification reactions through the transport

and donation of methyl groups may also account for the observed vari-

ation. Choline levels were increased compared to controls, especially at

days 4 and 7. Choline may result from the hydrolysis of acetylcholine, a

neurotransmission mediator, through the action of the enzyme acetyl-

cholinesterase (AChE) in the synaptic cleft [45,46]. Indeed, in a previous

study on the same isopod species, we have found AChE activity to be

elevated upon Ni exposure [12], possibly to prevent acetylcholine

over-accumulation,whichwould lead to over-stimulation of cholinergic

receptors and disruption of the nervous system function [47]. Further-

more, choline and phosphocholine are important constituents of cell

membrane phospholipids and their variation may also relate to mem-

brane degradation processes. The trend for lipid resonances to decrease

in Ni-exposed isopods also agrees with this hypothesis.

In regard to carbohydrates, the variations in glucose and other

sugars may relate to their utilization for the production of chitin to

support early and more intensive moulting. Fumarate, which is a

TCA cycle intermediate and part of the purine nucleotide and the

ornithine-urea cycles involved in nitrogen excretion, was also found to

increase, especially at later time points and high doses. The impact on

nucleotide metabolism was also apparent from the significant changes

inmonophosphate nucleosides (AMP, UMP, IMP) and ATP. Concordant-

ly, Ni has been previously reported to interfere with nucleotide synthe-

sis and DNA replication in tumour cells [24].

Overall, this study has provided new information on how terrestrial

isopods adapt their metabolism upon exposure to the contaminant

metal Ni. In particular, the metabolome was found to change in a

dynamic, non-linearwaywith time and dose, showing, for most metab-

olites, distinct patterns between the initial and later time points tested

(4 and 7/14 days). Interestingly, the mortality recorded in a parallel ex-

periment using the same time points and doses [12] showed a similar

number of dead animals in control and exposed conditions at day 4,

but a significant increase in mortality upon Ni exposure for 14 days. It

is thus likely that the metabolic profile characterizing the short-term

(4 days) response to Ni reflects the ability of terrestrial isopods to

cope with soil contamination. This agrees with other studies demon-

strating isopods' high plasticity to adapt to the presence of metals, by

storing them in granules and making them non-bioavailable [48,49].

Then, at longer exposure periods, Ni-induced toxicity was observed, as

expressed by the increase in the number of dead animals, and the meta-

bolic response pattern changed. Interestingly, most metabolites started

to vary already after 7 days of exposure although the number of dead an-

imals in the exposed setup was larger than in control conditions only

after 14 days [12], which clearly demonstrates the sensitivity of NMR

metabolomics to detect early, subtle effects at the molecular level.

In summary, this work has allowed monitoring dynamic changes in

the metabolome of the isopod species P. pruinosus, in control and

Ni-exposure conditions, paving the way for improved mechanistic un-

derstanding of how these model organisms handle soil contamination.
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