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ABSTRACT
We present a generalization of the giant molecular cloud identification problem based on clus-
ter analysis. The method we designed, SCIMES (Spectral Clustering for Interstellar Molecular
Emission Segmentation) considers the dendrogram of emission in the broader framework of
graph theory and utilizes spectral clustering to find discrete regions with similar emission prop-
erties. For Galactic molecular cloud structures, we show that the characteristic volume and/or
integrated CO luminosity are useful criteria to define the clustering, yielding emission struc-
tures that closely reproduce ‘by-eye’ identification results. SCIMES performs best on well-
resolved, high-resolution data, making it complementary to other available algorithms. Using
12CO(1-0) data for the Orion–Monoceros complex, we demonstrate that SCIMES provides
robust results against changes of the dendrogram-construction parameters, noise realizations
and degraded resolution. By comparing SCIMES with other cloud decomposition approaches,
we show that our method is able to identify all canonical clouds of the Orion–Monoceros
region, avoiding the overdivision within high-resolution survey data that represents a com-
mon limitation of several decomposition algorithms. The Orion–Monoceros objects exhibit
hierarchies and size–line width relationships typical to the turbulent gas in molecular clouds,
although ‘the Scissors’ region deviates from this common description. SCIMES represents
a significant step forward in moving away from pixel-based cloud segmentation towards a
more physical-oriented approach, where virtually all properties of the ISM can be used for the
segmentation of discrete objects.

Key words: methods: analytical – methods: data analysis – techniques: image processing –
ISM: clouds – ISM: structure.

1 IN T RO D U C T I O N

The formation of stars is strongly connected to the molecular phase
of the interstellar medium (ISM; e.g. Bigiel et al. 2008; Schruba
et al. 2011). Since the molecular phase is naturally clumpy on
different scales (Leroy et al. 2013), it has become customary to
divide the emission into isolated, independent entities named giant
molecular clouds (GMCs), a practice which began with the earliest
surveys (e.g. Scoville & Solomon 1975). The first studies of the
GMCs in the Galaxy defined the standard paradigm of these ob-
jects, utilized also today to define new surveys of nearby galaxies.
From the seminal paper of Solomon, Sanders & Scoville (1979),
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GMCs possess a H2 mass between 105 and 106.5 M�, a mean H2

density of 300 cm−3 and an average size of 40 pc. From the number
density of the GMCs in the Galactic ring, the authors also calcu-
lated that the Galaxy should contain ∼4000 GMCs encompassing
∼85 per cent of the Galactic molecular gas budget. Later, more
comprehensive studies of the GMCs (e.g. Larson 1981; Solomon
et al. 1987), defined scaling relations between their properties that
laid the foundations for a better understanding of the physics of the
molecular ISM. In particular, GMCs appear gravitationally bound,
with a roughly constant mass surface density, and with supersonic
velocity dispersions proportional to the square root of their sizes.
Multitracer observations have shown that the structure of the GMCs
is essentially hierarchical: small-scale dense clumps are always con-
tained in larger, lower density gas envelopes (see e.g. Rosolowsky
et al. 2008 and references therein). Taken together, these evidences
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suggest that GMCs are sustained against global collapse by turbu-
lent motions (e.g. Mac Low & Klessen 2004) that might partially
explain the low level of star formation efficiency observed in the
galaxies (e.g. McKee & Ostriker 2007).

GMCs are generally identified by contouring images above a cer-
tain column density, or flux levels when line emission data cubes
are used. From observations, therefore, clouds are a set of con-
nected pixels (either 2D or 3D) above a certain threshold level.
These operations were done by-eye in earlier studies (e.g. Dame
et al. 1986). However, the use of position–position velocity (PPV)
data cubes complicated the recognition of GMCs by eye. Therefore
several automatic algorithms have been developed, able to handle
the third dimension, as well as large data sets with different levels of
blending between structures. Those algorithms are based either on
iteratively fitting and subtracting a model to the molecular emission
(as GAUSSCLUMPS; Stutzki & Guesten 1990; Kramer et al. 1998) or
on the ‘friends-of-friends’ paradigm that connects pixels according
to their neighbours and values, without assuming a particular shape
for the objects to decompose (as CLUMPFIND; Williams, de Geus
& Blitz 1994 or CPROPS; Rosolowsky & Leroy 2006). Recently,
gravity-based alternatives have also been proposed (DENDROGRAMS;
Rosolowsky et al. 2008; G–VIRIAL, Li et al. 2015). These latter ap-
proaches all assign individual pixels in a data cube to belong to sin-
gle objects and GMC identification is thus a segmentation problem
in the language of image processing. Despite attempts to account
for resolution and sensitivity biases (Rosolowsky & Leroy 2006),
almost all algorithms for the cloud identification suffer from the in-
fluence of the survey design (e.g. Pineda, Rosolowsky & Goodman
2009; Wong et al. 2011). Depending on the complexity of the molec-
ular environment, algorithms provide different results (Hughes et al.
2013) and sometimes misleading ones (Schneider & Brooks 2004).
In particular, low resolution causes the blending of emission from
unrelated clouds (as in M51; Colombo et al. 2014); and high resolu-
tion makes segmentation algorithms identify cloud substructures as
individual clouds. In a clumpy medium, the friends-of-friends ap-
proach will naturally find objects with the scale of a few resolution
elements. The situation is further complicated in velocity-crowded
regions like the Milky Way.

In this paper, we consider the problem of GMC segmentation in
the context of the more general theory of cluster analysis. Cluster-
ing is an unsupervised (no need for a training data set) classification
of patterns that groups sets of data in such a way that data in the
same group (called a ‘cluster’) are more similar to each other than to
the data in other groups (‘clusters’). Similarly, the process of find-
ing GMCs in an image or in a data cube can be viewed as grouping
pixels considered as part of a single entity as separated from others
that are part of different entities. The concept of data clustering was
originally introduced in anthropology by Driver & Kroeber (1932).
Clustering is now used by many disciplines to manage large quanti-
ties of data (data mining) or to reduce the data to learn information
and make predictions (machine learning; for a general review about
clustering, see Jain, Murty & Flynn 1999). Viewing GMC seg-
mentation as a clustering problem allows us to create an algorithm
able to overcome many of the limitations noted above (in particu-
lar the overdivision of the CO emission caused by high resolution)
and to generate physically oriented cloud catalogues. Many clus-
tering algorithms are based on graph theory (e.g. Jain et al. 1999).
In Section 2, we show how graph representations of star-forming
complexes are naturally provided by dendrograms. Dendrograms
give a very detailed view of the global hierarchical structure within
a molecular line data cube, but by themselves cannot be used to
identify clouds. Nevertheless, graph abstraction furnishes a direct

way to use the dendrogram for GMC segmentation. We will intro-
duce in Section 2 the graph theory basis for the problem and the
algorithm chosen for the cluster analysis: spectral clustering (Sec-
tion 2.3). In Section 3, we outline our method, SCIMES (Spectral
Clustering for Interstellar Molecular Emission Segmentation) and
the specific criteria that we use to extract discrete objects from the
dendrograms of emission. In Section 4, we show how the different
segmentation criteria influence the final cloud decomposition using
data from the Orion–Monoceros region. We demonstrate the stabil-
ity of the method with respect to changing dendrogram parameters,
noise realizations and data set resolution. In Section 5, we compare
our method with other cloud decomposition algorithms, and we
show how different segmentations produce different cloud proper-
ties in term of scaling relations and mass spectra. We examine how a
cloud decomposition together with the knowledge of the hierarchi-
cal structure of the clouds might improve our understanding about
the dynamical state of the clouds in the Orion–Monoceros complex
(Section 6). Finally, we discuss the novel aspects and possibilities
offered by the algorithm in Section 7. We summarize the paper
content and results in Section 8.

2 U S I N G D E N D RO G R A M S TO ID E N T I F Y
G I A N T M O L E C U L A R C L O U D S

A dendrogram is a tree diagram that represents the hierarchy of
structures within some data. A dendrogram is composed of two
types of structures: branches, which are structures that split into
multiple substructures, and leaves, which are structures that have no
substructure. Branches can split up into branches and leaves, which
allows hierarchical structures to be adequately represented. The
term trunk is used to refer to a structure that has no parent structure.
Dendrograms provide a precise representation of the topology of
star-forming complexes. To use dendrograms to identify clouds, we
need to interpret the dendrogram in the framework of graph theory
and cluster analysis.

2.1 Dendrogram in astronomy: definition and construction

In this paper, we use the dendrogram implementation defined in
Rosolowsky et al. (2008, hereafter R08) that generalized the original
concept of Houlahan & Scalo (1992) to three-dimensional data
cubes including standard molecular line techniques to characterize
the structures defined by the dendrogram itself. Here we give a brief
description of the dendrogram technique that constitutes the core of
the method we developed.

In astronomy, we define the dendrogram or structure tree as a
‘stick man’ abstraction of the hierarchical structure of molecular
gas (see Fig. 1; Fig. 3 panels a and b; and Fig. 6). It represents how
the three-dimensional contours (or isosurfaces at given emission
levels) in a PPV molecular line data cube nest inside each other.

Following the terminology of Houlahan & Scalo (1992), a den-
drogram is composed of leaves and branches. Leaves represent
three-dimensional contours that contain a single local maximum
and define the top of the dendrogram. To suppress structure created
by noise fluctuations, maxima are identified from all volumetric
pixels in a data cube that have values larger than all of their neigh-
bours over a box Dmax × Dmax × �Vmax, where Dmax and �Vmax are
set to some significant numbers of spatial and spectral resolution
elements, respectively. The total number of identified local maxima
is subsequently decimated to account for the effects of the noise, as
follows. A local maximum is eliminated if the isosurface that con-
tains it has a volume lower than a certain number of pixels (Npix)
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Figure 1. A dendrogram (main panel, a) interpreted as a graph (inset panel,
b). Leaves are seen as graph vertices, while edges are defined from the
connection between pair of leaves. The weight of the edge between leaves
connected at high hierarchical intensity level (e.g. leaves 1 and 2, black thick
line) is higher than the weight at low hierarchical level (e.g, leaves 2 and 3,
grey thick line). The graph defined from a dendrogram is fully connected,
since all vertices are, at minimum, related through the trunk.

and/or if its peak is lower than a certain brightness temperature dif-
ference, �Tmax, above the contour level where the local maximum
merges with another local maximum. In this case, the emission
profile that contains both local maxima is considered as a single
object. Pairs of isosurfaces join at specific contour levels named
merge levels. A vertical line in the dendrogram that connects two
leaves is called a ‘branch’. The length of the branches represents
the range of contour levels where the properties of the emission do
not change significantly according to the connectivity criterion used
(see R08 for more details). The implementation by R08 forces the
dendrogram technique to generate only binary mergers, i.e. defined
by the joining of two single objects. Eventually, all branches and
leaves in the dendrogram merge at a minimum temperature level
to form the trunk of the structure tree. The minimum temperature
level is generally fixed to n times the noise fluctuation level (Tmin =
nσ rms).

2.2 Interpreting the dendrogram as a graph

Although dendrograms are effective abstractions of the hierarchical
structure of molecular emission, they cannot be used, by themselves,
to identify molecular clouds. The main goal of this work is to provide
a robust, mathematically based method that finds the optimal cuts
of a structure tree based solely on the properties of the data. The
partitioned structure tree then defines discrete objects, if they exist,
within data. To do so, we will study dendrograms in the broader
framework of graph theory, on which a large number of image
analysis methods and clustering techniques rely. We first introduce
some basics of graph theory.

A graph is a mathematical entity defined as an ordered pair G =
(V, E) consisting of a set V = {v1, . . . , vn} of ‘vertices’ or ‘nodes’
and a set E of ‘edges’, which are two-element subsets of V (i.e. a
single edge connects two vertices). Practically, vertices represent
the group of objects we wish to cluster and edges represent the
connections, links or the relations between those objects (Fig. 1b).

