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Abstract  

‘Polymer Enzyme Liposome Therapy’ (PELT) is a two-step anticancer approach in which 

a liposomal drug and polymer-phospholipase conjugate are administered sequentially to target 

the tumour interstitium by the enhanced permeability and retention effect, and trigger rapid, 

local, drug release. To date, however, the concept has only been described theoretically. We 

synthesised two polymer conjugates of phospholipase C (PLC) and A2 (PLA2) and evaluated 

their ability to trigger anthracycline release from the clinically-used liposomes, Caelyx® and 

DaunoXome®. N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-PLC and a dextrin-

PLA2 were synthesised and their enzymatic activity characterised. Doxorubicin release from 

polyethyleneglycol-coated (PEGylated) Caelyx® was relatively slow (< 20%, 60 min), whereas 

daunomycin was rapidly released from non-PEGylated DaunoXome® (~87%) by both enzymes. 

Incubation with dextrin-PLA2 triggered significantly less daunomycin release than HPMA 

copolymer-PLC, but when dextrin-PLA2 was pre-incubated with -amylase, the rate of 

daunomycin release increased. DaunoXome®’s diameter increased in the presence of PLA2 or 

dextrin-PLA2, while Caelyx®’s diameter was unaffected by free or conjugated PLA2. Dextrin-

PLA2 potentiated the cytotoxicity of DaunoXome® to MCF-7 cells to a greater extent than free 

PLA2, while combining dextrin-PLA2 with Caelyx® resulted in antagonism, even in the 

presence of -amylase, presumably due to steric hindrance by PEG. Our findings suggest that 

in vivo studies to evaluate PELT combinations should be further evaluated. 

 

Key Words: PELT, polymer-protein conjugate, phospholipases, polymer therapeutics, 

liposome 
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Introduction 

Liposomes containing anthracylines (e.g. Caelyx® in Europe, also known as Doxil® in the 

USA, and Myocet®) have been successfully developed as antitumour agents for the treatment 

of diseases such as metastatic breast cancer (reviewed in [1]), and such liposomal anthracyclines 

are routinely used in many combination chemotherapy regimens [2]. Liposomes target human 

tumours by the enhanced permeability and retention (EPR) effect [3], which prolongs drug 

circulation time and reduces off-target toxic effects such as anthracycline-related cardiotoxicity 

[4]. However, despite the clinical advantages of liposomal drugs, they do not lack 

disadvantages. The main dose-limiting side effect associated with Caelyx® is palmar plantar 

erythrodysesthesia, also known as ‘hand-foot syndrome’, which occurs due to its PEGylated 

coating [5]. Moreover, the relatively slow rate of intratumoural release of the free drug from 

the liposomal formulations can also limit optimal therapeutic activity [6]. To enable externally-

triggered liposomal drug release specifically within tumours, Duncan and Satchi-Fainaro have 

previously proposed the two-step approach, Polymer-Enzyme Liposome Therapy (PELT) [7], 

although, to date, in vitro proof of principle has not been reported. This concept involves 

treatment with liposome therapy followed by administration of a polymer-phospholipase 

conjugate which co-localises in the tumour interstitium by the EPR effect, and triggers rapid, 

and local, liposomal drug release at the target site [7]. This hypothesis is shown schematically 

in Figure 1. Clinically, it is expected that in the case of the long-circulating polyethylene glycol-

coated (PEGylated) Caelyx®, which encapsulates doxorubicin (Dox), the polymer-

phospholipase would likely be administered after several days, since Caelyx® has a serum half-

life of 30-90 h [8]. However, in the case of the non-PEGylated DaunoXome®, which 

encapsulates daunorubicin (Dnm), the second step might be anticipated a few hours after 

liposome administration, due to its rapid reticuloendothelial system (RES) clearance (serum 

half-life = ~5 h [9]). 
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 The aim of this study was to develop and test two model polymer-phospholipase conjugates 

with potential for further development as a clinically suitable 'trigger' for PELT (Figure 1). As 

several HPMA copolymer-anticancer conjugates have already progressed into clinical trials 

[10] and the biodegradable polysaccharide, dextrin, which is readily degraded by amylase, 

is used clinically as a peritoneal dialysis solution [11], these were chosen as first model 

polymers. Moreover, we have already reported methods for synthesis and evaluation of HPMA 

copolymer-enzyme [7, 12, 13, 14, 15, 16] and dextrin-enzyme conjugates [17, 18]. 

