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Abstract. We discuss the effects on the cosmic microwave background (CMB), cosmic

infrared background (CIB), and thermal Sunyaev-Zeldovich effect due to the peculiar motion

of an observer with respect to the CMB rest frame, which induces boosting effects. After a

brief review of the current observational and theoretical status, we investigate the scientific

perspectives opened by future CMB space missions, focussing on the Cosmic Origins Explorer

(CORE) proposal. The improvements in sensitivity offered by a mission like CORE, together

with its high resolution over a wide frequency range, will provide a more accurate estimate of

the CMB dipole. The extension of boosting effects to polarization and cross-correlations will

enable a more robust determination of purely velocity-driven effects that are not degenerate

with the intrinsic CMB dipole, allowing us to achieve an overall signal-to-noise ratio of 13;



this improves on the Planck detection and essentially equals that of an ideal cosmic-variance-

limited experiment up to a multipole ℓ ≃ 2000. Precise inter-frequency calibration will offer

the opportunity to constrain or even detect CMB spectral distortions, particularly from the

cosmological reionization epoch, because of the frequency dependence of the dipole spectrum,

without resorting to precise absolute calibration. The expected improvement with respect

to COBE-FIRAS in the recovery of distortion parameters (which could in principle be a

factor of several hundred for an ideal experiment with the CORE configuration) ranges from

a factor of several up to about 50, depending on the quality of foreground removal and

relative calibration. Even in the case of ≃ 1% accuracy in both foreground removal and

relative calibration at an angular scale of 1◦, we find that dipole analyses for a mission like

CORE will be able to improve the recovery of the CIB spectrum amplitude by a factor ≃ 17 in

comparison with current results based on COBE-FIRAS. In addition to the scientific potential

of a mission like CORE for these analyses, synergies with other planned and ongoing projects

are also discussed.

Keywords: CMBR experiments – CMBR theory – reionization – high redshift galaxies;

cosmic flows.
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1 Introduction

The peculiar motion of an observer with respect to the cosmic microwave background (CMB)

rest frame gives rise to boosting effects (the largest of which is the CMB dipole, i.e., the

multipole ℓ = 1 anisotropy in the Solar System barycentre frame), which can be explored by

future CMB missions. In this paper, we focus on peculiar velocity effects and their relevance

to the Cosmic Origins Explorer (CORE) experiment. CORE is a satellite proposal dedicated

to microwave polarization and submitted to the European Space Agency (ESA) in October

2016 in response to a call for future medium-sized space mission proposals for the M5 launch

opportunity of ESA’s Cosmic Vision programme.

This work is part of the Exploring Cosmic Origins (ECO) collection of articles, aimed

at describing different scientific objectives achievable with the data expected from a mission

like CORE. We refer the reader to the CORE proposal [1] and to other dedicated ECO

papers for more details, in particular the mission requirements and design paper [2] and the

instrument paper [3], which provide a comprehensive discussion of the key parameters of

CORE adopted in this work. We also refer the reader to the paper on extragalactic sources

[4] for an investigation of their contribution to the cosmic infrared background (CIB), which

is one of the key topics addressed in the present paper, as well as the papers on B-mode

component separation [5] for a stronger focus on polarization, and mitigation of systematic

effects [6] for further discussion of potential residuals included in some analyses presented in

this work. Throughout this paper we use the CORE specifications summarised in Table 1.

The analysis of cosmic dipoles is of fundamental relevance in cosmology, being related to

the isotropy and homogeneity of the Universe at the largest scales. In principle, the observed

dipole is a combination of various contributions, including observer motion with respect to

the CMB rest frame, the intrinsic primordial (Sachs-Wolfe) dipole and the Integrated Sachs-

Wolfe dipole as well as dipoles from astrophysical (extragalactic and Galactic) sources. The

interpretation that the CMB dipole is mostly (if not fully) of kinematic origin has strong

support from independent studies of the galaxy and cluster distribution, in particular via the

measurements of the so-called clustering dipole. According to the linear theory of cosmological

perturbations, the peculiar velocity of an observer (as imprinted in the CMB dipole) should

be related to the observer’s peculiar gravitational acceleration via ~vlin = βrd~glin, where βrd ≃
Ω0.55
m /bg is also know as the redshift-space distortion parameter (bg and Ωm being, respectively,

the bias of the particular galaxy sample and the matter density parameter at the present time).

The peculiar velocity and acceleration of, for instance, the Local Group treated as one system,

i.e., as measured from its barycentre, should thus be aligned and have a specific relation

between amplitudes. The former fact has been confirmed from analyses of many surveys over

the last three decades, such as IRAS [7, 8], 2MASS [9, 10], or galaxy cluster samples [11, 12].

– 2 –



Channel Beam Ndet ∆T ∆P ∆I ∆I ∆y × 106

[GHz] [arcmin] [µK.arcmin] [µK.arcmin] [µKRJ.arcmin] [kJy sr−1.arcmin] [ySZ.arcmin]

60 17.87 48 7.5 10.6 6.81 0.75 −1.5

70 15.39 48 7.1 10 6.23 0.94 −1.5

80 13.52 48 6.8 9.6 5.76 1.13 −1.5

90 12.08 78 5.1 7.3 4.19 1.04 −1.2

100 10.92 78 5.0 7.1 3.90 1.2 −1.2

115 9.56 76 5.0 7.0 3.58 1.45 −1.3

130 8.51 124 3.9 5.5 2.55 1.32 −1.2

145 7.68 144 3.6 5.1 2.16 1.39 −1.3

160 7.01 144 3.7 5.2 1.98 1.55 −1.6

175 6.45 160 3.6 5.1 1.72 1.62 −2.1

195 5.84 192 3.5 4.9 1.41 1.65 −3.8

220 5.23 192 3.8 5.4 1.24 1.85 . . .

255 4.57 128 5.6 7.9 1.30 2.59 3.5

295 3.99 128 7.4 10.5 1.12 3.01 2.2

340 3.49 128 11.1 15.7 1.01 3.57 2.0

390 3.06 96 22.0 31.1 1.08 5.05 2.8

450 2.65 96 45.9 64.9 1.04 6.48 4.3

520 2.29 96 116.6 164.8 1.03 8.56 8.3

600 1.98 96 358.3 506.7 1.03 11.4 20.0

Array 2100 1.2 1.7 0.41

Table 1. Proposed CORE-M5 frequency channels. The sensitivity is estimated assuming

∆ν/ν = 30% bandwidth, 60% optical efficiency, total noise of twice the expected photon noise

from the sky and the optics of the instrument being at 40K. The second column gives the FWHM

resolution of the beam. This configuration has 2100 detectors, about 45% of which are located in CMB

channels between 130 and 220 GHz. Those six CMB channels yield an aggregated CMB sensitivity of

2µK.arcmin (1.7µK.arcmin for the full array).

As far as the amplitudes are concerned, the comparison has been used to place constraints on

the βrd parameter [10, 11, 13–15], totally independent of those from redshift-space distortions

observed in spectroscopic surveys. In this context, confirming the kinematic origin of the

CMB dipole, through a comparison accounting for our Galaxy’s motion in the Local Group

and the Sun’s motion in the Galaxy (see e.g., Refs. [16, 17]), would provide support for the

standard cosmological model, while finding any significant deviations from this assumption

could open up the possibility for other interpretations (see e.g., Refs. [18–21]).

Cosmic dipole investigations of more general type have been carried out in several fre-

quency domains [22], where the main signal comes from various types of astrophysical sources

differently weighted in different shells in redshift. An example are dipole studies in the radio

domain, pioneered by Ref. [23] and recently revisited by Ref. [24] performing a re-analysis
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of the NRAO VLA Sky Survey (NVSS) and the Westerbork Northern Sky Survey, as well

as by Refs. [25, 26] using NVSS data alone. Prospects to accurately measure the cosmic

radio dipole with the Square Kilometre Array have been studied by Ref. [27]. Perspectives

on future surveys jointly covering microwave/millimeter and far-infrared wavelengths aimed

at comparing CMB and CIB dipoles have been presented in Ref. [28]. The next decades

will see a continuous improvement of cosmological surveys in all bands. For the CMB, space

observations represent the best, if not unique, way to precisely measure this large-scale signal.

It is then important to consider the expectations from (and the potential issues for) future

CMB surveys beyond the already impressive results produced by Planck.

In addition to the dipole due to the combination of observer velocity and Sachs-Wolfe

and intrinsic effects, a moving observer will see velocity imprints on the CMB due to Doppler

and aberration effects [29, 30], which manifest themselves in correlations between the power

at subsequent multipoles of both temperature and polarization anisotropies. Precise mea-

surements of such correlations [31, 32] provide important consistency checks of fundamental

principles in cosmology, as well as an alternative and general way to probe observer peculiar

velocities [21, 33]. This type of analysis can in principle be extended to thermal Sunyaev-

Zeldovich (tSZ) [34] and CIB signals. We will discuss how these investigations could be

improved when applied to data expected from a next generation of CMB missions, exploiting

experimental specifications in the range of those foreseen for LiteBIRD [35] and CORE.

Since the results from COBE [36], no substantial improvements have been achieved in

the observations of the CMB spectrum at ν >∼ 30GHz.1 Absolute spectral measurements rely

on ultra-precise absolute calibration. FIRAS [40] achieved an absolute calibration precision

of 0.57 mK, with a typical inter-frequency calibration accuracy of 0.1mK in one decade of

frequencies around 300GHz. The amplitude and shape of the CIB spectrum, measured by

FIRAS [41], is still not well known. Anisotropy missions, like CORE, are not designed to

have an independent absolute calibration, but nevertheless can investigate the CMB and

CIB spectra by looking at the frequency spectral behaviour of the dipole amplitude [42–

45]. Unavoidable spectral distortions are predicted as the result of energy injections in the

radiation field occurring at different cosmic times, related to the origin of cosmic structures

and to their evolution, or to the different evolution of the temperatures of matter and radiation

(for a recent overview of spectral distortions within standard ΛCDM, see Ref. [46]). For

quantitative forecasts we will focus on well-defined types of signal, namely Bose-Einstein (BE)

and Comptonization distortions [47, 48]; however, one should also be open to the possible

presence of unconventional heating sources, responsible in principle for imprints larger than

(and spectral shapes different from) those mentioned above, and having parameters that

could be constrained through analysis of the CMB spectrum. Deciphering such signals will

be a challenge, but holds the potential for important new discoveries and for constraining

1For recent observations at long wavelengths, see the results from the ARCADE-2 balloon [37, 38] and

from the TRIS experiment [39].
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unexplored processes that cannot be probed by other means. At the same time, a better

determination of the CIB intensity greatly contributes to our understanding of the dust-

obscured star-formation phase of galaxy evolution.

The rest of this paper is organised as follows. In Sect. 2 we quantify the accuracy of a

mission like CORE for recovering the dipole direction and amplitude separately at a given

frequency, focussing on a representative set of CORE channels. Accurate relative calibration

and foreground mitigation are crucial for analysing CMB anisotropy maps. In Sect. 3 we

describe a parametric approach to modelling the pollution of theoretical maps with potential

residuals. The analysis in Sect. 2 is then extended in Sect. 4 to include a certain level of

residuals. The study throughout these sections is carried out in pixel domain.

In Sect. 5 we describe the imprints at ℓ > 1 due to Doppler and aberration effects,

which can be measured in harmonic space. Precise forecasts based on CORE specifications

are presented and compared with those expected from LiteBIRD. The intrinsic signature of

a boost in Sunyaev-Zeldovich and CIB maps from CORE is also discussed in this section.

In Sect. 6 we study CMB spectral distortions and the CIB spectrum through the anal-

ysis of the frequency dependence of the dipole distortion; we introduce a method to extend

predictions to higher multipoles, coupling higher-order effects and geometrical aspects. The

theoretical signals are compared with sensitivity at different frequencies, in terms of angular

power spectrum, for a mission like CORE. In Sect. 7 we exploit the available frequency cover-

age through simulations to forecast CORE’s sensitivity to the spectral distortion parameters

and the CIB spectrum amplitude, considering the ideal case of perfect relative calibration

and foreground subtraction; however, we also parametrically quantify the impact of potential

residuals, in order to define the requirements for substantially improve the results beyond

those from FIRAS.

In Sect. 8 we summarise and discuss the main results. The basic concepts and formalisms

are introduced in the corresponding sections, while additional information and technical de-

tails are provided in several dedicated appendices for sake of completeness.

2 The CMB dipole: forecasts for CORE in the ideal case

A relative velocity, β ≡ v/c, between an observer and the CMB rest frame induces a dipole

(i.e., ℓ = 1 anisotropy) in the temperature of the CMB sky through the Doppler effect. Such

a dipole is likely dominated by the velocity of the Solar System, ~βS, with respect to the CMB

(Solar dipole), with a seasonal modulation due to the velocity of the Earth/satellite, ~βo, with

respect to the Sun (orbital dipole). In this work we neglect the orbital dipole (which may

indeed be used for calibration), thus hereafter we will denote with ~β the relative velocity of

the Solar dipole.

In this section we forecast the ability to recover the dipole parameters (amplitude and

direction) by performing a Markov chain Monte Carlo (MCMC) analysis in the ideal case

(i.e., without calibration errors or sky residuals). Results including systematics are given in
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Sect. 4. We test the amplitude of the parameter errors against the chosen sampling resolution

and we probe the impact of both instrumental noise and masking of the sky. We consider

the “Planck common mask 76” (in temperature), which is publicly available from the Planck

Legacy Archive (PLA)2 [49], and keeps 76 % of the sky, avoiding the Galactic plane and

regions at higher Galactic latitudes contaminated by Galactic or extragalactic sources. We

exploit here an extension of this mask that excludes all the pixels at |b| ≤ 30◦.3

Additionally, we explore the dipole reconstruction ability for different frequency channels,

specifically 60, 100, 145, and 220GHz. We finally investigate the impact of spectral distortions

(see Sects. 6 and 7), treating the specific case of a BE spectrum (with chemical potential

µ0 = 1.4× 10−5, which is several times smaller than FIRAS upper limits).

Figure 1. Map of the CMB dipole used in the simulations, corresponding to an amplitude A =

3.3645mK and a dipole direction defined by the Galactic coordinates b0 = 48.24◦ and l0 = 264.00◦.

The map is in Galactic coordinates and at a resolution of ≃ 3.4 arcmin, corresponding to HEALPix

Nside = 1024.

We write the dipole in the form:

d(n̂) = A n̂ · n̂0 + T0, (2.1)

where n̂ and n̂0 are the unit vectors defined respectively by the Galactic longitudes and

latitudes (l, b) and (l0, b0). In Fig. 1 we show the dipole map we have used in our simulations,

generated assuming the best-fit values of the measurements of the dipole amplitude, A =

(3.3645 ± 0.002)mK, and direction, l0 = 264.00◦ ± 0.03◦ and b0 = 48.24◦ ± 0.02◦, found in

the Planck (combined result from the High Frequency Instrument, HFI, and Low Frequency

Instrument, LFI) 2015 release [50–52]. Assuming the dipole to be due to velocity effects

only, its amplitude corresponds to β ≡ |~β| ≡ v/c = A/T0 = 1.2345 × 10−3, with T0 =

2.72548 ± 0.00057K being the present-day temperature of the CMB [53]. In Fig. 2 we show

the instrumental noise map and the Planck Galactic mask employed in the simulations. The

noise map corresponds to 7.5 µK.arcmin, as expected for the 60-GHz band.

2http://pla.esac.esa.int/pla/
3When we degrade the Planck common mask 76 to lower resolutions we apply a threshold of 0.5 for

accepting or excluding pixels, so that the exact sky coverage not excluded by each mask (76–78 %) slightly

increases at decreasing Nside. In the case of the extended masks, typical sky coverage values are 47–48 %.
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Figure 2. Instrumental noise map and Planck Galactic mask (extended to cut out ±30◦ of the

Galactic plane) employed in the simulations. The noise map corresponds to 7.5µK.arcmin, as ex-

pected for the 60-GHz band. The Map is in Galactic coordinates and at resolution of ≃ 3.4 arcmin,

corresponding to HEALPix Nside = 1024.

We calculate the likelihoods for the parameters A, l0, b0 and T0 using the publicly avail-

able COSMOMC generic sampler package [54–56]. While the monopole T0 is not an observable

of interest in this context, we include it as a free parameter, to verify any degeneracy with

the other parameters and for internal consistency checks.

To probe the dependence of the parameter error estimates on the sampling resolution,

we investigate the dipole reconstruction at HEALPix [57] Nside = 128, 256, 512, and 1024,

eventually including the noise and the Galactic mask. The reference frequency channel for

this analysis is the 60-GHz band. The corresponding likelihoods are collected in Appendix A

(see Fig. 15) for the same representative values of Nside (see also Table 12 for the corresponding

68% confidence levels).

In Fig. 4 we plot the 1σ uncertainties on the parameter estimates as functions of the

HEALPix Nside value. We find that the pixelization error due to the finite resolution is domi-

nant over the instrumental noise at any Nside. This means that we are essentially limited by

the sampling resolution. As expected, the impact of noise is negligible, although the effect

of reducing the effective sky fraction is relevant. In fact, the presence of the Galactic mask

results in larger errors (for all parameters) and introduces a small correlation between the

parameters A and b0, as clearly shown in these plots.

The likelihood results for some of the different frequencies under analysis are collected in

Figs. 16 of Appendix A (see also Table 13 for the 68% confidence levels at the four considered

frequencies). Here we keep the resolution fixed at HEALPix Nside = 1024 and consider both

noise level and choice of Galactic mask. We find that the dipole parameter estimates do not

significantly change among the frequency channels, which is clearly due to the sub-dominant

effect of the noise.