Dendrograms can be viewed as graphs by associating the leaves
(local maxima) as the vertices whose edge is the largest level

isosurface containing both the leaves. In the dendrogram, the highest
branch where two leaves join is mapped to a graph edge. Consider-
ing a pair of vertices (vi, vj), dendrograms can be further described
as weighted graphs, where each edge has an associated non-negative
value wij ≥ 0, i.e. the connections between the objects have differ-
ent ‘strength’. There are many possible choices for an edge weight,
but in our application we use a weight given by the inverse of the
merge level isosurface properties (we will clarify this aspect in Sec-
tion 2.3). A graph of a dendrogram for a single object is also fully
or strongly connected where an edge exists between each pair of
vertices, that is every vertex is connected to every other vertex in the
graph or wij > 0 always. Thus, every pair of leaves is associated with
a structure at a certain hierarchical level (see Fig. 1). We consider
the structures (leaves and branches) arising from the very bottom of
the dendrogram all connected through an artificial ‘superstructure’
that includes all of them: the trunk. The isosurface associated with
the trunk is given by the union of all the isosurfaces associated with
the structures arising from the trunk.1 Finally, dendrogram graphs
are also undirected, i.e. the relations between vertices are symmetric
(wij = wji). In our application, we choose a symmetric weighting
scheme since there is no apparent reason to consider a pair of leaves
not connected on a one-to-one basis. Dendrogram graphs are also
simple, without self-loops (wii = wjj = 0) since we are interested
only in the relations between pairs of leaves.

2.3 Identifying objects in a dendrogram using
spectral clustering

Having recast the dendrogram as a graph, we can identify objects
within the dendrogram using one of the large class of graph-based
clustering techniques. Among these, spectral clustering works well
on fully connected, weighted, undirected, and simple graphs such
as those derived from the dendrogram. Spectral clustering uses the
eigenvectors of a matrix that parametrizes the relationship strengths
(‘similarity’) between the graph nodes to conduct dimensionality
reduction before performing a standard clustering in fewer dimen-
sions. The clustering finds the optimal cut of the graph based upon
the desired number of clusters (k), which must be provided as an
input.

The general algorithm of spectral clustering can be summarized
in the following points (e.g. von Luxburg 2007).
Input: a similarity matrix S such that sij is the similarity between

the ith and the jth vertex, and k is the number of clusters to generate.
For the GMC segmentation problem, we describe how to construct
S and choose k in Sections 3.1 and 3.2, respectively.

(i) Construct the degree matrix D and the graph Laplacian L
(Section 2.3.1, see also Fig. 2b).

(ii) Compute the spectral embedding, i.e. calculate the first k
larger eigenvalue eigenvectors u1, . . . , uk of L (Section 2.3.2, see
also Fig. 2c).

(iii) Construct the matrix U ∈ Rn×k made by the k eigenvectors
u1, . . . , uk as columns (Section 2.3.2, see also Fig. 2c).

(iv) Let yi be points in Rk where i = 1, . . . , n, corresponding to
the ith row of U (Section 2.3.2).

1 In R08, dendrogram branches without parental structures are called trunks.
Here, we are interested in fully connected graphs, therefore we adopt always
the name ‘branch’ for structures that split into substructures independently
by the parental structure and we consider a single trunk that contains all
structure of the dendrogram.
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Figure 2. Graphical representation of spectral embedding. (a) Concentric distributions of objects. Different colour indicates which groups of objects have high
similarity. (b) Graph Laplacian for objects in the previous step. Matrix elements that represent pairs of objects with high similarity are drawn in black, while
low similarity between objects is indicated in grey. The main diagonal of the graph Laplacian contains the degrees of the graph vertices (equation 2). When
an appropriate similarity criterion is chosen for clustering, the Laplacian matrix appears block diagonal (after an index permutation). (c) The eigenvectors
obtained after the spectral embedding, chosen from the largest k eigenvalues. The number of eigenvectors considered defines the dimension of the clustering
space (Rk) and is equivalent to the number of the desired clusters. In this case, the number of clusters k = 3 and every object (or vertex) of the initial graph is
represented as a point in R3 with coordinates [u1(i), u2(i), u3(i)]. (d) Embedded clustering space. The initial distributions of objects are well separated in this
space, enhancing the similarities between objects. Objects in this space can be easily clustered using k-means and Euclidean distances.

(v) Cluster the points (yi)i = 1, . . . , n in Rk with the k-means algo-
rithm into clusters (C�)� = 1, . . . , k (Section 2.3.3, and Fig. 2d).

Output: Clusters A1, . . . , Ak, which are sets of vertices in the
original space such that vi ∈ A� if yi ∈ C�.
Popular variations of this algorithm can be found in Shi & Malik
(2000) and Ng, Jordan & Weiss (2001). In the following we will
explain each step of the spectral clustering algorithm, occasionally
sacrificing the mathematical formalism in favour of intuition.

2.3.1 Graph representations as matrices: graph Laplacian and
degree matrices

The strength of the relation present between two nodes of the graph
can be seen as the similarity that exists between them. In the most
general sense this concept can also be related to the notion of
distance: higher ‘similarities’ between two objects imply that the
‘distance’ between them is shorter. In graph theory, a similarity be-
tween a pair of vertices is quantified by the weight of the edge that
connects the vertices. All the similarity between each pair of nodes
in the graph can be collected in a similarity matrix that further ab-
stracts the graph and constitutes the main input of spectral clustering
algorithms (see Figs 3c and 8). The similarity matrix (also called
affinity or adjacency matrix), therefore, parametrizes the quantita-
tive assessment of the relative similarity of each pair of vertices
in the graph. For convenience, we introduce the shorthand nota-
tion i ∈ S for the set of indexes {i|vi ∈ S}, where S = (sij )i,j=1,...,n

represents the affinity matrix we are dealing with and n is the number
of objects or graph vertices. The affinity matrix provides a natural
representations of the graph; therefore in the case of a dendrogram-
derived graph, S is square (S ∈ Rn×n), symmetric (sij = sji), with
null main diagonal (sii = 0, graph simplicity requirement) and posi-
tive semidefinite (graph strong connectivity requirement). Since the
graph represents the local neighbourhood relationships, the affinity
matrix itself should reflect the local neighbourhoods.

To accomplish this, the affinity matrix is usually rescaled using
a kernel function.2 A Gaussian kernel is commonly used:

sij = exp

(
−w2

ij

2σ 2
S

)
, (1)

where the parameter σ S controls the size of the neighbourhoods and
must be carefully chosen.3 Identifying an appropriate affinity matrix
represents the most challenging task of the spectral clustering tech-
nique. Affinity matrices can be potentially constructed using almost
any property that can be seen as similarity or distance. The choice

2 In clustering analysis literature this operation is called ‘smoothing’. Nev-
ertheless, in the text we use expression ‘rescaling’ to indicate the affinity
matrix smoothing, in order to avoid confusion with the image smoothing
concept generally used in astronomy.
3 SCIMES uses a modified version of the Gaussian kernel proposed by
Shi & Malik (2000), i.e. sij = exp(−w2

ij /σ
2
S ) that produce more restrictive

rescaling of the affinity matrix.
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Figure 3. From the molecular line emission feature (a) to the dendrogram
(b) and the similarity matrix (c). Leaves 1 and 2 join at branch 1, as well as
leaves 3 and 4 join at branch 2. However, leaves 1 and 2 are also connected
to leaves 3 and 4 through the isosurface correspondent to the trunk at lower
hierarchical level. The weight of the edges between each pair of leaves is
defined as the inverse of the properties of isosurface embedded molecular
emission where to two leaves ‘join’. In this example we consider the ‘area’
of the isosurface to weight the edges: the weight of the edge between leaves 1
and 2 is similar to the weight of the edge between 3 and 4, however the edge
weights between leaves 1 and 3, 1 and 4, 2 and 3, 2 and 4 is much lower, since
the embedding area is much larger. The similarity matrix (c) contains those
weights. In the picture, darker colours indicate higher similarity. According
to this matrix, an optimal graph partition for two clusters might provide the
two objects identifiable with branches 1 and 2.

of similarity criterion together with the choice of σ S influence the
quality of the clustering partition we obtain. As an heuristic, good
affinity matrices appear ‘block diagonal’ (after applying appropri-
ate row/column permutations) where the values on the boundary of
each block is similar.

Most of spectral clustering-based algorithms make use of a dif-
ferent ‘form’ of the affinity matrix called graph Laplacian [(i)-
paragraph of the spectral clustering general algorithm in Sec-
tion 2.3], since its properties are more suitable for the spectral
embedding. The unnormalized form of the graph Laplacian L is
defined as L ≡ D − S, where D, called degree matrix, is a diagonal

matrix that contains the degrees di of the vertices vi on the main
diagonal. The degree of a vertex vi is defined as

di ≡
n∑

j=1

sij . (2)

Often, the ‘symmetric normalized’ form of the Laplacian is used:
Lsym ≡ D−1/2(D − S)D−1/2 (e.g. Ng et al. 2001), since it produces
more general eigenvalue, better related to other graph invariants,
and with a direct connection to spectral geometry and in stochastic
processes (Chung 1997).

The graph Laplacian fully represents the algebraic properties of
the graph. The utility of the graph Laplacian can be understood
by considering a simpler type of graph that is unweighted and
weakly connected (i.e. there are disconnected parts of the graph).
The similarity matrix is then binary where sij = 1 if there is an
edge between vi and vj and sij = 0 otherwise. Then, di is just the
number of nodes connected to vi. The Laplacian then has the degree
along the diagonal and lij = −1 indicating a connection between vi

and vj. In this view, the graph Laplacian is the discrete version of
the continuous Laplacian operator ∇2 (i.e. the multivariable second
derivative), operating on the graph. Denser nodes are equivalent to
‘bumps’ in the second derivative of a continuous function. Several
spectral features of the graph Laplacian are very useful to quickly
assess the global properties of the graph it represents. For example,
the number of zero-valued eigenvalues of L corresponds to the
number of graph’s connected components (i.e. groups of nodes or
‘clusters’). Indeed, each connected component forms a ‘block’ in
the Laplacian matrix (after appropriate permutations), therefore,
the nodes of these components only have edges within themselves.
Each of these groups can be represented by a fully connected graph
and their graph Laplacian has only a single eigenvalue equal to
zero. Since the graph Laplacian is also positive-semidefinite, the
second smallest eigenvalue is greater than zero. This eigenvalue is
the algebraic connectivity of the graph and quantifies how well the
graph is connected.

2.3.2 Spectral embedding

The main utility of the spectral clustering is to map the data rep-
resented as a graph to a different vector space where the cluster
properties of the data (if they exist) are enhanced. This is accom-
plished thanks to the properties of the graph Laplacian through the
spectral embedding (second and third points of the spectral cluster-
ing general algorithm in Section 2.3) that changes the representation
of the data points to points yi ∈ Rk . The elements of first k eigenvec-
tors provide a lower-dimensional description of the block diagonal
structure of the Laplacian (or the similarity matrix) and of the k-
connected components of the graph. A graphical description of this
concept is reported in Fig. 2.

2.3.3 k-means algorithm

The data to cluster are mapped through the spectral embedding into
yi points of Rk . In this new ‘clustering’ space, abstract description
of similarity between vertices are translated into Euclidean distance.
The data in this space are easily clustered with common clustering
algorithms such as k-means that find groups where the intracluster
distance is maximized while the intercluster similarity is minimized,
given the desired number of clusters k. The k-means algorithm (Mac
Queen 1967) is the most popular algorithm for clustering given its
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conceptually simple idea and its fast convergence speed. The algo-
rithm works in Rn randomly or using some heuristic information
(Arthur & Vassilvitskii 2007) by selecting k ‘means’ or ‘centroids’
of the data to cluster, where the number of clusters k is provided as
input (see Section 2.3.4 for details4). Generally, k 	 n, where n is
the number of objects to cluster, in this case the graph vertices or the
dendrogram leaves. The k clusters are then generated by associat-
ing every observation with the nearest mean. The centroids of each
clusters are subsequently used as new ‘means’. The last two steps
are iterated until convergence. The convergence is reached once the
current centroids are at the same positions of the previous ones.
The choice of the k-means algorithm for identifying clusters is not
fundamental. If the similarity function is appropriate for clustering
the data, any cluster algorithm can be implied to obtain the final
product.