Phospholipase C (PLC) and phospholipase A2 (PLA2) were selected since both have previously 

demonstrated their ability to trigger drug/probe release from liposomes [19, 20], despite their 

different mechanisms used to hydrolyse phospholipids. PLC hydrolyses phopholipids on the 

glycerol side of the phosphodiester bond, causing release of diacylglycerol, while PLA2 

catalyses hydrolysis at the sn-2 fatty acyl bond, to release free fatty acid and lysophospholipid 

[21]. Dextrin-PLA2 conjugates have already been extensively characterised and shown promise 

as anti-cancer agents in their own right [18, 22], having the added advantage of being able 

conceal to and reinstate enzymatic activity by the polymer-masked unmasked protein therapy 

(PELT) concept [17]. Caelyx® and DaunoXome® were selected as model liposomal 

formulations as they represent the PEGylated and uncoated classes, respectively. 

First, methods were optimised for synthesis of HPMA copolymer-PLC and dextrin-PLA2 

conjugates, which were characterised in respect of free and total enzyme content, molecular 

weight and retention of enzymatic activity. The ability of HPMA copolymer-PLC and dextrin-

PLA2 ( -amylase) to trigger the release of Dox or Dnm from Caelyx® and DaunoXome®, 

respectively, was assessed. Given the growing concerns about chronic toxicity associated with 

non-biodegradable polymers and the benefits of Polymer masked-UnMasked Protein Therapy 

(PUMPT) using biodegradable polymers, dextrin-PLA2 emerged as the lead PELT combination 

for further studies. Therefore, physical stability of Caelyx® and DaunoXome® in the presence 
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of dextrin-PLA2 was assessed by dynamic light scattering and in vitro cytotoxicity of the 

combination was performed using MCF-7 cells. 

 

Materials and Methods 

Materials 

HPMA copolymer-Gly-Gly-p-nitrophenol (ONp) (4.4 mol% ONp, Mw = 34,679 g/mol) 

was from Polymer Laboratories (Church Stretton, UK). Type 1 dextrin (Mw = 51,000 g/mol) 

from corn was from ML laboratories (Keele, UK). DaunoXome® (solution for injection; 2 

mg/mL) was from Gilead Sciences (Cambridge, UK). Caelyx® (concentrated for injection; 2 

mg/mL) was from Janssen-Cilag Ltd (High Wycombe, UK). PLC was from the Defence 

Evaluation and Research Agency (DERA) (Porton Down, UK). PLA2 from honey bee venom, 

1-Ethyl-3-(3-dimethylaminopropyl carbodiimide hydrochloride) (EDC), sodium metaborate, p-

nitrophenyl-phosphorylcholine (pNPPC), copper (II) sulphate pentahydrate (4% w/v solution), 

bovine serum albumin (BSA), bicinchoninic acid solution (BCA), TRIZMA base, sodium 

dodecyl sulfate (SDS), TRIZMA hydrochloride (Tris HCl), Triton X-100, ammonium 

persulfate, acrylamide/bis-acrylamide, tissue culture grade dimethyl sulfoxide (DMSO, 3-(4,5-

dimethylthiazol-2yl)-2,5-diphenyl tetrazolium bromide (MTT), trypan blue and optical grade 

DMSO were all from Sigma-Aldrich (Poole, UK). N,N,N,N-tetramethyl-ethylenediamine 

(TEMED), bromophenol blue, coomassie brilliant blue G-250, 2-mercaptoethanol and pre-

stained SDS PAGE standards were from Bio-Rad (Perth, UK). Glycine was from ICN 

Biomedicals, Inc. 3,3-dimethylglutaric acid (DMG) and calcium lactate were from Merck 

(Darmstadt, Germany). Sodium acid phosphate, sodium phosphate, sodium chloride and 4-

dimethylaminopyridine were from Fisher Scientific (Loughborough, UK). Unless otherwise 

stated, all chemicals were of analytical grade. All solvents were of general reagent grade (unless 

stated) and were from Fisher Scientific (Loughborough, UK). The human breast carcinoma cell 
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line MCF-7 was provided by Tenovus Centre for Cancer Research (Cardiff, UK). Foetal calf 

serum (FCS), 0.05% w/v trypsin-0.53 mM EDTA and RPMI 1640 with L-glutamine (with and 

without phenol red as pH indicator) were from Invitrogen Life Technologies (Paisley, UK). 

 

Synthesis of Dextrin-PLA2 Conjugate 

Dextrin-PLA2 conjugate was synthesised, purified and characterised (including enzymatic 

activity) using methods previously described [18] and summarised schematically in Figure 2a.  