As a last test of the ideal case, we compare the dipole parameter reconstruction between

the cases of a pure blackbody (BB) spectrum and a BE-distorted spectrum. The comparison

of the likelihoods is presented in Fig. 17 of Appendix A (see also Table 14 for the corresponding
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68% confidence levels). This analysis shows that the parameter errors are not affected by the

spectral distortion and that the direction of the dipole is successfully recovered. The difference

found in the amplitude value is consistent with the theoretical difference of about 76 nK.

3 Parametric model for potential foreground and calibration residuals in

total intensity

In the previous section we showed that in the ideal case of pure noise, i.e., assuming perfect

foreground subtraction and calibration (and the absence of systematic effects) in the sky

region being analysed, pixel-sampling limitation dominates over noise limitation.

Clearly, specific component-separation and calibration methods (and implementations)

introduce specific types of residuals. Rather than trying to accurately characterise them

(particularly in the view of great efforts carried out in the last decade for specific experiments

and the progress that is expected over the coming years), we implemented a simple toy

model to parametrically estimate the potential impact of imperfect foreground subtraction

and calibration in total intensity (i.e., in temperature). This includes using some of the Planck

results and products made publicly available through the PLA.

The PLA provides maps in total intensity (or temperature) at high resolution (Nside =

2048) of global foregrounds at each Planck frequency (here we use those maps based on

the COMMANDER method).4 It provides also suitable estimates of the zodiacal light emission

(ZLE) maps (in temperature) from Planck-HFI. Our aim is to produce templates of potential

foreground residuals that are simply scalable in amplitude according to a tunable parameter.

In order to estimate such emission at CORE frequencies, without relying on particular sky

models, we simply interpolate linearly (in logarithmic scale, i.e., in log(ν)–log(T )) pixel by

pixel the foreground maps and the ZLE maps, and linearly extrapolate the ZLE maps at

ν < 100GHz. We then create a template of signal sky amplitude at each CORE frequency,

adding the absolute values in each pixel of these foreground and ZLE maps5 and of the CMB

anisotropy map available at the same resolution in the PLA (we specifically use that based on

COMMANDER). Since for this analysis we are not interested in separating CMB and astrophysical

emission at ℓ ≥ 3, we then generate templates from these maps, extracting the alm modes for

ℓ ≤ 2 only. These templates are then degraded to the desired resolution. Finally, we generate

maps of Gaussian random fields at each CORE frequency, with rms amplitude given by these

templates, Tamp,for, multiplied by a tunable parameter, Efor, which globally characterizes the

potential amplitude of foreground residuals after component separation. Clearly, the choice

4Adopting this choice or one of the other foreground-separation methods is not relevant for the present

purpose.
5Since we are not interested here in the separation of the diffuse Galactic emission and ZLE, this assumption

is in principle slightly conservative. In practice, separation methods will at least distinguish between these

diffuse components, which are typically treated with different approaches, e.g., analysing multi-frequency

maps in the case of Galactic emission, and different surveys (or more generally, data taken at different times)

for the ZLE.
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of reasonable values of Efor depends on the resolution being considered (or on the adopted

pixel size), with the same value of Efor but at smaller pixel size implying less contamination

at a given angular scale.

Planck maps reveal, at least in temperature, a greater complexity in the sky than ob-

tained by previous experiments. The large number of frequencies of CORE is in fact de-

signed to accurately model foreground emission components with a precision much better

than Planck’s. Also, at least in total intensity, ancillary information will come in the future

from a number of other surveys, ranging from radio to infrared frequencies.

The target for CORE in the separation of diffuse polarised foreground emission corre-

sponds to Efor ≃ 0.01, i.e., to ≃ 1% precision at the map level for angular scales larger than

about 1◦ (i.e., up to multipoles ℓ <∼ 200), where the main information on primordial B-modes

is contained, while at larger multipoles the main limitation comes from lensing subtraction

and characterization and secondarily through control of extragalactic source contributions.

We note also that comparing CMB anisotropy maps available from the PLA at Nside = 2048

derived with four different component-separation methods and degraded to various resolu-

tions, shows that the rms of the six difference maps does not scale strongly with the adopted

pixel size, at least if we exclude regions close to the Galactic plane. For example, outside

the Planck common mask 76, if we pass from Nside = 2048 to Nside = 256 or 64, i.e., in-

creasing the pixel linear size by a factor of 8 or 32 (with the exception of the comparison of

SEVEM versus SMICA), the rms values of the cross-comparisons range from about 8–9µK to

about 3–5µK, i.e., a decreases by a factor of only about 2.5. This suggests that, at least for

temperature analyses, the angular scale adopted to set Efor is not so critical.

Data calibration represents one of the most delicate aspects of CMB experiments. The

quality of CMB anisotropy maps does not rely on absolute calibration of the signal (as it

would, for example, in experiments dedicated to absolute measurements of the CMB temper-

ature, i.e., in the direct determination of the CMB spectrum). However, the achievement of

very high accuracy in the relative calibration of the maps (sometimes referred to as absolute

calibration of the anisotropy maps), as well as the inter-frequency calibration of the maps

taken in different bands, is crucial for enabling the scientific scientific goals of CMB projects.

Although this calibration step could in principle benefit from the availability of precise instru-

mental reference calibrators (implemented for example in FIRAS [58] and foreseen in PIXIE

[59], or – but with much less accurate requirements – in Planck-LFI [60]), this is not necessary

for anisotropy experiments, as shown for example by WMAP and Planck-HFI. This repre-

sents a huge simplification in the design of anisotropy experiments with respect to absolute

temperature ones. Planck demonstrated the possibility to achieve relatively calibration of

anisotropy data at a level of accuracy of about 0.1 % up to about 300 GHz, while recent anal-

yses of planet flux density measurements and modelling [61] indicate the possibility to achieve

a calibration accuracy of ≃ 1% even above 300 GHz, with only moderate improvements over

what is currently realised.
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The goal of CORE is to achieve a calibration accuracy level around 0.01%, while the

requirement of 0.1% is clearly feasible on the basis of current experiments, with some pos-

sible relaxation at high frequencies. Methods for improving calibration are fundamental in

astrophysical and cosmological surveys, and clearly critical in CMB experiments. In prin-

ciple, improvements in various directions can be pursued: from a better characterization

of all instrument components to cross-correlation between different CMB surveys; from the

implementation of external precise artificial calibration sources to the search for a better

characterization (and increasing number) of astronomical calibration sources; and, in general,

with the improvement of data analysis methods.

To parametrically model potential residuals due to imperfect calibration we follow an

approach similar to that described above for foreground contamination. We note that cal-

ibration uncertainty implies an error proportional to the global effective (anisotropy in our

case) signal. We therefore produce templates as described above, but do so by adding the

foreground, ZLE, and CMB anisotropy maps, keeping their signs and maintaining all the alm

modes contained in the maps. The absolute values of these templates are then multiplied

by a tunable parameter, Ecal (possibly dependent on frequency), which globally characterizes

the amplitude of potential residuals arising from imperfect calibration. These are then used

to define the pixel-by-pixel rms amplitudes, which are adopted to construct maps, Tres,cal, of

Gaussian random fields at each CORE frequency.

In fact, we might also expect calibration errors to affect the level of foreground residuals.

Hence, as a final step, we include in the model a certain coupling between the two types of

residuals. At each frequency, we multiply the above simulated maps of foreground residuals

by (1 + Tres,cal/Tamp,for).

4 The CMB dipole: forecasts for CORE including potential residuals

We now extend the analysis presented in Sect. 2 by including two sources of systematic

effects, namely calibration errors and sky foreground residuals. We consider two pairs of

calibration uncertainty and sky residuals (parameterised by Efor = 0.04 and Ecal = 0.004,

and by Efor = 0.64 and Ecal = 0.064) at Nside = 1024 in order to explore different resolutions

through pixel degradation. Rescaled to Nside = 64, the two cases correspond to a set-up

respectively better and worse by a factor of 4 with respect to the case Ecal = 10−3 and

Efor = 10−2.

In Fig. 3 we display the maps used in the simulations (for the 60-GHz band). The

amplitudes correspond to the worse expected case; the most optimistic case is not shown,

since the amplitude is just rescaled by a factor 16. The corresponding likelihood plots and

68% confidence levels are collected in Appendix A.

We find that the impact of systematic effects on the parameter errors is negligible. In

fact, as shown in Fig. 4, calibration errors and sky residuals do not noticeably worsen the 1 σ

uncertainty at any sampling resolution. Furthermore, the frequency analysis confirms that
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Figure 3. Sky residual and calibration error maps (in Galactic coordinates) in the 60-GHz band

employed in the simulations. Their amplitudes correspond to the pessimistic case, Efor = 0.64 and

Ecal = 0.064, for maps at resolution HEALPix Nside = 1024.

the impact of systematic effects is not relevant in any of the bands under consideration (from

60 to 220 GHz).

While the effect of the systematics studied here on the precision of the parameter re-

construction is negligible, we find instead that they may have a moderate impact on the

accuracy, introducing a bias in the central values of the estimates. Nonetheless, the bias is

usually buried within the 1σ error, with the marginal exception of the estimate of l0 for the

220-GHz band (in the case of pessimistic systematics).

In conclusion, our results show that the dipole recovery (in both amplitude A and di-

rection angles b0 and l0) is completely dominated by the sky sampling resolution. We find

that: the noise impact is negligible; the reduction of the sky fraction due to the presence of

the Galactic mask impacts on the parameter error amplitude by increasing the 1 σ errors on

A, b0 and l0 by a factor of about 1.5, 1.6, and 1.9, respectively; and the effect of systematics

slightly worsens the accuracy of the MCMC chain without affecting the error estimate.

The main point of our analysis is that, in order to achieve an increasing precision in

the dipole reconstruction, high resolution measurements are required, in particular when a

sky mask has to be applied. This is especially relevant for dipole spectral distortion analyses,

based on the high-precision, multi-frequency observations that are necessary to study the tiny

signals expected.

5 Measuring Doppler and aberration effects in different maps

5.1 Boosting effects on the CMB fields

As discussed in the previous sections, a relative velocity between an observer and the CMB

rest frame induces a dipole in the CMB temperature through the Doppler effect. The CMB

dipole, however, is completely degenerate with an intrinsic dipole, which could be produced

by the Sachs-Wolfe effect at the last-scattering surface due to a large-scale dipolar Newtonian

potential [21]. For ΛCDM such a dipole should be of order of the Sachs-Wolfe plateau am-
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Figure 4. 1σ errors as function of HEALPix Nside values for the parameters A, b0, l0, and T0: dipole-

only (solid black line); dipole+noise (green dot-dashed line); dipole+noise+mask (red dotted line);

and dipole+noise+mask+systematics (blue dashed line). The chosen frequency channel is 60GHz and

the noise map corresponds to 7.5µK.arcmin. The adopted mask is the Planck Galactic mask extended

to cut out ±30◦ of the Galactic plane. The systematics correspond to the pessimistic expectation

of calibration errors and sky (foreground, etc.) residuals. Notice that the pixelization error, due to

the finite map resolution, is dominant over the noise for any Nside. While the impact of noise and

systematics is negligible, we find that the effect of reducing the effective sky fraction is important.

plitude (i.e., 10−5) [62, 63], nevertheless the dipole could be larger in the case of more exotic

models. In addition to the dipole, a moving observer will also see velocity imprints at ℓ > 1

in the CMB due to Doppler and aberration effects [29, 30]. Such effects can be measured as

correlations among different ℓs, as has been proposed in Refs. [31, 32, 64] and subsequently

demonstrated in Ref. [33].

The aberration effect changes the arrival direction of photons from n̂′ to n̂, which, at

linear order in β, is completely degenerate with a lensing dipole. The Doppler effect modulates

the CMB (an effect that is partly degenerate with an intrinsic CMB dipole6) changing the

6It has been shown in [21] that, in the Gaussian case, an intrinsic large scale dipolar potential exactly
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specific intensity I ′ in the CMB rest frame to the intensity I in the observer’s frame7 by a

multiplicative, direction-dependent factor as [29, 65]

I ′(ν ′, n̂′) = I(ν, n̂)

(

ν ′

ν

)3

, (5.1)

where

ν = ν ′ γ
(

1 + ~β · n̂′
)

, n̂ =
n̂′ +

[

γ β + (γ − 1)
(

n̂′ · β̂
)

]

β̂

γ(1 + ~β · n̂′)
, (5.2)

with γ ≡ (1− ~β2)−1/2. The temperature and polarization fields X(n̂) in the CMB rest frame

(where X stands for T, E or B) are similarly transformed as

X ′(n̂′) = X(n̂)γ
(

1− ~β · n̂
)

. (5.3)

Decomposing Eq. (5.3) into spherical harmonics leads to an effect in the multipole ℓ

of order βℓ. Although this effect is dominant in the dipole, it also introduces a small, non-

negligible correction to the quadrupole, with a different frequency dependence, due to the

conversion of intensity to temperature [66–69]. In addition, both aberration and Doppler

effects couple multipoles ℓ to ℓ±n [64, 70]. This coupling is largest in the correlation between

ℓ and ℓ ± 1 [29, 31, 32], which was measured by Planck at 2.8 and 4.0σ significance for

the aberration and Doppler effects, respectively [33]. These O(β) couplings are present on

all scales and the measurability of aberration is mostly limited by cosmic variance, which

constrains our ability to assume fully uncorrelated modes for ℓ 6= ℓ′. Hence, in order to

improve their measurement, it is important to have as many modes as possible, which drives

us to cosmic-variance-limited measurements of temperature and polarization up to very high

ℓmax and coverage of a large fraction of the sky fsky. CORE probes a larger ℓmax and covers

a larger effective fsky than Planck (as the extra frequency channels and the better sensitivity

allow for an improved capability in doing component separation), hence it should achieve a

detection of almost 13σ even with a 1.2-m telescope, as shown below.

As discussed in Ref. [29], upon a boost of a CMB map X, the aℓm coefficients of the

spherical harmonic decomposition transform as

aXℓm =

∞
∑

ℓ′=0

sKℓ′ℓm a′Xℓ′m , (5.4)

where s indicates the spin of the quantity X. For scalars (such as the temperature), s = 0,

while for spin-2 quantities (such as the polarization), s = 2.

The kernels sKℓ′ ℓm in general cannot be computed analytically and their numerical com-

putation is not trivial, since this involves highly oscillatory integrals [70]. However, efficient

mimics on large scales a Doppler modulation.
7In this section we will use primes for the CMB frame and non-primes for the observer frame, following

Ref. [33].
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methods using an operator approach in harmonic space have been developed [71], although

for our estimates more approximate methods will suffice. It was shown in Ref. [64, 71] that

the kernels can be well approximated by Bessel functions as follows:

KX
(ℓ−n)ℓm ≃ Jn



−2β

[

n−1
∏

k=0

[

(ℓ− k) sG(ℓ−k)m

]

]1/n


 ;

KX
(ℓ+n)ℓm ≃ Jn



 2β

[

n
∏

k=1

[

(ℓ+ k) sG(ℓ+k)m

]

]1/n


 .

(5.5)

Here

sGℓm ≡
√

ℓ2 −m2

4ℓ2 − 1

[

1− s2

ℓ2

]

, (5.6)

and n ≥ 1 (where n is the difference in multipole between a pair of coupled multipoles, namely

ℓ and ℓ± n ). It is also assumed that β ≪ 1, although the formula above can be generalised

to large β [64, 71]. These kernels couple different multipoles so that, by Taylor expanding,

we find
〈

aℓm a∗(ℓ+n)m

〉

= O(βℓ)n. For ℓ ≪ 1/β, the most important couplings are between

neighbouring multipoles, ℓ and ℓ ± 1 (e.g. [29]). One may wonder about the importance of

the couplings between non-neighbouring multipoles, i.e., ℓ and ℓ ± n, for ℓ & 1/β. However,

quite surprisingly, for ℓ ≫ 1/β we find that: (1) in the (ℓ, ℓ± 1) correlations, terms that are

higher order in βℓ are negligible [64, 70]; and (2) most of the correlation seems to remain in

the (ℓ, ℓ ± 1) coupling. For these reasons, from here onwards, we will ignore terms that are

higher order in β and couplings between non-neighbouring multipoles (i.e., n > 1).

In order to measure deviations from isotropy due to the proper motion of the observer,

we therefore compute the off-diagonal correlations
〈

aXℓm aX∗
(ℓ+1)m

〉

. Assuming that in the rest

frame the Universe is statistically isotropic and that parity is conserved, then in the boosted

frame, for ℓ′ = ℓ+ 1, we find that (see Refs. [29, 31, 32])

aXℓm ≃ c−ℓma
′ X
(ℓ−1)m + c+ℓma

′ X
(ℓ+1)m , (5.7)

where

c+ℓm = β(ℓ+ 2− d)sG(ℓ+1)m , c−ℓm = −β(ℓ− 1 + d)sGℓm , (5.8)

and d parametrizes the Doppler effect of dipolar modulation. It then follows that

〈

aXℓm aY ∗
(ℓ+1)m

〉

= β
[

(ℓ+ 2− d) sXG(ℓ+1)mCXY
ℓ+1 − (ℓ+ d) sYG(ℓ+1)mCXY

ℓ

]

+O(β2) . (5.9)

For ℓ & 20, we have 2Gℓm ≃ 0Gℓm. As will be shown, large scales are not important for

measuring the boost, and thus it is not important to keep the indication of the spin. Thus

from here onwards, we will drop s. The above equation reduces to

〈

aXℓm aY ∗
(ℓ+1)m

〉

= βG(ℓ+1)m

[

(ℓ+ 2− d)CXY
ℓ+1 − (ℓ+ d)CXY

ℓ

]

+O(β2) , (5.10)
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where the angular power spectra CXY
ℓ are measured in the CMB rest frame. For the CMB

temperature and polarization, d = 1, as observed from Eqs. (5.1)–(5.2). In this case, no mixing

of E- and B-polarization modes occurs, not even in higher orders in β [64, 71]. However, for

d 6= 1, the coupling is non-zero already at first order in β [29, 71]. Maps estimated from

spectra that are not blackbody have different Doppler coefficients,8 as we discuss in the next

subsection.