2.3.4 Evaluate the number of clusters

A common problem for several clustering algorithms is to select the
number of clusters k to be generated, which must be provided as
an input. Given this number, the algorithms proceed to find the best
arrangement of the data within k groups. Various methods have been
proposed to estimate k ranging from theoretical approaches (Still
& Bialek 2004), to gap statistics (Tibshirani, Walther & Hastie
2000), and stability approaches. For spectral clustering, the num-
ber of clusters can be guessed by analysing the eigenvalues and
the properties of the eigenvectors themselves (e.g. Zelnik-manor
& Perona 2004). Other methods aim to assess the quality of the
clustering using measurements of the ratio of within-cluster and
between-cluster similarities. An example of such a measure is the
silhouette (Rousseeuw 1987). The silhouette coefficient is defined
as

sil(i) = b(i) − a(i)

max(a(i), b(i))
, (3)

where a(i) represents the average similarity between the object i and
all other elements in the same cluster, b(i) is the average similarity
between i and all other elements in the next nearest cluster and −1 ≤
sil(i) ≤ 1. Therefore, the silhouette directly relates with the general
definition of ‘clustering’ (see Section 1): in particular, sil(i) = 1 for
dense (high intracluster similarity) and well-separated clusters (low
intercluster similarity), sil(i) = −1 for incorrect clustering and sil(i)
= 0 for overlapping clusters.5 The average sil(i) over all data of all
clusters is a measure of how well the data have been partitioned
and how appropriately k has been chosen. The average silhouette is
not a monotonic function of k so the best number of clusters k is
determined by maximizing the silhouette.

3 SC I M E S – SP E C T R A L C L U S T E R I N G FO R
I N T E R S T E L L A R MO L E C U L A R
E MISSION SEGMENTATION

Having introduced the mathematical framework needed to convert
dendrograms into graphs and to optimally cut these graphs through
spectral clustering, we now present our algorithm, SCIMES, to

4 In this paper we use a heuristic version of k-means, k-means++ by Arthur
& Vassilvitskii (2007) that optimizes the initial seeding of the random cen-
tres.
5 Spectral clustering does not allow sil(i) = 0 since it uses a hard assignment
method: an object cannot belong to two different clusters.

identify significant objects within the structure tree of molecular
emission. SCIMES uses the dendrogram as input produces different
properties (as effective radius, velocity dispersion, flux etc.) asso-
ciated with the structures within the dendrogram. We observed that
the luminosities of the emission within the isosurfaces and volumes
of the isosurfaces are good criteria to define the similarity matrices
at the top hierarchy between each pair of leaves (Section 3.1.1). The
affinity matrices are rescaled using a kernel through an appropriate
choice of σ S (Section 3.2). The rescaled similarity matrices can
be aggregated to obtain a cluster configuration that depends on all
chosen affinity criteria. Then an approximate number of clusters,
kg, is estimated through a direct analysis of the final affinity matrix
(Section 3.1.3). The degree matrix and Laplacian are automatically
defined as described in Section 2.3.1. Nevertheless, the best number
of clusters kb is ultimately defined through the silhouette (see Sec-
tion 2.3.4), running the spectral clustering algorithm several times,
such that kg − 15 ≤ kb ≤ kg + 15. Finally, the clusters that do not
correspond to single branches in the dendrogram are pruned and the
remaining clusters are labelled to obtain the GMCs (Section 3.3).

The dendrogram and the catalogue of the structures
within it (SCIMES inputs) are defined from a molecular
line data cube using the PYTHON distribution ASTRODENDRO

(http://www.dendrograms.org/). This dendrogram implementation
package requires setting three input parameters: min value be-
low which any value is not considered in the dendrogram con-
struction (usually set to several times the sensitivity level of
the data set σ rms); min delta indicating how significant a leaf
must be to be considered independent (again set equal to sev-
eral times the observation sensitivity); min pix, the minimum
number of pixels needed for a leaf to be independent (gener-
ally equal to the several times the observation beam). We use the
spectral clustering and silhouette implementations by SCIKIT–LEARN

(http://scikit-learn.org/stable/modules/clustering). In the following
sections, we describe the different steps of the algorithm, connecting
back to the formalisms summarized in Section 2.

3.1 Similarity criteria for GMC segmentation

Defining good similarity criteria is the most important step of the
clustering process, since the algorithm finds the optimal graph cuts
based solely on the ‘features’ of the similarity matrix6 and does not
provide, at priori, any metric to understand the quality of the final
clusters.

By default SCIMES constructs the affinity matrices used for the
clustering based on the ‘volume’ and/or ‘luminosity’ of the struc-
tures identified by the dendrogram. In the following, we describe
the definition of these measurements and how to generate their
associated similarity matrices.

3.1.1 The luminosity and volume criteria

We define the edges of the dendrogram-derived graph from the
properties of the largest-valued isosurfaces containing pairs of local
maxima (the vertices, see also Section 2.2). Those isosurfaces con-
tain molecular emission, and the properties of that emission are used
to weight the edges of the graph. To calculate these properties, the
dendrogram implementation by R08 assumes the moment method

6 The number of clusters k, the secondary input of the spectral clustering
algorithm, is also automatically guessed by SCIMES from the similarity
matrix.
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(Rosolowsky & Leroy 2006). In this view, the ith pixel in a data
cube can be identified with a brightness temperature Ti, positions
xi, yi, vi and sizes δx, δy, δv for the two spatial dimensions and the
velocity dimension, respectively. Therefore, the flux of the region
corresponds to the zeroth moment, or the sum of all emission within
the isosurface:

F =
∑

i

Tiδxδyδv. (4)

The flux can be converted into luminosity assuming a physical
distance d (in parsecs) to the target, yielding L = Fd2, the first
clustering criterion used by our code.

An isosurface has several morphological properties. To evaluate
these properties, the major axis of the spatial projected structure is
first located using the principal component analysis. The spatial axes
are rotated such that the major axis of the region is aligned with the
x-axis, while the minor axis with the y-axis. The root-mean-squared
(rms) sizes of the region are estimated from the intensity-weighted
second moments along the two spatial dimensions:

σmaj =
√∑

i Ti(xi − x)2∑
i Ti

, σmin =
√∑

i Ti(yi − y)2∑
i Ti

; (5)

where the sum runs over all pixels within the isosurface. Combining
the two measurements, the rms size is then

σr = √
σmajσmin. (6)

The radius of the spherical cloud can be related to
σ r through R = ησ r where η = 1.91 (Solomon et al. 1987;
Rosolowsky & Leroy 2006).

The velocity dispersion is calculated as

σv =
√∑

i Ti(vi − v)2∑
i Ti

. (7)

We use as second similarity criterion the volume of the isosurface
in PPV space:

V = πR2σv. (8)

Luminosity and volume have been chosen as the default clus-
tering criteria for SCIMES for several reasons. First, those criteria
are directly related to the basic physical descriptors of the molecu-
lar emission structures (morphology, velocity, and emissivity) and
allow us to consider the structure neighbourhood in both spatial
and spectral directions, and in terms of CO emission differences.
Secondly, luminosity and volume are monotonic and discontinuous
properties of the isosurface related to the dendrogram. Those val-
ues increase monotonically against a decrease in the dendrogram
hierarchy level and produce large ‘jumps’ in the affinity when two
objects with similar volume of luminosity merge at a certain level
(Fig. 8). By construction, the dendrogram is a monotonic structure,
so the number of isolated isosurfaces should increase with the hi-
erarchical level and it is easily recast into affinity matrices through
the luminosity and the volume of its structures. Those features of
luminosity and volume criteria give well-behaved block diagonal
similarity matrices that are preferred when working with spectral
clustering (see next section). The scaling parameter of the rescaling
kernel (described in Section 2.3.1) can be directly calculated from
those kind of matrices; the number of clusters is easily guessed and,
in general, corresponds to the number of blocks (Section 3.2).

SCIMES accepts as input any kind of user-defined affinity ma-
trix. Nevertheless, the code might not behave as expected when
non-monotonic and strictly continuous criteria are used. In this

aspect, volume and luminosity can be associated with the number
of volumetric pixel within a certain isosurface, and to the sum of the
values of them, respectively. However, those properties are largely
continuous functions of the dendrogram hierarchy level. This makes
the estimation of scaling parameter and initial number of clusters
difficult, providing unwanted mergers between the structures.

Luminosity and volume criteria are general, since they embody,
by definition, distance information. However, for several applica-
tions, especially involving data of the Galaxy, distances are rarely
known. This entails some changes in the cloud segmentation pro-
vided by SCIMES. We discuss this issue in Appendix A.

3.1.2 From the similarity criteria to the similarity matrices

Having identified the similarity criteria we found useful to partition
the molecular line emission, here we explain how to construct the
related similarity matrices. We already showed that dendrograms
can be seen as fully connected, simple, undirected and weighted
graphs in Section 2.2. The weight of the edges is determined by the
properties of the highest hierarchical level in term of brightness tem-
perature at which a pair of leaves (graph vertices) ‘join’ (see Fig. 1).
Each merging level corresponds to molecular emission bounded by
an isosurface. Along the branches, the properties do not change
much and are continuous functions of the contour level. However
where two branches merge, the properties change suddenly since
the merged object contains more emission (see Fig. 3). In general,
higher hierarchical levels correspond to smaller isosurfaces and vice
versa. Therefore the weight of the edges will be equivalent to the
inverse of the properties of the molecular emission embedded by
the isosurface at that particular hierarchical level. Considering two
graph vertices labelled as i, j (i.e. a pair of leaves in the dendrogram),
we define the weight of the edge between them as

wij = 1/pij , (9)

where pij indicates a property of the emission bounded by the
highest-level isosurface containing the vertices. For the similarity
criteria we established pij as either pij = Lij or Vij.

3.1.3 Similarity matrix aggregation

Once all matrices have been rescaled using the kernel with the ap-
propriate σ S (see Section 3.2 for details), the matrices can be also
aggregate into a single similarity matrix that embodies all the simi-
larity criteria. This process follows the idea of Shi & Malik (2000)
for image segmentation. They construct two similarity matrices
for their problem (colour image segmentation). After the rescaling
the two matrices are multiplied element-wise. In the same way,
we multiply our (volume and luminosity) kernel-rescaled similarity
matrices element by element. The volume, luminosity, and/or the
unique aggregate similarity matrices constitute the main input for
the spectral clustering algorithm.

3.2 Guessing the scaling parameter and the number of clusters

As for the choice of the right affinity criteria, selecting an opti-
mal scaling parameter σ S is essential because it might significantly
affect the number of the clusters identified and the quality of the
clustering. Indeed, the scaling parameter determines how rapidly the
similarity pij falls off with the distance between leaves i and j. Given
the assumed rescaling kernel (Section 2.3.1), a large σ S merges the
clusters resulting in an undesirable clustering; but a too small σ S
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Figure 4. Average silhouette versus the number of clusters k to determine
the best number of clusters kb, for selected values of σ S. The behaviour of the
average silhouette is quite similar for both volume and luminosity criteria,
although the profile for the luminosity criterion presents some ambiguities.
Nevertheless, the dependence on the value of σ S is not as strong as expected.
The values of σ S chosen using the similarity histogram (see Section 3.2 and
Fig. 5 for details) are indicated in the bottom-left corner of each panel.
The values are in pc2 km s−1 for the volume criteria (upper panel) and
K km s−1 pc2 for the luminosity criteria (lower panel). The profile of the
chosen scaling parameters for the segmentation of the Orion–Monoceros
data set is indicated with grey thick lines. The insets at the top-right corners
of the plots show zoomed versions of the average silhouette profile around
the peak.

generates a weak similarity matrix where only the affinities of di-
rectly neighbouring leaves are high. The graph theory literature does
not provide firm criteria to select good scaling parameters. Ng et al.
(2001) suggest that the right σ S can be determined by evaluating the
tightness of the clusters on the surface of a sphere. This criterion
deals with the quality of the clustering, therefore the ‘tightness’ of
the clusters on the surface of a sphere can be determined, similar
to how the number of clusters k is set using the silhouette method
(Section 2.3.4). To test this method, we ran the spectral clustering
algorithm on the Orion–Monoceros data set (see Section 4) several
times with different values of scaling parameters (Fig. 5); and for
all possible number of clustering configurations, i.e. 2 ≤ k ≤ n − 1,
where n is the number of leaves. The best clustering configuration
is given by (kb, σ S,b) = argmax[sil(k, σ )]. Fig. 4 shows the results of
the test. The average silhouette for both criteria presents a similar
behaviour. Nevertheless, the index has a clear peak for the volume
criteria at k = 76, while there is some ambiguity regarding the lu-
minosity criteria, since the average silhouette profile presents two
peaks at k = 14 and 69. While selecting k = 69 for the luminosity
criterion produces a clustering configuration similar to the volume
criterion, the choice k = 14 merges Orion A, NGC 2149 and Mono-

Figure 5. The multi-modal ‘similarity histogram’ obtained from the vol-
ume (upper panel) and luminosity (lower panel) affinity matrices. N indicates
the number of affinities with a specific value. The values of σ S used for the
average silhouette test in Fig. 4 and Section 3.2 correspond to the average
value between the different modes in the histograms. The chosen scaling pa-
rameters for the segmentation of the Orion–Monoceros data set are indicated
with red lines.

ceros into a single object. Surprisingly we note that the value of the
silhouette, in general is not highly influenced by the selection of σ S,
but varies significantly according to the selected similarity criteria.