 

Synthesis of HPMA Copolymer-PLC Conjugate 

PLC was conjugated to HPMA copolymer-Gly-Gly-ONp as outlined in Figure 2b. Briefly, 

PLC (2 mg/mL, 1 mL, 4.3 x 10-8 mol) was dissolved under stirring in PBS (pH 7.2) in a round-

bottomed flask. Next, HPMA copolymer-Gly-Gly-ONp (2 mg/mL, 2 mL, 5.76 x 10-9 mol of 

ONp), dissolved in double distilled water (ddH2O), was added dropwise to the solution to avoid 

crosslinking and the reaction mixture was stirred in the dark at 4oC for 30 min. The pH was 

then carefully raised to 8.5 by adding saturated tetraborate buffer. The mixture was stirred for 

another 12 h and the reaction was terminated by adding 1-amino-2-propanol (20 L) to remove 

unreacted ONp and avoid further crosslinking. Free ONp, 1-amino-2-propanol, and tetraborate 

salts were removed from the final yellow solution using Vivaspin tubes (10,000 g/mol Mw cut-

off) until no yellow colour remained. The conjugate was purified from the reaction mixture by 

FPLC (Pharmacia LKB FPLC system; Amersham Pharmacia Biotech, UK) using a pre-packed 

Superdex 200 HR10/30 column with a UV detector and data analysis using FPLC Director 

version 1.10 software (Amersham Pharmacia Biotech, UK). The concentrated reaction mixture 

(200 μL) was injected into a 500 μL loop using PBS (pH 7.4) as a mobile phase and run at 0.5 

mL/min. Fractions (1 mL) were collected then the appropriate fractions containing conjugate 

were pooled and desalted using Vivaspin tubes (10,000 g/mol Mw cut-off). The final conjugate 

was lyophilised and stored at -20oC.  
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HPMA copolymer-PLC conjugate was characterised by FPLC and SDS PAGE (12.5% 

acrylamide gel, 0.75 mm thickness) to assess purity, and the total protein content was 

determined by the Bradford assay. 

 

Measurement of PLC Activity  

PLC activity was measured using pNPPC as the substrate (adapted from [23]). First, 

pNPPC (40 mM), native PLC (10 g/mL PLC) and HPMA copolymer-PLC conjugate (10 

g/mL PLC-equivalent) were each dissolved in DMG buffer (10 mM containing 2.5 mM 

calcium lactate, 0.01 mM zinc sulfate and 0.1% w/v BSA (adjust to pH 7.2 with NaOH)). All 

samples were prepared fresh before use and placed on ice throughout the experiments. The 

pNPPC solution (0.5 mL, 2 x 10-5 mol) was added to a 1 cm3 quartz cell incubated at 37oC. To 

start the assay, free enzyme or conjugate (0.5 mL, 1 x 10-10 mol PLC-equivalent) was added to 

the cuvette. Degradation of phospholipids was monitored by measuring the increase in 

absorbance at 414 nm for 15 min. DMG buffer (1 mL) was used as a blank. Results were 

expressed as arbitrary units of absorbance over time. Conjugate activity was calculated as a 

percentage of the activity of free phospholipase, by comparison of the slope of the linear portion 

of the curves. 

 

 

Polymer-Phospholipase Mediated Liposomal Drug Release  

To assess the rate and extent of Dox release from Caelyx® and Dnm release from 

DaunoXome®, liposomes were first diluted in PBS (1:100, pH 7.4). Native PLC and HPMA 

copolymer-PLC (final experiment concentration of 20 g/mL PLC-equivalent), and native 

PLA2 and dextrin-PLA2 (final experiment concentration of 50 g/mL PLA2-equivalent) were 

also dissolved in PBS (pH 7.4). All samples were prepared fresh before use and placed on ice 

throughout the experiments. Next, PLC or HPMA copolymer-PLC (100 L) was added to each 
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well of a black 96-well microfluor plate and the plate allowed to equilibrate at 37oC for 30 min. 

Subsequently, liposome solution was added to the each well (6 replicates) and the plate 

immediately placed into a fluorescence plate reader at 37oC and fluorescence was measured at 

various time points (ex = 485 nm and em = 520 nm). Triton X-100 (1% v/v) was used to release 

100% of the drug from the liposome, while PBS was used as a negative control. A blank 

fluorescence reading was obtained using PBS only. Results are expressed as percentage of total 

(corrected for background fluorescence of intact liposomes). 

The effect of dextrin-PLA2 on liposomal drug release was also determined following 

incubation of dextrin-PLA2 with -amylase (0.5 mg/mL PLA2-equivalent incubated with 200 

SU/mL -amylase at 37oC for 16 h in Tris buffer, pH 8.2), and liposomal drug release measured 

as described above. 

 

Stability Testing of Liposomes 

Dynamic light scattering (DLS) (using a Zetasizer Nano ZS (Malvern, UK) and an N4 Plus 

submicron particle sizer (Beckman Coulter Ltd, UK) for Caelyx® and DaunoXome® 

measurements, respectively) was used to measure mean diameter and polydispersity of 

liposome formulations following incubation with dextrin-PLA2 conjugate, PLA2, Triton X-100 

and in PBS. DaunoXome® or Caelyx® (both 2 mg/mL) was diluted fresh on the day of 

experiment to 1:100 or 1:200, respectively, in PBS (pH 7.6) and stored at 4oC prior to use. 