Note that in practice one never measures temperature and polarization anisotropies

directly, instead one measures anisotropies in intensity and then converts this to temperature

and polarization. This distinction (though perhaps seeming trivial) is relevant for the Doppler

effect, which induces a dipolar modulation of the CMB anisotropies, appearing with frequency-

dependent factors [33, 72]. In particular such factors were shown to be proportional to

a Compton y-type spectrum (exactly like the quadrupole correction [66–69] and therefore

degenerate with the tSZ effect); they are measurable in the Planck maps at about 12σ

and in the CORE maps even at 25–60σ [72], depending on the template that is used for

contamination due to the tSZ effect. Such S/N ratios are much larger than those that can be

obtained in temperature and polarization and so, at first sight, they may appear to represent

a better way to measure the boosting effects. However, the peculiar frequency dependence is

strictly a consequence of the intensity-to-temperature (or intensity-to-polarization) conversion

and thus agnostic to the source of the dipole [33, 72] (i.e., whether it is from our peculiar

velocity or is an intrinsic CMB dipole). For this reason we focus on the frequency-independent

part of the dipolar modulation signal in Eq. (5.10) (with d = 1), which is unlikely to be caused

by an intrinsically large CMB dipole (see Ref. [21] for details), in our forecast.

5.2 Going beyond the CMB maps

Since CORE will also measure the thermal Sunyaev-Zeldovich effect, the CIB, and the weak

lensing signal over a wide multipole range, it is interesting to examine if these maps could

also be used to measure the aberration and Doppler couplings.

The intensity of a tSZ Compton-y map is given by

I ′tSZ(ν
′) = y · g

(

hν ′

kBT0

)

K(ν ′) , (5.11)

where g(x′) = x′ coth(x′/2) − 4, K(ν ′) is the conversion factor that derives from setting

T = T0+δT in the Planck distribution and expanding to first order in δT , and x′ ≡ hν ′/kBT0

(T0 being the present temperature of the CMB). Explicitly K(ν ′) is given by

K(ν ′) =
2hν ′3

c2
x′ exp(x′)

(exp(x′)− 1)2
. (5.12)

A boosted observer will see an intensity as defined in Eq. (5.1). Such intensity, expanded

at first order in β, will contain Doppler couplings with a non-trivial frequency dependence,

8Note that the kernel defined as in Eq. (5.4) for d 6= 1 can be obtained from sKℓ′ℓm using recursions [71].
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similarly to what happens in the case of CMB fluctuations, where frequency-dependent boost

factors are generated, as discussed in the previous subsection. For simplicity we only analyse

the couplings that retain the same frequency dependence of the original tSZ signal, which

come from aberration,9 and so we here set d = 0 in Eq. (5.10).

For the intensity of the CIB map (see Sect. 6.2 for further details), we assume the

template obtained by Ref. [41],

I ′CIB ∝ ν ′0.64
ν ′3

exp
[

hν′

kB 18.5K

]

− 1
. (5.13)

At low frequencies, the intensity scales as

I ′CIB = ACIB ν ′2.64 , (5.14)

where ACIB is a constant related to the amplitude. In the boosted frame and to lowest order

in β, we find that

ICIB(ν) =
( ν

ν ′

)3
A′

CIB ν ′2.64 ≃ A′
CIB

[

γ(1− ~β · n̂)
]−0.36

ν2.64 . (5.15)

Therefore, the boosted amplitude is ACIB ≡ A′
CIB/

[

γ(1− ~β · n̂)
]0.36

, which implies d = 0.36.

Note that in this case, since we work in a low-frequency approximation (relative to the peak

of the CIB at around 3000 GHz), we do not have any frequency-dependent boost factors.

The CMB weak lensing maps can also be used to measure the boost. However, since the

estimation of the weak lensing potential involves 4-point correlation functions of the CMB

fields, the boost effect is more complex to estimate; hence we leave this analysis for a future

study.

5.3 Estimates of the Doppler and aberration effect

For full-sky experiments, it has been shown in Ref. [29] that, under a boost, the corrections to

the power spectra are O(β2), whereas for experiments with partial sky coverage there can be

an O(β) correction [76–78]. Nevertheless, even for the partial-sky case, this correction to CXY
ℓ

would only propagate at O(β2) in the correlations above. In what follows, we will neglect the

effect of the sky coverage in the boost corrections. Also, since we will be restricting ourselves

to O(β) effects, from here onwards we will drop O(β2) from the equations.

For the CMB fields, as it was shown in Refs. [32, 64], that the fractional uncertainty in

the estimator of
〈

aXℓm aY ∗
(ℓ+1)m

〉

is given by

δβ

β

∣

∣

∣

∣

XY

≃







∑

ℓ

ℓ
∑

m=−ℓ

〈

aXℓm aY ∗
(ℓ+1)m

〉2

CXX
ℓ CY Y

ℓ+1







−1/2

(5.16)

9Also, sub-leading contributions, namely the kinetic Sunyaev-Zeldovich effect [73] and changes in the tSZ

signal induced by the observer motion relative to the CMB rest frame [34], as well as relativistic corrections

[74, 75], are specific to each particular cluster. Their inclusion could be considered in more detailed predictions

in future, but represent higher-order corrections for the present study.
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(see also Ref. [79]). Here, CXX
ℓ ≡ (CXX

ℓ + NXX
ℓ,total)/

√

fsky, where fsky is the fraction of the

sky covered by the experiment and NXX
ℓ,total is the effective noise level on the map X. Thus

C
XX
ℓ represents the sum of instrumental noise and cosmic variance. The effective noise is

obtained by taking the inverse of the sum over the different channels i of the inverse of the

individual N2
ℓ,i [64],

Nℓ,total =

[

nchannel
∑

i

1

N2
ℓ,i

]−1/2

. (5.17)

The noise in each channel is given by a constant times a Gaussian beam characterised by the

beam width θFWHM:

NX
ℓ,i =

(

σX
)2

exp

[

ℓ(ℓ+ 1)θ2FWHM

8 ln 2

]

, (5.18)

where σX is the noise in µK.arcmin for the map X.
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Figure 5. Achievable precision in estimating the velocity through aberration and Doppler effects in

an ideal experiment (with fsky = 1 and limited by cosmic variance only) for different maps. Left: as

a function of ℓmax. Right: as a function of ℓmin (with fixed ℓmax = 5000). Bottom: for individual bins

with ∆ℓ = 200. We see that: (i) the first hundred ℓs are not important for achieving a high S/N; and

(ii) the non-CMB diffuse maps exhibit low precision and are not very useful for measuring β. Note

that for simplicity we have assumed no primordial B-modes (our constraints are very weakly sensitive

to this choice).
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For the tSZ signal, we assume as a fiducial spectrum the one obtained in Ref. [80] (slightly

extrapolated to higher ℓs) and we include in the forecast noise spectrum the (dominant)

contribution due to the residual foreground contamination. For the CIB signal, we use the

spectra obtained in Ref. [81]; for the noise, we rely on the simulations carried out in Ref. [4].

We also make the conservative assumption that the different channels of the CIB are 100%

correlated. Since different channels pick up different redshifts, effectively the correlation is

not going to be total and some extra signal can be obtained from multiple channels; however,

since this makes the analysis much more complex (due to the need to have all the covariance

matrices) and since the CIB turns out not to be promising for measuring aberration (see

Fig. 5), we neglect these corrections.

We computed Eq. (5.16) for the different maps of different experiments. We compared

the detection potentials of CORE (see Table 1) with those expected from both Planck and

LiteBIRD [35]. For the Planck specifications, we use the values of the 2015 release, while the

LiteBIRD specifications used in this analysis are listed in Table 2.

In Fig. 5 we show the precision that could be reached by an ideal experiment with

fsky = 1 and limited by cosmic variance only. We show the results for: the range ℓ ∈ [2, ℓmax];

the range ℓ ∈ [ℓmin, 5000]; and for individual ℓ bins of width ∆ℓ = 200. The signal-to-noise

ratios in the tSZ and CIB maps are considerably lower than in the CMB maps, which is due

to the fact that the spectra are smoother, as explained later. For instance, for ℓmax = 4000,

in the TT and EE maps separately we have S/N > 16, whereas in tSZ and in CIB we have

S/N ≃ 1.

In Fig. 6 and Table 3 we summarise our forecasts for CORE and compare them with both

Planck and LiteBIRD forecasts. These results differ from the ideal case due to the inclusion

of instrumental noise, foreground contamination (in the case of tSZ) and fsky 6= 1. In the

last panel we also show the total precision by combining all temperature and polarization

channels assuming a negligible correlation among them (which was shown in Ref. [32] to be a

good approximation). Note also that the TE and ET correlation functions were shown to be

independent in Ref. [32] and both carry the same S/N. So we usually present the combined

S/N for TE + ET , which is
√
2 times their individual S/N values.

As a side note, since the estimators for
〈

aXℓm aY ∗
(ℓ+1)m

〉

involve a sum over all ℓs and ms

and since m enters through Gℓm only, it is useful to use the following approximations, which

are valid to very good accuracy for ℓ & 20 [64, 72]:

∑

m

Gℓ,m = 0.39(2ℓ+ 1) ;
∑

m

[

Gℓ,m

]2
= 0.4082(2ℓ+ 1) . (5.19)

Although we did not use these approximations in our results, they yield up to 1 %-level

accuracy and by allowing the sum over ms to be removed, they significantly simplify the

calculation of the estimators.

The achievable precision in β through this method depends strongly on the shape of

the power spectrum – strongly varying spectra give much lower uncertainties compared to
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Channel Beam ∆T ∆P

[GHz] [arcmin] [µK.arcmin] [µK.arcmin]

40 108 42.5 60.1

50 86 26 36.8

60 72 20 28.3

68.4 63 15.5 21.9

78 55 12.5 17.7

88.5 49 10 14.1

100 43 12 17.

118.9 36 9.5 13.4

140 31 7.5 10.6

166 26 7 9.9

195 22 5 7.1

234.9 18 6.5 9.2

280 37 10 14.1

337.4 31 10 14.1

402.1 26 19 26.9

Table 2. LiteBIRD specifications used in this analysis.

smooth spectra. For instance, for the tSZ and CIB maps, many modes are in the cosmic-

variance-limited regime, thus one might think that they would yield a good measurement of

β. However, since their Cℓs are smooth functions of ℓ, they do not carry much information on

the boost. To understand this and gain some insight, we rewrite Eq. (5.9) by approximating

Cℓ+1 as Cℓ + dCℓ/dℓ and adding the approximation that dCℓ/dℓ ≪ Cℓ (note, however, that

ℓdCℓ/dℓ could be comparable to Cℓ at small scales). We thus find that

∑

m

〈

aXℓm aY ∗
(ℓ+1)m

〉

= 0.39(2ℓ+ 1)β

[

(2− 2d)CXY
ℓ − (ℓ+ d)

dCXY
ℓ

dℓ

]

. (5.20)

Assuming the cosmic-variance dominated regime (i.e., CXX
ℓ ≃ CXX

ℓ ) for ℓ & 20 and putting

X = Y , we find that

δβ

β

∣

∣

∣

∣

XX

≃ 1

0.408β





∑

ℓ

(2ℓ+ 1)

[

(2− 2d)− ℓ

(

1−
CXX
ℓ+1

CXX
ℓ

)]2




− 1

2

. (5.21)

For the TE case, the formula is less useful. For the CMB temperature and polarization

(d = 1), only the derivative term survives:

δβ

β

∣

∣

∣

∣

XX=TT,EE,BB

≃ 1

0.408β

[

∑

ℓ

(2ℓ+ 1)

[

d lnCXX
ℓ

d ln ℓ

]2
]− 1

2

. (5.22)
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Figure 6. Similar to the left panel of Fig. 5 but for realistic experiments (described in detail in

Table 1) and assuming fsky = 0.8. In the bottom right panel we compare the total precision after

combining all temperature and polarization maps, including also the case of an ideal experiment (no

instrumental noise and fsky = 1).

Note that for the CIB the precision is smaller than for the CMB temperature and

polarization, not only because the spectra are smoother, but also because there is a partial

cancellation between the two terms in the summand of Eq. (5.21).

In this analysis we relied only on the diffuse background components of the measured

maps. Aberration and Doppler effects can in principle also be detected using point sources,

since the boosting effects will change both their number counts, angular distribution, and

redshift. For the upcoming CMB experiments, however, the number density of point sources

is probably insufficient for a significant signal, since one needs more than about 106 objects

to have a detection at greater than 1σ [82].

6 Differential approach to CMB spectral distortions and the CIB

Using the complete description of the Compton-Getting effect [83] we compute full-sky maps

of the expected effect at desired frequency. We start discussing the frequency dependence of

the dipole spectrum [42, 43] and then extend the analysis beyond the dipole.
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Experiment
Channel θFWHM σT S/N S/N S/N S/N

[GHz] [arcmin] [µK.arcmin] TT TE + ET EE Total

Planck (all) ≃ 5.5 ≃ 13 3.8 1.7 1.0 4.3

LiteBIRD (all) ≃ 19 ≃ 1.7 2.0 1.8 1.8 3.3

CORE

60 17.87 7.5 2.1 1.9 1.8 3.4

70 15.39 7.1 2.5 2.4 2.2 4.1

80 13.52 6.8 2.8 2.8 2.6 4.8

90 12.08 5.1 3.5 3.4 3.3 5.9

100 10.92 5 3.9 3.7 3.7 6.5

115 9.56 5 4.3 4.2 4.2 7.3

130 8.51 3.9 5.1 4.9 5. 8.6

145 7.68 3.6 5.7 5.3 5.5 9.5

160 7.01 3.7 6.1 5.6 5.8 10.1

175 6.45 3.6 6.5 5.8 6.1 10.7

195 5.84 3.5 7.1 6.1 6.5 11.4

220 5.23 3.8 7.5 6.3 6.7 11.9

255 4.57 5.6 7.5 5.9 6.2 11.4

295 3.99 7.4 7.5 5.7 5.8 11.

340 3.49 11.1 7. 5.1 4.9 9.9

390 3.06 22 5.8 3.8 3.1 7.6

450 2.65 45.9 4.5 2.3 1.4 5.3

520 2.29 116.6 2.9 1. 0.3 3.1

600 1.98 358.3 1.4 0.3 0. 1.4

(all) ≃ 4.5 ≃ 1.4 8.2 6.6 7.3 12.8

Ideal (ℓmax = 2000) (all) 0 0 5.3 7.1 8.7 12.7

Ideal (ℓmax = 3000) (all) 0 0 10 9.8 14 21

Ideal (ℓmax = 4000) (all) 0 0 16 11.4 19 29

Ideal (ℓmax = 5000) (all) 0 0 22 12.6 26 38

Table 3. Aberration and Doppler effects with CORE. We assume fsky = 0.8 for all experiments
(and fsky = 1 in the ideal cases) in order to make comparisons simpler. For CORE we assume the 1.2-
m telescope configuration, but with extended mission time to match the 1.5-m noise in µK.arcmin.
For CORE and LiteBIRD we assume σP =

√
2σT , while for Planck we use the 2015 values. The

combined channel estimates are effective values that best approximate Eq. (5.18) in the ℓ range of
interest. Note that CORE will have S/N ≥ 5 in 14 different frequency bands. Also, by combining all
frequencies, CORE will have similar S/N in TT , TE + ET and EE.

6.1 The CMB dipole

The dipole amplitude is directly proportional to the first derivative of the photon occupation

number, η(ν), which is related to the thermodynamic temperature, Ttherm(ν), i.e., to the

temperature of the blackbody having the same η(ν) at the frequency ν, by

Ttherm =
hν

kB ln(1 + 1/η(ν))
. (6.1)
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The difference in Ttherm measured in the direction of motion and in the perpendicular direction

is given by [42]:

∆Ttherm =
hν

k

{

1

ln [1 + 1/η(ν)]
− 1

ln [1 + 1/η(ν(1 + β))]

}

, (6.2)

which, to first order, can be approximated by:

∆Ttherm ≃ − xβT0

(1 + η) ln2(1 + 1/η)

d ln η

d lnx
, (6.3)

where x ≡ hν/kT0 is the dimensionless frequency.

In Fig. 7 we show the dipole spectrum derived for two well-defined deviations from the

Planck distribution, namely the BE and Comptonization distortions induced by unavoidable

energy injections in the radiation field occurring at different cosmic times, early and late,

respectively. We briefly discuss below their basic properties and the signal levels expected

from different processes.

A BE-like distorted spectrum is produced by two distinct processes. Firstly there is

the dissipation of primordial perturbations at small scales [84, 85], which generates a positive

chemical potential. Secondly we have Bose condensation of CMB photons by colder electrons,

as a consequence of the faster decrease of the matter temperature relative to the radiation

temperature in an expanding Universe, which generates a negative chemical potential [86, 87].