Although the above choices of similarity might be one of the
most reliable criteria to constrain both σ S and k, it is not free from
ambiguities. Moreover, running the spectral clustering for all possi-
ble clustering configurations and for a quite large number of scaling
parameter is computationally expensive. Nevertheless, there is a
natural way to efficiently select σ S that might be of great interest in
the segmentation of GMCs. From a similarity matrix we can build
a similarity histogram. If the data form clusters, the histogram for
their similarities will be multimodal (Fig. 5). In this view, the first
mode corresponds to the average intracluster similarity, while the
others to similarities between clusters (Fischer & Poland 2004). By
choosing the scaling parameter between the first two modes, the
similarity values for the leaves forming clusters or single clouds,
are expected to be enhanced compared to the others. We note that
this choice produces regular block diagonal matrices. Therefore, a
good choice of σ S that does not underestimate or overestimate the
size of the clusters is between the first and the second mode. For the
algorithm, we use their median value. Physically the scaling param-
eter picked in this way might indicate the characteristic maximal
values of volume or luminosity that the clouds tend to exhibit.

The criteria chosen to cluster the dendrogram are monotonic
and produce very regular block diagonal matrices. Having rescaled
the affinity matrices with an educated guess of σ S, the blocks that
might be related to the final clusters stand out (see Fig. 8, lower row)
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and the other affinity fall below 0.2. SCIMES automatically counts
the equal-size squares along the main diagonal after flagging all
affinity <0.2 and producing the starting value of the cluster number
kg. This operation is conceptually similar to the counting of the
connected components of the Laplacian matrix through the Fielder
vector (Fiedler 1973). The Fielder vector is the first eigenvector
of the Laplacian matrix and, given the properties of the Laplacian
(see Section 2.3.1), the zeroth elements of it represents the graph
connected components if the graph is not fully connected. This
method is more general than the one adopted by SCIMES. However,
we observed that, for the chosen criteria, the simple counting of
blocks gives kg closer to the best cluster number defined by the
silhouette.

3.3 Cluster removal and final cloud identification

The most appropriate number of clusters, kg, is guessed using the
similarity matrix histogram (Section 3.2, see also Fig. 5). Then, the
code runs for several values around kg and the k value corresponding
to the highest average silhouette is selected as the best number of
clusters kb (Section 2.3.4). Spectral clustering, by definition, groups
all objects into different clusters. Leaves that do not form isolate
clusters, are grouped all together in sparse clusters without any
neighbours in PPV space between constituent objects. These leaves
are located and eliminated from the clustering labels. The final
clouds are branches that contain only leaves in a single cluster.
These clouds are, therefore, structures already considered by the
original dendrogram algorithm and constitute the relevant objects
embedded within the dendrogram. The application of the kernel,
with a specific scaling parameter, to the similarity matrix enhances
the similarity of pair of leaves above critical values for L and V
and drastically reduces the others. Accordingly, the selected clouds
would tend to present similar properties in terms of luminosity
and volume. This implies that the clouds are found at different
hierarchical level but with similar characteristic properties.

4 T E S T I N G T H E M E T H O D

In this section, we apply SCIMES to the Orion–Monoceros com-
plex. This system is one of the most studied star formation regions
in the Galaxy with a well-established set of clouds with a molec-
ular mass ≥104 M� (Wilson et al. 2005, table 2). It represents,
therefore, an ideal testbed for the capabilities of the algorithm.

4.1 The Orion–Monoceros CO(1-0) data set segmentation

The Orion–Monoceros complex data set we use in our tests has
been presented by (Wilson et al. 2005, Fig. 7). The 12CO(1-0)
data were obtained with the 1.2-m millimeter wave telescope at the
Harvard–Smithsonian Center for Astrophysics and present a spatial
resolution of θFWHM = 8.4 arcmin corresponding to ∼1 pc at the
average distance to the complex (∼450 pc). The field-of-view spans
a region of ∼26◦ × 19◦ or ∼200 × 160 pc. The data cube has a
velocity resolution of 0.65 km s−1, over a vLSR range between −3
and 19.5 km s−1. However, most of the complex molecular emission
is concentrated between 2 and 15 km s−1. The data have a roughly
uniform sensitivity of σ rms = 0.26 K.

Fig. 6 shows the dendrogram of the data set obtained with typ-
ical parameter values (min delta = 2σ rms, min npix = 3θFWHM

∼ 3.6 pixels). The min valuehas been set to zero, since the data
cube has been previously masked using the dilate mask approach

(Rosolowsky & Leroy 2006). The technique works by masking pix-
els in two consecutive velocity channels in which the signal is above
4σ rms. These regions are then extended to include all adjacent pix-
els in which the signal is above 1.5σ rms. The rms noise σ rms of the
Gaussian distribution is estimated from the outlier-robust median
absolute deviation of each spectrum. In this way, we retain most
of the significant emission within the data cube, even when the
noise is not spatially homogeneous. A catalogue of each dendro-
gram structure has been generated using the ASTRODENDRO package
ppv catalog method, which measures moment-based properties
at a set of levels in the dendrogram. Further, the similarity ma-
trices of Fig. 8 (see Section 2.3.1) have been obtained using the
criteria in Section 3.1.1. To convert in physical units we use the
distances of Wilson et al. (2005, their table 2). SCIMES identi-
fied the scaling parameter σ S,V ∼ 7940 pc2 km s−1 and σ S,Lum ∼
28 128 K km s−1 pc2 for volume and luminosity criteria, respec-
tively, that have been used to rescale the matrices through the kernel.
In order to make a comparison of different measurements, we ran
SCIMES on the volume, luminosity, and aggregate criteria sepa-
rately. The similarity matrices relative to these criteria are shown
in the last row of Fig. 8. Direct analysis of the similarity matrices
predicted cluster numbers kg = {74, 69, 74} for the volume, lumi-
nosity and aggregate criteria, respectively. Silhouette values equal
to {0.97, 0.86, 0.94}, however, identifies more appropriate cluster
numbers kb = {76, 61, 70}. According to the criteria in Section 3.3,
three clusters have been removed from the volume-based segmen-
tation, however no clusters have been removed from the luminosity
and aggregate criteria-based segmentations. The final dendrogram
decompositions are shown in Fig. 6, while the corresponding maps
of the objects identified by SCIMES, using the same colour scheme
of the dendrograms, in Fig. 7.

We immediately note that the canonical clouds of the Orion–
Monoceros complex (i.e. Orion A – red contour, Orion B – green
contour, the Northern Filament – blue contour, Monoceros – ma-
genta contour, the Crossbones – yellow contour, NGC 2149 – cyan
contour, the Scissor – purple contour) are always faithfully recog-
nized by the algorithm as single entities providing segmentation
close to a ‘by-eye’ work. Other smaller objects are included only if
they encompass at least two leaves.

4.2 Difference between volume, luminosity and aggregate
criteria segmentations

Fig. 7 show the different Orion–Monoceros complex segmentations
provided by volume, luminosity and aggregate criteria applied sep-
arately. In general, all notable clouds in the complex are retained
regardless of which similarity criterion we use. A few additional,
smaller objects are missed by the luminosity- and aggregate-based
decompositions. By looking at the rescaled matrices in Fig. 8, the
clouds of the complex appear as well-defined square sub-matrices
within the main for the volume criterion. This matrix is therefore the
dominant one once we aggregate the two basic criteria. Indeed, the
silhouette value provided by the volume clustering configuration
is very high (0.97) and higher than the values obtained using the
other criteria (0.86 and 0.94 for luminosity and aggregate criteria,
respectively). Therefore, for the following tests and analysis we will
only consider the segmentation provided by the volume criterion.

4.3 Algorithm stability with the noise

To test the algorithm stability in the presence of noise and its
ability to provide reliable results down to the noise level, we add
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2076 D. Colombo et al.

Figure 6. Dendrogram of the Orion–Monoceros complex obtained using the same parameters as in Fig. 8 through (from the top to the bottom) the ‘volume’,
‘luminosity’ and ‘aggregate’ criteria, respectively. Every colour region outlines structures belonging to a certain cloud as segmented by SCIMES.
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Figure 7. The Orion–Monoceros complex square root of the integrated
intensity maps. Every different contour colour indicates a single cloud of the
complex identified by SCIMES, through (from top to bottom) the ‘volume’,
‘luminosity’, and the ‘aggregated’ criteria, respectively (see Section 3 for
details). The contours use the same colour scheme as Fig. 6 and encompass
isosurfaces corresponding to the clustered dendrogram branches of that
figure.

Table 1. Properties of the most notable Orion– Monoceros complex clouds.
CO luminosity, radius, and velocity dispersion are indicated as mean and
standard deviation of the properties measured of the 10 data cubes with
different noise realizations.

Object CO luminosity Radius Velocity dispersion
(K km s−1 pc2) (pc) (km s−1)

Orion A 22 871 ± 451 19.7 ± 0.3 2.7 ± 0.0
Orion B 13 144 ± 295 15.5 ± 0.3 2.5 ± 0.0
North. Filament 4048 ± 182 18.3 ± 0.3 1.8 ± 0.1
Monoceros 21 912 ± 3708 27.3 ± 3.3 1.6 ± 0.1
Crossbones 1759 ± 228 14.1 ± 0.7 1.6 ± 0.1
NGC 2149 1845 ± 271 13.5 ± 1.4 1.4 ± 0.1
Scissors 66 ± 2 2.3 ± 0.2 3.9 ± 0.1

beam-correlated noise to the Orion–Monoceros data cube. We anal-
yse the properties of the notable clouds imposing the typical pa-
rameters (see Section 4.1) and min value =1σ rms ∼ 0.36 K for the
generation of the dendrogram. We generate 10 data cubes with ran-
dom noise realizations. We use SCIMES with the default settings
and we perform the decomposition based on the volume matrix only.
For all noise-added cubes, the volume matrix shows scaling param-
eters that are quite stable: σ S = 7600 ± 1300 pc2 km s−1. Table 1
reports the results of the test as mean value and standard deviation
of the cloud properties measured for the different cubes. Generally,
SCIMES behaves well, yielding cloud properties that do not vary
significantly with the different noise realizations: properties differ
by only few per cent up to a maximum of 15 per cent between the
cubes. Nevertheless, adding random noise alters the significance of
the local maxima of the original data cube, and consequently the
connectivity of the various objects resulting in some changes in the
cloud identification.

4.4 Algorithm robustness with the dendrogram parameters

In this section, we study the performance of the algorithm to pro-
vide robust results with variations of the dendrogram parameters
min value, min delta, min npix. We perform three tests varying
a single parameter and fixing the others to typical values.

(i) min value = {1, 1.5, 2, 2.5, 3}σ rms, min delta = 2σ rms,
min npix = 3θFWHM;

(ii) min delta = {1, 2, 3, 4, 5}σ rms, min value = 2σ rms,
min npix = 3θFWHM;

(iii) min npix = {1, 2, 3, 4, 5}θFWHM, min value = 2σ rms,
min delta = 2σ rms.