Dextrin-PLA2 conjugate and PLA2 were dissolved in PBS (pH 7.6, 100 g/mL PLA2-

equivalent) and equilibrated at 37oC. Liposome solution (1 mL) was added to a polystyrene 

cuvette and allowed to equilibrate to 37oC for 30 min. PBS (negative control), dextrin-PLA2 

conjugate, PLA2 or Triton X-100 (2%) solution (positive control) (1 mL) was added 

immediately before initiating the first measurement. The stability of the liposomes was 

followed for 150 min at 37oC (n = 3). Data is presented as mean liposome diameter over time. 
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Evaluation of In Vitro Cytotoxicity 

An MTT assay was used to assess cell viability as previously described [24]. MCF-7 cells 

were seeded into sterile 96-well microtitre plates (4 x 104 cells/ mL) in 0.1 mL/well of RPMI 

1640 (without phenol red) with FCS (5% v/v) and incubated at 37 oC for 24 h. Next, the medium 

was removed and various concentrations of DaunoXome® or combinations DaunoXome® and 

PLA2 (50 g/mL) or DaunoXome® and dextrin-PLA2 (50 g/mL) (0.2 m filter-sterilised) were 

added to the cells. Following a further 67 h incubation, MTT (20 L of a 5 mg/mL solution in 

PBS) was added to each well and the cells were incubated for 5 h. The medium was then 

removed and the precipitated formazan crystals were solubilised for 30 min with the addition 

of optical grade DMSO (100 L). Spectrophotometric absorbance of the formazan product was 

measured at 550 nm. Cell viability was expressed as a percentage of the viability of untreated 

control cells, and the concentration for 50% inhibition (IC50) value calculated (± SEM). 

The multiplicative model was used to evaluate PLA2 and dextrin-PLA2’s interaction with 

liposomal drug formulations in vitro [25]. This model assumes that each drug acts 

independently, and therefore predicts that the observed effect of a drug combination is equal to 

the product of the effect of the individual drugs (i.e. expected cell viability (A+B) = cell viability 

(A) x cell viability (B)). Synergism is observed when the observed cell viability is lower than 

the product of each individual drug effect and antagonism is observed when the observed cell 

viability is higher than the cell viability for the most active drug. 

 

Statistical Analysis 

Data were expressed as mean ± the error, calculated as either standard deviation (SD) or 

standard error of the mean (SEM). Statistical significance was set at p < 0.05 (indicated by *). 

Where only two groups were compared, student’s t test for a small sample size was used. Where 

more than two groups were compared, significance was evaluated using a one-way analysis of 
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variance (ANOVA) followed by bonferroni post hoc tests to correct for multiple comparisons. 

All statistical calculations were performed using GraphPad Prism, version 6.0g for Macintosh, 

2015. 

 

Results 

Characterisation of Conjugates 

Polymer-phospholipase conjugates were successfully synthesised and purified (Table 1). 

SDS PAGE and FPLC analysis confirmed the presence of a high molecular weight conjugate 

(representative data for dextrin-PLA2 conjugates are presented in Figure 3a,b). In all cases, 

conjugates contained < 1% free phospholipase. Two batches of dextrin-PLA2 conjugates were 

prepared, which showed good batch-to-batch reproducibility that was comparable to previous 

studies.  

The HPMA copolymer-PLC conjugate retained enzymatic activity, indeed, when evaluated 

against pNPPC at equivalent protein concentration, slightly greater activity (to ~132.5% ± 4 

(SD)) was seen compared to free PLC (Figure 3c). In contrast, conjugation of dextrin to PLA2 

led to reduced activity (to ~67% ± 11.5 (SD)) compared to free enzyme (Figure 3d). However, 

bioactivity was reinstated (to ~139% ± 15.5 (SD)) when the dextrin-PLA2 conjugate was pre-

incubated with -amylase. 

 

Triggered Liposomal Drug Release  

As expected, both liposome formulations were stable in PBS. Incubation of Caelyx® with 

free PLC or HPMA copolymer-PLC conjugate led to minimal (<5%) Dox release from the 

liposomes over the 2.5 h period studied (Figure 4a), and no difference was seen in the rate or 

extent of Dox release triggered by free and HPMA copolymer-conjugated PLC. However, when 

the non-PEGylated liposome, DaunoXome®, was incubated with PLC or HPMA copolymer-
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PLC conjugate, rapid Dnm release was seen within 5 min in both cases. Release plateaued after 

~10 min at ~60-64% total, and was similar for free and HPMA copolymer-conjugated PLC 

(Figure 4b).   