The photon occupation number of the BE spectrum is given by [48]

ηBE =
1

exe+µ − 1
, (6.4)

where µ is the chemical potential that quantifies the fractional energy, ∆ǫ/εi, exchanged in

the plasma during the interaction,10 xe = x/φ(z), φ(z) = Te(z)/TCMB(z), with Te(z) being

the electron temperature. For a BE spectrum, φ = φBE(µ). The dimensionless frequency x

is redshift invariant, since in an expanding Universe both TCMB and the physical frequency

ν scale as (1 + z). For small distortions, µ ≃ 1.4∆ǫ/εi and φBE ≃ (1 − 1.11µ)−1/4. The

current FIRAS 95 % CL upper limit is |µ0| < 9× 10−5 [40], where µ0 is the value of µ at the

redshift z1 corresponding to the end of the kinetic equilibrium era. At earlier times µ can

be significantly higher, and the ultimate limits on ∆ǫ/εi before the thermalization redshift

(when any distortion can be erased) comes from cosmological nucleosynthesis.

These two kinds of distortions are characterised by a |µ0| value in the range, respectively,

∼ 10−9–10−7 (and in particular ≃ 2.52 × 10−8 for a primordial scalar perturbation spectral

index ns = 0.96, without running), and ≃ 3× 10−9. Since very small scales that are not ex-

plored by current CMB anisotropy data are relevant in this context, a broad set of primordial

spectral indices needs to be explored. A wider range of chemical potentials is found by [88],

allowing also for variations in the amplitude of primordial perturbations at very small scales,

as motivated by some inflation models.

10Here, the subscript i denotes the initial time of the dissipation process.
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Figure 7. Spectrum of dipole (in equivalent thermodynamic, or CMB, temperature) expressed as the

difference between that produced by a distorted spectrum and that corresponding to the blackbody

at the current temperature T0. Thick solid lines (or thin three dots-dashes) correspond to positive (or

negative) values. Left: the case of BE distortions for µ0 = −2.8 × 10−9 (representative of adiabatic

cooling; green dots, note the opposite signs with respect to the cases with positive µ0), µ0 = 1.4×10−5,

1.4 × 10−6 (representative of improvements with respect to FIRAS upper limits), µ0 = 1.12 × 10−7,

2.8 × 10−8, and 1.4 × 10−9 (representative of primordial adiabatic perturbation dissipation). Right:

the case of Comptonization distortions for u = 2× 10−6 (upper curves) and u = 10−7 (lower curves),

representative of imprints by astrophysical or minimal reionization models, respectively.

Cosmological reionization associated with the early stages of structure and star formation

is an additional source of photon and energy production. This mechanism induces electron

heating that is responsible for Comptonization distortions [89]. The characteristic parameter

for describing this effect is

u(t) =

∫ t

ti

[(φ− φi)/φ](kBTe/mec
2)neσTcdt . (6.5)

In the case of small energy injections and integrating over the relevant epochs then u ≃
(1/4)∆ε/εi. In Eq. (6.5), φi = φ(zi) = (1 + ∆ǫ/εi)

−1/4 ≃ 1 − u is the ratio between the

equilibrium matter temperature and the radiation temperature evaluated at the beginning of

the heating process (i.e., at zi). The distorted spectrum is then

ηC ≃ ηi + u
x/φiexp(x/φi)

[exp(x/φi)− 1]2

(

x/φi

tanh(x/2φi)− 4

)

, (6.6)

where ηi is the initial photon occupation number (before the energy injection).11

Typically, reionization induces Comptonization distortions with minimal values u ≃
10−7 [92]. In addition to this, the variety of energy injections expected in astrophysical

reionization models, including: energy produced by nuclear reactions in stars and/or by

nuclear activity that mechanically heats the intergalactic medium (IGM); super-winds from

11Here and in Eq. (6.4) we neglect the effect of photon emission/absorption processes, which is instead

remarkable at low frequencies (see [90] and [91]).
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supernova explosions and active galactic nuclei; IGM heating by quasar radiative energy; and

shocks associated with structure formation. Together these induce much larger values of u

(≃ several × 10−6) [93, 94], i.e., not much below the current FIRAS 95% CL upper limit of

|u| < 1.5× 10−5 [40]. Free-free distortions associated with reionization [95] are instead more

relevant at the lowest frequencies (below 10GHz), and thus we do not consider them in this

paper.

We could also consider the possible presence of unconventional heating sources. De-

caying and annihilating particles during the pre-recombination epoch may affect the CMB

spectrum, with the exact distorted shape depending on the process timescale and, in some

cases, being different from the one produced by energy release. This is especially interesting

for decaying particles with lifetimes tX ≃ few×108–1011 sec [96–98]. Superconducting cosmic

strings would also produce copious electromagnetic radiation, creating CMB spectral distor-

tion shapes [99] that would be distinguishable with high accuracy measurements. Evaporating

primordial black holes provide another possible source of energy injection, with the shape of

the resulting distortion depending on the black hole mass function [100]. CMB spectral dis-

tortion measurements could also be used to constrain the spin of non-evaporating black holes

[101]. The CMB spectrum could additionally set constraints on the power spectrum of small-

scale magnetic fields [102], the decay of vacuum energy density [103], axions [104], and other

new physical processes.

6.2 The CIB dipole

Multi-frequency measurements of the dipole spectrum will allow us to constrain the CIB

intensity spectrum [42, 43]. The spectral shape of the CIB is hard to determine directly

because it requires absolute intensity measurements, which are also compromised by Galactic

and other foregrounds. Although the dipole amplitude is about 10−3 of the monopole, its

spatial form is already known and hence this indirect route may provide the most robust

measurements of the CIB in the future.

Fig. 8 shows the CIB dipole spectrum computed according to Eq. (6.2), using the analytic

representation of the CIB spectrum (observed at present time) given in Ref. [41]:

ηCIB =
c2

2hν3
ICIB(ν) = I0

(

kBTCIB

hν0

)kF xkFCIB

exp(xCIB)− 1
, (6.7)

where TCIB = (18.5 ± 1.2)K, xCIB = hν/kBTCIB = 7.78(ν/ν0), ν0 ≃ 3 × 1012 Hz and kF =

0.64± 0.12. Here I0 sets the CIB spectrum amplitude, its best-fit value being 1.3× 10−5 [41].

On the other hand, the uncertainty of the CIB amplitude is currently quite high, with I0 only

known to a 1σ accuracy of about 30%.

The CIB dipole amplitude, in terms of thermodynamic temperature, increases rapidly

with frequency, reaching 257µK (or 652 Jy sr−1) at 600GHz and 420µK (or 1306 Jy sr−1) at

800 GHz. The measurement of the CIB dipole amplitude will be dependent on systematic

effects from the foreground Galaxy subtraction, which has a similar spectrum to the CIB [28].
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Although the calibration of the dipole signal at different frequencies is not trivial (since the

orbital part of the dipole will be used for calibration), the Planck experience is that with

sufficient care the limitation is removal of the Galactic signals, not calibration uncertainty.

Hence the CIB dipole should be clearly detectable by CORE in its highest frequency bands.

Such a detection will provide important constraints on the CIB intensity; its amplitude un-

certainty constitutes a major current limitation in our understanding of the dust-obscured

star-formation phase of galaxy evolution.

Figure 8. Expected behaviour of the dipole spectrum. The upper lines show the spectrum of the

(pure) CIB dipole, while the lower lines show the spectrum coming from the dipole pattern computed

from the CIB distribution function added to the blackbody (at temperature T0) distribution function,

minus the dipole pattern computed by the blackbody distribution function. Thick solid lines (or thin

three dots-dashes) correspond to positive (or negative) values. The analytic representation of the CIB

spectrum by [41] is adopted here, considering the best-fit amplitude and the range of ±1σ.

6.3 Beyond the dipole

A generalization of the considerations of the previous section allows us to evaluate the effect of

peculiar velocity on the whole sky. To achieve this, we generate maps and, using the Lorentz-

invariance of the distribution function, we can include all orders of the effect, coupling them

with the geometrical properties induced at low multipoles. To compute the maps at each

multipole12 ℓ ≥ 1, we first derive the maps at all angular scales, both for the distorted spectra

and for the blackbody at the current temperature T0. From the dipole direction found in the

Planck (HFI+LFI combined) 2015 release and defining the motion vector of the observer, we

produce the maps in a pixelization scheme at a given observational frequency ν by computing

the photon distribution function, ηBBdist, for each considered type of spectrum at a frequency

given by the observational frequency ν but multiplied by the product (1− n̂ · ~β)/(1− ~β2)1/2 to

12For the sake of generality and for the purpose of cross-checking, we also include the monopole term, which

can be easily subtracted afterwards.
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Figure 9. Top row: maps of the dipole, quadrupole and octupole computed assuming a CMB

blackbody spectrum at the current temperature T0, for reference. In all other cases we show the

maps of the dipole (second row), quadrupole (third row), and octupole (bottom row) at three different

frequencies (namely 60, 145, and 600 GHz, from left to right), in terms of the difference between the

pattern computed for a BE distortion with µ0 = 1.5 × 10−5 and that computed for a blackbody at

the present-day temperature T0.

account for all the possible sky directions with respect to the observer peculiar velocity. Here

the notation ‘BBdist’ stands for BB, CIB, BE, or Comptonization (C). Hence, the map of the

observed signal in terms of thermodynamic temperature is given by generalising Eq. (6.1):

T
BB/dist
therm (ν, n̂, ~β) =

xT0

log(1/(η(ν, n̂, ~β))BB/dist + 1)
, (6.8)

where η(ν, n̂, ~β) = η(ν ′) with ν ′ = ν(1− n̂ · ~β)/(1− ~β2)1/2.

We adopt the HEALPix pixelization scheme to discretise the sky at the desired resolution.

We decompose the maps into spherical harmonics and then regenerate them considering the

alm only up to a desired multipole ℓmax. We start setting ℓmax = 5 and then iterate the

process with a decreasing ℓmax. We produce maps containing the power at a single multipole
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Figure 10. The same as in Fig. 9, but for the case of a Comptonization distortion with u = 2×10−6.

Figure 11. The same as in Fig. 9, but for the case of the CIB with amplitude set at the best-fit

value found by FIRAS. More precisely, we display the temperature pattern of the CIB distribution

function added to the blackbody one, minus the temperature pattern coming from the blackbody.

– 27 –



by taking the difference of the map at ℓmax from the map at ℓmax−1. We then compute

the difference of maps having specific spectral distortions from the purely blackbody maps.

As seen in Figs. 9–11, the expected signal is important for the dipole, can be considerable

for the quadrupole and, depending on the distortion parameters, still not negligible for the

octupole (although this will depend on the amplitude relative to experimental noise levels, as

we discuss below). For higher-order multipoles, the signal is essentially negligible.

Note that the maps present a clear and obvious symmetry with respect to the axis of

the observer’s peculiar velocity.13 This is simply due to the angular dependence in Eq. (6.8).

For coordinates in which the positive z-axis is aligned with the dipole, the only angular

dependence comes from n̂ · ~β ≡ β cos θd. In terms of the spherical harmonic expansion,

this implies that higher-order multipoles will appear as polynomial functions of cos θd, with

different frequency-dependent factors depending on the specific type of spectral distortion

being considered.

In the above considerations we assumed that each multipole pattern can be isolated

from that of the other multipoles. In reality, a certain leakage is expected (particularly

between adjacent multipoles), especially as a result of masking for foregrounds. The sources

of astrophysical emission are highly complex, and their geometrical properties mix with their

frequency behaviour. Furthermore, in real data analysis, there is an interplay between the

determination of the calibration and zero levels of the maps, and this issue is even more critical

when data in different frequency domains are used to improve the component-separation

process. The analysis of these aspects is outside the scope of the present paper, but deserves

further investigation.

6.4 Detectability

Here we discuss the detectability of the dipolar and quadrupolar signals introduced in Sects. 6.1–

6.3. To this end we compare the dipole signal with the noise dipole as a function of frequency.

Note that since the prediction includes the specific angular dependence of the dipole, there is

no cosmic-variance related component in the noise. The noise for each frequency is determined

by Table 1, assuming full-sky coverage for simplicity.14

In Fig. 12 we show the dipole signal for BE and Comptonization distortions (left and

right, respectively), defined as the temperature dipole coming from Eq. (6.8) subtracted from

the CMB dipole (shown as coloured lines). In black we show the CORE noise as a function

of frequency. For BE distortions, the signal is clearly above the CORE noise up to about

200 GHz for µ0
>∼ 10−6 and comparable or slightly above the aggregated noise below about

100 GHz for µ0
>∼ 10−7, while for Comptonization distortions, the signal is clearly above the

noise up to around 500 GHz for u >∼ 2× 10−6 and comparable to or above the noise between

13For real experiments, these patterns are weakly modulated (and their perfect symmetry broken) by the

second-order (‘orbital dipole’) effect coming from the Earth’s motion around the Sun and (for spacecraft

moving around the Earth-Sun L2 point), by the further contribution from motion in the Lissajous orbit.
14Sampling variance, as specified by the adopted masks, will be taken into account in the next section.
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Figure 12. Angular power spectrum of the dipole map, derived from the difference between distorted

spectra and the current blackbody spectrum versus CORE sensitivity. The CORE white noise power

spectrum (independent of multipole, shown as the black upper solid curve and with diamonds for

different frequency channels) and its rms uncertainty (for ℓ = 1, using dots, and for ℓ = 2, using

dashes) are plotted in black. The cross (asterisk) displays aggregated CORE noise from all channels

(up to 220 GHz). We shown also for comparison the LiteBIRD white noise power spectrum (red solid

curve and diamonds for different frequency channels). Left: BE distortions for µ0 = −2.8 × 10−9

(representative of adiabatic cooling), µ0 = 1.4 × 10−5, 1.4 × 10−6 (representative of improvements

with respect to FIRAS upper limits), µ0 = 1.12× 10−7, 2.8× 10−8, and 1.4× 10−9 (representative of

primordial adiabatic perturbation dissipation). For µ0 = 1.4× 10−5 we show also the angular power

spectrum of the quadrupole map. Right: Comptonization distortions for u = 2 × 10−6 (upper solid

curve for the dipole map and bottom dashed curve for the quadrupole map) and u = 10−7 (lower

solid curve for the dipole map), representative of imprints by astrophysical and minimal reionization

models, respectively.

approximately 100GHz and 300GHz for u >∼ 10−7. The analogous analysis for the quadrupole

(shown for simplicity only for the largest values of µ0 and u) shows that, for CORE sensitivity,

noise dominates at any frequency for CMB spectral distortion parameters compatible with

FIRAS limits, thus experiments beyond CORE are needed to use the quadrupole pattern to

infer constraints on CMB spectral distortions. In Fig. 13 we show the dipole signal of the

difference between Comptonization and BE distortion maps. In Fig. 14 we show the size of

the dipole signal (the quadrupole is shown as dashed curves) for the CIB (where we have

removed the CMB dipole) compared to noise. The signal is always above the noise except at

about 100 GHz. Due to the large uncertainty in the amplitude of the CIB spectra (I0), we

show also deviations of ±1σ from the best-fit value of 1.3× 10−5 (as well as their difference

from the best fit). The signal is orders of magnitude above the noise at high frequencies

and moreover, the quadrupole is above the noise at frequencies greater than about 400 GHz,

although it is always much smaller than the dipole (since it is suppressed by an extra factor

of β).

Comparing Fig. 14 with Fig. 12, it is evident that the dipole power expected from the
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Figure 13. The same as in Fig. 12, but compar-

ing the two above cases of Comptonization distor-

tions with the two above cases of BE distortions

with the largest values of µ0.

Figure 14. The same as in Fig. 12, but for the

CIB (assuming the model from [41]). Also shown

is the quadrupole signal (dashes). The different

values of I0 in Eq. (6.8) are the best-fit value and

deviations by ±1σ.

CIB is above those predicted for CMB spectral distortions at ν >∼ 200GHz for the classes of

processes and parameter values discussed here. Since the dependence of the quoted power on

the CMB spectral distortion parameter is quadratic, the above statement does not hold for

larger CMB distortions, even just below the FIRAS limits. Although they are not predicted

by standard scenarios, they may be generated by unconventional dissipation processes, such

those discussed at the end of Sect. 6.1, according to their characteristic parameters.

We computed for comparison the power spectrum sensitivity of LiteBIRD (see Table 2):

it is similar to that of CORE around 300 GHz and significantly worse at ν <∼ 150GHz, a

range suitable in particular for BE distortions. As discussed in Sects. 2 and 4, resolution

is important to achieve the sky sampling necessary for ultra-accurate dipole analysis, thus

adopting a resolution changing from a range of ≃ 2–18 arcmin to a range of ≃ 0.5◦–1.5◦ is

certainly critical. Furthermore, the number of frequency channels is relevant, in particular

(see next section) when one compares between pairs of frequencies, the number of which

scales approximately as the square of the number of frequency channels. In addition, a large

number of frequency channels and especially the joint analysis of frequencies around 300GHz

and above 400GHz (not foreseen in LiteBIRD) is crucial for separating the various types of

signals, and, in particular, to accurately control the contamination by Galactic dust emission.

The analysis carried out here will be extended to include all frequency information in

the following section. This will also include a discussion of the impact of residual foregrounds.