Fig. 9 shows the result of the tests as variations of CO luminos-
ity, radius, velocity dispersion of Orion–Monoceros complex most
notable objects (Orion A, Orion B, the Northern Filament, Mono-
ceros, the Crossbones, NGC 2149, the Scissors) with changes on
the dendrogram parameters. Overall, it appears that SCIMES is ro-
bust against the parameters used to define the starting dendrogram.
Cloud properties are more sensitive by changes of min value, i.e.
the noise level at which the dendrogram has been generated. Nev-
ertheless, those differences do not concern all objects and all prop-
erties. The clouds more affected by variations in min valueare the
smaller ones (e.g. the Crossbones and the Scissors), the properties
of which vary by 10–20 per cent at most. For the larger GMCs
as Orion A, the Northern Filament and Monoceros, differences
in the properties are irrelevant. All objects appear insensitive to
variations in the other two dendrogram parameters min deltaand
min npix. In particular, NGC 2149 is not affected by any parameter
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Figure 8. Similarity matrices obtained from the Orion–Monoceros complex dendrogram. For this example, the astrodendro parameters have been set as in
Section 4.1. The first row indicates the original similarity matrices associated with the ‘volume’ and ‘luminosity’ criteria, SV and SL, respectively; the second
row shows the kernel rescaled matrices, G(SV) = exp(−S2

V/σ 2
S,V) and G(SL) = exp(−S2

L/σ 2
S,L); in the last (lower-right) panel, the ‘aggregate’ similarity

matrix, given by the element-by-element multiplication of G(SV) and G(SL) is shown. The matrices rows and columns are labelled with the dendrogram
leaf indexes. Within the different panels the operations between the different matrices are indicated, where G is the rescaling with the kernel. Matrix cells
corresponding to leaves of a certain cluster are contoured using the same colour as in Fig. 6.

Figure 9. Results on the SCIMES robustness with variations of dendrogram parameters on the Orion–Monoceros complex canonical clouds. The cloud
properties are shown on the y-axis from top to bottom: CO luminosity, radius, velocity dispersion. The x-axis indicates which parameter varies for a given test
as exposed in the text, where mval = min value, mdel = min delta, mnpix = min npix. Error bars indicate the amount of variation as standard deviation of a
certain cloud property with the dendrogram parameter. The absence of an error bar indicates a variation equal to zero (no variation of the cloud property with
changes of the given dendrogram parameter) or that the variation is smaller than the size of the symbol.
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Graph-based molecular ISM segmentation 2079

Figure 10. Orion–Monoceros complex cloud segmentation at different spatial resolution; from left to the right, top to bottom: 5, 10, 20, 50 pc. The beam is
indicated at the lower-left corner of each panel.

variation. Overall, the dendrogram parameters have a minimal effect
on segmentation outcomes.

4.5 Algorithm performance at lower resolution

To verify the behaviour of SCIMES at lower resolutions, we smooth
the Orion–Monoceros data set to 5, 10, 20, 50 pc spatial resolution,
considering an average distance to the complex of 450 pc and us-
ing a round Gaussian kernel. Dendrograms of each smoothed data
cube are generated using min value= 2σ rms, min delta= 2σ rms,
min npix= 1θFWHM. Fig. 10 shows the result of the segmentations
performed through the ‘volume’ matrix only. In terms of identifica-
tion, the results appear stable at 5 pc resolution (i.e. almost five times
lower resolution than the original data set): the clouds are recog-
nized as the original data set (see Fig. 6), with 30 per cent maximum
difference between their properties. At this resolution, the scaling
parameter estimated by the code (σ S;5 pc = 8230 pc2 km s−1) is
very similar to the one obtained from the original data set (σ S;1 pc

= 7940 pc2 km s−1). At 10 pc, Orion B and the Northern Fila-
ment are merged into the same object. This is because the Northern
Filament is a single leaf at this resolution. ‘Clustering’ means to
group objects together that have similar properties. A single object
(in our case, a ‘stray’ leaf) is not, by definition, a cluster. For the
same reason, using the default settings of the algorithm, several

important objects (like Orion A) are missed by the decomposition.
To retain those clouds, we configure the algorithm to retain single
leaves within the list of clusters. This method is therefore impor-
tant when the beam size becomes closer to the physical size of the
GMCs as in most extragalactic observations. The scaling parameter
estimated by the algorithm (σ S;10 pc = 7990 pc2 km s−1) to rescale
the volume affinity matrix is again similar to the one obtained at
native resolution. However, applying a lower scaling parameter (σ S

∼ 4000 pc2 km s−1) allows for the segmentation of the Northern
Filament separated from Orion A. At 20 pc, all notable clouds are
single leaves. The clustering merges NGC 2149, Monoceros, the
Crossbones and Orion B, Orion A into two separated clusters. The
estimated scaling parameter is σ S;20 pc = 4330 pc2 km s−1. At this
resolution, therefore, SCIMES becomes less efficient and the stabil-
ity of the results compared with the data set at the original resolution
is strongly reduced. At 50 pc resolution, the dendrogram is a single
branch of two leaves and another stray leaf. In this case, SCIMES
does not make any attempt to cluster the dendrogram, considering
all leaves as separated objects. Here, only Orion A and Orion B
are recognized. We conclude that a physical resolution of 10 pc
or better is required to use SCIMES to find GMCs. However, this
regime is where other algorithms struggle to find clouds (Section 5).
At poorer resolutions, clouds are effectively point sources and are
better identified by other finding routines (as CPROPS or CLUMPFIND).
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2080 D. Colombo et al.

Figure 11. Distribution of the unclustered structures (leaves of the dendro-
gram, cyan contours) and catalogued clusters (red contours).

4.6 Nature of the unclustered emission

As described in Section 3.3, SCIMES does not consider dendro-
gram leaves that cannot be uniquely attributed to separate branches.
Those branches will eventually constitute single clusters of the star-
forming complex under consideration. Moreover, isolated leaves
connected with the other structures of the dendrogram only through
the artificial ‘superstructure’ called trunk (see Section 2.2) are
also eliminated from the catalogue, since they are not clusters by
definition.7 Those unclustered structures are coloured in black in
Fig. 6. Nevertheless, those emission structures might be significant
(since they should be at least 2σ rms from the merge level with an-
other structure, however this criterion is not valid for truly isolated
leaves) and well resolved (spanning at least 3 beam sizes and 2 chan-
nel width). Thus, we examine their properties here. Fig. 11 shows
the distribution of these structures with respect to the catalogued
clusters in the Orion–Monoceros complex. In general, the unclus-
tered emission appears homogeneously distributed around the main
objects, both in spatial and spectral sense. Those structures have an
average radius of 1 pc, and a typical velocity dispersion ∼1 km s−1.
Moreover they encompass only 3 per cent of the total flux of the
data set, while the catalogued clusters contain ∼80 per cent of the
total CO emission, independent of the criterion used for the clus-
tering. Their significance is typically a factor of 2 lower than the
properties of the catalogued structures and only 5 per cent of them
has a peak signal-to-noise ratio above 2. The latter might, therefore,
be real entities of the molecular ISM, comparable to the smaller
objects catalogued by SCIMES. In conclusion, the algorithm retain
most of the significant emission of the data set and the unclustered
emission represents mostly noisy peaks rather than small structures
in the molecular medium.

5 C O M PA R I S O N W I T H OT H E R C L O U D
I D E N T I F I C AT I O N M E T H O D S

In this section, we will compare SCIMES segmentation and cluster
properties to those provided by other popular cloud identification

7 A cluster is a group of objects, in our abstraction, a group of leaves
connected because of some underlying criteria. Therefore, a single isolated
leaf cannot be considered as a cluster.

algorithms. In particular, we will consider the dendrogram itself,
CPROPS (Rosolowsky & Leroy 2006) and CLUMPFIND (Williams et al.
1994). We do not include GAUSSCLUMPS in the tests, since the code
fits a 3D Gaussian to the molecular emission, assuming, therefore,
a defined morphology of the molecular structures. This is a rough
approximation of the real shape of the molecular clouds likely suit-
able for extragalactic observation where the beam filling factor is
generally lower than the unity. In the Galactic surveys at high res-
olution, instead, molecular structures show a variety of shapes that
have little resemblance with Gaussians.

5.1 Segmentation differences

Fig. 12 shows the emission segmentation of the Orion–Monoceros
data set using different algorithms. These algorithms are tailored for
different purposes and it is clear that SCIMES appears particularly
well suited for the cloud segmentation in data sets with high resolu-
tion. GMCs might be also identified directly from the dendrogram
based on the value of the virial parameter of the emission within the
isosurfaces at the various hierarchical levels. The virial parameter
is a dimensionless quantity that determines the dynamical state of
the clouds (McKee & Zweibel 1992). It is defined as

α = 5σ 2
v R

4.4XCOLCOG
= 1.12Mvir

Mlum
; (10)

where Mvir = 1040σ 2
v R and Mlum = 4.4XCOLCO (Rosolowsky &

Leroy 2006). Several studies (Solomon et al. 1987; Heyer, Carpen-
ter & Snell 2001) have indicated that isolated GMCs show virial
parameters α ∼ 1 suggesting the self-gravitating state of those ob-
jects. In R08, the authors use the virial parameter to identify clouds
in the Orion–Monoceros data set as largest scale self-gravitating
structures within the dendrogram. In this way they obtain a good
description of three clouds of the complex: Orion A, Orion B and
Monoceros. Nevertheless, other canonical objects are not recog-
nized through the virial parameter approach. The virial parameter,
indeed, might be not the best method to identify GMCs on different
mass and size scales. The true dynamical state of the GMCs is not
clear, and although on average, molecular cloud populations show
virial parameters close to unity, several observations (Rosolowsky
2007; Bolatto et al. 2008; Heyer et al. 2009; Colombo et al. 2014)
have indicated that a large number of clouds are unbound having
α > 2. The virial parameter approach may be more useful to iden-
tify clumps within clouds that are more likely to be bound (e.g. Dib
et al. 2007; Shetty et al. 2010).

One of the most popular algorithms for the GMC decomposition
is CPROPS (Rosolowsky & Leroy 2006). The CPROPS package includes
different emission segmentation routines. The ‘island’ method dis-
tinguishes as single objects connected regions of emission within
the PPV space. Such approach can be sufficient to catalogue discrete
molecular structures in flocculent extragalactic environment, where
the emission is typically sparsely distributed (e.g. the LMC; Wong
et al. 2011). However, in more complex galaxies (M51; Hughes
et al. 2013; Colombo et al. 2014) or in the Orion–Monoceros data
set itself, this approach fails to recognize objects on the physical
scale of galactic GMCs. In the latter case, particularly, most of the
clouds of the complex are encompassed by the same island. Indeed,
the ‘island’ method is generally not sufficient to identify clouds.
Therefore, the islands are subsequently divided into ‘clouds’, or
independent local maxima within the islands, through a watershed
algorithm. Only pixels that can be uniquely associated with a given
local maximum will constitute the final ‘cloud’, while shared pix-
els are discarded and considered as not being part of any structure
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Graph-based molecular ISM segmentation 2081

Figure 12. The Orion–Monoceros complex (top left) and the emission segmentation performed by different algorithms. Decompositions are presented as
collapsed assignment cubes, where each colour indicates an individual objects. (a), the cloud decomposition provided by SCIMES. (b), the largest self-
gravitating connected objects (red, blue and green contours) within the dendrogram having 1 ≤ α < 2 as in R08. (c), structures identified by CPROPS’ island
method, using the default setting of the decomposition parameters. (d), clouds identify by CPROPS ‘physical priors’ method that sets the tuning parameters to
values appropriate for a GMC segmentation (see Rosolowsky & Leroy 2006, table 2 for details). (e), the cloud decomposition provide by CLUMPFIND, starting
from the CPROPS defined islands.