When Caelyx® was incubated with PLA2, increased Dox release was seen than with PLC 

(18.4 vs. 2.3%, respectively at 60 min), however <2% total drug release was observed in the 

presence of dextrin-PLA2 conjugate, even following -amylase-unmasking (Figure 4c). In 

contrast, incubation of DaunoXome® with free PLA2 triggered rapid Dnm release from the 

liposomes (Figure 4d), with 84.1% of total Dnm released after 60 min. However, dextrin-PLA2-

induced drug release was much slower than that seen for free PLA2, only reaching 19.5% after 

60 min. Pre-incubation of the dextrin-PLA2 conjugate with -amylase led to a significantly 

faster initial rate of Dnm release over this 60 min experiment, but in this case, it was still much 

slower than seen for both free PLA2 and the HPMA copolymer-PLC conjugate, only reaching 

27.0% total drug release by the end of the experiment. 

 

Liposome Stability 

Both liposome formulations showed a classical unimodal size distribution (Figure 5a,c) 

that was unaltered over a 3 h incubation period. As expected, Caelyx® liposomes were larger 

than DaunoXome® (mean diameter = 80.1 ± 3.7 (SD) nm vs. 50.6 ± 0.2 (SD) nm, respectively).  

When Triton X-100 was added to DaunoXome® the vesicle diameter dropped rapidly to 

20.1 ± 2.2 (SD) nm within 1 min (Figure 5b). Similarly, addition of Triton X-100 to Caelyx® 

caused an immediate decrease in liposome diameter (10.7 ± 0.9 (SD) nm within 1 min) (Figure 

5d). In contrast, when DaunoXome® was incubated with free PLA2 the liposomes appeared to 

get larger over time, reaching a maximum diameter of 122.2 ± 0.1 (SD) nm after 3 h. When 

liposomes were incubated with the dextrin-PLA2 conjugate, the mean diameter remained 

unchanged over the course of the 3 h experiment. However, when the dextrin-PLA2 conjugate 
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was unmasked using -amylase, a slight increase in size of the liposomes was seen (mean 

diameter = 61.7 ± 0.2 (SD) nm). In contrast, Caelyx® diameter was unaffected by addition of 

PLA2, dextrin-PLA2 or unmasked dextrin-PLA2. 

 

In Vitro Cytotoxicity of PELT Combination 

As expected, DaunoXome® and Caelyx® alone were cytotoxic towards MCF-7 cells in a 

concentration-dependent manner (Figure 6, Table 2). Addition of PLA2 or dextrin-PLA2 (50 

g/mL PLA2-equivalent) alone reduced MCF-7 cell viability to 92.8% and 57.3%, respectively 

(results not shown). However, when cells were incubated with liposomal drugs combined with 

either PLA2 or dextrin-PLA2 conjugate, cytotoxicity increased. For both DaunoXome® and 

Caelyx®, the liposome/ dextrin-PLA2 PELT combination was more cytotoxic than liposomal 

drug alone or combined with native PLA2. However, the Caelyx® and dextrin-PLA2 conjugate 

combination did not show the same Dox concentration-dependent decrease in cell viability, as 

seen with DaunoXome® combinations or Caelyx® with PLA2. A comparison of observed and 

expected cell viability (according to the multiplicative model) revealed that, while the observed 

cell viability was lower than the expected cell viability for the PELT combination using 

DaunoXome®, the opposite was true for PELT using Caelyx® at <0.005 and <0.01 g/mL Dox 

for masked and unmasked dextrin-PLA2, respectively (Figure 7). In other words, drug 

combinations with DaunoXome® showed synergism whereas when dextrin-PLA2 conjugate 

was combined with Caelyx®, antagonism was observed, even after -amylase unmasking, 

especially at the highest concentrations of Caelyx®. 

 

Discussion 

Two-step enzyme-prodrug combinations, designed to increase active drug concentration in 

tumour tissue, were first described in the 1970s (reviewed in [26]), and a number of these 
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approaches have been tested clinically, however, none are currently in routine clinical use. 

Typically, they rely on tumour-targeted delivery of a specific drug-activating enzyme (or its 

gene) using a viral vector (Virus-Directed Enzyme-Prodrug Therapy; VDEPT), or an antibody 

(Antibody-Directed Enzyme-Prodrug Therapy; ADEPT), combined with administration of a 

cytotoxic prodrug. A two-step antibody-PLC/ liposome approach, based on an anti-epidermal 

growth factor receptor (EGFR) antibody-PLC conjugate as a trigger for liposomal drug release, 

has also been described, which showed synergistic inhibition of cell proliferation in vitro and 

inhibited tumour growth in mice [20]. More recently, Satchi et al. reported a two-step polymer 

conjugate approach, called Polymer-Directed Enzyme-Prodrug Therapy (PDEPT), which 

utilises a polymer-enzyme conjugate to activate a previously tumour-localised polymeric 

prodrug [14, 15]. For both PDEPT and PELT approaches described here, the polymer-enzyme 

conjugate is a key component. Many PEGylated proteins, including those used in cancer 