7 Simulation results for CMB spectral distortions and CIB intensity

In order to quantify the ideal CORE sensitivity to measure spectral distortion parameters and

the CIB amplitude, we carried out some detailed simulations. The idea here is to simulate
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the sky signal assuming a certain model and to quantify the accuracy level at which (in the

presence of noise and of potential residuals) we can recover the key input parameters. We con-

sider twelve reference cases, physically or observationally motivated, based on considerations

and works quoted in Sect. 6.2 (cases 2–4) and Sect. 6.1 (cases 8–12), namely:

(1) a (reference) blackbody spectrum defined by T0;

(2) a CIB spectrum at the FIRAS best-fit amplitude;

(3) a CIB spectrum at the FIRAS best-fit amplitude plus 1σ error;

(4) a CIB spectrum at the FIRAS best-fit amplitude minus 1σ error;

(5) a BE spectrum with µ0 = 1.12× 10−7, representative of a distortion induced by damping

of primordial adiabatic perturbations in the case of relatively high power at small scales;

(6) a BE spectrum with µ0 = 1.4 × 10−5, a value 6.4 times smaller than the FIRAS 95%

upper limits;

(7) a BE spectrum with µ0 = 1.4×10−6, a value 64 times smaller than the FIRAS 95% upper

limits;

(8) a BE spectrum with µ0 = 1.4 × 10−9, representative of the typical minimal distortion

induced by the damping of primordial adiabatic perturbations;

(9) a BE spectrum with µ0 = 2.8× 10−8, representative of the typical distortion induced by

damping of primordial adiabatic perturbations;

(10) a BE spectrum with µ0 = −2.8× 10−9, representative of the typical distortion induced

by BE condensation (adiabatic cooling);

(11) a Comptonised spectrum with u = 10−7, representative of minimal reionization models;

(12) a Comptonised spectrum with u = 2×10−6, representative of typical astrophysical reion-

ization models.

For each model listed we generate both an ideal sky (the “prediction”) and a sky with

noise realizations (“simulated data”) according to the sensitivity of CORE (see Table 1), at

each of its 19 frequency channels. For a suitable number of cases we repeated the analysis

working with maps simply containing only the dipole term and verified that the major contri-

bution to the significance comes from the dipole, i.e., the quadrupole (the only other possibly

relevant term) contributes almost negligibly,15 in agreement with Sect. 6.4. For the sake of

simplicity our noise realizations assume Gaussian white noise. Our simulation set consists of

10 realizations for each of the 19 CORE frequencies (giving 190 independent noise realiza-

tions). These are generated at Nside = 64 (roughly 1◦ resolution). We will also consider the

inclusion of certain systematics in the following subsections. We then compare each theoret-

ical prediction with all maps of our simulated data. We calculate ∆χ2 for each combination,

summarised in a 12×12 matrix, quantifying the significance level at which each model can be

15In some cases we found it affects only the last digit (reported in the tables) of the estimated
√

|∆χ2| sign(∆χ2).
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potentially detected or ruled out. We report our results in terms of
√

|∆χ2| sign(∆χ2), which

directly gives the significance in terms of σ levels, since we only consider a single parameter

at a time.16

We perform the
√

∆χ2 analysis for three different approaches:

(a) using each of the 19 frequency channels, assuming they are independent;

(b) using the 171 (19 × 18/2) combinations coming from the differences of the maps from

pairs of frequency bands;

(c) combining cases (a) and (b) together.

When differences of maps from pairs of frequency bands are included in the analysis, in the

corresponding contributions to the χ2 the variance comes from the sum of the variances at

the two considered frequencies.

Approach (a) essentially compares the amplitude of dipole of a distorted spectrum with

that of the blackbody, being so sensitive to the overall difference between the two cases, while

approach (b) compares the dipole signal at different frequencies for each type of spectrum,

being so sensitive to its slope.

7.1 Ideal case: perfect calibration and foreground subtraction

Tables 4 and 15 (and Tables 5 and 16, Tables 6 and 17, respectively) report the results of

approach a (approach b, and c, respectively) in terms of average and rms of
√

|∆χ2| sign(∆χ2)

(see Appendix B).

We find that, in general, the analysis of the difference of pairs of frequency channels

(approach b) tends to substantially increase the significance of the recovery of the CIB am-

plitude, which is due to the very steep frequency shape of the CIB dipole spectrum. For the

opposite reason, the same does not occur in general for CMB distortion parameters, and,

in particular, approach (b) can make the recovery of the Comptonization distortion more

difficult. These results are in agreement with the shapes displayed in Figs. 12, 13, and 14. It

is important to note that, in general, the rms values found in approach (b) are larger than

those found in approach (a), seemingly relatively more stable. We interpret this as an effect

of larger susceptibility of approach (b) to realization combinations. On the other hand, for

the estimation of the CIB amplitude this rms amplification does not spoil the improvement

in significance. We find that combining the two approaches, as in (c), typically results in an

overall advantage, with an improvement in significance larger than the possible increasing of

16The adopted number of realizations allows to provide an estimate the rms of the quoted significance values

suitable to check (particularly for some results based, for simplicity, on a single realization) they are not in

the tail of distribution, to quantitatively compare pros and cons of the three adopted approaches, and to

spot in the results the effects of coupling between signal and noise/residuals realizations. With much more

realizations it is obviously possible to refine these estimates, but it is not relevant in this work that deals with

wide ranges of residual parameters.
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σ level Current FIRAS CIB amplitude (∆ε/εi)z1 (∆ε/εi)late

significance blackbody (units 10−5) 8× 10−8 10−5 10−6 10−9 2× 10−8 −2× 10−9 4× 10−7 8× 10−6

Ibf0 +1σ −1σ µ0 u

1.3 1.7 0.9 1.12× 10−7 1.4× 10−5 1.4× 10−6 1.4× 10−9 2.8× 10−8 −2.8× 10−9 10−7 2× 10−6

Case (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

(1) 0 3650 4740 2540 1.63 175. 17.9 0.0998 0.532 −0.137 7.95 154.

(2) 3650 0 1100 1110 3650 3640 3650 3650 3650 3650 3650 3620

(3) 4740 1100 0 2210 4740 4740 4740 4740 4740 4740 4740 4710

(4) 2540 1110 2200 0 2540 2540 2540 2540 2540 2540 2540 2510

(5) 0.403 3650 4740 2540 0 174. 16.5 0.384 −0.111 0.445 6.83 153.

(6) 174. 3640 4740 2540 173. 0 157. 174. 174. 174. 168. 108.

(7) 17.0 3650 4740 2540 15.6 158. 0 17.0 16.6 17.0 11.8 140.

(8) −0.0975 3650 4740 2540 1.62 175. 17.9 0 0.514 −0.165 7.93 154.

(9) −0.346 3650 4740 2540 1.28 175. 17.6 −0.342 0 −0.352 7.66 153.

(10) 0.142 3650 4740 2540 1.67 175. 17.9 0.176 0.567 0 7.98 154.

(11) 7.25 3650 4740 2540 6.22 169. 12.8 7.23 6.98 7.27 0 146.

(12) 153. 3620 4710 2510 152. 108. 140. 153. 153. 153. 145. 0

Table 4. Average values of
√

|∆χ2| sign(∆χ2) from a Monte Carlo simulation at Nside = 64, full-sky

coverage, adopting perfect foreground subtraction and calibration, and considering each of the 19

frequency channels.

σ level Current FIRAS CIB amplitude (∆ε/εi)z1 (∆ε/εi)late

significance blackbody (units 10−5) 8× 10−8 10−5 10−6 10−9 2× 10−8 −2× 10−9 4× 10−7 8× 10−6

Ibf0 +1σ −1σ µ0 u

1.3 1.7 0.9 1.12× 10−7 1.4× 10−5 1.4× 10−6 1.4× 10−9 2.8× 10−8 −2.8× 10−9 10−7 2× 10−6

Case (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

(1) 0 14000 18200 9740 1.96 271. 27.8 0.124 0.666 −0.170 −0.229 43.7

(2) 14000 0 4180 4240 14000 14100 14000 14000 14000 14000 14000 14000

(3) 18200 4190 0 8430 18200 18200 18200 18200 18200 18200 18200 18200

(4) 9740 4240 8420 0 9740 9810 9750 9740 9740 9740 9740 9730

(5) 0.0596 14000 18200 9740 0 269. 25.6 0.0456 −0.249 0.0910 1.44 45.7

(6) 269. 14000 18200 9810 267. 0 242. 269. 269. 269. 271. 312.

(7) 26.0 14000 18200 9750 23.8 244. 0 26.0 25.4 26.1 28.1 69.6

(8) −0.122 14000 18200 9740 1.93 271. 27.8 0 0.644 −0.205 −0.209 43.7

(9) −0.386 14000 18200 9740 1.51 271. 27.2 −0.384 0 −0.391 0.228 44.2

(10) 0.178 14000 18200 9740 2.00 271. 27.9 0.220 0.708 0 −0.267 43.6

(11) 2.66 14000 18200 9740 4.69 273. 29.9 2.68 3.11 2.62 0 41.4

(12) 46.4 14000 18200 9730 48.4 314. 72.0 46.4 46.9 46.4 44.1 0

Table 5. The same as in Table 4, but considering all 171 independent combinations of pairs of

different frequency channels.

the quoted rms. We anticipate that these results will still be valid when including potential

residuals, as discussed below.

We remark that in the present analysis both pure theoretical maps and maps polluted

with noise are pixelised in the same way. So, the sampling problem discussed in Sects. 2

and 4 is automatically by-passed. This is not a limitation for the present analysis, given

the high resolution achieved by CORE, and because it is clear that we could in principle

perform our simulations at the desired resolution. Working at roughly 1◦ resolution makes
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σ level Current FIRAS CIB amplitude (∆ε/εi)z1 (∆ε/εi)late

significance blackbody (units 10−5) 8× 10−8 10−5 10−6 10−9 2× 10−8 −2× 10−9 4× 10−7 8× 10−6

Ibf0 +1σ −1σ µ0 u

1.3 1.7 0.9 1.12× 10−7 1.4× 10−5 1.4× 10−6 1.4× 10−9 2.8× 10−8 −2.8× 10−9 10−7 2× 10−6

Case (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

(1) 0 14400 18800 10100 2.67 323. 33.1 0.157 0.844 −0.214 7.83 160.

(2) 14500 0 4320 4380 14500 14500 14500 14500 14500 14500 14500 14400

(3) 18800 4330 0 8710 18800 18800 18800 18800 18800 18800 18800 18800

(4) 10100 4380 8710 0 10100 10100 10100 10100 10100 10100 10100 10100

(5) 0.369 14400 18800 10100 0 320. 30.5 0.346 −0.105 0.413 7.24 159.

(6) 321. 14500 18800 10100 318. 0 288. 321. 320. 321. 319. 330.

(7) 31.1 14500 18800 10100 28.5 290. 0 31.0 30.4 31.1 30.5 157.

(8) −0.153 14400 18800 10100 2.64 323. 33.1 0 0.816 −0.259 7.82 160.

(9) −0.537 14400 18800 10100 2.07 322. 32.4 −0.532 0 −0.547 7.61 160.

(10) 0.224 14400 18800 10100 2.73 323. 33.1 0.277 0.900 0 7.85 160.

(11) 7.92 14400 18800 10100 8.03 321. 32.5 7.92 7.87 7.93 0 152.

(12) 160. 14400 18800 10000 160. 332. 157. 160. 160. 160. 152. 0

Table 6. The same as in Table 4, but considering each of the 19 frequency channels independently

and all 171 independent combinations of pairs of different frequency channels.

our analysis feasible without supercomputing facilities, with no significant loss of information.

Nonetheless, we also report some results carried out at higher resolution. In particular, in

Appendix C we present results of the analysis repeated at Nside = 512 (i.e., at about 7 arcmin

resolution), for a single realization. The results are fully compatible, within the statistical

variance, with those derived working at Nside = 64.

The matrices reported in each of these tables perhaps require a little more explanation.

Firstly, we should point out that the diagonals are zero by construction. We found that the

reduced χ2 (χ2
r = χ2/(nd−1), where nd is the global number of data being treated and we are

considering the estimate of a single parameter, namely CMB distortion or CIB amplitude),

is always extremely close to unity, which is an obvious validation cross-check. Note that, in

principle, when potential residuals are included, one should specify the variance pixel-by-pixel

in the estimation of χ2.17 This requires a precise local characterization of residuals. While

this can easily be included by construction in our analyses, we explicitly avoid implementing

this in the χ2 analysis, but instead perform our forecasts assuming knowledge of only the

average level of the residuals in the sky region being considered. Secondly, we note that the

matrices are not perfectly symmetric, due to the cross-terms in the squares (from noise and

signal) entering into the χ2. Thirdly, the off-diagonal terms are sometimes negative, but with

absolute values compatible with the quoted rms. These second and third effects are clearly

17This holds also in the case that the instrument sensitivity varies across the sky because of non-uniform

sky coverage from the adopted scanning strategy (an aspect that is not so crucial in the case of the relatively

uniform sky coverage expected for CORE [1, 105]) is included in the analysis. Note also that, in principle,

pixel-to-pixel correlations introduced by noise correlations and potential residual morphologies should be

included in the χ2. This aspect, although important in the analysis of real data, is outside the scope of the

present paper. Nonetheless, it does not affect the main results of our forecasts.
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statistical in nature.

The results found in this section (see also Appendix C) identify the ideal sensitivity

target for CMB spectral distortion parameters and CIB amplitude that are achievable from

the dipole frequency behaviour.

Elements18 (2:4, 2:4) of the matrix quantify the sensitivity to the CIB amplitude. Com-

parison with FIRAS in terms of the σ level of significance can be extracted directly from the

tables; the ideal improvement ranges from a factor of about 1000 to 4000.

The ideal improvement found for CMB spectral distortion parameters is also impressive.

Elements (1, 5:10) and (5:10, 1) and elements (1, 11:12) and (11:12, 1) refer to comparisons

between the blackbody and BE and Comptonization distortions, respectively. The comparison

with FIRAS is simply quoted by the element of the matrix of the table multiplied by the ratio

between the FIRAS 1σ upper limit on µ0 or u and the distortion parameter value considered

in the table. The sensitivity on u is clearly enough to disentangle between minimal models

of reionization and a variety of astrophysical models that predict larger amounts of energy

injection by various types of source. The ideal improvement with respect to FIRAS limits

is about 500–600. The level of (negative) BE distortions is much lower, and the same holds

also for BE distortions predicted for the damping of primordial adiabatic perturbations. Only

weak, tentative constraints on models with high power at small scales could be set with this

approach, for a mission with the sensitivity of CORE. Nonetheless, the ideal improvement

with respect to FIRAS limits on BE distortions lies in the range 600–1000.

The other elements of the matrix refer to the comparison of distorted spectra; note in

particular the elements (6:7, 11:12) and (11:12, 6:7) that show how Comptonization distortions

can be distinguished from BE distortions, for the two larger values considered for µ0, as

suggested by Fig. 13.

7.2 Including potential foreground and calibration residuals

We expect that potential residuals from imperfect foreground subtraction and calibration may

affect the results presented in the previous section, depending on their level. To assess this,

we have carried out a wide set of simulations in order to quantify the accuracy in recovering

the CMB distortion parameters and CIB amplitude under different working assumptions.

We first perform simulations adopting Efor = 10−2 and Ecal = 10−4 (defined by the

parametric model introduced in Sect. 3) at Nside = 64, and then add many tests exploring

combinations of possible improvements in foreground characterization (assuming Efor = 10−3

or Efor = 10−2, but at larger Nside), as well as different levels of calibration accuracy (including

possible worsening at higher frequencies).

18We adopt the convention (row index range, column index range).
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σ level Current FIRAS CIB amplitude (∆ε/εi)z1 (∆ε/εi)late

significance blackbody (units 10−5) 8× 10−8 10−5 10−6 10−9 2× 10−8 −2× 10−9 4× 10−7 8× 10−6

Ibf0 +1σ −1σ µ0 u

1.3 1.7 0.9 1.12× 10−7 1.4× 10−5 1.4× 10−6 1.4× 10−9 2.8× 10−8 −2.8× 10−9 10−7 2× 10−6

Case (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

(1) 0 13.7 17.7 9.61 −0.00676 10.4 0.833 −0.00264 −0.00996 0.00383 0.166 4.83

(2) 12.8 0 4.37 3.48 12.8 16.6 12.8 12.8 12.8 12.8 12.8 13.1

(3) 16.8 3.44 0 7.58 16.8 19.9 16.9 16.8 16.8 16.8 16.8 16.9

(4) 8.75 4.39 8.45 0 8.76 13.7 8.83 8.75 8.75 8.75 8.72 9.47

(5) 0.0391 13.7 17.7 9.61 0 10.3 0.686 0.0385 0.0307 0.0400 0.133 4.76

(6) 10.5 17.3 20.6 14.3 10.4 0 9.41 10.5 10.4 10.5 10.2 6.51

(7) 0.821 13.7 17.7 9.67 0.739 9.39 0 0.821 0.799 0.825 0.611 3.93

(8) 0.00270 13.7 17.7 9.61 −0.00701 10.4 0.830 0 −0.00967 0.00473 0.166 4.83

(9) 0.0139 13.7 17.7 9.61 −0.0100 10.4 0.788 0.0135 0 0.0146 0.163 4.82

(10) −0.00370 13.7 17.7 9.61 −0.00658 10.4 0.836 −0.00451 −0.0102 0 0.166 4.84

(11) 0.0337 13.7 17.6 9.57 −0.0402 10.2 0.505 0.0330 0.0210 0.0346 0 4.60

(12) 4.56 13.9 17.7 10.1 4.48 6.28 3.57 4.56 4.54 4.56 4.32 0

Table 7. Average values of
√

|∆χ2| sign(∆χ2) from a Monte Carlo simulation at Nside = 64, with

full-sky coverage, adopting Efor = 10−2 and Ecal = 10−4, and considering each of the 19 frequency

channels.