(forming the so-called watershed). This approach has been very
successful for many (mostly extragalactic) applications (e.g.
Bolatto et al. 2008; Wong et al. 2011; Gratier et al. 2012; Rebolledo
et al. 2012; Colombo et al. 2014). Here, the CPROPS decomposition
is performed using physically motivated priors8 that should provide
objects closer to what is thought to be a GMC. Nevertheless, in the
case of Orion–Monoceros the emission appears too overdivided and
the identified objects seem to be more comparable to dense clumps
within the clouds rather than actual GMCs.

The CPROPS package implements also the original version of
CLUMPFIND by Williams et al. (1994). The CLUMPFIND algorithm uses
a friends-of-friends procedure to decompose the emission within
a single cloud or cloud complex. This algorithm contours the data
into a finite number of intensity steps, assuming a one-to-one re-
lation between peaks in the intensity profile and clumps. At the
‘blending level’ between two or more clumps, the flux is equally
distributed between the clumps. Unlike the CPROPS decomposition,
CLUMPFIND conserves flux, so that all the flux within the data is
assigned to individual clumps. Being designed to identify clumps
within clouds, CLUMPFIND is less suitable for the GMC decompo-
sition. When applied to rich, structured data, CLUMPFIND tends to

8 From Rosolowsky & Leroy (2006) table 2, local maxima must have a
distance of at least 15 pc between each other, a velocity separation of
2 km s−1 and a significance of at least 1 K.

provide ‘patchwork’ segmentations that have little resemblance to
physical structures.

5.2 Appearance of scaling relations and mass spectra using
different segmentation methods

We now compare the properties of the objects obtained with differ-
ent segmentation methods,9 and in particular to discuss the appear-
ance of the derived scaling relations and mass spectra. Since early
studies of GMC population (e.g. Solomon et al. 1987), the scaling
relations (also called ‘Larson’s laws’ from Larson 1981) and mass
spectra have been standard tools to investigate the physical state
of these objects and also to diagnose their formation and evolution
(e.g. Gratier et al. 2012; Colombo et al. 2014). Nevertheless, sev-
eral studies (in particular, Hughes et al. 2013) have demonstrated
that, in complex environments, their appearance is largely biased by
instrumental sensitivity, resolution, and the method used to decom-
pose the clouds. Therefore, it is necessary to understand how the
properties of the objects segmented by SCIMES compare with other
methods. For a fair comparison that depends only on the identifi-
cation methods, we calculate the physical properties of the clouds
identified by each algorithm using the same moment method, as

9 For this analysis, we do not consider the results given by the dendrogram
itself.
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2082 D. Colombo et al.

Figure 13. Scaling relations comparison between the different segmentation algorithms. Red dashed lines indicate the fit obtained from Galactic clouds
(Solomon et al. 1987): (σv /[km s−1]) = 0.72 (R/[pc])0.5 for the left-hand panel, (LCO/[K km s−1 pc2]) = 25 (R/[pc])2.5 for the central panel, (LCO/[K km s−1

pc2]) = 130 (σv/[km s−1])5 for the right-hand panel.

Figure 14. Mass spectra comparison. The shapes of the mass spectra are
determined by the nature of the algorithm. CLUMPFIND tends to find small
clumps and the influence of the mode choice CPROPS shows up clearly in the
shapes identified. SCIMES finds many of the canonical clouds in the area,
but the mass distribution is likely incomplete at the low-mass end. The full
line indicates the power-law fit from equation (11), while the dashed line its
truncated version of equation (12).

implemented in the cloudalyze procedure of CPROPS (Rosolowsky
& Leroy 2006).

The basic properties of the objects that we plot are combined
into scaling relations (Fig. 13) and mass spectra (Fig. 14). We do
not make any attempt to correct those properties for the survey bi-
ases (as described in Rosolowsky & Leroy 2006; R08) since we
are interested in the properties provided by different segmentation
approaches rather than comparing data sets with different obser-
vational biases. Generally the scaling relations show significant
scatter. In particular, none of the analysis methods yield compelling
evidence for a tight size–line width or luminosity-line width corre-
lation. Linear relationships between virial mass and CO luminosity,
and luminosity mass and radius are evident from SCIMES and

CPROPS in ‘cloud’ mode. CPROPS in ‘island’ mode is, instead, domi-
nated by a single large object (see Fig. 12) that encompass most of
the structures in the complex, the properties of which can be seen as
outliers for this data set. For SCIMES and CPROPS decompositions,
the scatter in the scaling relations is partially due to small, isolated
emission features of uncertain nature that typically have the size of
the resolution element (but see next section). Looking at the den-
drograms in Fig. 6, those objects emerge mostly in the trunk and
are not related to the main emission branch. Using SCIMES, they
can be easily eliminated (a posteriori). To some extent, this cleaning
operation is also possible after the CPROPS segmentation, if it is per-
formed using physical motivated priors. All structures decomposed
by CLUMPFIND have properties very close to the resolution element.
CLUMPFIND is, indeed, the algorithm most influenced by the survey
designs of the ones considered here. At this resolution (∼1 pc),
however, CLUMPFIND divides the emission into objects with the size
of the so-called clumps generally considered as the born places of
stellar clusters (Williams et al. 1994).

The CLUMPFIND mass spectrum presented in Fig. 14 can be re-
garded as a genuine ‘clump’ spectrum. The SCIMES spectrum
instead characterizes isolated and independent entities closer to the
classical definition of molecular clouds. Nevertheless, this cannot
be assumed as a representative GMC spectrum since, in this data set,
only few objects on the characteristic scale of a GMC are present,
resulting in a undersampled spectrum at the lower end. CPROPS (in
‘cloud’ mode) provides a collection of objects halfway between
clumps and molecular clouds, close to the values of the physical
priors imposed. Its spectrum might be representative of compact
objects on a scale up to ∼10 pc. The CPROPS spectrum for ‘islands’
is clearly biased by the presence of the central object. However, it
can be used to trace the mass contribution of small isolated objects
close to the size of the resolution element.

To formally test these trends, we fit the mass spectra using both
a power law:

N (M ′ > M) =
(

M

M0

)γ+1

, (11)

and its truncated version:

N (M ′ > M) = N0

[(
M

M0

)γ+1

− 1

]
. (12)
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Graph-based molecular ISM segmentation 2083

adapted for cumulative mass distributions (Rosolowsky 2005, Wong
et al. 2011). In these equations, M0 represents the maximum mass
of the sample. In the truncated version of the model, M0 indicates
also the mass where the spectrum rolls of, since N(M ≥ M0) = 0. In
this case, N0 is the number of clouds more massive than 21/(γ + 1)M0.
Equations (11)–(12) are integrals of differential cloud mass distri-
bution, dN/dM ∝ Mγ . The index γ is considered as an indicator for
the general mass of the molecular cloud ensemble: γ > −2 means
that most of the molecular gas of the complex is enclosed into mas-
sive GMC, while γ < −2 indicates that small entities dominate the
molecular mass budget. We fit the two models using the Orthogo-
nal Distance Regression10 implemented in SCIPY, that accounts for
uncertainties in both variables. Errors on the mass from CO lumi-
nosity are generated through CPROPS cloudalyze procedure using
100 bootstrap iterations. The cumulative number instead as an error
characterized by a counting error given by

√
N . Given the survey de-

signs, (see Section 4), we fit the models above a mass of 100 M�.
Results of the fit are shown in Fig. 14. Both models give almost
indistinguishable indexes for each related method segmentations.
Nevertheless, for CLUMPFIND γ ∼ − 2.5, and for CPROPS (in ‘island’
mode) γ ∼ − 2.1. Instead SCIMES shows γ ∼ − 1.5, similar to
CPROPS in ‘cloud’ mode where γ ∼ − 1.6. Therefore, according to
the result of CLUMPFIND, one would tend to deduce that the molecu-
lar mass of the Orion–Monoceros complex is mostly enclosed into
small objects. The opposite interpretation, however, is suggested by
the fits of SCIMES and CPROPS in ‘cloud’ mode. CPROPS in ‘island’
mode provides results exactly on the border, indeed most of the
entities that compose its mass spectrum are small objects, while
the fit is influenced by the large structure that encompasses almost
all molecular gas of the survey. In conclusion, different algorithms
might give largely different results, and they have to be applied with
care according to the characteristic of the data under analysis.

6 H I E R A R C H I C A L S C A L I N G R E L AT I O N S

In the previous section, we showed that every segmentation method
(including SCIMES) introduces an amount of scatter in the scaling
relations between the properties of the objects. This is particularly
true for the size–line width relation, since these two quantities are
not covariant. Nevertheless, being based on the dendrogram frame-
work, SCIMES is a multiscale decomposition method that explic-
itly takes the hierarchical nature of the ISM into account. Therefore,
we combine this two approaches to investigate the appearance of
Larson’s laws within the hierarchy of the clouds.

Fig. 15 (left-hand column) recasts the relationships between
cloud properties in terms of different objects within the hierar-
chies. We refer to these plots as shower plots, based on their re-
semblance to cosmic ray showers. Each straight line in a shower
indicates the hierarchical connection between two substructures of
the dendrogram. A similar study was proposed by R08 and used by
Kauffmann et al. (2010) to explore the size–mass relation between
several Galactic clouds. From the plots, we first note that different
clusters originate from different regions of the dendrogram within
the parameter space defined by a given relation. Moreover, the
substructure properties within the different clusters align on well-
defined tracks with significantly lower scatter with respect to the
cluster-to-cluster relations (see Fig. 13). To quantify this observa-
tion, we calculate the Spearman rank correlation coefficient, rsp.

10 http://docs.scipy.org/doc/scipy/reference/odr.html

This coefficient evaluates how well a relation between two vari-
ables can be described by a monotonic function. If repeated values
are not present within the data, ±1 indicates monotonically increas-
ing (decreasing) behaviours between the variables. As in Hughes
et al. (2013) and Colombo et al. (2014), we consider rsp > 0.8 as
an indicator of strongly correlated properties, 0.5 < rsp ≤ 0.8 for
moderate correlated properties, and rsp ≤ 0.5 for poorly correlated
properties. Table 3 shows that for all relations examined here, rsp

is high between the substructure properties of each cluster. The
cluster-to-cluster Spearman ranks are only this high (rsp > 0.8) for
the relationships involving intrinsically correlated quantities (i.e.
the size–luminosity and the luminosity–virial mass relations). The
coefficient is low (rsp ∼ 0.3) for the remaining relationships. This
large scatter, particularly in the cloud-to-cloud size–line width rela-
tionship, has been noticed in various extragalactic studies of GMCs
(e.g. Hughes et al. 2010, 2013; Wong et al. 2011; Gratier et al. 2012;
Colombo et al. 2014). The coefficients related to separate clusters
are always slightly higher than the ranks given by the dendrogram
structure containing most of the objects of the complex.

To test whether those trends are real and not imposed by the
decomposition method, we generate several fake data cubes, set-
ting a random power spectrum of the brightness distribution in the
Fourier space, and adding a quantity of random Gaussian noise with
σ rms = 0.3 K. Then we run SCIMES calculating the properties of
the individual clusters identified and of their substructures. We find
that the monotonicity of the fake showers is high showing rsp simi-
lar to the ones observed for the Orion–Monoceros data. Instead, the
Spearman rank within clusters in the fake data is always between 2
and 3 times higher than the one measured here. The size–line width
relation scatter between clusters observed in the complex appears
to be a real feature of the data rather than a decomposition artefact.

Thus, SCIMES identified objects that are not only mathematically
but also physically distinct through the similarity criteria we set.
Furthermore, Larson’s laws look more compelling when analysed
within the hierarchy of the clouds. It is worth noting also that the
larger clusters of the complex have a well-resolved and non-trivial
inner structure. Therefore, the relations we observe do not arise from
viewing a monolithic object at different levels of the hierarchy.