(reviewed in [27]), have already entered routine clinical use, and their ability to reduce non-

specific protein toxicity, extend the plasma half-life, reduce immunogenicity and enhance 

passive targeting to tumours by the EPR effect [28] is well established. Given the increasing 

awareness of chronic toxicity with the use of non-biodegradable polymers, these studies were 

undertaken to investigate whether a bioresponsive polymer-phospholipase conjugate, using a 

biodegradable polymer, would be more suitable for PELT than a non-biodegradable polymer.  

 Liposomal composition, together with phospholipase substrate specificity, will 

undoubtedly influence the ability of a polymer-phospholipase conjugate to trigger drug release. 

When DaunoXome® was incubated with free PLC over a range of concentrations, maximal 

Dnm release occurred at an enzyme concentration of 5 g/mL (0.12 M), whereas maximal 

release was induced at the higher free PLA2 concentration of 50 g/mL (3.16 M) (results not 

shown). The superior activity of PLC may, in part, be due to its substrate specificity, however, 

the main phospholipid in DaunoXome® and Caelyx® is phosphatidylcholine (PC) [29], which 



 

 14 

is preferentially hydrolysed by both PLC and PLA2, so PLC’s higher potency is more likely to 

be related to the presence of cholesterol in both formulations, which has been shown to enhance 

its activity [30].   

 The results obtained here clearly show that steric hindrance imparted by the PEGylated 

liposomal surface limits enzyme-induced drug release from Caelyx®. In contrast, both the 

HPMA copolymer-PLC and dextrin-PLA2 conjugates were able to induce Dnm release from 

the non-PEGylated DaunoXome® vesicles. Observation that free PLC and HPMA copolymer-

PLC displayed the same rate of liposomal degradation was consistent with observations in the 

biochemical assay using pNPPC. While free PLA2 rapidly released Dnm from DaunoXome®, 

the dextrin-PLA2-induced release was slower (19.5% release at 1 h), but increased significantly 

(~1.5-fold) after pre-incubation with -amylase, as seen previously in the egg yolk bioassay. 

Dextrin used here had a Mw ~ 51,000 g/mol, that is approximately 3 times higher than PLA2, 

which may explain the reduction of enzymatic activity seen compared to free PLA2, probably 

due to masking of the enzyme's catalytic site. These conjugate features were chosen to optimise 

pharmacokinetics in vivo (higher molecular weight conjugates display greater EPR-mediated 

targeting), and also to mask enzymatic activity/toxicity in transit [18]. In contrast, the HPMA 

copolymer and PLC have similar molecular weights (~40,000 g/mol). This unexpectedly high 

level of PLC activity seen after conjugation and purification may be due to ‘flipping’ or 

unfolding of the catalytic site, a phenomenon that has been described for alpha-toxin PLC and 

which is reported to enhance enzymatic activity [31]. This suggests that as the conjugate was 

water-soluble and the PLC was active following conjugation, it is unlikely that crosslinking of 

the conjugate formed large aggregates that would lead to precipitation and loss of enzymatic 

activity. 

Although the HPMA copolymer-PLC retained greater enzymatic activity than dextrin-

PLA2, resulting in greater liposomal drug release, the fact that the dextrin-PLA2 conjugate can 
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capitalise on the benefits of Polymer masked-UnMasked Protein Therapy (PUMPT) [17] makes 

it a more attractive option for PELT. PUMPT uses conjugation of a biodegradable polymer to 

mask a protein or peptide’s activity (useful to diminish toxicity of a protein like PLA2 in the 

bloodstream), and subsequent triggered degradation of the polymer can be used to regenerate 

bioactivity in a controlled fashion. We have already demonstrated the potential of -amylase 

triggered degradation of several dextrin-protein conjugates, including trypsin, melanocyte-

stimulating hormone (MSH) [17], PLA2 [18] and epidermal growth factor (EGF) [32, 33].  