σ level Current FIRAS CIB amplitude (∆ε/εi)z1 (∆ε/εi)late

significance blackbody (units 10−5) 8× 10−8 10−5 10−6 10−9 2× 10−8 −2× 10−9 4× 10−7 8× 10−6

Ibf0 +1σ −1σ µ0 u

1.3 1.7 0.9 1.12× 10−7 1.4× 10−5 1.4× 10−6 1.4× 10−9 2.8× 10−8 −2.8× 10−9 10−7 2× 10−6

Case (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

(1) 0 49.9 64.7 35.0 −0.224 6.67 −0.311 −0.0267 −0.117 0.0379 0.211 1.15

(2) 47.7 0 15.6 13.4 47.7 49.9 47.8 47.7 47.7 47.7 47.6 47.4

(3) 62.4 13.3 0 28.4 62.4 64.5 62.6 62.4 62.4 62.4 62.4 62.2

(4) 32.7 15.8 30.6 0 32.7 35.2 32.9 32.7 32.7 32.7 32.7 32.5

(5) 0.250 49.9 64.7 35.0 0 6.61 −0.324 0.248 0.214 0.253 0.314 1.21

(6) 8.51 52.3 66.9 37.7 8.44 0 7.71 8.51 8.48 8.51 8.54 9.31

(7) 1.15 50.1 64.9 35.2 1.08 5.84 0 1.15 1.13 1.15 1.20 2.06

(8) 0.0268 49.9 64.7 35.0 −0.223 6.67 −0.310 0 −0.114 0.0465 0.212 1.15

(9) 0.121 49.9 64.7 35.0 −0.196 6.66 −0.314 0.118 0 0.127 0.239 1.17

(10) −0.0378 49.9 64.7 35.0 −0.227 6.67 −0.310 −0.0463 −0.122 0 0.208 1.15

(11) −0.206 49.9 64.7 35.0 −0.289 6.71 −0.322 −0.207 −0.230 −0.203 0 1.11

(12) −0.710 49.6 64.4 34.7 −0.706 7.40 −0.391 −0.709 −0.708 −0.711 −0.703 0

Table 8. The same as in Table 7, but considering all 171 independent combinations of pairs of

different frequency channels.

7.2.1 Monte Carlo results at about 1◦ resolution

To understand the typical implications of different assumptions, we first perform a series

of Monte Carlo simulations, identical to that described in Sect. 7.1, but including potential

foreground and calibration residuals, modelled according to Sect. 3, assuming Efor = 10−2

and Ecal = 10−4. The main results (the average values of
√

|∆χ2| sign(∆χ2)) are presented

in Tables 7, 8, and 9, while the corresponding rms values are reported in Appendix D (see
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σ level Current FIRAS CIB amplitude (∆ε/εi)z1 (∆ε/εi)late

significance blackbody (units 10−5) 8× 10−8 10−5 10−6 10−9 2× 10−8 −2× 10−9 4× 10−7 8× 10−6

Ibf0 +1σ −1σ µ0 u

1.3 1.7 0.9 1.12× 10−7 1.4× 10−5 1.4× 10−6 1.4× 10−9 2.8× 10−8 −2.8× 10−9 10−7 2× 10−6

Case (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

(1) 0 51.8 67.0 36.3 −0.191 12.4 0.142 −0.0230 −0.101 0.0327 0.309 5.10

(2) 49.4 0 16.2 13.9 49.4 52.6 49.5 49.4 49.4 49.4 49.3 49.2

(3) 64.6 13.7 0 29.4 64.7 67.5 64.8 64.7 64.7 64.6 64.6 64.4

(4) 33.9 16.4 31.8 0 33.9 37.7 34.1 33.9 33.9 33.9 33.9 33.9

(5) 0.222 51.8 67.1 36.3 0 12.3 0.0689 0.220 0.189 0.225 0.402 5.05

(6) 13.5 55.1 70.0 40.2 13.4 0 12.2 13.5 13.5 13.5 13.4 11.4

(7) 1.48 52.0 67.3 36.5 1.38 11.2 0 1.48 1.46 1.49 1.43 4.57

(8) 0.0231 51.8 67.0 36.3 −0.190 12.4 0.142 0 −0.0987 0.0401 0.309 5.10

(9) 0.105 51.8 67.0 36.3 −0.169 12.4 0.123 0.102 0 0.110 0.338 5.09

(10) −0.0326 51.8 67.0 36.3 −0.193 12.4 0.145 −0.0399 −0.106 0 0.308 5.10

(11) −0.143 51.7 67.0 36.3 −0.324 12.3 −0.0738 −0.147 −0.200 −0.136 0 4.86

(12) 4.35 51.5 66.8 36.2 4.26 9.77 3.06 4.35 4.33 4.35 4.10 0

Table 9. The same as in Table 7, but considering each of the 19 frequency channels independently

and all 171 independent combinations of pairs of different frequency channels.

Tables 19, 20, and 21).

With these levels of potential residuals, the improvement with respect to FIRAS in the

recovery of the CIB amplitude ranges from a factor of approximately 4 (with an rms of about

1 in the estimate of this improvement factor) for approach (a) to a factor of about 15 or 20

(with an rms of about 3) for approaches (b) and (c), respectively.

The improvement found for the recovery of CMB spectral distortion parameters is also

very promising. The sensitivity to u improves with respect to FIRAS by a factor of 20 (except

for the less stable approach (b)), which is suitable for detecting reionization imprints (of the

sort predicted in astrophysical reionization models) at about 5σ, while the improvement on

BE distortions is about a factor of 40 (approach (c)). Note that these results are derived

considering the full sky, and thus we could expect to obtain improvements by applying masks

to avoid regions with significant potential contamination, as discussed in the next section.

7.2.2 Application of masks

We performed some additional tests assuming Efor = 10−2 and Ecal = 10−4, but applying

appropriate masks to the sky. Clearly, in this way we reduce the available statistical infor-

mation (as we verified through tests carried out under ideal conditions of perfect foreground

subtraction and calibration), but in realistic cases we may expect to improve the quality of

results by reducing the impact of potential residuals.

We use the “Planck common mask 76” (in temperature) and the extension of this mask

that excludes all pixels at |b| ≤ 30◦.19

19We also considered a mask that excludes also all pixels within 30◦ of the Ecliptic plane, to avoid zodiacal-

light contamination, but the resulting map has considerably less statistical power due to the low overall sky
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σ level Current FIRAS CIB amplitude (∆ε/εi)z1 (∆ε/εi)late

significance blackbody (units 10−5) 8× 10−8 10−5 10−6 10−9 2× 10−8 −2× 10−9 4× 10−7 8× 10−6

Ibf0 +1σ −1σ µ0 u

1.3 1.7 0.9 1.12× 10−7 1.4× 10−5 1.4× 10−6 1.4× 10−9 2.8× 10−8 −2.8× 10−9 10−7 2× 10−6

Case (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

(1) 0 73.5 95.1 51.8 0.139 14.8 1.50 0.00844 0.0473 −0.0113 −0.385 5.29

(2) 69.1 0 23.7 19.4 69.1 72.7 69.3 69.1 69.1 69.1 69.0 68.7

(3) 90.6 19.2 0 41.0 90.6 93.9 90.8 90.6 90.6 90.6 90.6 90.2

(4) 47.3 23.8 45.4 0 47.4 51.6 47.6 47.3 47.3 47.3 47.3 47.0

(5) 0.0920 73.5 95.1 51.8 0 14.7 1.38 0.0905 0.0611 0.0950 −0.422 5.22

(6) 14.7 76.9 98.2 55.7 14.6 0 13.3 14.7 14.7 14.7 14.6 12.2

(7) 1.45 73.7 95.3 52.0 1.33 13.3 0 1.45 1.42 1.46 1.22 4.53

(8) −0.00818 73.5 95.1 51.8 0.138 14.8 1.50 0 0.0457 −0.0137 −0.386 5.29

(9) −0.0223 73.5 95.1 51.8 0.109 14.8 1.47 −0.0227 0 −0.0213 −0.398 5.27

(10) 0.0121 73.5 95.1 51.8 0.142 14.8 1.50 0.0150 0.0506 0 −0.384 5.29

(11) 0.558 73.5 95.0 51.7 0.541 14.6 1.44 0.558 0.551 0.559 0 5.00

(12) 6.10 73.2 94.7 51.6 6.04 12.6 5.46 6.10 6.08 6.10 5.81 0

Table 10. Values of
√

|∆χ2| sign(∆χ2) for a single realization at Nside = 64, using the Planck

mask-76 extended to exclude regions at |b| ≤ 30◦. We adopt Efor = 10−2 and Ecal = 10−4, and

consider each of the 19 frequency channels and all 171 independent combinations of pairs of different

frequencies.

Having already addressed the rms uncertainty in the
√

|∆χ2| sign(∆χ2) estimates, in

this test (as well as in the following ones) we will consider a single realization only, in order

to avoid repeating a huge number of unnecessary simulations. For the sake of simplicity, we

omit reporting the results found in the less stable approach (b).

In the case of the extended mask and including also the cross-comparisons between

different frequency channels (approach (c)), we found a significant improvement (see Table 10)

with respect to the results based on the full sky; the significance of the CIB amplitude recovery

improves by about 50% and that on the BE distortion improves by about 20 %. This indicates

the relevance of optimising the selection of the sky region for which the analysis is applied,

and of comparing results obtained with different masks.

7.2.3 Varying assumptions on potential foreground and calibration residuals

We now consider the implications of different levels of potential residuals, evaluating both

better and worse cases with respect to the reference case analysed before. Given the results

obtained in the previous section we will focus on the case of the extended mask. We present

here the main outcomes of this analysis, while the tables with the corresponding numerical

results are reported in Appendix E for sake of completeness.

• Improving foreground subtraction

We now evaluate the improvement in component separation of total intensity maps

by considering the case of Efor = 10−3. The results, summarised in Table 22 (for

fraction.
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approach (c)), can be compared with those of Table 10. We find an improvement by

a factor of approximately 10 in the recovery of the CIB amplitude, in line with that

assumed in foreground removal, and by a factor of 5 (or 6) in the recovery of µ0 (or u),

implying that calibration uncertainty is relatively more important for estimating CMB

distortion parameters than for estimating the CIB amplitude. In fact, the CIB is better

constrained at higher frequencies, where foregrounds are more relevant.

• The case of poorer calibration

We discuss here the degradation in sensitivity entailed by keeping Efor = 10−2, but

replacing CORE’s calibration-accuracy goal of Ecal = 10−4 with Ecal = 10−3 at ν ≤
295GHz and Ecal = 10−2 at ν ≥ 340GHz.

The results, summarised in Table 23 (for approach (c)), can be compared with those of

Table 10. In spite of the assumed degradation in calibration accuracy at high frequencies

(particularly relevant for the CIB), we find that the recovery of the CIB amplitude is

very weakly affected, while the significance of the µ0 (or u) determination degrades

by factor of approximately 2 (or 25–30 %). This result strengthens the conclusion of

the previous subsection that calibration uncertainty is relatively more important for

estimating CMB distortion parameters than for the CIB amplitude.

For the set of assumptions adopted here, we find an improvement with respect to FIRAS

by factor of around 20 in the recovery of the CIB amplitude, 15 on the constraints

on the Comptonization parameter u (or for its detection, at a level of about 3–4σ

for astrophysical reionization models), and about 24 for the constraints on chemical

potential µ0.

We finally consider a worst case scenario with Efor = Ecal = 10−2. Even in this situa-

tion, we find an improvement with respect to FIRAS by a factor of 17 in the recovery of

the CIB amplitude, and a factor of a few for CMB spectral distortion parameters, specif-

ically around 4 for BE distortions and a marginal detection of astrophysical reionization

models for Comptonization distortions.

• Poorer calibration together with improved foreground subtraction

We now consider a combination of the two cases above, i.e., a further improvement

in component separation of total intensity maps represented by Efor = 10−3 and a

calibration accuracy parameterised by Ecal = 10−3 at ν ≤ 295GHz and Ecal = 10−2 at

ν ≥ 340GHz.

The results obtained in approach (c) are summarised in Table 24. We find that the

significance of CIB amplitude recovery is intermediate between the results found in the

previous cases, while the degradation due to the poorer calibration is approximately

compensated by the improvement due to better foreground subtraction in the case of
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Comptonization distortions, but only partially compensated in the case of BE distor-

tions.

Overall, our analysis indicates that the relevance of calibration accuracy increases from

CIB amplitude to Comptonization-distortion and to BE-distortion recovery, while the

relevance of the quality of foreground subtraction increases from BE distortions to

Comptonization distortions and to CIB amplitude recovery. This conclusion reflects

the increase of the foreground level and of the relative amplitude of the imprints left by

the three types of signals at increasing frequencies (for CORE).

• Varying the reference angular scale

We finally consider assumptions of errors in foreground subtraction and in calibration

in the range discussed above, but at smaller angular scales, specifically at Nside = 256.

The corresponding pixel linear size (≃ 13.7 arcmin) is similar to the FWHM resolution

of CORE channels at ν <∼ 80GHz that are necessary for the mitigation of low-frequency

foreground emission.

With this adopted set-up and considering the most advantageous approach (i.e., ap-

proach (c)), assuming a foreground mitigation parameterised by Efor = 10−3, we find

(see Table 25) an improvement with respect to FIRAS by a factor of 80–90 for the recov-

ery of CIB amplitude, around 80 on the constraints for the Comptonization parameter

u (implying a precise measure of the energy injections associated to astrophysical reion-

ization models), and about 150 on the constraints on chemical potential µ0. Adopting

Efor = 10−2, we find instead an improvement by a factor of 75 for the recovery of CIB

amplitude, 50 for the constraints on the Comptonization parameter u, and 80 for the

constraints on the chemical potential µ0.

We further consider the same set-up but at Nside = 128, i.e., with a pixel side 2 times

larger. As expected, we find results intermediate between those derived at Nside = 64

and 256.

7.3 Summary of simulation results

We have presented above a large set of simulations for different choices of the parameters

characterising foreground and calibration residual levels. The main results are summarised in

Table 11 in terms of improvements with respect to FIRAS, in order to parametrically quantify

the accuracy required to achieve significant improvements. For other values of Efor and

Ecal, we find an almost linear dependence on them for the improvement factor in parameter

recovery.
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Ecal (%) Efor (%) CIB amplitude Bose-Einstein Comptonization

Ideal case, all sky - - ≃ 4.4× 103 ≃ 103 ≃ 6.0× 102

All sky 10−4 10−2 ≃ 15 ≃ 42 ≃ 18

P76 10−4 10−2 ≃ 19 ≃ 42 ≃ 18

P76ext 10−2 10−2 ≃ 17 ∼ 4 ∼ 2

P76ext 10−4 10−2 ≃ 22 ≃ 47 ≃ 21

P76ext 10−4 10−3 ≃ 2.1× 102 ≃ 2.4× 102 ≃ 1.1× 102

P76ext 10−3
(≤295)–10

−2
(≥340) 10−2 ≃ 19 ≃ 26 ≃ 11

P76ext 10−3
(≤295)–10

−2
(≥340) 10−3 ≃ 48 ≃ 35 ≃ 15

P76ext, Nside = 128 10−3
(≤295)–10

−2
(≥340) 10−2 ≃ 38 ≃ 51 ≃ 23

P76ext, Nside = 128 10−3
(≤295)–10

−2
(≥340) 10−3 ≃ 43 ≃ 87 ≃ 39

P76ext, Nside = 256 10−3
(≤295)–10

−2
(≥340) 10−2 ≃ 76 ≃ 98 ≃ 44

P76ext, Nside = 256 10−3
(≤295)–10

−2
(≥340) 10−3 ≃ 85 ≃ 1.6× 102 ≃ 73

Table 11. Predicted improvement in the recovery of the distortion parameters discussed in the

text with respect to FIRAS for different calibration and foreground residual assumptions. This table

summarizes the results derived with approach (c). “P06” stands for the Planck common mask, while

“P06ext” is the extended P06 mask. When not explicitly stated, all values refer to Ecal and Efor at

Nside = 64.

8 Discussion and conclusions

We have carried out a detailed investigation of three distinct scientific implications coming

from exploitation of the observer’s peculiar velocity effects in CORE maps. The determination

of the CMB dipole amplitude and direction is an important observable in modern cosmology.

It provides information on our velocity with respect to the CMB reference frame, which is

expected to dominate the effect. Related investigations in other wavebands, which exploit

signals from different types of astrophysical sources, probe different shells in redshift, and

together provide an important test of fundamental principles in cosmology. In particular,

the alignment of the CMB dipole with those independently measured from galaxy and cluster

catalogues is regarded as indirect proof of the kinematic origin of the CMB dipole. The specific

relation between the amplitudes of the CMB and large-scale structure dipoles, predicted by the

linear perturbation theory, has been used to obtain estimates of the redshift-space distortion

parameter independent of (but consistent with) those coming from redshift surveys. It is thus

important to look for possible departures from a purely kinematic character for the CMB

dipole. In this context, surveys from space are clearly appealing, since they represent the

best (and perhaps only) way to precisely measure this large-scale signal.

We performed detailed simulations in the context of a mission like CORE, to understand

the expectations, and potential issues arising from future CMB surveys beyond the already

excellent results produced by Planck. The sampling of the sky turns out to be the main

limiting factor for the precise measurement of the dipole direction and (obviously together
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with calibration) also a crucial limiting factor for the precise measurement of dipole amplitude.