Given the monotonic relation between the structure properties
within the same showers (Table 3), we fit ‘Larson’s law’ relations to
the individual showers to facilitate comparison with the clouds in the
Galaxy (Solomon et al. 1987). We use the PYTHON implementation11

of the BCES method described in Akritas & Bershady (1996). This
method takes into account the intrinsic scatter of data and the mea-
surement errors in both variables. For simplicity, we consider the
uncertainties to be uncorrelated, even if some properties should
have significant covariance. We generate errors for each property of
the catalogued dendrogram structures using a bootstrapping method
similar to the one described in section 2.5 of Rosolowsky & Leroy
(2006). We use 1000 bootstrap iterations. Fig. 15 (right-hand col-
umn) shows the fits of the showers from the larger objects with
non-trivial hierarchies, while the result of the fit are reported in
Table 2. Overall, the showers show remarkably similar fitting pa-
rameters to each other. Larger differences are distinguishable mostly
within the amplitude of the relations rather than between the slopes.
In particular, this is the case for the structures corresponding to
the Scissors, which occupies its own position within the parameter
space in most of the relationships. This gas structure can be seen as
an outlier of the complex. Indeed, the Scissors has been interpreted

11 https://github.com/rsnemmen/BCES/blob/master/bces.py
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2084 D. Colombo et al.

Figure 15. The hierarchical scaling relations within the substructures of the Orion–Monoceros complex (left-hand column). The straight lines between the
different points of the plot represent the hierarchical relations between the various substructures of the main complex. Structures belonging to a particular
cluster identified by SCIMES are indicated with the same colours as Figs 6 and 7. The trunk of the dendrogram is drawn in black. In the right-hand column, the
BCES fits of the structures associated with the main objects of the complex (Orion A, Orion B, Monoceros, the Northern Filament, NGC 2149, the Scissor, and
Stain) are shown next to the corresponding left-hand panel. Red dashed lines indicate the fit obtained from Galactic clouds: (σv /[km s−1]) = 0.72 (R/[pc])0.5

for the upper panels, (LCO/[K km s−1 pc2]) = 25 (R/[pc])2.5 for the middle panels, (LCO/[K km s−1 pc2]) = 130 (σ v/[km s−1])5 for the lower panels (Solomon
et al. 1987).
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Graph-based molecular ISM segmentation 2085

Table 2. Best-fitting parameters for the hierarchical scaling relations of Fig. 15 (left-hand column) for the larger objects of the Orion–
Monoceros complex. For comparison, the last line of the table summarizes the best-fitting parameters of Milky Way clouds (Solomon
et al. 1987).

Object σv = (a1 ± δa1)R(b1±δb1) LCO = (a2 ± δa2)R(b2±δb2) LCO = (a3 ± δa3)σ (b3±δb3)
v

(a1 ± δa1) (b1 ± δb1) (a2 ± δa2) (b2 ± δb2) (a3 ± δa3) (b3 ± δb3)

Orion A 0.40 ± 0.01 0.50 ± 0.04 14.33 ± 0.73 2.06 ± 0.10 575.63 ± 25.6 4.02 ± 0.21
Orion B 0.66 ± 0.01 0.46 ± 0.02 21.04 ± 0.59 2.47 ± 0.03 169.49 ± 9.71 4.58 ± 0.19
Monoceros 0.61 ± 0.01 0.35 ± 0.01 12.89 ± 0.38 2.07 ± 0.04 204.11 ± 11.33 5.60 ± 0.45
North. Filament 0.36 ± 0.01 0.47 ± 0.03 11.76 ± 0.64 2.31 ± 0.05 1422.74 ± 96.60 3.88 ± 0.24
NGC 2149 0.39 ± 0.01 0.69 ± 0.01 18.46 ± 0.55 2.50 ± 0.03 558.40 ± 16.96 3.52 ± 0.10
Crossbones 0.48 ± 0.01 0.41 ± 0.03 12.23 ± 0.74 1.95 ± 0.08 357.54 ± 39.58 4.59 ± 0.57
Scissors 1.91 ± 0.04 1.17 ± 0.07 16.26 ± 0.83 2.33 ± 0.17 4.50 ± 0.32 1.96 ± 0.30
Stain 0.54 ± 0.02 0.51 ± 0.06 7.06 ± 0.32 2.30 ± 0.08 80.57 ± 5.68 3.85 ± 0.40
Milky Way 0.72 0.50 25.00 2.50 130.00 5.00

Table 3. Spearman’s rank correlation coefficients for the
substructures within the most notable objects of the complex.
r1

sp refers to σv = a1R
b1 , r2

sp to LCO = a2R
b2 , r3

sp to the

LCO = a3σ
b3
v relationship. The line of the table, labelled

‘Clusters’ indicate the cluster-to-cluster Spearman’s rank for
the same relationships, while the last line (‘trunk’) denotes
the Spearman rank of the dendrogram structure containing
most of the clouds of the complex (drawn with black lines in
Fig. 15).

Object r1
sp r2

sp r3
sp

Orion A 0.84 0.97 0.91
Orion B 0.84 0.96 0.82
North. Filament 0.87 0.98 0.90
Monoceros 0.87 0.97 0.88
NGC 2149 0.90 0.97 0.90
Crossbones 0.80 0.92 0.82
Scissors 0.96 0.93 0.88
Stain 0.78 0.96 0.81
Clusters 0.26 0.93 0.35
Trunk 0.82 0.97 0.82

as a superposition of two distinct objects along the line-of-sight,
given its complicate kinematics (Wilson et al. 2005).

The fit we performed within the showers has a slope almost in-
distinguishable from the size–line width relation of Solomon et al.
(1987) or Heyer & Brunt (2004), that might indicate that Orion-
Monoceros objects are dominated by the same kind of turbulence
of the objects observed in those studies (such as the Burgers tur-
bulence in supersonic conditions; Passot, Pouquet & Woodward
1988). However, we also notice a large scatter on the cluster-to-
cluster first ‘Larson’s law’ (very low rsp value, see Table 3), i.e. on
a scale corresponding to ∼5–10 pc. In general, the scatter is always
present in the relationships involving a direct measure of the ve-
locity dispersion (like the luminosity–velocity dispersion relation).
This might reflect the fact that, at least for the Orion–Monoceros
objects, the line width is tracing internal differences between the
various clouds. Those differences might be imposed by distinct lev-
els of stellar feedback that vary the energy injected in the gas, and
modifying the amplitude of the turbulence fluctuations from cluster
to cluster.

7 D I S C U S S I O N A N D O U T L O O K

In this paper, we present SCIMES , which introduces a novel ap-
proach to segment the molecular medium based on dendrograms,

graph theory, and clustering. We also introduced many new concepts
for the study of the ISM connected with the cloud decomposition
and the multiscale analysis of the molecular gas emission. Here,
we discuss their scientific implications and the unique possibilities
offered by the method.

7.1 Unique features and limitations of the algorithm

One of the main features of SCIMES is to provide objects with
sizes significantly larger than the resolution element and not sim-
ply determined by the sensitivity of the data. This distinguishes
our method from other algorithms for ISM segmentation that are
very much constrained by the size of the beam and channel width
of the data set. Indeed, clustering means grouping together enti-
ties that are similar and separating them from others which show
a lower level of similarity. The clusters identified by SCIMES will
be, in general, always larger than the resolution element. In a mul-
tiscale ISM, these objects can possess complex morphologies. In
the Orion–Monoceros data set, we found compact, round clouds as
well as concave and elongated shapes. This unique feature of the
algorithm allow for a more morphologically oriented study of the
molecular medium. Nevertheless, for most extragalactic observa-
tions, the beam size is roughly the characteristic size of the GMCs.
Then, the leaves of the dendrogram already represent single clouds.
In this case, the clusters would be collections of GMCs that might
be useful for some applications and studies, but not for a GMC cat-
alogue. Other algorithms would be more appropriate for identifying
GMCs in that use case.

SCIMES identifies structures that can be considered as single
entities since the dendrogram leaves that compose these structures
can be grouped together according to cluster theory. SCIMES labels
some dendrogram structures as independent from others relative to
the similarity criteria chosen. Those structure are, therefore, already
present and catalogued by the dendrogram, and SCIMES cannot
find other objects that are not considered by the dendrogram. Since
the dendrogram is constructed considering the pixel neighbourhood
according to the dimension of the data set, the structures identi-
fied by SCIMES in a PPV cube are velocity connected. However,
velocity-connected objects (especially in the Galaxy) are not always
at the same distance as in the case of the Orion–Monoceros complex
(but see Appendix A). If distances are known they can be provided
as input to define the similarity matrices. The final segmentation
would be more physically oriented rather than data oriented as for
the Orion–Monoceros segmentation proposed in Section 4.

The flexibility of the dendrogram to operate on multidimensional
data sets makes SCIMES already applicable for position–position
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images (converting, for example, the ‘volume’ criteria into an ‘area’
criteria) or position–position–position simulated cube (e.g. Duarte-
Cabral et al. in preparation). Moreover, future developments for
more simulation-oriented applications in the PPPV or PPPVVV
domains are possible.

The dendrogram-basis of SCIMES offers other advantages. The
hierarchical structure is one of the main characteristics of the molec-
ular medium that reflects its turbulent nature. Within the identified
objects, this structure is readily available after the dendrogram cre-
ation. This might allow, for example, to study how turbulent energy
is transferred and dissipated from the size of the clouds to smaller,
inner, bound structures (R08).

While cluster analysis is a novel approach in astronomy, SCIMES
has been developed with standard clustering algorithms adapted
from other disciplines to suit our needs. The data mining and ma-
chine learning literatures are rich in alternatives to spectral cluster-
ing (e.g. Jain et al. 1999), k-means (e.g. Hamerly & Elkan 2002),
and the silhouette index (e.g. Desgraupes 2013). Our method might
be improved or complemented in a number of different ways.

7.2 The physical meaning of the similarity matrix and the
scaling parameter

SCIMES starts by abstracting the dendrogram obtained from a star-
forming complex into a graph, where the leaves of the dendrogram
are seen as vertices of the graph and the hierarchical level where
two leaves merge defines the connection (edge) between the nodes.
A key step that strongly determines the final segmentation results
is the choice of the similarity criteria or equivalently the weights
of the graph edges. The current implementation of SCIMES makes
use of two criteria, based on the PPV volume of the smallest isosur-
face containing the two leaves under consideration and the amount
of flux (or CO luminosity, when distance information is available)
within it. Those criteria are readily available from the dendrogram
itself and appear to provide good results. Moreover, being cumu-
lative properties, ‘volume’ and ‘luminosity’ provide well-behaved,
block diagonal similarity matrices. In particular, within the volume-
associated matrix the blocks corresponding to the classic clouds of
the Orion–Monoceros complex stand out clearly and SCIMES has
no difficulty in identifying them.

The spectral clustering also requires insignificant cluster affinities
to be rescaled out using, for instance, a Gaussian kernel (or its
alternative version used in the paper). The Gaussian kernel has a
free ‘scaling parameter’ to be set for this operation. We selected
an optimal value for this parameter with an initial guess from the
similarity matrix. In the case of the Orion–Monoceros complex, a
volume of ∼8000 pc2 km s−1 corresponds to an effective radius Reff

∼ 30 pc and a velocity dispersion σ v ∼ 3 km s−1. Those quantities
are very close to the usually cited characteristic scales of the GMCs
(e.g Blitz et al. 2007) and SCIMES finds them through a pure data-
driven analysis. Given the clearly defined appearance of the affinity
matrix, it seems that the objects in this star-forming complex have a
well-established maximum size and velocity dispersion. If a larger
scale in the molecular hierarchy existed, the data of sufficiently
wide area that SCIMES would be able to find it. In the same way,
from the luminosity criterion, SCIMES selects a scaling parameter
equal to 28 128 K km s−1 pc2, equivalent, by assuming a Galactic
αCO = 4.4 M� (K km s−1 pc2)−1 (e.g. Strong & Mattox 1996), to
∼1.2 × 105 M�, again similar to the average mass assumed for the
GMCs in the Milky Way. SCIMES finds those parameters, as well
as the initial guess for the number of clusters, automatically via a

direct analyses of the affinity matrix. These variables can be also
imposed by the user if necessary.

For the Orion–Monoceros complex data set we analysed here,
the blocks of the similarity matrix associated with the luminos-
ity criterion are not as well defined as in the volume matrix. For
this data set, the luminosity is not a clustering criterion as good
as the volume. Additionally, the silhouette calculated for the best
clustering configuration through the luminosity criterion is not as
high as the one obtained from the volume criterion alone (see
Section 4.1). The silhouette profile shown in Fig. 4 for the lu-
minosity presents ambiguities that are not observed in the profile of
the volume criterion. Taken together, these evidences might indi-
cate that for the particular tracers and resolution used to image the
considered star forming region, the emission is better segmented
through its morphological features, rather than the emission. For
the given observation and scale, the relevant structures tend to have
similar volumes rather than luminosities.