Given the clinical advantages of using a biodegradable trigger for PELT, subsequent 

investigations focused on dextrin-PLA2 conjugates. Characterisation of liposome diameter 

showed a significant increase in the size of DaunoXome® in the presence of PLA2 and, to a 

lesser extent, unmasked dextrin-PLA2. This effect was not seen for Caelyx®. A recent study 

using time-resolved small-angle neutron scattering (SANS) to investigate changes in 1,2-

dipalmitoyl-sn-glycero-3-15 phosphocholine (DPPC) vesicle structure on exposure to dextrin-

PLA2 (± -amylase) showed that conjugate unmasking by dextrin degradation results in time-

dependent vesicle degradation [34]. These studies also reported time-dependent vesicle 

swelling following incubation with PLA2 or unmasked dextrin-PLA2, which was attributed to 

membrane permeabilisation and osmotic swelling. This causes membrane stretching, thereby 

reducing the lateral packing of lipids, which can further modulate its susceptibility to PLA2 

activity [35], and ultimately cause liposome rupture. Although dextrin-PLA2 conjugate did not 

have the osmotic effect of free PLA2, unmasked dextrin-PLA2 conjugate showed some swelling 

of liposomes over time, suggesting that activity of PLA2 had been reinstated (~16 %) following 

dextrin degradation.  Presumably, since Caelyx®’s diameter was unaltered during incubation 

with PLA2, the presence of PEG chains on the liposome surface prevented PLA2 from reaching 

the phospholipid substrate due to steric hindrance. 

Since PLA2 has previously shown cytotoxicity towards several cancer cell lines (HT29, 
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MCF-7 and B16F10) [18], but PLC was not toxic towards B16F10, L1210 or CCRF cancer 

cells (up to 0.5 mg/mL, data not shown), dextrin-PLA2 was chosen to test in an in vitro 

cytotoxicity model of PELT, since it may offer enhanced anticancer activity. In vitro 

cytotoxicity modeling of the PELT combination is inherently difficult, however, due to the 

dependence on the EPR effect for co-localisation of liposomes and polymer-enzyme conjugate 

in the tumour tissues, as well as dextrin-PLA2’s reliance on the intra-tumoural -amylase 

concentration for enzyme activation. Nevertheless, preliminary in vitro evaluation of 

cytotoxicity in MCF-7 cells showed that the DaunoXome®/dextrin-PLA2 PELT combination in 

the presence of -amylase resulted in greater cytotoxicity than either DaunoXome® alone or 

combined with native PLA2. Enhanced cytotoxicity was not observed when Caelyx® was 

combined with dextrin-PLA2, even in the presence of 100 IU/L -amylase. Although Dnm 

release from DaunoXome® was shown to be relatively slow over 1 h, these 72 h cytotoxicity 

assays were conducted in the presence of FCS (containing 7.2 IU/L -amylase [18],which is 

expected to slowly degrade dextrin, thus releasing active PLA2 over time. Moreover, it has been 

reported that the levels of -amylase can be up to 85-fold higher in the tumour environment 

compared to plasma [36, 37], which would provide an opportunity for enhanced dextrin 

degradation and even more rapid enzyme activation, and thus drug release, selectively within 

the tumour interstitium. Furthermore, although phospholipases are known to have haemolytic 

activity, which may be exacerbated in vivo in long circulating, polymer-conjugated 

phospholipase, previous studies showed that concentration-dependent haemolysis was 

abolished by dextrin conjugation to PLA2 [18]. We hypothesized that the polymer masks the 

enzyme while in circulation and then it is unmasked when reaching the tumour site in the 

presence of amylase present in the tumour. 

Data analysis using the multiplicative model of drug interactions confirmed that 

DaunoXome® acts synergistically with PLA2 and dextrin-PLA2, while the PEGylated Caelyx® 
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was only synergistic with PLA2 and antagonistic with dextrin-PLA2, even in the presence of 

exogenous -amylase. This result is consistent with the drug release and liposome stability 

findings, and suggests that dextrin conjugation inhibits PLA2’s interaction with PEGylated 

phospholipids, which in turn prevents liposomal drug release. Studies have shown that the drug 

trapped in liposomes in interstitial space remains inactive until it is released in the free form 

[38, 39], therefore liposomal drug release is essential for Dox’s anticancer activity. Previous 

analysis of PUMPT-PELT by SANS showed that unmasking of dextrin-PLA2 with -amylase 

partially reinstated PLA2’s activity towards DPPC vesicles [34], which is also evident in these 

studies as a shift of data points towards additivity (dashed line).  

 

Conclusions 

These studies demonstrate the feasibility of the PELT approach when using a polymer-

phospholipase conjugate to accelerate the release of the drug from non-PEGylated liposomes, 

such as DaunoXome®. Dextrin-PLA2 conjugate has several advantages compared to the HPMA 

copolymer-PLC conjugate, including ease of synthesis/purification and the ability to mask and 

then reinstate enzymatic activity. In addition, as dextrin is biodegradable, and the HPMA 

copolymer backbone is not, higher molecular weight conjugates can be used. These have been 

previously shown to display better extravasation-dependent tumour targeting enabled by the 

EPR effect. As the dextrin-PLA2/DaunoXome® combination caused enhanced cytotoxicity in 