We found that the recovered uncertainty scales linearly with the map pixel linear size (i.e.,

inversely with Nside). Although maps can be oversampled through a proper scanning strategy

and by setting the sampling time of the data acquisition well below that corresponding to the

beam resolution, it is clear that the experimental resolution plays a crucial role in this respect.

Among CMB space missions proposed for the future, CORE has the best angular resolution.

The dipole direction determination can be averaged over the various frequency channels,

improving accuracy and providing cross-checks for systematics. With the assumption of

a pure blackbody, the same holds for the amplitude. However, when searching for dipole

spectral signatures, increasing the accuracy at each frequency (which results from a better

sky sampling) turns out to be even more important.

An observer moving with respect to the CMB rest frame will also see boosting imprints on

the CMB at ℓ > 1, due to Doppler and aberration effects, which can be measured in harmonic

space as correlations between ℓ and ℓ + 1 modes (assuming that the CMB is statistically

isotropic in its rest frame). Such a signal can be measured independently in temperature and

polarization, which constitutes a new consistency check, with a signal-to-noise ratio of about

8 for TT , 7 for TE + ET and 7 for EE. Overall, CORE can achieve a signal-to-noise ratio

of almost 13, which improves on the capabilities of Planck (about S/N ≃ 4, only in TT ) and

is essentially that of an ideal cosmic-variance-limited experiment up to ℓ ≃ 2000. We stress

the importance of performing high-sensitivity measurements at close to arcminute resolution

in order to be sensitive to the correlations at high multipoles that yield most of the signal.

Since CORE will also provide good measurements of the tSZ effect and the CIB, which are

also assumed to be statistically isotropic in the CMB rest frame, we additionally investigated

boosting effects in these maps. However, we found that the aberration effect on tSZ maps and

the boosting effects on the CIB are smaller than in the CMB maps, and that the predicted

signal-to-noise is less than 1 in both cases.

Beyond FIRAS, great hopes are expected for PIXIE, which has been proposed to NASA

to observe CMB polarization and the CMB spectrum with degree resolution and is designed

to have a precision about 103 times better than FIRAS, mainly relying on the achievement

of extreme quality in its absolute calibration, and a corresponding similar improvement on

CMB spectral distortion parameters [59]. Note that even if PIXIE fails to fully achieve

these ambitious goals, an improvement in calibration precision of even one or two orders of

magnitude with respect to FIRAS calibration, in addition to being intrinsically interesting for

strengthening the limits on CMB distortion parameters, will imply an analogous improvement

for the calibration of other CMB projects. In general, combining results from experiments like

PIXIE and CORE will offer a chance to have maps with substantialily improved calibration,

sensitivity, and resolution.

CMB anisotropy missions will not perform absolute measurements of the CMB spectrum,

but can observe the frequency spectral behaviour of the CMB and CIB dipoles. We exploit
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the sensitivity of an experiment like CORE for the recovery of the parameters u and µ0

of Comptonization and BE spectral distortions, as well as for the amplitude of the CIB

spectrum. Assuming perfect relative calibration and absence of foreground contamination, the

CORE sensitivity and frequency coverage, combined with its resolution (to cope with sampling

uncertainty), could allow us to achieve an improvement with respect to FIRAS by a factor

of around 1–4× 103, 500–600, and 600–1000 in the recovery of the CIB spectrum amplitude,

u, and µ0, respectively; the best results are obtained from the joint information contained in

each of the frequency channels independently and in all the independent combinations of pairs

of different frequencies. Combining pairs of different frequencies turns out to be particularly

advantageous for the CIB dipole spectrum, since it exhibits a steeper frequency behaviour.

As expected, foregrounds are critical in both absolute and differential methods. Rela-

tive calibration accuracy is an important limiting factor in CMB anisotropy experiments in

general and even more so for analyses based on the dipole. In current data analysis pipelines

the dipole itself is in fact typically used for calibration, which raises the issue of a circular

argument. However, for all-sky mapping experiments (like WMAP and Planck), the orbital

dipole from the Earth and satellite motion is ultimately used for calibration, rather than

the CMB dipole itself. Precise calibration is always challenging, and it is unclear what the

limiting step will be for any new experiment. Nevertheless, in principle it will be possible to

measure the spectrum of the dipole with an anisotropy experiment. In general, improving and

extending calibration methods is crucial for these analyses. Various approaches can be inte-

grated into the data reduction design, ranging from a better instrumental characterization to

cross-correlation between different CMB surveys and substantial refinements in astronomical

calibration sources.

We have carried out a large set of simulations, summarised in Table 11, to parametrically

quantify the accuracy required to achieve significant improvements with respect to FIRAS.

We find that the importance of the impact of calibration errors decreases from BE

distortions to Comptonization distortions and to the CIB amplitude, while the opposite holds

for the impact of foreground contamination (in agreement with the increase with frequency

of foreground level and of the relative amplitude of the imprints left by the three types of

signal). Applying suitable masks also yields an improvement in parameter estimation.

In the case of 1 % accuracy (at a reference scale of about 1◦) in both foreground removal

and relative calibration (i.e., Efor = Ecal = 10−2), CORE will be able to improve the recovery

of the CIB spectrum amplitude of a factor of about 17, to achieve a marginal detection of the

energy release associated with astrophysical reionization models, and to improve by a factor of

approximately 4 the limits on early energy dissipations. On the other hand, an improvement

of a factor of 20 for CIB amplitude, of 10 for u, and of around 25 for the chemical potential

µ0, is found by improving the relative calibration error to ≃ 0.1%. Any further improvement

in foreground mitigation and calibration will enable still more precise results to be achieved.
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A Appendix – Likelihoods of CMB dipole parameters

For the sake of completeness, we report here the likelihoods computed for CMB dipole pa-

rameters and the confidence levels in their estimation. We limit the presentation here to the

lowest and highest resolutions among those exploited in this analysis.
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Figure 15. Marginalised likelihoods, and 68% and 95% contours of the parameters A, b0, l0, and

T0 at Nside = 128 (red) and at Nside = 1024 (blue): top left, dipole only; top right, dipole+noise;

bottom left, dipole+noise+mask; and bottom right, dipole+noise+mask+systematics. The reference

frequency channel is 60GHz and the noise is 7.5µK.arcmin. The mask used here is the Planck

Galactic mask extended to cut out ±30◦ of the Galactic plane. The level of systematics correspond

to the pessimistic expectation of calibration errors and sky residuals.

Nside = 128 A(mK) b0(
◦) l0(

◦) T0(mK)

dipole 3.3644± 0.0028 48.242± 0.047 263.999± 0.070 2725.4793± 0.0016

dip+noi 3.3644± 0.0028 48.240± 0.047 263.998± 0.071 2725.4793± 0.0016

dip+noi+mask 3.3644± 0.0041 48.240± 0.075 264.00± 0.13 2725.4797± 0.0024

dip+noi+mask+sys 3.3645± 0.0041 48.235± 0.074 264.00± 0.13 2725.4797± 0.0023

Nside = 1024 A(mK) b0(
◦) l0(

◦) T0(mK)

dipole 3.36447± 0.00036 48.2399± 0.0060 264.0002± 0.0088 2725.47930± 0.00020

dip+noi 3.36450± 0.00035 48.2398± 0.0059 264.0005± 0.0087 2725.47931± 0.00020

dip+noi+mask 3.36454± 0.00051 48.2387± 0.0091 264.000± 0.017 2725.47966± 0.00029

dip+noi+mask+sys 3.36451± 0.00052 48.2352± 0.0092 264.000± 0.016 2725.47965± 0.00029

Table 12. 68 % confidence levels of the parameters A, b0, l0, and T0 from Fig. 15.
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Figure 16. Marginalised likelihoods, and 68% and 95% contours of the parameters A, b0, l0, and

T0. Input maps are at Nside = 1024, with noise, mask and residuals (calibration errors and sky

residuals). Top: 100 GHz with optimistic (left) and pessimistic (right) systematics. Bottom: 220 GHz

with optimistic (left) and pessimistic (right) systematics.

Nside = 1024 A(mK) b0(
◦) l0(

◦) T0(mK)

60 GHz, good sys 3.36454± 0.00052 48.2387± 0.0093 263.999± 0.016 2725.47965± 0.00029

60 GHz, bad sys 3.36451± 0.00052 48.2352± 0.0092 264.000± 0.016 2725.47965± 0.00029

100 GHz, good sys 3.36453± 0.00053 48.2393± 0.0093 264.000± 0.016 2725.47965± 0.00029

100 GHz, bad sys 3.36457± 0.00051 48.2406± 0.0093 263.998± 0.016 2725.47961± 0.00029

145 GHz, good sys 3.36452± 0.00052 48.2391± 0.0093 263.999± 0.017 2725.47967± 0.00029

145 GHz, bad sys 3.36434± 0.00051 48.2391± 0.0091 263.996± 0.017 2725.47965± 0.00029

220 GHz, good sys 3.36451± 0.00051 48.2387± 0.0092 263.998± 0.016 2725.47966± 0.00029

220 GHz, bad sys 3.36434± 0.00052 48.2364± 0.0094 263.977± 0.016 2725.47972± 0.00029

Table 13. 68% confidence level of the parameters A, b0, l0, and T0 at 60, 100, 145 and 220 GHz (see

Fig. 16 for the likelihoods at 100 and 220 GHz).
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Figure 17. Marginalised likelihoods, and 68% and 95% contours of the parameters A, b0, l0, and T0.

Input maps are dipole-only, at 60 GHz and at Nside = 1024. On the left: blackbody. On the right:

Bose-Einstein (chemical potential µ0 = 1.4× 10−5).

Nside = 1024 A(mK) b0(
◦) l0(

◦) T0(mK)

blackbody 3.36447± 0.00036 48.2399± 0.0060 264.0002± 0.0088 2725.47930± 0.00020

Bose-Einstein 3.36440± 0.00034 48.2402± 0.0059 264.0002± 0.0090 2725.45379± 0.00020

Table 14. 68 % confidence level of the parameters A, b0, l0, and T0 of Fig. 17.
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B Appendix – Rms values from Monte Carlo simulations: ideal case

We present here the tables with the estimates of the rms of the
√

|∆χ2| sign(∆χ2) quoted from

a Monte Carlo simulation at Nside = 64, using all-sky maps and adopting perfect foreground

subtraction and calibration.

Rms of σ level Current FIRAS CIB amplitude (∆ε/εi)z1 (∆ε/εi)late

significance blackbody (units 10−5) 8× 10−8 10−5 10−6 10−9 2× 10−8 −2× 10−9 4× 10−7 8× 10−6

Ibf0 +1σ −1σ µ0 u

1.3 1.7 0.9 1.12× 10−7 1.4× 10−5 1.4× 10−6 1.4× 10−9 2.8× 10−8 −2.8× 10−9 10−7 2× 10−6

Case (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

(1) 0 4.83 6.99 3.16 0.872 0.568 0.621 0.129 0.562 0.183 0.976 1.06

(2) 4.22 0 4.22 0.00 4.22 5.27 5.16 4.22 4.22 4.22 5.16 5.16

(3) 6.99 3.16 0 5.16 6.99 4.22 6.99 6.99 6.99 6.99 6.99 6.75

(4) 0.00 3.16 5.16 0 0.00 4.22 3.16 0.00 0.00 0.00 3.16 0.00

(5) 1.06 4.83 6.99 3.16 0 0.675 0.621 1.06 0.976 1.07 1.05 1.06

(6) 0.667 6.75 6.32 4.22 0.738 0 0.823 0.667 0.738 0.568 0.667 1.08

(7) 0.636 4.83 6.75 3.16 0.636 0.675 0 0.636 0.632 0.635 0.657 1.14

(8) 0.129 4.83 6.99 3.16 0.871 0.568 0.610 0 0.549 0.224 0.976 1.06

(9) 0.578 4.83 6.99 3.16 0.813 0.675 0.619 0.564 0 0.606 0.993 1.06

(10) 0.182 4.83 6.99 3.16 0.873 0.667 0.613 0.223 0.587 0 0.974 1.06

(11) 1.04 5.16 6.75 3.16 1.14 0.568 0.620 1.05 1.07 1.04 0 0.994

(12) 0.994 5.16 6.32 3.16 0.919 1.05 1.08 0.994 1.07 0.994 0.966 0

Table 15. Rms values of
√

|∆χ2| sign(∆χ2) from a Monte Carlo simulation at Nside = 64, full sky,

adopting perfect foreground subtraction and calibration, and considering each of the 19 frequency

channels.

Rms of σ level Current FIRAS CIB amplitude (∆ε/εi)z1 (∆ε/εi)late

significance blackbody (units 10−5) 8× 10−8 10−5 10−6 10−9 2× 10−8 −2× 10−9 4× 10−7 8× 10−6

Ibf0 +1σ −1σ µ0 u

1.3 1.7 0.9 1.12× 10−7 1.4× 10−5 1.4× 10−6 1.4× 10−9 2.8× 10−8 −2.8× 10−9 10−7 2× 10−6

Case (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

(1) 0.00 31.6 42.2 14.8 2.93 2.67 2.52 0.342 1.52 0.485 2.89 2.18

(2) 31.6 0 6.75 6.67 0.00 51.6 0.00 31.6 0.00 31.6 31.6 31.6

(3) 42.2 5.16 0 8.43 42.2 42.2 31.6 42.2 42.2 42.2 42.2 51.6

(4) 10.8 8.23 11.4 0 10.8 12.9 12.9 10.8 10.8 10.8 11.7 12.9

(5) 3.11 31.6 42.2 14.8 0 2.59 2.53 3.09 2.70 3.15 4.15 2.20

(6) 2.30 51.6 42.2 14.5 2.49 0 2.33 2.33 2.67 2.30 2.50 2.46

(7) 2.59 31.6 31.6 14.5 2.64 2.56 0 2.62 2.60 2.60 2.58 2.31

(8) 0.343 31.6 42.2 14.8 2.91 2.56 2.51 0 1.48 0.594 2.91 2.19

(9) 1.56 31.6 42.2 14.8 2.58 2.59 2.53 1.52 0 1.63 3.29 2.20

(10) 0.484 31.6 42.2 14.8 2.96 2.67 2.53 0.593 1.60 0 2.85 2.18

(11) 2.39 31.6 42.2 14.8 2.93 2.81 2.48 2.40 2.60 2.36 0 2.20

(12) 2.10 31.6 52.7 14.0 2.13 2.59 2.30 2.09 2.12 2.12 2.10 0

Table 16. The same as in Table 15, but considering all 171 independent combinations of pairs of

different frequency channels.
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Rms of σ level Current FIRAS CIB amplitude (∆ε/εi)z1 (∆ε/εi)late

significance blackbody (units 10−5) 8× 10−8 10−5 10−6 10−9 2× 10−8 −2× 10−9 4× 10−7 8× 10−6

Ibf0 +1σ −1σ µ0 u

1.3 1.7 0.9 1.12× 10−7 1.4× 10−5 1.4× 10−6 1.4× 10−9 2.8× 10−8 −2.8× 10−9 10−7 2× 10−6

Case (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

(1) 0 52.7 31.6 31.6 2.69 2.17 2.14 0.340 1.50 0.482 1.40 1.57

(2) 51.6 0 8.43 6.75 51.6 0.00 51.6 51.6 51.6 51.6 51.6 31.6

(3) 31.6 5.16 0 11.0 31.6 52.7 31.6 31.6 31.6 31.6 31.6 51.6

(4) 31.6 6.32 12.6 0 31.6 0.00 0.00 31.6 31.6 31.6 31.6 51.6

(5) 3.10 52.7 31.6 31.6 0 2.28 2.14 3.08 2.68 3.14 2.15 1.40

(6) 2.20 0.00 48.3 31.6 2.21 0 2.17 2.06 2.21 2.20 2.21 2.59

(7) 2.23 51.6 31.6 31.6 2.23 2.27 0 2.22 2.22 2.22 2.57 1.65

(8) 0.340 52.7 31.6 31.6 2.68 2.17 2.12 0 1.46 0.591 1.40 1.57

(9) 1.53 52.7 31.6 31.6 2.40 2.28 2.16 1.49 0 1.61 1.58 1.57

(10) 0.481 52.7 31.6 31.6 2.72 2.31 2.14 0.589 1.57 0 1.38 1.57

(11) 1.48 51.6 31.6 31.6 2.15 2.18 2.48 1.49 1.65 1.46 0 1.57

(12) 1.23 31.6 52.7 51.6 1.58 2.72 1.87 1.23 1.23 1.23 1.23 0

Table 17. The same as in Table 15, but considering each of the 19 frequency channels and all 171

independent combinations of pairs of different frequency channels.
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C Appendix – Ideal case at high resolution

We repeat here the same analysis carried out in the previous section, but now working at

Nside = 512, i.e., at about 7 arcmin resolution, and considering a single realization. The

results are reported in Table 18 relative to approach (c).

σ level Current FIRAS CIB amplitude (∆ε/εi)z1 (∆ε/εi)late

significance blackbody (units 10−5) 8× 10−8 10−5 10−6 10−9 2× 10−8 −2× 10−9 4× 10−7 8× 10−6

Ibf0 +1σ −1σ µ0 u

1.3 1.7 0.9 1.12× 10−7 1.4× 10−5 1.4× 10−6 1.4× 10−9 2.8× 10−8 −2.8× 10−9 10−7 2× 10−6

Case (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

(1) 0 14400 18800 10100 −1.39 320. 30.5 −0.326 −1.31 0.467 8.65 161.