In this aspect, the differences in SCIMES performance between
the ‘luminosity’, and ‘volume’ similarity criteria might be generally
connected with the question of which is the ‘right’ segmentation cri-
terion for the clouds? This question can be more generally posed
as what is the physical mechanism responsible for the clumpiness
of the molecular ISM? or are molecular clouds real, independent
entities, and an important scale for the star formation process? Even
so, the different criteria might produce segmentations that mimic a
by-eye approach without being linked to a particular physical origin.
Nevertheless, the most innovative feature of SCIMES is the possi-
bility to expand the friends-of-friends segmentation concept, where
the ‘friendship’ is set not simply by the value of neighbouring pixels,
but by real physical properties of the ISM. Indeed, the main strength
of the spectral clustering is to shift every property that can be seen
as a similarity into an Euclidean space where clustering features are
enhanced, with basically no restrictions. Moreover, the isosurfaces
associated with the graph edges are well-defined three-dimensional
structures that possess their own physical properties. Those prop-
erties can be applied to construct customized similarity matrices to
be used to generate segmentation based on the physics one wants
to explore. For example, similarity matrices can be obtained con-
sidering the amount of star formation within the isosurface, the
abundance of a particular chemical tracer, the level of dust extinc-
tion, or kinematic properties. The products of such segmentation
would be gas ‘clusters’ having a characteristic maximum property
defined by the similarity criteria utilized. Moreover, through the
matrix aggregation, various segmentations can be obtained aggre-
gating several criteria together. The dominant one(s) (as in the case
of ‘volume’ versus ‘luminosity’) would leverage lower similarities
among the others.

7.3 Towards an unified definition for the molecular gas
structures: molecular gas clusters

According to their properties, the objects identified by SCIMES in
the Orion–Monoceros complex match with the general definitions
of ‘GMC’ present in the literature. Indeed, from the theoretical
point of view, GMCs can be seen as the largest star formation
coherent regions (Kruijssen & Longmore 2014), of which the size
is expected to be characterized by the Toomre (1964) wavelength.
For a Toomre stability parameter Q close to unity, this length-scale
is roughly equal to the scaleheight of the gaseous disc (Krumholz
& McKee 2005). For observations, however, the working definition
of Williams, Blitz & McKee 2000 is usually adopted: GMCs are
considered as appropriate sites of star formation, formed mostly
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from molecular gas, having masses ≥104 M�, and sizes ∼20–
50 pc, whose properties are noticeably different from the ambient
medium (Kennicutt & Evans 2012). Although the latter is used
to design surveys aiming for GMC studies, it is not applicable in
general, and many examples of objects that deviate for one or more
of the characteristics listed above are found (e.g. Blitz, Magnani &
Mundy 1984; Rosolowsky & Blitz 2005; Dobbs, Burkert & Pringle
2011; Hughes et al. 2013; Meidt et al. 2013).

Through this paper, we proposed that GMCs can also be defined
using the methodologies of the cluster analysis. Conceptually, this
new definition provides immediate advantages. First, it prompts
GMCs with a solid mathematical formalism based on the frame-
work of cluster analysis. Secondly, the act of finding clusters might
help to constrain theories of GMC formation. Clustering means to
group together objects or variables that share some observed quali-
ties. Alternatively, clustering means to partition or to divide a set of
objects or variables into mutually exclusive classes, whose bound-
aries reflect differences in the observed qualities of their members.
In a similar fashion, a set of gas clumps can be grouped together if
they possess common properties. If this is true, it is logical to think
that those clumps might also share a common origin. Various sets
of common properties define a single entity (e.g. a GMC, regarding
the scale under consideration), the elements of which have fol-
lowed a common evolutionary path, possibly with a single outcome
(e.g. a coherent star formation). If some properties are shared but
not others, the clumps might originate from the same phenomena,
but they have followed different evolutionary paths perhaps shaped
by different environmental conditions. Instead if no property is
shared, formation and evolution might be completely separate for
the group of clumps under consideration. These properties can be
distinguished into location in the PPV space and physical properties
of the clumps, both encoded in SCIMES through the dendrogram
and the specific set of affinity matrices considered, respectively.

In Section 4.4, we found out that a resolution of 10 pc or bet-
ter is needed for the algorithm to identify GMC-like objects. In
the same way, not only GMCs, but also their substructures such
as clumps or filaments, might be associated with specific affinity
matrices or clustering criteria, providing enough dynamical range
to allow SCIMES to correctly characterize the hierarchical nature
of their emission. This might help to find a common mathematical
and physical definition for all molecular gas structures which could
be viewed as subclasses of the more extended concept of ‘molec-
ular gas clusters’. With this term we mean discrete regions of the
molecular ISM that share common properties as defined by a set of
similarity matrices, including possibly a common formation and/or
evolutionary history.

8 SU M M A RY

We presented a generalization of the GMC segmentation problem
based on graph theory and cluster analysis, to create SCIMES.
SCIMES is a novel and robust approach that faithfully reproduces
the work of by-eye identification of GMCs using dendrograms of
emission. Dendrograms can be seen as mathematical graphs by con-
sidering the leaves as the vertices of the graph. The edges of the
graph can be weighted using the properties of the highest-level iso-
surface containing each pair of leaves. Those weights are collected
into similarity matrices and passed to the spectral clustering. Spec-
tral clustering produces optimal cuts of the structure tree, which
identifies the molecular clouds, while respecting the hierarchy of
the dendrogram structures. We tested the method using data of

the 12CO(1-0) emission from the Orion–Monoceros complex. We
found that all canonical clouds of the complex (e.g. Orion A, Orion
B, Monoceros, the Northern Filament, NGC 2149, the Crossbones
and the Scissors) are correctly recognized by the algorithm. Their
properties were robust to changes in the dendrogram-generation pa-
rameters and different noise realizations. The results are quite stable
in degrading the spatial resolution by a factor of 10 but performance
declines for resolutions >10pc.

SCIMES performs best in complex environments and with high-
resolution data, such as those as provided by Galactic plane sur-
veys. This approach is thus complementary to other algorithms like
CLUMPFIND and CPROPS. When applied to well-resolved GMC data,
CLUMPFIND and CPROPS (in ‘cloud’ mode) tend instead to overdivide
the molecular emission. This behaviour changes the shape of the
mass spectra, which is more closely related to resolution-element-
sized clump spectra rather than cloud spectra for high-resolution
surveys. All algorithms, however, introduce a significant amount
of scatter in the scaling relations between cloud properties. We
interpreted the scatter given by the properties of the objects iden-
tified by SCIMES as the result of real physical differences in the
Orion–Monoceros clouds that leave traces in the measurement of
the velocity dispersion. The scaling relations within the hierarchies
of the different objects show much tighter correlations.

SCIMES finds coherent regions within data cubes. Those re-
gions possess similar values of volume or integrated CO luminosity.
The regions (clouds) decomposed by the algorithm are quite sim-
ilar if they are identified by the volume, or the luminosity of both
criteria aggregated. Nevertheless, the volume criterion appears to
provide better clustering performance. SCIMES offers also an op-
portunity to expand the ‘friends-of-friends’ paradigm from the pixel
neighbourhood-based one to the physics-based one. Indeed, simi-
larity matrices can be generated through virtually every property of
the ISM, including star formation rate and chemical content. This
operation also expands the concept of ‘GMC’ itself to be included
in the broader class of the ‘molecular gas clusters’. We defined
molecular gas clusters as a category of discrete objects within the
molecular ISM that share several common physical properties and
can be segmented by a well-defined set of similarity criteria.

The algorithm is publicly available12 and it is readily usable not
only for PPV data cubes but also for the object identification in
PP images and PPP simulations. In the same way, it can be tuned
to recognize clumps or filaments, given enough dynamic range
necessary for the correct construction of the gas emission hierarchy
within the data.
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APPENDI X A : SCI MES SEGMENTATI ONS
W I T H O U T D I S TA N C E I N F O R M AT I O N

Robust distance estimations are rarely available especially for
Galactic studies. In this appendix, we show, therefore, how the
Orion–Monoceros data segmentation changes without providing
distance information to SCIMES. In this case, we need to con-
sider the ‘volume’ criterion as in equation (8) but measured in
arcsec2 km s−1. The ‘luminosity’ criterion is effectively turned
into a ‘flux’ criterion (equation 4) measured in K km s−1 arcsec2.
Figs A1–A3 show the results of the segmentation in terms of con-
toured integrated intensity maps, affinity matrices, and clustered
dendrograms, as provided by volume, flux and aggregate criteria.
SCIMES selected σ S = 0.04 arcsec2 km s−1 for rescaling of the
volume matrix, and σ S = 0.12 K km s−1 arcsec2 for the flux matrix.
Further, the code guessed kg = {71, 71, 72} number of clusters
for the three criteria, respectively. The silhouette analysis pointed
out to more appropriate ks = {74, 64, 69} clusters. The silhouette
values for the clustering criteria are sil = {0.98, 0.92, 0.96}. The fi-
nal cluster cleaning eliminates three clusters from the final count of
volume-criterion based segmentation, leaving the number of cluster
found by the algorithm equal to 71.

One of the difference we note with respect to the distance-based
decomposition is that the affinity matrices from both volume and
flux are more alike: the blocks corresponding to the objects iden-
tified by SCIMES are well defined in both the matrices. In the
same way, the silhouette calculated from the flux decomposition
in larger than the luminosity based one. Dendrogram leaves form
well-separated clusters and all criteria provide quite accurate cloud
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Figure A1. The Orion–Monoceros complex square root of the integrated
intensity maps. Every different contour colour represents a single cloud
of the complex identified by SCIMES, through the volume, flux, and the
aggregated criteria, respectively, without including distance information.
The contours use the same colour scheme of Fig. A3.

segmentations. The main difference with respect to the decompo-
sition generated attributing distances to the dendrogram structures
is that Monoceros and NGC 2149 are identified as a single entity.
However these clouds appear spatially separated, having different
orientation and morphology. Indeed, by turning the ‘volume’ crite-
rion into an ‘area’ criterion (by using A = πR2 instead of V = πR2σ v

to weight the graph edges) SCIMES separates this structure into two
different clouds. Nevertheless, Monoceros and NGC 2149 have sim-
ilar velocity dispersions (σ v = 1.6, 1.3 km s−1, respectively) and
centroid velocity (Vcen = 12.0, 12.7 km s−1, respectively). These
structures are coherent in velocity and they have strong affinity in
the velocity dispersion space. The high affinity in velocity disper-
sion washes out the lower affinity introduced by the area and makes
SCIMES to merge Monoceros and NGC 2149 when the volume
criterion (without distance information) is used. Instead, through
the distances reported in table 2 of Wilson et al. (2005) Monoceros
is, in proportion to the units used, two times larger and the affinity
with NGC 2149 is much lower. In this case, spatial affinities domi-
nate the velocity dispersion ones and the two objects are separated.
Nevertheless, NGC 2149 distance is not well determined. Wilson
et al. (2005) attributed it by averaging the distances to Orion A and
the Southern Filament, since background stars are not present for
this cloud. We consider, therefore, that an association of NGC 2149
with Monoceros is possible, given the high-velocity coherence of
the two objects.
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Figure A2. Similarity matrices (as in Fig. 8) obtained from the Orion–Monoceros complex dendrogram without including distance information.

MNRAS 454, 2067–2091 (2015)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/454/2/2067/2892482 by C
ardiff U

niversity user on 19 Septem
ber 2019



Graph-based molecular ISM segmentation 2091

Figure A3. Dendrogram of the Orion–Monoceros complex obtained using the same parameters as in Fig. A2 through (from the top to the bottom) the ‘volume’,
‘flux’ and ‘aggregate’ criteria, respectively, without including distance information. Every colour region outlines structures belonging to a certain cloud as
segmented by SCIMES.
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