MCF-7 cells, this suggests that further in vivo evaluation is warranted. As liposomal Dox is 

more widely used clinically than DaunoXome®
, investigation of other, non-PEGylated, 

liposomal anticancer agents using the PELT approach would also aid the identification of the 

best combination for future clinical investigation.  
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Table 1 Characteristics of polymer-phospholipase conjugates  

Conjugate Liposome 
formulation tested 

Molecular 
weight 
(g/mol) 

Protein 
content 
(% w/w) 

Molar ratio 
(polymer: 

phospholipase) 

HPMA 
-copolymer

1PLC 

®Caelyx *130,000-80 57-72 1 to 1:2:1 

2PLA-Dextrin ®DaunoXome +195,000 9.4 3:1 

2PLA-Dextrin ®Caelyx +190,000 9.3 3:1 

.measured by SDS PAGE*  

.measured by FPLC, relative to protein molecular weight markers+  

PLC used in these -summarise characteristics of 3 batches of HPMA copolymervalues 1

studies 
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Table 2 Cytotoxicity of compounds used in this study. 

Combination IC50 
(μg/mL)a 

Combination IC50 
(μg/mL)a 

DaunoXome® 0.082 Caelyx® 0.185 

DaunoXome® + PLA2 0.017 Caelyx® + PLA2 0.028 

DaunoXome® + dextrin-PLA2 0.0004 Caelyx® + dextrin-PLA2 ND 

 Caelyx + unmasked dextrin-PLA2 ND 

as mean  expressedcells/mL. Data  4Cell viability at 72 h MTT assay, seeding density 1 x 10 a

± SEM.; n = 18. 

ND = not determined 
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Legend to Figures 

Figure 1 Schematic representation of the PELT concept.   

 

Figure 2 Reaction scheme for the synthesis of dextrin- PLA2 and HPMA copolymer-PLC 

conjugates. 

 

Figure 3 Characterisation of HPMA copolymer-PLC and dextrin-PLA2 conjugates. Panel 

(a) shows SDS PAGE analysis of PLC, HPMA copolymer-PLC, PLA2 and 

dextrin-PLA2 and panel (b) shows characterisation by FPLC of free PLC and 

HPMA copolymer-PLC conjugates, and free PLA2 and dextrin-PLA2 

conjugates, respectively. Panels (c) and (d) show measurement of phospholipase 

activity for PLC and PLA2, respectively. Data show absorbance as mean  SD, 

n = 3. 

 

Figure 4 In vitro release of drugs from liposomes. Panels (a) and (c) show Dox release 

from Caelyx® in the presence of (a) PLC and HPMA copolymer-PLC conjugate 

(50 g/mL PLC-equivalent), and (c) PLA2 and dextrin-PLA2 conjugate (50 

g/mL PLA2-equivalent  -amylase). Panels (b) and (d) show Dnm release 

from DaunoXome® in the presence of (b) PLC and HPMA copolymer-PLC 

conjugate (50 g/mL PLC-equivalent), and (d) PLA2 and dextrin-PLA2 

conjugate (50 g/mL PLA2-equivalent  -amylase). Liposomal drug in the 

absence of enzyme is included as a control. Triton X-100 (1% v/v) was used for 

100% drug release. Data represents % fluorescence compared to Triton X-100 

(1% v/v) solution ± SEM, n = 6. Where error bars are invisible, they are within 

size of data points.  
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Figure 5 Measurements of liposome diameter for stability testing of PELT combinations. 

Panels (a) and (c) show typical size distribution curves of DaunoXome® and 

Caelyx®, respectively. Panels (b) and (d) show variation over time of (b) 

DaunoXome® and (d) Caelyx® diameter in the absence and presence of PLA2 

and dextrin-PLA2 conjugate (50 g/mL PLA2-equivalent)  -amylase. Data 

represents diameter (nm) ± SD, n =3. Where error bars are invisible they are 

within size of data points.  

 

Figure 6 Cell viability of MCF-7 cells incubated for 72 h with (a) DaunoXome®  or (b) 

Caelyx® in the absence and presence of PLA2 and dextrin-PLA2 conjugate (50 

g/mL PLA2-equivalent). Data represents % normal growth of control cells ± 

SEM, n =18. Where error bars are invisible they are within size of data points. 

* indicates significance compared to DaunoXome® or  Caelyx® control, where 

p<0.05. 

 

Figure 7 Comparisons between observed cell viability (%) and expected cell viability (%) 

for the combination of (a) DaunoXome® + PLA2, (b) DaunoXome® + dextrin-

PLA2, (c) Caelyx® + PLA2, (d) Caelyx® + dextrin-PLA2 and (e) Caelyx® + 

unmasked dextrin-PLA2, tested in MCF-7 cells, according to the multiplicative 

model (expected cell viability (A+B) = cell viability (A) x cell viability (B)). 

Dotted line indicates additivity. 

 

 