(2) 14500 0 4380 4380 14500 14500 14500 14500 14500 14500 14500 14400

(3) 18800 4330 0 8710 18800 18800 18800 18800 18800 18800 18800 18800

(4) 10100 4380 8710 0 10100 10100 10100 10100 10100 10100 10100 10000

(5) 3.90 14400 18800 10100 0 317. 27.9 3.86 3.19 3.97 9.06 160.

(6) 323. 14500 10100 10100 321. 0 291. 323. 323. 323. 322. 332.

(7) 33.8 18800 18800 10100 31.2 288. 0 33.8 33.1 33.8 33.4 158.

(8) 0.329 14400 18800 10100 −1.41 320. 30.4 0 −1.29 0.575 8.66 161.

(9) 1.60 14400 18800 10100 −1.64 319. 29.8 1.55 0 1.69 8.69 160.

(10) −0.458 14400 18800 10100 −1.35 320. 30.5 −0.559 −1.36 0 8.65 161.

(11) 7.27 14400 18800 10100 6.56 318. 29.7 7.26 7.01 7.30 0 153.

(12) 159. 14500 18800 10000 159. 328. 156. 159. 159. 159. 151. 0

Table 18. Values of
√

|∆χ2| sign(∆χ2) for a single realization at Nside = 512, for the full sky,

adopting perfect foreground subtraction and calibration, and considering each of the 19 frequency

channels and all 171 independent combinations of pairs of different frequencies.
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D Appendix – Rms values from Monte Carlo simulations: including po-

tential residuals

We report here tables with the estimates of the rms of the
√

|∆χ2| sign(∆χ2) quoted from a

Monte Carlo simulation at Nside = 64, with all-sky data, and including potential foreground

and calibration residuals.

Rms of σ level Current FIRAS CIB amplitude (∆ε/εi)z1 (∆ε/εi)late

significance blackbody (units 10−5) 8× 10−8 10−5 10−6 10−9 2× 10−8 −2× 10−9 4× 10−7 8× 10−6

Ibf0 +1σ −1σ µ0 u

1.3 1.7 0.9 1.12× 10−7 1.4× 10−5 1.4× 10−6 1.4× 10−9 2.8× 10−8 −2.8× 10−9 10−7 2× 10−6

Case (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

(1) 0 0.798 0.804 0.802 0.274 0.471 0.673 0.0308 0.137 0.0435 0.416 0.469

(2) 0.838 0 0.792 0.973 0.846 0.637 0.819 0.838 0.838 0.838 0.838 0.701

(3) 0.829 0.981 0 0.871 0.829 0.682 0.806 0.829 0.829 0.829 0.823 0.753

(4) 0.859 0.788 0.799 0 0.857 0.578 0.837 0.859 0.860 0.859 0.841 0.667

(5) 0.276 0.798 0.804 0.800 0 0.480 0.746 0.274 0.239 0.280 0.359 0.472

(6) 0.490 0.605 0.657 0.529 0.495 0 0.486 0.490 0.480 0.481 0.484 0.509

(7) 0.788 0.795 0.808 0.768 0.775 0.477 0 0.788 0.784 0.789 0.775 0.474

(8) 0.0308 0.798 0.804 0.802 0.272 0.471 0.673 0 0.134 0.0533 0.415 0.470

(9) 0.138 0.798 0.804 0.802 0.237 0.478 0.702 0.134 0 0.145 0.399 0.469

(10) 0.0435 0.798 0.804 0.802 0.277 0.486 0.670 0.0533 0.144 0 0.418 0.469

(11) 0.455 0.798 0.798 0.784 0.383 0.482 0.768 0.454 0.437 0.457 0 0.469

(12) 0.539 0.709 0.733 0.624 0.542 0.525 0.591 0.539 0.539 0.538 0.543 0

Table 19. Rms values of
√

|∆χ2| sign(∆χ2) from a Monte Carlo simulation at Nside = 64, full sky,

adopting Efor = 10−2 and Ecal = 10−4, and considering each of the 19 frequency channels.

Rms of σ level Current FIRAS CIB amplitude (∆ε/εi)z1 (∆ε/εi)late

significance blackbody (units 10−5) 8× 10−8 10−5 10−6 10−9 2× 10−8 −2× 10−9 4× 10−7 8× 10−6

Ibf0 +1σ −1σ µ0 u

1.3 1.7 0.9 1.12× 10−7 1.4× 10−5 1.4× 10−6 1.4× 10−9 2.8× 10−8 −2.8× 10−9 10−7 2× 10−6

Case (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

(1) 0 2.69 2.69 2.68 0.332 1.77 1.34 0.0362 0.164 0.0512 0.359 1.54

(2) 2.67 0 2.77 2.88 2.67 2.69 2.67 2.67 2.67 2.67 2.67 2.66

(3) 2.65 2.91 0 2.70 2.64 2.68 2.67 2.65 2.65 2.65 2.65 2.65

(4) 2.69 2.76 2.70 0 2.69 2.72 2.71 2.69 2.69 2.69 2.69 2.68

(5) 0.320 2.69 2.69 2.68 0 1.78 1.28 0.318 0.278 0.324 0.483 1.56

(6) 1.39 2.69 2.71 2.64 1.38 0 1.38 1.39 1.37 1.39 1.38 1.40

(7) 1.08 2.69 2.69 2.68 1.04 1.85 0 1.08 1.08 1.09 1.12 1.59

(8) 0.0362 2.69 2.69 2.68 0.329 1.77 1.34 0 0.160 0.0627 0.361 1.54

(9) 0.161 2.69 2.69 2.68 0.286 1.78 1.33 0.157 0 0.169 0.395 1.55

(10) 0.0512 2.69 2.69 2.68 0.336 1.77 1.35 0.0629 0.172 0 0.355 1.54

(11) 0.360 2.69 2.72 2.67 0.491 1.77 1.38 0.362 0.397 0.356 0 1.51

(12) 1.64 2.69 2.69 2.66 1.68 1.79 2.08 1.64 1.65 1.64 1.60 0

Table 20. The same as in Table 19, but considering all 171 independent combinations of pairs of

different frequency channels.
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Rms of σ level Current FIRAS CIB amplitude (∆ε/εi)z1 (∆ε/εi)late

significance blackbody (units 10−5) 8× 10−8 10−5 10−6 10−9 2× 10−8 −2× 10−9 4× 10−7 8× 10−6

Ibf0 +1σ −1σ µ0 u

1.3 1.7 0.9 1.12× 10−7 1.4× 10−5 1.4× 10−6 1.4× 10−9 2.8× 10−8 −2.8× 10−9 10−7 2× 10−6

Case (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

(1) 0 2.79 2.82 2.79 0.411 1.10 1.48 0.0458 0.205 0.0647 0.469 0.638

(2) 2.79 0 2.87 3.03 2.79 2.74 2.78 2.79 2.79 2.79 2.79 2.75

(3) 2.77 3.04 0 2.84 2.76 2.75 2.79 2.76 2.76 2.77 2.77 2.75

(4) 2.82 2.86 2.81 0 2.82 2.73 2.82 2.82 2.82 2.82 2.80 2.74

(5) 0.406 2.79 2.79 2.78 0 1.10 1.43 0.404 0.352 0.411 0.534 0.649

(6) 1.02 2.71 2.76 2.62 1.02 0 1.01 1.02 1.02 1.02 1.02 1.34

(7) 1.18 2.79 2.79 2.78 1.14 1.10 0 1.18 1.17 1.18 1.21 0.853

(8) 0.0457 2.79 2.82 2.79 0.409 1.10 1.48 0 0.199 0.0794 0.470 0.638

(9) 0.204 2.79 2.82 2.79 0.356 1.08 1.47 0.199 0 0.214 0.475 0.642

(10) 0.0647 2.79 2.82 2.79 0.417 1.10 1.48 0.0794 0.215 0 0.467 0.637

(11) 0.503 2.81 2.82 2.78 0.547 1.11 1.54 0.503 0.513 0.502 0 0.636

(12) 0.842 2.76 2.78 2.74 0.876 1.55 1.87 0.843 0.849 0.840 0.859 0

Table 21. The same as in Table 19, but considering each of the 19 frequency channels and all 171

independent combinations of pairs of different frequency channels.

E Appendix – Results for different assumptions on potential foreground

and calibration residuals

We report here some of the results discussed in Sect. 7.2.3.

σ level Current FIRAS CIB amplitude (∆ε/εi)z1 (∆ε/εi)late

significance blackbody (units 10−5) 8× 10−8 10−5 10−6 10−9 2× 10−8 −2× 10−9 4× 10−7 8× 10−6

Ibf0 +1σ −1σ µ0 u

1.3 1.7 0.9 1.12× 10−7 1.4× 10−5 1.4× 10−6 1.4× 10−9 2.8× 10−8 −2.8× 10−9 10−7 2× 10−6

Case (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

(1) 0.00 700. 911. 487. 0.859 75.7 7.85 0.0689 0.341 −0.0956 2.35 30.7

(2) 699. 0.00 211. 213. 699. 715. 700. 699. 699. 699. 699. 696.

(3) 910. 211. 0.00 424. 910. 926. 911. 910. 910. 910. 910. 907.

(4) 486. 213. 424. 0.00 486. 504. 487. 486. 486. 486. 486. 483.

(5) −0.103 700. 911. 487. 0.00 75.1 7.24 −0.122 −0.276 −0.0379 2.19 30.5

(6) 75.1 716. 926. 505. 74.5 0.00 67.6 75.1 75.0 75.1 74.6 69.5

(7) 7.23 701. 912. 488. 6.62 68.2 0.00 7.22 7.07 7.24 7.00 28.7

(8) −0.0680 700. 911. 487. 0.851 75.7 7.84 0.00 0.331 −0.116 2.35 30.7

(9) −0.266 700. 911. 487. 0.697 75.6 7.70 −0.262 0.00 −0.275 2.30 30.7

(10) 0.0979 700. 911. 487. 0.875 75.7 7.86 0.121 0.361 0.00 2.35 30.8

(11) −1.06 700. 911. 487. −1.04 75.1 7.19 −1.06 −1.09 −1.05 0.00 29.3

(12) 28.5 697. 907. 484. 28.3 69.3 26.4 28.5 28.5 28.5 27.0 0.00

Table 22. Values of
√

|∆χ2| sign(∆χ2) for a single realization at Nside = 64, using Planck mask-76

extended to exclude regions at |b| ≤ 30◦. We adopt Efor = 10−3 and Ecal = 10−4, and consider each

of the 19 frequency channels and all 171 independent combinations of pairs of different frequencies.
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σ level Current FIRAS CIB amplitude (∆ε/εi)z1 (∆ε/εi)late

significance blackbody (units 10−5) 8× 10−8 10−5 10−6 10−9 2× 10−8 −2× 10−9 4× 10−7 8× 10−6

Ibf0 +1σ −1σ µ0 u

1.3 1.7 0.9 1.12× 10−7 1.4× 10−5 1.4× 10−6 1.4× 10−9 2.8× 10−8 −2.8× 10−9 10−7 2× 10−6

Case (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

(1) 0 65.2 84.3 46.0 −0.193 7.80 0.376 −0.0227 −0.101 0.0322 0.563 3.96

(2) 61.2 0 20.9 17.1 61.2 63.0 61.3 61.2 61.2 61.2 61.2 60.9

(3) 80.3 17.0 0 36.3 80.3 82.0 80.4 80.3 80.3 80.3 80.2 79.9

(4) 41.9 21.1 40.2 0 41.9 44.0 42.1 41.9 41.9 41.9 41.9 41.7

(5) 0.214 65.2 84.3 46.0 0 7.73 0.286 0.212 0.183 0.217 0.595 3.94

(6) 8.44 67.0 86.0 48.0 8.37 0 7.62 8.44 8.42 8.44 8.39 8.11

(7) 1.09 65.3 84.4 46.1 1.02 6.98 0 1.08 1.07 1.09 1.18 3.84

(8) 0.0228 65.2 84.3 46.0 −0.192 7.80 0.375 0 −0.0980 0.0395 0.563 3.96

(9) 0.103 65.2 84.3 46.0 −0.169 7.78 0.355 0.100 0 0.108 0.570 3.95

(10) −0.0322 65.2 84.3 46.0 −0.195 7.80 0.378 −0.0394 −0.105 0 0.562 3.96

(11) −0.517 65.2 84.2 45.9 −0.560 7.71 −0.481 −0.518 −0.529 −0.516 0 3.80

(12) 2.00 64.8 83.9 45.6 1.94 6.61 1.42 1.99 1.98 2.00 1.82 0

Table 23. Values of
√

|∆χ2| sign(∆χ2) for a single realization at Nside = 64, using Planck mask-76

extended to exclude regions at |b| ≤ 30◦. We adopt Efor = 10−2 and Ecal = 10−3 at ν ≤ 295GHz and

Ecal = 10−2 at ν ≥ 340GHz, and consider each of the 19 frequency channels and all 171 independent

combinations of pairs of different frequencies.

σ level Current FIRAS CIB amplitude (∆ε/εi)z1 (∆ε/εi)late

significance blackbody (units 10−5) 8× 10−8 10−5 10−6 10−9 2× 10−8 −2× 10−9 4× 10−7 8× 10−6

Ibf0 +1σ −1σ µ0 u

1.3 1.7 0.9 1.12× 10−7 1.4× 10−5 1.4× 10−6 1.4× 10−9 2.8× 10−8 −2.8× 10−9 10−7 2× 10−6

Case (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

(1) 0 161. 209. 112. −0.601 8.97 −1.83 −0.0680 −0.303 0.0962 0.963 6.15

(2) 157. 0 49.8 46.4 157. 160. 157. 157. 157. 157. 157. 156.

(3) 205. 45.9 0 94.4 205. 208. 205. 205. 205. 205. 205. 204.

(4) 109. 50.2 98.2 0 109. 112. 109. 109. 109. 109. 109. 108.

(5) 0.615 161. 209. 112. 0 8.88 −1.78 0.611 0.531 0.622 1.14 6.17

(6) 13.1 164. 212. 116. 13.1 0 12.0 13.1 13.1 13.2 13.1 13.8

(7) 2.43 161. 209. 113. 2.31 7.81 0 2.43 2.40 2.43 2.59 6.46

(8) 0.0680 161. 209. 112. −0.598 8.97 −1.83 0 −0.296 0.118 0.966 6.15

(9) 0.305 161. 209. 112. −0.522 8.95 −1.82 0.297 0 0.320 1.01 6.15

(10) −0.0961 161. 209. 112. −0.609 8.97 −1.83 −0.118 −0.318 0 0.959 6.15

(11) −0.909 161. 209. 112. −1.09 8.87 −2.07 −0.912 −0.959 −0.904 0 5.91

(12) 1.65 160. 208. 111. 1.48 8.00 −1.60 1.64 1.61 1.65 1.27 0

Table 24. Values of
√

|∆χ2| sign(∆χ2) for a single realization at Nside = 64, using Planck mask-76

extended to exclude regions at |b| ≤ 30◦. We adopt Efor = 10−3 and Ecal = 10−3 at ν ≤ 295GHz and

Ecal = 10−2 at ν ≥ 340GHz, and consider each of the 19 frequency channels and all 171 independent

combinations of pairs of different frequencies.
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σ level Current FIRAS CIB amplitude (∆ε/εi)z1 (∆ε/εi)late

significance blackbody (units 10−5) 8× 10−8 10−5 10−6 10−9 2× 10−8 −2× 10−9 4× 10−7 8× 10−6

Ibf0 +1σ −1σ µ0 u

1.3 1.7 0.9 1.12× 10−7 1.4× 10−5 1.4× 10−6 1.4× 10−9 2.8× 10−8 −2.8× 10−9 10−7 2× 10−6

Case (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

(1) 0 286. 371. 200. −1.12 48.6 2.74 −0.133 −0.589 0.189 2.12 21.3

(2) 278. 0 88.9 81.7 278. 289. 278. 278. 278. 278. 278. 276.

(3) 363. 81.0 0 167. 363. 373. 364. 363. 363. 363. 363. 361.

(4) 192. 89.7 175. 0 192. 205. 193. 192. 192. 192. 192. 191.

(5) 1.26 286. 371. 200. 0 48.2 2.25 1.25 1.08 1.28 2.38 21.2

(6) 52.1 297. 381. 213. 51.7 0 47.1 52.1 52.0 52.1 51.6 46.2

(7) 6.57 286. 371. 201. 6.15 43.5 0 6.57 6.47 6.58 6.52 19.9

(8) 0.134 286. 371. 200. −1.12 48.5 2.74 0 −0.574 0.232 2.12 21.3

(9) 0.606 286. 371. 200. −0.989 48.5 2.62 0.590 0 0.636 2.18 21.3

(10) −0.189 286. 371. 200. −1.14 48.6 2.75 −0.231 −0.617 0 2.11 21.3

(11) −1.60 286. 371. 200. −2.06 48.0 −0.489 −1.61 −1.74 −1.59 0 20.3

(12) 17.7 284. 369. 199. 17.4 40.4 14.8 17.7 17.6 17.7 16.7 0

Table 25. Values of
√

|∆χ2| sign(∆χ2) for a single realization at Nside = 256, using Planck mask-76

extended to exclude regions at |b| ≤ 30◦. We adopt Efor = 10−3 and Ecal = 10−3 at ν ≤ 295GHz and

Ecal = 10−2 at ν ≥ 340GHz, and consider each of the 19 frequency channels and all 171 independent

combinations of pairs of different frequencies.
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